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1 Introduction and conclusion

In the presence of a boundary 3d N = 2 supersymmetric field theories can preserve N = (0, 2)
supersymmetry in such a way that the bulk fields satisfy certain boundary conditions.1 In
addition, they can naturally couple to boundary 2d degrees of freedom preserving N = (0, 2) su-

1See [1–15] for various studies of N = (0, 2) boundary conditions.
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persymmetry. Consequently, such BPS boundary conditions can enlarge the web of non-trivial
fixed points of 2d N = (0, 2) SCFTs and the elliptic genera of 2d N = (0, 2) supersymmetric
theories [16–18] are generalized to the half-indices of the 3d-2d coupled systems [1, 3–5]. The
half-indices can be decorated by introducing the half-BPS line defect operators supported on
a line perpendicular to the boundary preserving 1d N = 2 supersymmetry [5]. When one
expands such line defect half-indices of 1d-2d-3d system with respect to the fugacities, one can
count BPS local operators living at the junctions of line defects and the boundary. Identities
in the algebra of line defects lead to certain difference equations satisfied by half-indices as
well as supersymmetric partition functions on a compact 3-manifold [19–21].

In this paper we study the line defect half-indices or equivalently correlation function of
the line operators of 3d N = 2 supersymmetric SU(N)k Chern-Simons theories with level
k ≤ −N where the SU(N) vector multiplet obeys Neumann boundary condition. As opposed
to the cases with Dirichlet boundary condition for the SU(N) vector multiplet, the (line
defect) half-indices for such boundary conditions involve multi-dimensional matrix integrals
and they are not studied very well so far.2

The quantum consistency requires the non-Abelian gauge anomaly to vanish. For k = −N ,
there is no gauge anomaly. While the half-index is trivial, the line defect half-index is non-
trivial as it implements a detector of the BPS local operator attached with the end point of
the Wilson lines, i.e. it counts the BPS operators in the conjugate representation of the gauge
group to the Wilson line. We find exact results for the case of Wilson lines in symmetric rank-k
or charge-n representations. We can also calculate a grand canonical ensemble of the charge-n
Wilson line half-indices and find that it has a simple expression in terms of Jacobi theta series
or as a difference of Appell-Lerch sums, indicating an interesting mock modular property.

For k being an integer with k < −N , the gauge anomaly cancellation can be naturally
achieved by introducing |k| −N boundary 2d N = (0, 2) Fermi multiplets in the fundamental
representation.3 The 3d bulk and 2d boundary system has a dual description as the Dirichlet
boundary conditions of U(|k| −N)|k|,N pure Chern-Simons theory according to the level-rank
duality [5]. We find the closed-form q-series expressions of the half-indices which can also be
identified with the vacuum characters of the U(|k| − N)N WZW models [5].

Besides, we can also obtain the bulk-boundary system with k a half-integer with k < −N
by coupling an odd number of 3d chiral multiplets in the fundamental or anti-fundamental
representations obeying either Neumann or Dirichlet boundary conditions along with the
required number of 2d Fermis to cancel the gauge anomaly.4 We mostly consider the case
with a single fundamental chiral with Neumann boundary conditions and |k| −N + 1

2 Fermi
multiplets, which has a dual U

(
|k| −N + 1

2

)
|k|,N

theory with a single fundamental chiral
where both the vector multiplet and the chiral have Dirichlet boundary conditions. This is
closely related to the boundary dualities discussed in [5].

2See [5] for the (line defect) half-indices for the Abelian cases and also for those with Dirichlet boundary
condition for the SU(N) vector multiplet,.

3Other options include replacing a 2d Fermi multiplet with a pair of 3d chiral multiplets in the fundamental
or anti-fundamental representation with Dirichlet boundary conditions, or adding addition Fermi multiplets
each with a pair of chirals with Neumann boundary conditions.

4As with the case of integer k, a pair of such Dirichlet chirals can be replaced by a 2d Fermi multiplet and
vice-versa, or additional Fermis can be added together with a pair of Neumann chirals.
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For N = 2 and 3 we analytically derive the exact closed-form expressions of half-indices
using the Jacobi triple product identity. In particular, we find exact results for the half-indices
and in the presence of symmetric rank-k or charge-n Wilson lines for SU(2)−2, unflavored
(the flavor fugacity x→ 1) SU(2)−5/2 and SU(2)−3. For SU(3)−3 we derive the result with a
charge-n Wilson line and implicitly also the symmetric rank-k case but we didn’t present
a derivation of this more lengthy calculation. Remarkably, we find that for SU(2)−5/2, the
half-index and the one-point function of the Wilson line in the fundamental representation
are identified with the Rogers-Ramanujan functions [22].

1.1 Structure

The paper is organized as follows. In section 2 we discuss N = (0, 2) supersymmetric
boundary conditions for 3d N = 2 SU(N) Chern-Simons-matter theories with fundamental
chiral multiplets whose vector multiplet satisfies Neumann boundary condition. We briefly
review line defect half-indices or equivalently correlation functions of line operators which
decorates the half-indices. In section 3 we study the half-indices and correlators for the SU(2)
Chern-Simons theories. Using the Jacobi triple product identity, we analytically obtain the
closed-form expressions. In section 4 we examine those for the SU(3) Chern-Simons theories.
In section 5 we present conjectural formulas for general SU(N) Chern-Simons theories.

1.2 Future works

There are several open problems which we hope to report in future works.

• While we focus on computing the line defect half-indices for gauge theories with SU(N)
gauge group and Chern-Simons level k ≤ −N in this work, it would be interesting
to study the cases with different gauge groups, matter fields and Chern-Simons levels
to figure out the q-difference equations. In particular, those with an adjoint chiral
multiplet generalizes the dualities of N = (2, 2) and N = (0, 4) boundary conditions
in [23, 24].

• In our previous works [14, 15] we found the confining dualities of boundary conditions
where the half-indices are identified with the Askey-Wilson q-beta integrals [25–30],
which are equal to infinite products. It would be interesting to generalize the integral-
product identities and figure out the boundary confining dualities with line operators.

• It would be nice to give analytic proofs of our formulas for arbitrary SU(N) gauge
group. For higher rank gauge groups, they will be obtained from a certain multivariable
extension of the Jacobi triple product identity. We also expect that they can be
addressed by using the Fermi-gas method based on the determinant formula.

