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Abstract
Toxoplasma gondii is an obligate intracellular parasite associated with severe disease, especially in the 
immunosuppressed. It is also a cause of congenital malformation and abortion in both animals and humans and 
is considered one of the most important foodborne pathogens worldwide with different strains showing variable 
distribution and differing pathogenicity. Thus, strain-level differentiation of T. gondii isolates is an essential asset in 
the understanding of parasite’s diversity, geographical distribution, epidemiology and health risk. Here, we designed 
and implemented an Oxford Nanopore MinION protocol to analyse genomic sequence variation including single 
nucleotide polymorphisms (SNPs) and insertion/deletion polymorphisms (InDel’s) of four different genomic loci, 
part of protein coding genes SAG2, SAG3, ROP17 and ROP21. This method provided results with the sequencing 
depth necessary for accurate differentiation of T. gondii strains and represents a rapid approach compared to 
conventional techniques which we further validated against environmental samples isolated from wild wood mice. 
In summary, multi-locus sequence typing (MLST) of both highly conserved and more polymorphic areas of the 
genome, provided robust data for strain classification in a platform ready for further adaption for other strains and 
pathogens.

Key points
 • Typing of T. gondii is essential for understanding the epidemiology and spread of more virulent strains. 
 • Multi-locus sequence typing (MLST) provides several advantages, including accuracy and specificity, over 

conventional approaches.
 • The portable Nanopore-based approach described here represents a cheaper, quicker and less technically 

demanding approach to MLST in T. gondii.
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Introduction
Toxoplasma gondii is an obligate intracellular proto-
zoan parasite that belongs to the phylum Apicomplexa, a 
diverse group of single cell eukaryotes that infect humans 
and animals. T. gondii has a complex life cycle with an 
extensive variety of hosts, although only members of the 
Felidae family (the definite hosts) can support the sexual 
cycle (Dubey 2021a). Pregnant women and immunocom-
promised individuals are considered as the primary risk 
groups. The characteristic features of congenital toxo-
plasmosis include chorioretinitis, cerebral calcifications, 
hydrocephalus, microcephaly, abnormal cerebrospinal 
fluid, hepatosplenomegaly and miscarriages (Jones et 
al. 2001; McAuley 2014). In immunocompromised indi-
viduals re-activation or new infection can cause severe 
neurological manifestations including life threating 
encephalitis, chorioretinitis, pneumonia or multiorgan 
involvement along with acute respiratory failure (Mon-
toya and Liesenfeld 2004).

In addition to major economic losses in livestock 
(Buzby 1996), T. gondii infection poses a significant risk 
to public health when animals are destined for consump-
tion and via leafy vegetables or fruits contaminated with 
oocysts shed in the faeces of infected cats (Robert-Gang-
neux and Darde 2012). Indeed, T. gondii is ranked 4th in 
the global ranking of food-borne parasites (FAO/WHO 
2014) and second in the European Union (Bouwknegt 
et al. 2018). It has been estimated that up to one third of 
the global population may be infected by T. gondii (FAO/

WHO 2014; Montoya and Liesenfeld 2004; Petersen and 
Dubey 2001; Saadatnia and Golkar 2012), and more than 
a million cases of toxoplasmosis are reported in Europe 
per annum (WHO 2015).

Despite its wide distribution and sexual reproduction 
in Felidae, the T. gondii population does not demon-
strate high levels variability due to the primacy of asex-
ual reproduction (Dardé 1996; Sibley and Howe 1996). 
More than 94% of the total parasite population is catego-
rized into just three biologically discrete clonal lineages 
referred to as types I, II and III (Grigg and Suzuki 2003). 
Nevertheless, atypical strains are being regularly reported 
and these have been associated with severe toxoplasmo-
sis after consumption of imported meat, even in pregnant 
women with previously acquired immunity (Brito et al. 
2023; Elbez-Rubinstein et al. 2009; Hassan et al. 2019; 
Pomares et al. 2011), and death in the immunocompro-
mised (Stajner et al. 2013). Thus, genetic characterization 
and strain differentiation is crucial, not only for epidemi-
ological and clinical studies but also the development of 
effective treatment strategies (de Lima Bessa et al. 2023; 
Franco et al. 2019).