• The grand canonical ensemble of one-point functions of charged Wilson lines for SU(N)
pure Chern-Simons involves the mock modular Appell-Lerch sums. What is the physical
meaning of the shadow? Is there an interpretation in terms of a dual gravity theory?
This might be possible to understand from a brane configuration giving these 3d Chern-
Simons theories with boundaries but note that it is not straightforward to construct
such a theory with gauge group SU(N) rather than U(N) in 3d.
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• We have presented several q-difference equations relating half-indices to half-indices
with Wilson lines. It would be good to get a better understanding of the origin and
interpretation of these q-difference equations.

• There are different ways to construct the SU(N)k theories with Neumann boundary
conditions for the vector multiplet. Cancellation of the gauge anomaly can be achieved
with different combinations of fundamental and anti-fundamental 3d chirals an 2d
fundamental Fermis. It would be interesting to understand the dual descriptions
in general.

2 CS theory with Wilson lines and boundary

In this section we briefly review relevant features of N = 2 supersymmetric SU(N) Chern-
Simons theories with boundary. In addition to the vector multiplet we consider fundamental
and anti-fundamental chirals as well as the possibility of fundamental 2d chiral or Fermi
multiplets. We focus on the case of Neumann boundary conditions for the vector multiplet
and present the anomaly polynomial. Cancellation of the gauge anomaly determines the
Chern-Simons coupling. We then discuss the half-index with the addition of Wilson lines.

2.1 Anomalies

For pure SU(N)k theory at level k with Neumann boundary conditions for the vector multiplet,
Nf fundamental and Na antifundamental 3d chiral multiplets QI and Qα with Neumann
boundary conditions, and M fundamental 2d Fermi multiplets we have anomaly polynomial [5]

A = kTr(s2)︸ ︷︷ ︸
CS

+N Tr(s2) + N2 − 1
2 r2︸ ︷︷ ︸

VM, N

−
(
Nf

2 Tr(s2) + N

2 Tr(x2) + NNf

2 (a− r)2
)

︸ ︷︷ ︸
QI , N

−
(
Na

2 Tr(s2) + N

2 Tr(x̃2) + NNa

2 (b− r)2
)

︸ ︷︷ ︸
Qα, N

+M Tr(s2) +N Tr(s̃2)︸ ︷︷ ︸
Fermi

. (2.1)

Here s represents the SU(N) gauge field strength, s̃ the global U(M) field strength, r the
U(1) R-charge, x the global SU(Nf ) flavor symmetry with U(1)a axial symmetry, and x̃ the
global SU(Na) flavor symmetry with U(1)b axial symmetry.

We see that in order to cancel the gauge anomaly we must have Chern-Simons level

k = −
(
N − Nf +Na

2 +M

)
. (2.2)

Of course, for SU(2) antifundamentals are the same as fundamentals so we can always
set Na = 0.

Following similar arguments given in [5] we expect a dual U(M)−k,−k−M theory with
Dirichlet boundary conditions for the vector multiplet, and Nf fundamental and Na antifun-
damental 3d chiral multiplets Q̃I and Q̃α with Dirichlet boundary conditions. In particular
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the contribution to the U(M) anomaly matches above with

A ∼ −kTr(s̃2) − (Tr(s̃))2︸ ︷︷ ︸
CS

−M Tr(s̃2) + (Tr(s̃))2︸ ︷︷ ︸
VM

+ Nf

2 Tr(s̃2)︸ ︷︷ ︸
QI , D

+ Na

2 Tr(s̃2)︸ ︷︷ ︸
QI , D

. (2.3)

2.2 Wilson line half-indices

As shown in [5] the half-index for the theories described here are built from the vector
multiplet with Neumann boundary conditions contribution

(q)N−1
∞
N !

∮ (N−1∏
i=1

dsi

2πisi

) ∏
1≤i<j≤N

(s±i s∓j ; q)∞, (2.4)

where the integral ensures gauge invariance and for SU(N) we have the restriction on the
gauge fugacities ∏N

i=1 si = 1.
Including Nf fundamental 3d chirals with R-charge r and Neumann boundary conditions

we should include a factor
Nf∏

α=1

N∏
i=1

1(
q

r
2 sixα; q

)
∞

, (2.5)

where xα are U(Nf ) flavor symmetry fugacities (which are often split into a U(1) axial and
SU(Nf ) flavor symmetry fugacities). Anti-fundamental chirals give a similar contribution
with si → s−1

i and xα → x̃I for the U(Na) global symmetry.
Instead, Dirichlet boundary conditions for a fundamental would give contribution

Nf∏
α=1

N∏
i=1

(
q1− r

2 s−1
i x−1

α ; q
)
∞
. (2.6)

On the boundary we can have 2d Fermi or chiral multiplets. In the fundamental
representation these Fermi multiplets with R-charge 0 give the same contribution as the
combination of a pair of fundamental and anti-fundamental 3d chirals with R-charge r = 1
and Dirichlet boundary conditions up to an identification of flavor fugacities. In particular,
for M fundamental 2d Fermi multiplets we have contribution

M∏
α=1

N∏
i=1

(
q

1
2 s±i x

±
α ; q

)
∞
. (2.7)

where the Fermis are in the fundamental representation of a global U(M) symmetry.
To make the above statement precise, this is equivalent to the case of Nf = Na = M

where the 3d chirals have Dirichlet boundary conditions and we have specialized the U(Na)
flavor fugacities x̃α → x−1

α .
Also, note that with further identification of flavor fugacities, a 2d fundamental Fermi

together with a fundamental 3d chiral with Neumann boundary conditions and R-charge 1
gives the same contribution as a 3d fundamental chiral with Dirichlet boundary conditions
and R-charge 1. Specifically, there is a partial cancellation in the half-index contribution if
the 3d chiral and 2d Fermi both have the same flavor fugacity xα.
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We can include line operators ending at a point on the boundary. In particular we
consider Wilson lines. If the Wilson line is in a representation R of the gauge group the
half-index will be modified to count BPS states in the conjugate representation R, so that the
total configuration including the Wilson line is gauge invariant This is simply implemented [5]
by including a factor TrR s in the half-index. For example if we consider a Wilson line in
the fundamental representation of the gauge group we should include a factor ∑N

i=1 si. More
generally, the irreducible representation (irrep) R of SU(N) is labeled by the Young diagram
λ, for which we should introduce the Schur function sλ(s). We denote by Wλ the Wilson line
in the irrep labeled by λ. Alternatively, the power sum symmetric function

pn(s) =
N∑

i=1
sn

i (2.8)

associated with conjugacy classes of the symmetric group can be introduced. We will call
the Wilson line operator labeled by the power sum symmetric function pn(s) of degree n
the charge-n Wilson line Wn and we will denote the half-index in the presence of such a
Wilson line by ⟨Wn⟩.

Instead, with Dirichlet boundary conditions for a U(M) gauge group we have vector
multiplet contribution

1
(q)N

∞

∑
mi∈Z

q
k
2
∑

i
m2

i + γ
2 (∑i

mi)2
(∏

i u
kmi+γ

∑
j

mj

i

)
∏

i ̸=j(q1+mi−mjuiu
−1
j ; q)∞

, (2.9)

and for other factors in the half-index we shift the gauge fugacities ui → qmiui, with
the gauge fugacities ui all independent unlike for special unitary groups. Here k is the
effective Chern-Simons level and γ encodes a possibly different effective Chern-Simons level
for the diagonal U(1) subgroup, in the sense that the overall anomaly polynomial has
contribution kTr(s̃2) + γ(Tr(s̃))2.

2.3 q-difference equations

Half-indices can satisfy q-difference equations which are constructed using operators which
scale fugacities by powers of q, e.g. x → qx. This provides one way to prove identities of
half-indices, e.g. if two half-indices obey the same first order q-difference equation and can
be shown to match for specific values of global fugacities. Several details and examples in
the context of half-indices are given in [5].

We will also see examples where half indices with line operators are related to the
standard half-index without a line operator. In the case of Wilson lines in SU(N) theories
with Neumann boundary conditions for the vector multiplet this involves shifts of global
fugacities by fractional powers of q, in particular by multiples of q1/N . For example, in the
case of SU(2), if we label a half-index as II(x; q) and with a line operator as ⟨W ⟩(x; q) where
x is a global fugacity, we find relations such as

II(q1/2x; q) = −q−1/2x−1⟨W ⟩(x; q) . (2.10)

– 6 –
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These fractional powers of q can be understood in the context of non-Abelian line oper-
ators carrying fractional charge and spin which can be understood in terms of “Cheshire
charge/spin” [31–35]. In the case of SU(N) Wilson lines we find power of q1/N corresponding
fractional charges and spins in units of 1/N . However, we have not been able to understand
the precise structure of the q-difference equations and we leave that to future work.

2.4 Special functions and q-series identities

To derive some of the exact results we use the Jacobi triple product identity which can
be written in the form

(q)∞(x−1; q)∞(qx; q)∞ =
∞∑

m=−∞
(−1)mqm(m+1)/2xm . (2.11)

This is equivalent to

(q)∞(x±; q)∞ = (1 − x)
∞∑

m=−∞
(−1)mqm(m+1)/2xm (2.12)

and this form is used in several derivations to replace products of q-Pochhammer symbols
with sums. In the case of Neumann boundary conditions for the vector multiplet, in general
this enables the half-index to be expressed as an integral of multiple sums. The integrals can
then be evaluated simply using the Cauchy residue theorem and the resulting sum can be
interpreted as a half-index with Dirichlet boundary conditions for a dual vector multiplet.

2.5 Rogers-Ramanujan functions

One intriguing result is that the following pair of functions occurs in the calculation of the
half-index and the one-point function of the Wilson line in the fundamental representation:

G(q) =
∞∑

n=0

qn2

(1 − q)(1 − q2) · · · (1 − qn)

=
∞∏

n=1

1
(1 − q5n−1)(1 − q5n−4) = f(−q2,−q3)

f(−q) , (2.13)

H(q) =
∞∑

n=0

qn(n+1)

(1 − q)(1 − q2) · · · (1 − qn)

=
∞∏

n=1

1
(1 − q5n−2)(1 − q5n−3) = f(−q,−q4)

f(−q) (2.14)

where f(a, b) and f(−q) are general Ramanujan’s theta functions (A.8) and (A.11). The
product-series equalities (2.13) and (2.14) are known as the Rogers-Ramanujan identities
(e.g. see [36]). These identities are of the greatest significance in the theory of partitions
and number theory [36]. The function (2.13) is the generating function for partitions of
n into parts with minimal difference 2 with all parts greater than 0 or equivalently that
for partitions of n of the form 5k + 1 and 5k + 4. The function (2.14) is the generating
function for partitions of n into parts with minimal difference 2 with all parts greater than 1
or equivalently that for partitions of n of the form 5k + 2 and 5k + 3.

– 7 –
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In section 3.2, we find novel physical realizations of the functions associated with
the Rogers-Ramanujan identities. It follows that the first function (2.13) and the second
function (2.14) are respectively identified with the half-index and the one-point function of
the fundamental Wilson line for SU(2)−5/2 CS theory coupled with a single chiral multiplet
in the fundamental representation where the vector multiplet obeys the Neumann boundary
condition and the chiral multiplet the Dirichlet boundary condition. Consequently, we get
integral representations of the functions (2.13) and (2.14)

G(q) = (q; q)∞
2

∮
ds

2πis(s±2; q)∞
(
q

1
2 s±; q

)2

∞
, (2.15)

H(q) = −q−1/2 (q; q)∞
2

∮
ds

2πis(s±2; q)∞
(
q

1
2 s±; q

)2

∞
(s+ s−1). (2.16)

With flavor fugacity x we find that

∞∑
n=0

qn2
x2n

(1 − q)(1 − q2) · · · (1 − qn) = (q; q)∞
2

∮
ds

2πis(s±2; q)∞
(
q

1
2 s±x; q

)2

∞
, (2.17)

∞∑
n=0

qn(n+1)x2n+1

(1 − q)(1 − q2) · · · (1 − qn) = −q−1/2 (q; q)∞
2

∮
ds

2πis(s±2; q)∞
(
q

1
2 s±x; q

)2

∞
(s+ s−1).

(2.18)

The l.h.s. of (2.17) and (2.18) are sometimes called Rogers-Ramanujan functions [22]. More
general integral-series equalities and their physical interpretatoins are found in the study
of higher rank CS theory theories.