Conventional genotyping techniques for T. gondii 
involves lengthy procedures including PCR followed 
by restriction fragment length polymorphism (PCR-
RFLP) spread over eight different chromosomes (Su et 
al. 2006), and micro satellite (MS) analyses with mark-
ers from multiple chromosomes (Ajzenberg et al. 2010). 
Moreover, multi-locus sequence typing (MLST) of 
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specific regions in the parasite genome has been suc-
cessfully implemented for strain differentiation based on 
Sanger sequencing (Bertranpetit et al. 2017; Khan et al. 
2007), and whole genome sequencing (WGS) has also 
very recently been deployed for genotyping and in-depth 
genomic analyses (Joeres et al. 2024; Sundararaman et al. 
2024).

Here we present an Oxford Nanopore sequencing-
based approach as an alternative method for T. gondii 
genotyping which is significantly quicker and allows for 
straightforward detection and quantification of rare 
Single Nucleotide Polymorphisms (SNPs) and Inser-
tions or Deletions (InDel’s) for genotyping. Addition-
ally, it is cheaper and allows for multiple samples to be 
analysed simultaneously when compared to conven-
tional Sanger sequencing and WGS, in addition, due to 
the smaller focused data produced, subsequent bioin-
formatics analyses are quicker and easier. It is also eas-
ily utilisable in smaller, less well-resourced laboratories 
as it does not require expensive large-scale equipment. 
In the work presented here, we sequenced end-point 
PCR products from the surface antigen genes SAG2 
(chrVIII: TGGT1_271050; TGME49_271050) and SAG3 
(chrXII: TGGT1_308020; TGME49_308020), in paral-
lel to fragments of the rhoptry genes, ROP17 (chrVIIb: 
TGGT1_258580; TGME49_258580) and ROP21 (chr-
VIIb: TGGT1_263220; TGME49_263220). The method 
was validated using two reference strains TGGT1 (Type 
I) and TGME49 (Type II) before being applied to T. gon-
dii genomic DNA (gDNA) isolated from the brains of 4 
wood mice (Apodemus sylvaticus).

Materials and methods
Biomarker selection
Four biomarkers that represent medium to high sequence 
variation either within (exons) or outside (introns) the 
coding frame of genes were selected. Three from the liter-
ature as outlined in the Results section, another (ROP21) 
based on further comparative analyses of the ROP genes 
in T. gondii TGGT1 (Type I) and TGME49 (Type II). For 
this sequences were retrieved from ToxoDB (toxodb.
org) in FASTA format and aligned using EMBOSS Water 
(www.ebi.ac.uk/jdispatcher/psa/emboss_water).

T. gondii and host cell maintenance
Human foreskin fibroblasts (HFFs; SRC-1041, ATCC, 
Manassas, Virginia, USA) were cultivated in culture-
treated plastics (T-25s) in the presence of Dulbecco’s 
modified Eagle’s medium (Thermo Fisher Scientific, 
Waltham, Massachusetts, USA) supplemented with 10% 
fetal bovine serum (Sigma-Aldrich, St. Louis, Missouri, 
USA), 2 mM L-glutamine and 1% penicillin-streptomy-
cin. HFF cells were not used beyond passage 20. T. gondii 
TGGT1 (Type I) and TGME49 (Type II) were maintained 

in vitro by serial passage in monolayers of HFF cells 
maintained at 37 °C, 5% CO2 in a humidified incubator.

Isolation of T. gondii genomic DNA and amplicon 
production
Genomic DNA (gDNA) was extracted from phosphate 
saline buffer (PBS) washed T. gondii tachyzoites using 
the QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Ger-
many) as per the manufacturer’s instructions. All PCRs 
were performed with high fidelity DNA polymerase 
(New England Biolabs, Ipswich, Massachusetts, USA). 
All primers used in the assay (Supplemental Table S1) 
were synthesised by Integrated DNA Technologies (IDT, 
Coralville, Iowa, USA).