3 SU(2)

In this section we evaluate the line defect half-indices for the 3d N = 2 supersymmetric
SU(2) Chern-Simons theory with Wilson line operators and Neumann boundary conditions
for the vector multiplet. We also include Nf fundamental chirals with Neumann boundary
conditions and M fundamental 2d Fermis. In fact, we will focus on the cases Nf = 0 for
integer Chern-Simons level and Nf = 1 for half-integer level. Recalling (2.2) we see that
the Chern-Simons level is

k = −
(

2 − Nf

2 +M

)
. (3.1)

For gauge group SU(2) we have gauge fugacities s1 and s2 with a constraint s1s2 = 1.
This can be expressed in terms of a single independent gauge fugacity s where s1 = s and
s2 = s−1. With Neumann boundary conditions for the vector multiplet, the half index will
contain a contour integral w.r.t. s of the vector multiplet contribution multiplied by finite or
infinite power series in s to include the matter and/or line operator contributions.

3.1 k = −2

When Nf = 0 and M = 0, we find the consistent N = (0, 2) BPS boundary conditions for
3d N = 2 SU(2) pure Chern-Simons theory with level k = −2.

– 8 –
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Unlike the previous cases, the theory has no matter field, so there is no non-trivial gauge
invariant BPS local operator at the boundary preserving N = (0, 2) supersymmetry without
any insertion of line defect. In fact, the half-index is trivial

IISU(2)−2
N = (q; q)∞

2

∮
ds

2πis(s±2; q)∞ = 1. (3.2)

3.1.1 One-point function

Insertion of the Wilson line in the fundamental representation ending on the boundary is
not allowed in this case since there is no candidate that can cancel the gauge anomaly while
preserving N = (0, 2) supersymmetry. In fact, it can be shown that the one-point function
of the Wilson line in the fundamental representation vanishes

⟨W1⟩SU(2)−2 = (q; q)∞
2

∮
ds

2πis(s±2; q)∞(s+ s−1) = 0. (3.3)

Non-trivial one-point functions appear for the Wilson lines transforming in more general
representations. We find that the one-point function of the Wilson line W(k) in the rank-k
symmetric representation for k even is given by

⟨W(k)⟩SU(2)−2 = (−1)k/2qk(k+2)/8 . (3.4)

while the one-point function vanishes for k odd.
This can be understood by noting that the half-index in the presence of a Wilson

line in some representation counts the BPS operators which can be combined with the
Wilson line representation to form a gauge singlet. In this case that means the operators in
representations which can be combined with the rank-k symmetric representation to form
a singlet. Now, the only boundary BPS operators are the gaugino λ− and its derivatives
Dn

z λ− which are in the adjoint (or rank-2 symmetric) representation of SU(2) and contribute
fugacity −qn+1 in addition to gauge fugacities. To contract the gauge indices of the rank-k
symmetric representation we must take at least k/2 such operators, noting that for SU(2)
anti-fundamental indices are equivalent to fundamental indices. Since the gauginos (and
their derivatives) are fermionic these operators must all be distinct so the minimal choice is
each n in the range 0 ≤ n ≤ k/2 − 1, giving fugacity ∏k/2−1

n=0 −qn+1 = (−1)k/2q
∑k/2−1

n=0 (n+1) =
(−1)k/2qk(k+2)/8. We might expect higher order contributions (by including more derivatives)
but then there are other operators with the same fugacity where we replace some derivatives
by gauginos. This leads to cancellations since each gaugino contributes a factor −1, and
the result is that there is a total cancellation of such terms except for the minimal case
where there is only a single operator to contribute.

Let us give an analytic proof by directly calculating the half-index. All one-point functions
can be obtained if we can evaluate the matrix integral with a monomial contribution

Iα = (q)∞
∮

ds

2πis(s±2; q)∞sα (3.5)

where α ∈ Z.

– 9 –
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We first use the Jacobi triple product identity (2.12) which gives

Iα =
∮

ds

2πis

∞∑
m=−∞

(−1)mqm(m+1)/2(1 − s2)sα+2m . (3.6)

The contour integral picks out only the terms with m = −α/2 or m = −α/2 − 1 so we see
that the result is zero if α is odd. Assuming α is even we find

Iα = (−1)α/2
(
qα(α−2)/8 + qα(α+2)/8

)
. (3.7)

So, for example if n = 2k is even the half-index with a charge-n Wilson line is

⟨Wn⟩SU(2)−2 = (q)∞
2

∮
ds

2πis(s±2; q)∞
(
sn + s−n)

= (−1)k

2
(
qk(k−1)/2 + qk(k+1)/2

)
, (3.8)

while this integral vanishes for odd n. Accordingly, we can also evaluate the one-point function
for rank-k symmetric representation Wilson lines W(k) for k even

⟨W(k)⟩SU(2)−2 = ⟨
k∑

α=0
sα

1 s
k−α
2 ⟩ = ⟨

k∑
α=0

s2α−k⟩ = 1 +
k/2∑
β=1

⟨s2β + s−2β⟩

= 1 +
k/2∑
β=1

(−1)β
(
qβ(β−1)/2 + qβ(β+1)/2

)
= (−1)k/2qk(k+2)/8 . (3.9)

3.1.2 Grand canonical one-point function

Now, let us consider the case where n = 2k and calculate the grand canonical ensemble
by summing over the charge n. We obtain the grand canonical one-point function of the
charged Wilson line

⟨Wcharged⟩SU(2)−2 =
∑
k∈Z

⟨W2k⟩SU(2)−2Λk

= −iΛ1/2
1∑

m=0
qm/2−1/8ϑ1(λ+mτ ; τ) (3.10)

where Λ = exp(2πiλ) and the Jacobi theta series is defined in (A.4)

3.1.3 Two-point function

We can also exactly evaluate the two-point function ⟨W(k)W(l)⟩ of the Wilson lines in the
symmetric representations which vanishes if l − k is odd. If l − k is even define integers
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m = (k + l)/2 and δ = (l − k)/2. We then have

⟨W(k)W(l)⟩SU(2)−2 =
k∑

α=0

l∑
β=0

⟨s2α−ks2β−l⟩

= 1
2

k∑
α=0

l∑
β=0

(−1)α+β−m
(
q(α+β−m)(α+β−m−1)/2 + q(α+β−m)(α+β−m+1)/2

)

= 1
2

k∑
α=0

(
(−1)α−mq(α−m)(α−m−1)/2 + (−1)α+l−mq(α+l−m)(α+l−m+1)/2

)

=
k∑

α=0
(−1)α−mq(α−m)(α−m−1)/2

=
k∑

α=0
(−1)α+δq(α+δ)(α+δ+1)/2 =

k+δ∑
α=δ

(−1)αqα(α+1)/2. (3.11)

Here we can interpret this result in terms of the expansion of the product of rank-k and
rank-l symmetric representations into a sum of symmetric representations and then using
the result for the one-point function (3.9).

When k = l, the two-point function (3.11) becomes

⟨W(k)W(k)⟩SU(2)−2 =
k∑

α=0
(−1)αq

α(α+1)
2 . (3.12)

In the large symmetric representation limit k → ∞, it agrees with the false theta function
introduced by Rogers [37]

⟨W(∞)W(∞)⟩SU(2)−2 = f(q) =
∞∑

α=0
(−1)αq

α(α+1)
2 . (3.13)

3.2 k = −5/2

Taking Nf = 1 and M = 1 gives k = −5
2 . Alternatively we could take a single fundamental

chiral with Dirichlet boundary conditions with no Fermis. Specifically, the former case with
identification of the Fermi U(1) flavor fugacity u = x and the 3d chiral U(1) flavor fugacity x−1

gives the same half-index as 3d N = 2 SU(2) Chern-Simons-matter theory with level k = −5/2
and a single fundamental chiral multiplet with Dirichlet boundary condition. The half-index is

IISU(2)−5/2
N (x; q) = (q; q)∞

2

∮
ds

2πis(s±2; q)∞
(
q

1
2 sx; q

)
∞

(
q

1
2 s−1x; q

)
∞
. (3.14)

We can expand the half-index as

1 + x2q + x2q2 + x2q3 + (x2 + x4)q4 + (x2 + x4)q5

+ (x2 + 2x4)q6 + (x2 + 2x4)q7 + (x2 + 3x4)q8 + (x2 + 3x4 + x6)q9 + · · · . (3.15)

This result is easily understood as the counting of the gauge-invariant operators formed from
the fundamental chiral with Dirichlet boundary conditions and its derivatives, taking into
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account the fact that gauge invariants can only be formed by pairing of these fermions and
the coefficients arise from different distributions of the derivatives taking into account the
antisymmetric properties. The interpretation in terms of a 2d Fermi and 3d chiral with
Neumann boundary conditions is more complicated.

We find that the half-index agrees with the Rogers-Ramanujan function [22]

∞∑
n=0

qn2
x2n

(1 − q)(1 − q2) · · · (1 − qn) =
∞∑

n=−∞

qn2
x2n(qn+1; q)∞

(q)∞
. (3.16)

Taking the interpretation as SU(2)−5/2 with Nf = 1 and M = 1 where the fundamental
chiral has R-charge 1, we expect a dual description as a U(1)3/2 theory with Dirichlet boundary
conditions for the vector multiplet and a charged 3d chiral with R-charge 0 and Dirichlet
boundary conditions. This would give the half-index

IIU(1)3/2
D (x; q) = 1

(q)∞
∑
n∈Z

qn2
u2n(q1+nux−1; q)∞ (3.17)

which matches (3.16) in the case u = x.
In the unflavored limit x→ 1, we obtain (2.13), the first functions associated with the

Rogers-Ramanujan identities! Namely, we find

IISU(2)−5/2
N (x = 1; q) = G(q)

= 1
(q)∞

∑
m∈Z

(−1)mq
5
2 m2+ 1

2 m = 1
(q)∞

∑
m∈Z

(q10m2+m − q10m2+9m+2).

(3.18)

We observe that the associated boundary vertex operator algebra (VOA) arise from the
Virasoro minimal model M(2, 5) by observing that it agrees with the character χ2,5

1,2(q) where

χp,p′
r,s (q) = 1

(q; q)∞
∑
m∈Z

(qm2pp′+m(p′r−ps) − q(mp+r)(mp′+s)) (3.19)

is the normalized Virasoro character [38] of the minimal model M(p, p′),5 with conformal
dimension

hp,p′
r,s = (rp′ − sp)2 − (p− p′)2

4pp′ , 1 ≤ r ≤ p− 1, 1 ≤ s ≤ p′ − 1 (3.20)

and central charge

c(p, p′) = 1 − 6(p− p′)2

pp′
. (3.21)

Including the normalization factor qhp,p′
r,s −c(p,p′)/24, we get

G̃(q) = q−1/60G(q). (3.22)
5Here 1 < p < p′ with p and p′ being relatively coprime.
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Also we observe that the half-index has a nice behavior under the modular transformation.
We have [39]

G̃

(
aτ + b

cτ + d

)
= e2πiα(a,b,c)/60G̃(τ) (3.23)

where

α(a, b, c) = a(9 − b+ c) − 9 (3.24)

and q = e2πiτ .

3.2.1 One-point function

The one-point function of the Wilson line in the fundamental representation is evaluated as

⟨W1⟩SU(2)−5/2(x; q) = (q; q)∞
2

∮
ds

2πis(s±2; q)∞
(
q

1
2 sx; q

)
∞

(
q

1
2 s−1x; q

)
∞

(s+ s−1).

(3.25)

It can be expanded as

− xq1/2 − x3q5/2 − x3q7/2 − x3q9/2 − x3q11/2 − (x3 + x5)q15/2

− (x3 + 2x5)q17/2 − (x3 + 2x5)q19/2 − · · · . (3.26)

As for the half-index without a line operator, this result is easily understood as the counting of
the gauge-invariant operators formed from the fundamental chiral and its derivatives, taking
into account the fact that gauge invariants can only be formed by pairing of these fermions.
Now, due to the fundamental Wilson line we must count operators in the fundamental
representation. This means pairing a chiral (possibly with derivatives) with the Wilson line
and then adding other pairs of chirals, and distributing derivatives so that the product does
not vanish due to antisymmetric properties.