Sequencing library assembly
Amplicons were pooled together and modified using 
a Ligation Sequencing gDNA kit (Oxford Nanopore 
Technologies, Oxford, UK) according to manufactur-
er’s instructions with modifications. Briefly, 250 fmol of 
each DNA amplicon was diluted in 50 µL and treated 
with NEBNext Ultra II End-Prep Enzyme (New Eng-
land Biolabs) for 20 min at 20  °C to end-prep the DNA 
(5′ phosphorylated, 3′ dA-tailed), followed by 5  min 
at 65  °C (Supplemental Table S2). 65 µL of AMPure XP 
beads (Beckman Coulter, Brea, California, USA) were 
resuspended in the End-Prep reaction and mixed gen-
tly before incubation in a HulaMixer (Thermo Fisher 
Scientific) for 10  min at room temperature. Beads were 
washed twice with 250 µL of freshly prepared 70% etha-
nol and DNA eluted using 27 µL of nuclease free water. 
22.5 µL from each end-prepped DNA sample was then 
barcoded with the Native Barcoding Expansion 1 to 12 
(Oxford Nanopore Technologies). Every DNA amplicon 
was ligated with a unique barcode in a single step reac-
tion (Supplemental Table S3) after treatment with the 
NEB Blunt/TA Ligase (New England Biolabs) for 20 min 
at room temperature. Barcoded amplicons were isolated 
using 65 µL of AMPure XP beads as above. Equimo-
lar amounts of each of the barcoded samples were then 
mixed and pooled together to a final concentration of 250 
fmol and a final volume of 67.5 µL in nuclease free water. 
Using the NEBNext quick ligation module (New England 
Biolabs) the DNA barcoded library was ligated to Oxford 
Nanopore sequencing adapters, the amount optimised 
(Supplemental Table S4), for 15  min at room tempera-
ture. DNA was again isolated using 65 µL of AMPure XP 
beads but washing with 250 µL of the Short Fragment 
Buffer (SFB) and eluting with 15 µL of Elution Buffer. The 
eluate was stored short term in a LoBind tube at 4 ̊C or 
used immediately for sequencing on a Flonge cell.

http://www.ebi.ac.uk/jdispatcher/psa/emboss_water
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Priming and loading of the Flonge cell
Flonge cells were stored at 4  °C and used before expi-
ration date as per manufacturer’s instructions to limit 
sequencing errors and increase sequencing efficiency. 
Before loading the sequencing library, the Flonge cell 
nanopores were checked for adequate efficiency. All 
sequencing experiments were run with at least 80 active 
nanopores. Flush Buffer and Flush Tether Buffer were 
loaded onto the Flonge cell, followed by 25 fmol of the 
prepared sequencing library among with sequencing 

buffer (SB II) and Loading beads (LB II) as manufacturer’s 
instruction. Sequencing runs varied from 15 min to 12 h.

Software and data analysis
All sequencing runs were controlled by minKNOW 
23.04.6 (Guppy: 6.5.7; script configuration: 5.5.14; Oxford 
Nanopore Technologies). Sequencing reads were mapped 
to T. gondii GT1_Genome (ToxoDB-61, toxoDB.org) via 
EPI2ME 3.6.2 (EP12ME, GitHub) and BAM files were 
later visualised using IGV_2.16.0 (Integrative Genomics 
Viewer, GitHub). Quality control analysis of raw reads 

Fig. 1 Aligned sequence reads of the SAG2 locus as visualised by IVG. Reads from Type II T. gondii (TGME49; bottom panel) were mapped against the 
Type I T. gondii genome (TGGT1; top panel). Five small nucleotide polymorphisms (SNPs) and a three base pair (bp) insertion were detected in the Type 
II sequence. The analysed fragment length is 560 bp (chrVIII: 4,754,604–4,755,164 [+]). Coverage depth > 500x reads (*). Insertions shown in purple, dele-
tions as dashes. In bottom panel from the left the vertical broken lines represent SNPs in the sense DNA strand as follows: orange change to G (position 
138, 289 and 536), green change to A (278), and blue change to C (298). See Table S5
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and BAM files was performed by Nanopore tools/GAL-
AXY version 24.0.rc1 (Oxford Nanopore Technologies).

Results
Polymorphisms detection in reference strains
A combination of four different genomic loci were ana-
lysed to detect variation between T. gondii strains Type 
I (TGGT1) and Type II (TGME49). Three of these have 
been previously used for genotyping by PCR-RFLP 
(the surface antigen typing markers SAG2 and SAG3 
(Blackston et al. 2001; Gallego et al. 2006; Pena et al. 
2013; Rico-Torres et al. 2024; Sabaj et al. 2010; Targa et 
al. 2023) and the rhoptry virulence marker ROP17 (Rico-
Torres et al. 2023, 2024; Zhang et al. 2014). The other 
(ROP21) has not been yet employed in genotyping stud-
ies, however database analyses revealed its potential 
as new marker. All targets were selected based on their 
level of variability and, to minimise sequencing times, 

an amplicon length not exceeding 1500 base pairs (bp). 
Briefly, the SAG2 locus presented low to medium vari-
ability, while SAG3, ROP17 and ROP21 loci exhibited 
medium to high variability. All polymorphisms in the 
SAG2, SAG3 and ROP17 targets were detected within 
exons, while in ROP21 polymorphisms were primarily in 
introns.

Following PCR, amplicons of these selected targets 
were sequenced in parallel using the Oxford Nanopore 
platform described above. This facilitated sequencing 
of SAG2 (TGGT1_271050; TGME49_271050), where 
Type II T. gondii showed five nucleotide polymorphisms 
(SNPs) and a three bp insertion when mapped against the 
Type I reference genome (Fig. 1 and Supplemental Table 
S5). Similarly, sequencing of SAG3 (TGGT1_308020; 
TGME49_308020) demonstrated 27 SNPs (Fig.  2 and 
Supplemental Table S6); partial sequencing of ROP17 
(TGGT1_288580; TGME49_288580) identified 29 SNPs 

Fig. 2 Aligned sequence reads of the SAG3 locus as visualised by IVG. Reads from Type II T. gondii (TGME49; bottom panel) were mapped against the Type 
I T. gondii genome (TGGT1; top panel). 27 SNPs were apparent in the Type II sequence. The analysed fragment length is 1158 bp (chrXII: 456,740–457,897 
[−]). Coverage depth > 500x reads (*). In bottom panel from the left the vertical broken lines represent SNPs in the antisense DNA strand as follows: orange 
change to G (1061, 981, 573, 513, 216, 93), green change to A (1044, 1001, 792, 643, 319, 231, 159), red change to T (1077, 501, 323, 238) and blue change 
to C (1053, 1005, 685, 514, 468, 466, 401, 351, 150, 125). See Table S6
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(Fig. 3 and Supplemental Table S7); and partial sequenc-
ing of ROP21 (TGGT1_288580; TGME49_288580) 
revealed eight SNPs, a 411 bp insertion in the first intron, 
and two and 27  bp deletions in the second and third 
introns respectively (Fig. 4 and Supplemental Table S8).

Genotyping of wild T. gondii infected wood mice
To assess the utility of the developed Nanopore method 
in the typing of field samples, SAG2, SAG3 and ROP21 
genomic loci were amplified and sequenced as described 
from four T. gondii samples isolated from individual wild 
wood mice (A. sylvaticus; a kind gift from Professor Geoff 
Hide, University of Salford). Amplification of the ROP17 
genomic locus did not result in amplicons from any of 
the animal samples and was therefore excuded from 
the MLST. The analyses (Fig. 5) revealed that two of the 
wood mice were infected with T. gondii Type I parasites 
(BO1 and B03) and two with Type II (B02 and B04).

Discussion
The obligate intracellular parasite T. gondii possesses 
a remarkable mastery to infect a wide range of warm-
blooded vertebrates, a characteristic which allows for 
an almost complete global distribution (Dubey 2021a). 
Hence, categorization of its genetic heterogeneity is 
crucial towards furthering our understanding of para-
site’s unique infective abilities, distribution and viru-
lence. However, lack of consensus over genotyping 
methodologies and biomarkers significantly limits our 
understanding.

T. gondii genotyping techniques include restriction 
fragment length polymorphism (RFLP) (Su et al. 2006), 
microsatellite (MS) (Blackston et al. 2001; Pomares et al. 
2011) and whole or targeted genome sequencing analyses 
(Joeres et al. 2024; Khan et al. 2007; Sundararaman et al. 
2024). This type of information could enable the correla-
tion of variable levels of virulence with different strains 