We find that the one-point function is given by

⟨W1⟩SU(2)−5/2(x; q) = −q1/2
∞∑

n=0

qn(n+1)x2n+1

(1 − q)(1 − q2) · · · (1 − qn) . (3.27)

Note that we have the q-difference equation

IISU(2)−5/2
N (q1/2x; q) = −q−1/2x−1⟨W1⟩SU(2)−5/2(x; q) . (3.28)

In the unflavored limit x → 1, the one-point function coincides with

−q1/2H(q) = 1
(q; q)∞

∑
m∈Z

(−1)m+1q
5
2 m2− 3

2 m+ 1
2 (3.29)

where H(q) is the second function (2.14) associated with the Rogers-Ramanujan identi-
ties! Also this coincides with the minimal model Virasoro character χ2,5

1,1(q) up to the
normalization factor.
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Under the action of the modular transformation, the normalized Rogers-Ramanujan
function

H̃(q) = q11/60H(q) (3.30)

transforms as

H̃

(
aτ + bτ

cτ + d

)
= e2πiβ(a,b,c)/60H̃(τ), (3.31)

where

β(a, b, c) = a(3 + 11b+ c) − 3. (3.32)

Accordingly, we find the elegant expression of the unflavored normalized one-point
function in terms of the Rogers-Ramanujan continued fraction. It follows that

⟨W1⟩SU(2)−5/2(x = 1; q) := ⟨W1⟩SU(2)−5/2(x = 1; q)
IISU(2)−5/2

N (x = 1; q)

= −q1/2

1 − q

1+ q2

1+ q3

1+
...

. (3.33)

The unflavored result can be shown analytically as follows. Indeed for x = 1 we can
use the Jacobi triple product formula (2.12) twice to calculate

Iα = (q)∞
2

∮
ds

2πis(s±2; q)∞(q1/2s±; q)∞sα

= 1
2

∮
ds

2πis
∑

m,n∈Z
(−1)m+nqm(m+1)/2+n2/2(1 − s2)s2m+n+α

= 1
2
∑
m∈Z

(−1)m+αq
5
2 m2 (

q(2α+1/2)m+α2/2 − q(2α+9/2)m+α2/2+2α+2
)
. (3.34)

The form of the result depends on α mod 5 so we take α = 5λ + β where λ ∈ Z and
β ∈ {−2,−1, 0, 1, 2}. We then find the one-point of the charged Wilson line

⟨Wα⟩SU(2)−5/2 = Iα + I−α =



(−1)λ+1q
5
2 λ2

(
q−λG(q) + q−3λ+1H(q)

)
, β = −2

(−1)λ+1q
5
2 λ2−2λ+ 1

2H(q) , β = −1

(−1)λq
5
2 λ2

(
q−λ + qλ

)
G(q) , β = 0

(−1)λ+1q
5
2 λ2+2λ+ 1

2H(q) , β = 1

(−1)λ+1q
5
2 λ2

(
qλG(q) + q3λ+1H(q)

)
, β = 2 .
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The above gives a derivation for α = 0 of the half-index result in the previous subsection
while for α = 1 we derive the one-point function ⟨W1⟩ above. Some other examples are

⟨W2⟩SU(2)−5/2 = −G(q) − qH(q), (3.35)
⟨W3⟩SU(2)−5/2 = q3/2G(q) + q1/2H(q), (3.36)
⟨W4⟩SU(2)−5/2 = qH(q), (3.37)
⟨W5⟩SU(2)−5/2 = −q3/2G(q) − q7/2G(q), (3.38)
⟨W6⟩SU(2)−5/2 = q5H(q), (3.39)
⟨W7⟩SU(2)−5/2 = q7/2G(q) + q13/2H(q), (3.40)
⟨W8⟩SU(2)−5/2 = −q8G(q) − q5H(q), (3.41)
⟨W9⟩SU(2)−5/2 = −q13/2H(q), (3.42)
⟨W10⟩SU(2)−5/2 = q8G(q) + q12G(q), (3.43)
⟨W11⟩SU(2)−5/2 = −q29/2H(q), (3.44)
⟨W12⟩SU(2)−5/2 = −q12G(q) − q17H(q), (3.45)
⟨W13⟩SU(2)−5/2 = q39/2G(q) + q29/2H(q), (3.46)
⟨W14⟩SU(2)−5/2 = q17H(q), (3.47)
⟨W15⟩SU(2)−5/2 = −q39/2G(q) − q51/2G(q). (3.48)

As for the case of SU(2)−3 we can express the rank-α symmetric representation results
as a sum of these results giving

⟨W(1)⟩SU(2)−5/2 = −q1/2H(q), (3.49)
⟨W(2)⟩SU(2)−5/2 = −qH(q), (3.50)
⟨W(3)⟩SU(2)−5/2 = q3/2G(q), (3.51)
⟨W(4)⟩SU(2)−5/2 = 0, (3.52)
⟨W(5)⟩SU(2)−5/2 = −q7/2G(q), (3.53)
⟨W(6)⟩SU(2)−5/2 = q5H(q), (3.54)
⟨W(7)⟩SU(2)−5/2 = q13/2H(q), (3.55)
⟨W(8)⟩SU(2)−5/2 = −q8G(q), (3.56)
⟨W(9)⟩SU(2)−5/2 = 0, (3.57)
⟨W(10)⟩SU(2)−5/2 = q12G(q), (3.58)
⟨W(11)⟩SU(2)−5/2 = −q29/2H(q), (3.59)
⟨W(12)⟩SU(2)−5/2 = −q17H(q), (3.60)
⟨W(13)⟩SU(2)−5/2 = q39/2G(q), (3.61)
⟨W(14)⟩SU(2)−5/2 = 0, (3.62)
⟨W(15)⟩SU(2)−5/2 = −q51/2G(q). (3.63)
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with general results

⟨W(α)⟩SU(2)−5/2 =



(−1)λ+1q
5
2 λ2−λG(q) , β = −2

0 , β = −1

(−1)λq
5
2 λ2+λG(q) , β = 0

(−1)λ+1q
5
2 λ2+2λ+ 1

2H(q) , β = 1

(−1)λ+1q
5
2 λ2+3λ+1H(q) , β = 2 .

3.3 k = −3

Taking Nf = 0 and M = 1 (or alternatively M = 0 with 2 3d chirals with Dirichlet boundary
conditions but with the axial fugacity set to 1 in the half-index below) gives k = −3. The
half-index reads

IISU(2)−3
N (x; q) = (q; q)∞

2

∮
ds

2πis(s±2; q)∞
(
q

1
2 sx±; q

)
∞

(
q

1
2 s−1x∓; q

)
∞
. (3.64)

It can be expanded as

1 + (1 + x2 + x−2)q + (2 + x2 + x−2)q2 + (3 + 2x2 + 2x−2)q3

+ (5 + x4 + 3x2 + 3x−2 + x−4)q4 + (7 + x4 + 5x2 + 5x−2 + x−4)q5 + · · · . (3.65)

Here the detailed interpretation depends on whether we consider two fundamental 3d chirals
or a single 2d Fermi but as in previous cases we have a fairly straightforward counting of gauge
invariants built from the two fundamental chirals, taking into account symmetry properties.

We find that the half-index (3.64) is given by

1
(q; q)∞

∑
n∈Z

qn2
x2n = e

πiτ
12
ϑ3(2z; 2τ)
η(τ) , (3.66)

where ϑ3(z; τ) is the Jacobi theta function (A.6) and η(τ) is the Dedekind eta function (A.1).
This is the vacuum character of the U(1)2 WZW model consistent with the duality of
boundary conditions proposed in [5]

SU(2)−3 pure CS with Neumann b.c. + fund. Fermi
↔ U(1)2 pure CS with Dirichlet b.c. . (3.67)

When the flavored fugacity x is turned off, we get

A(q) := 1
(q; q)∞

(
1 + 2

∞∑
n=1

qn2
)

=
∞∏

n=1

(1 + q2n−1)(1 − q2n)
(1 − q2n−1)(1 + q2n)(1 − qn)

= φ(q)
f(−q) , (3.68)

where φ(q) and f(−q) are Ramanujan’s theta functions (A.9) and (A.11).
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3.3.1 One-point functions

The one-point function of the Wilson line operator in the fundamental representation is
evaluated as

⟨W1⟩SU(2)−3(x; q) = (q; q)∞
2

∮
ds

2πis(s±2; q)∞
(
q

1
2 sx±; q

)
∞

(
q

1
2 s−1x∓; q

)
∞

(s+ s−1). (3.69)

It has an expansion

− (x+ x−1)q1/2 − (x+ x−1)q3/2 − (x3 + 2x+ 2x−1 + x−3)q5/2

− (x3 + 3x+ 3x−1 + x−3)q7/2 − (2x3 + 5x+ 5x−1 + 2x−3)q9/2 − · · · . (3.70)

The one-point function should count the BPS boundary local operators at the insertion point
of the fundamental Wilson line. We see that only fermionic local operators can attach with
the fundamental Wilson line since the Wilson line itself is in the spin- 1

2 representation of
SU(2) so to make a gauge singlet the additional boundary local operator must also be in an
odd half-integer spin representation. The only way to form such representations is from an
odd number of the 3d chiral multiplets. Since they have Dirichlet boundary conditions the
bosonic component is fixed at the boundary so the degrees of freedom lie in the fermionic
component hence the local operator formed in this way must be fermionic.

The one-point function matches

⟨W1⟩SU(2)−3(x; q) = − 1
(q; q)∞

∑
n∈Z

qn2+n+ 1
2x2n+1. (3.71)

The half-index (3.64) and the one-point function (3.69) satisfies the q-difference equation

IISU(2)−3
N (q1/2x; q) = −q−1/2x−1⟨W1⟩SU(2)−3(x; q) (3.72)

which takes the same form as (3.28).
In the unflavored limit x → 1, the one-point function reduces to

−2q1/2B(q), (3.73)

where

B(q) := 1
(q; q)∞

∞∑
n=0

qn2+n

=
∞∏

n=1

1 − q4n

(1 − q4n−2)(1 − qn)

= ψ(q2)
f(−q) . (3.74)

Here ψ(q) and f(−q) are Ramanujan’s theta functions (A.10) and (A.11).
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We give an analytic proof in the following. Indeed, using the Jacobi triple product
formula three times we have

Vα ≡ 1
2(q; q)∞

∮
ds

2πis(s±2; q)∞
(
q

1
2 sx±; q

)
∞

(
q

1
2 s−1x∓; q

)
∞
sα

= 1
2(q; q)2

∞

∮
ds

2πis
∑

m,n,l∈Z
(−1)l+m+nql(l+1)/2+m2/2+n2/2(1 − s2)s2l+m+n+αxm−n

= Iα(x; q) − Iα+2(x; q) (3.75)

where

Iα(x; q) = 1
2(q; q)2

∞

∑
m,l∈Z

(−1)l+αqPαx2(m+l) , (3.76)

Pα = 3
2 l

2 + 1
2 l + (m+ l)2 + α(m+ l) + αl + 1

2α
2 . (3.77)

Now we define M = m + l and, L = l + α/3 for α ≡ 0 mod 3, while L = −l − (α + 1)/3
for α ≡ −1 mod 3. In both these cases we then find

Iα(x; q) = Ŝα
1

2(q; q)2
∞

∑
M,L∈Z

(−1)Lq
3
2 L2+ 1

2 L+M2+αM+ α2
3 −α

6 x2M

= Ŝα
1

2(q; q)∞
∑

M∈Z
qM2+αM+ α2

3 −α
6 x2M (3.78)

where Ŝα = 1 for α ≡ 0 mod 3 and Ŝα = −1 for α ≡ −1 mod 3.
Now note that

M2 + αM + α2

3 − α

6 =
(
M + α

2

)2
+ α2

12 − α

6 (3.79)

=
(
M + α− 1

2

)2
+
(
M + α− 1

2

)
+ α2

12 − α

6 + 1
4 , (3.80)

so for α ≡ 0 mod 2 we have

Iα(x; q) = Ŝαx
−α 1

2(q; q)∞
∑

M∈Z
qM2+ α2

12 −α
6 x2M

≡ 1
2 Ŝαx

−αq
α2
12 −α

6 A(x; q), (3.81)

while for α ≡ 1 mod 2 we have

Iα(x; q) = Ŝαx
1−α 1

2(q; q)∞
∑

M∈Z
qM2+M+ α2

12 −α
6 + 1

4x2M

≡ Ŝαx
1−αq

α2
12 −α

6 + 1
4B(x; q). (3.82)

Similarly, for α ≡ 1 mod 3 we can write α = 3β + 1 where β ∈ Z and we have

Pα = 3
2(l + β)(l + β + 1) + (m+ l)2 + (3β + 1)(m+ l) + 3β2 + 3

2β + 1
2

= 3
2(−l − β − 1)((−l − β − 1) + 1) + (m+ l)2 + (3β + 1)(m+ l) + 3β2 + 3

2β + 1
2 ,

(3.83)
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so due to the factor (−1)l+α = (−1)α+β(−1)l+β = −(−1)α+β(−1)−l−β−1 we see that Iα = 0
for α ≡ 1 mod 3.