Fig. 3 Aligned sequence reads at the ROP17 locus as visualised by IVG. Reads from Type II T. gondii (TGME49; bottom panel) were mapped against the 
Type I T. gondii genome (TGGT1; top panel). 29 SNPs were visible in the Type II sequence. The analysed fragment length is 1280 bp (chrVIIb: 3,287,488–
3,288,688 [−]). Coverage depth > 500x reads (*). In bottom panel from the left the vertical broken lines represent SNPs in the antisense DNA strand as 
follows: orange change to G (1569, 1554, 1486, 1483, 1482, 1447, 1290, 968, 736, 528), green change to A (1417, 1292, 1236, 1196, 1142, 959, 955, 824, 540), 
red change to T (1247, 1193, 1121, 979, 977, 964) and blue change to C (1573, 721, 544, 524). See Table S7
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of T. gondii, identifying and categorizing high-risk and 
atypical strains so that researchers and clinicians will 
be able to prioritize preventative measures and improve 
treatment strategies for vulnerable individuals. Further-
more, genotyping of isolated parasites can shed light on 
epidemiological understanding and, therefore, potential 
transmission routes, for example via T. gondii reservoirs. 
Collectively, such genotyping-informed epidemiological 
analyses will be critical for implementing public health 
interventions and mitigating future outbreaks through 
human interventions and animal management.

Utilizing a multi-locus sequence typing (MLST) 
approach offers a robust and informative methodology 
for T. gondii genotyping. Accuracy and discriminatory 
power is greatly enhanced compared to PCR-RFLP and 

MS analyses, providing the potential for a more compre-
hensive understanding of T. gondii genetic diversity and 
distribution. In this study we have examined the effi-
ciency and efficacy of MLST for the genotyping of T. gon-
dii via a portable MinION sequencer (Oxford Nanopore), 
a method which offers several distinct advantages over 
other conventional methods, not only in terms of time 
but also interpretability. We have shown that targeted 
Nanopore sequencing of specific loci in the T. gondii 
genome yielded sufficient and high-quality data for geno-
typing within two hours of sequencing runs. Subsequent 
analyses are easily manageable due to the small volume 
of data produced. Therefore, the developed platform pro-
vided a rapid and robust method to differentiate between 
Type I and II T. gondii that could be adapted to further 

Fig. 4 Aligned sequence reads at the ROP21 locus as visualised by IVG. Reads from Type II T. gondii (TGME49; bottom panel) were mapped against the 
Type I T. gondii genome (TGGT1; top panel). Eight SNPs, a 406 bp insertion, and two deletions of two and 27 nucleotides respectively are visible in the 
Type II sequence. The analysed fragment length is 1441 bp (chrVIIb: 675,115–676,556 [+]). Coverage depth > 500x reads (*). In bottom panel from the left 
the vertical broken lines represent SNPs in the sense DNA strand as follows: orange change to G (2674 and 2758), green change to A (2264), blue change 
to C (2153, 2363, 2500) and red change to T (1307). 411(1390) bp insertion is depicted with purple, 2 and 27 bp deletion with dashes (2014 and 2826)
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differentiate between Type I, II, III and other emerging 
strains (Arranz-Solis et al. 2019).

More precisely we amplified SAG2 and SAG3 and frag-
ments of ROP17 and ROP21 from T. gondii gDNA, two 
reference strains for Type I and II parasites and four 
isolates of unknown genotype from the brains of four 
infected wood mice. ROP17 amplication of gDNA from 
the animal sample isolates did not result any product, 
however genotyping could be based on SAG2, SAG3 and 
ROP21 reads alone. SNPs and InDels in each genomic 
sequence from reference strains were identified and 
compared with those found in the animal samples which 
allowed efficient categorization of the latter as infected 
with either Type I or II T. gondii. Based on the number 
of the samples and size of fragments, genotyping via this 
methodology can be completed within two days making 
the approach rapid and robust.

Targeted MLST demonstrates a clear edge over WGS 
which is expensive, time consuming and requires power-
ful computational analyses which many laboratories and 
reference units do not possess, making it extremely diffi-
cult to apply as routine for strain differentiation and typ-
ing. Moreover, MLST provides clear-cut data compared 
to RFLP techniques which rely on variations in fragment 
sizes, reducing ambiguity whilst simplifying interpreta-
tion and analyses. MLST also offers the ability to detect 

small sequence variations allowing for more detailed dif-
ferentiation between closely related strains compared to 
RFLP approaches and methods focused only on single 
loci. Furthermore, standard sets of genes or genomic loci 
and sequencing protocols could be adopted to allow data 
comparisons between different laboratories, promot-
ing collaborations and data sharing. MLST data can also 
reveal patterns of mutations and recombination events, 
providing valuable information about how populations 
evolve and diversify. Furthermore, Nanopore sequenc-
ing-based MLST such as we describe here, can be readily 
multiplexed raising the possibility of adapting this rapid 
and robust method to detect multiple pathogens within a 
single sample.
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