Now we can calculate the one-point function of the charge-α Wilson line

⟨Wα⟩ = Vα + V−α = Iα − Iα+2 + I−α − I−α+2 . (3.84)

From above we see that the details depend on α mod 6. Specifically, we find

⟨Wα⟩SU(2)−3 =



1
2(x−α +xα−2 + qα/3xα + qα/3x−α−2)qα(α−2)/12A(x; q) for α = 0 mod 6
−(x−α−1 +xα+1)qα(α+2)/12+1/4B(x; q) for α = 1 mod 6
−1

2(x−α +xα−2)qα(α−2)/12A(x; q) for α = 2 mod 6
(x1−α +xα−1 + qα/3xα+1 + qα/3x−α−1)qα(α−2)/12+1/4B(x; q) for α = 3 mod 6
−1

2(x−α−2 +xα)qα(α+2)/12A(x; q) for α = 4 mod 6
−(x1−α +xα−1)qα(α−2)/12+1/4B(x; q) for α = 5 mod 6.

It follows that for x = 1 the correlators are expressible in terms of the functions
A(q) = A(1; q), (3.68) and B(q) = B(1; q), (3.74). We have

⟨Wα⟩SU(2)−3 =



(1 + qα/3)qα(α−2)/12A(q) for α = 0 mod 6
−2qα(α+2)/12+1/4B(q) for α = 1 mod 6
−qα(α−2)/12A(q) for α = 2 mod 6
2(1 + qα/3)qα(α−2)/12+1/4B(q) for α = 3 mod 6
−qα(α+2)/12A(q) for α = 4 mod 6
−2qα(α−2)/12+1/4B(q) for α = 5 mod 6.

For example

⟨W2⟩SU(2)−3 = −A(q), (3.85)

⟨W3⟩SU(2)−3 = 2q1/2B(q) + 2q3/2B(q), (3.86)

⟨W4⟩SU(2)−3 = −q2A(q), (3.87)

⟨W5⟩SU(2)−3 = −2q3/2B(q), (3.88)

⟨W6⟩SU(2)−3 = q2A(q) + q4A(q), (3.89)

⟨W7⟩SU(2)−3 = −2q
11
2 B(q), (3.90)

⟨W8⟩SU(2)−3 = −q4A(q), (3.91)

⟨W9⟩SU(2)−3 = 2q11/2B(q) + 2q17/2B(q), (3.92)

⟨W10⟩SU(2)−3 = −q10A(q), (3.93)

⟨W11⟩SU(2)−3 = −2q17/2B(q), (3.94)

⟨W12⟩SU(2)−3 = q10A(q) + q14A(q), (3.95)
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⟨W13⟩SU(2)−3 = −2q
33
2 B(q), (3.96)

⟨W14⟩SU(2)−3 = −q14A(q), (3.97)

⟨W15⟩SU(2)−3 = 2q33/2B(q) + 2q43/2B(q). (3.98)

For SU(2) the Wilson line half-index for the rank-n symmetric representation for n odd
(even) is given by the sum of the charge-odd (charge-even) Wilson line half-indices, where
for charge-0 we instead use the half-index without a Wilson line. For example

⟨W(1)⟩SU(2)−3 = −2q1/2B(q), (3.99)

⟨W(2)⟩SU(2)−3 = 0, (3.100)

⟨W(3)⟩SU(2)−3 = 2q3/2B(q), (3.101)

⟨W(4)⟩SU(2)−3 = −q2A(q), (3.102)

⟨W(5)⟩SU(2)−3 = 0, (3.103)

⟨W(6)⟩SU(2)−3 = q4A(q), (3.104)

⟨W(7)⟩SU(2)−3 = −2q
11
2 B(q), (3.105)

⟨W(8)⟩SU(2)−3 = 0, (3.106)

⟨W(9)⟩SU(2)−3 = 2q17/2B(q), (3.107)

⟨W(10)⟩SU(2)−3 = −q10A(q), (3.108)

⟨W(11)⟩SU(2)−3 = 0, (3.109)

⟨W(12)⟩SU(2)−3 = q14A(q), (3.110)

⟨W(13)⟩SU(2)−3 = −2q
33
2 B(q), (3.111)

⟨W(14)⟩SU(2)−3 = 0, (3.112)

⟨W(15)⟩SU(2)−3 = 2q43/2B(q). (3.113)

with the general result

⟨W(α)⟩SU(2)−3 =



qα(α−2)/12A(q) for α = 0 mod 6
−2qα(α+2)/12+1/4B(q) for α = 1 mod 6
0 for α = 2 mod 6
2qα(α+2)/12+1/4B(q) for α = 3 mod 6
−qα(α+2)/12A(q) for α = 4 mod 6
0 for α = 5 mod 6.

3.4 k = −3/2 − M

With Nf = 1 and M Fermis, we expect the Neumann half-indices are equal to half-indices
of dual U(M)3/2+M,3/2 theories with Dirichlet boundary conditions for the gauge multiplet
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and a 3d fundamental chiral. We have already described the case of M = 1 (although with a
specialisation of the global U(1) fugacities equivalent to instead taking a single fundamental
chiral with Dirichlet boundary conditions and no Fermis) and here we list some further
examples for M = 2 and M = 3. However, the one-point functions of Wilson lines operators
are more complicated and we don’t have any general conjectures or q-difference equations
relating these one-point functions to the half-indices in the absence of Wilson lines. Most
likely there should be some useful and interesting q-difference equations but we leave that
to future works.

3.4.1 k = −7/2

While there are multiple choices of the matter content to get the Chern-Simons level k = −7/2,
let us consider the case with two fundamental Fermi multiplets as well as a single chiral
multiplet satisfying the Neumann boundary condition. The half-index is given by

IISU(2)−7/2
N (xα; q) = (q; q)∞

2

∮
ds

2πis(s±2; q)∞

∏2
α=1

(
q

1
2 s±x±α ; q

) (
q

1
2 s∓x±α ; q

)
(
q

1
2 s±x3; q

)
∞

(3.114)

where x1, x2 are the fugacities for the flavor symmetry rotating the two Fermi multiplet and
x3 is the fugacity for the chiral multiplet. It can be expanded as

IISU(2)−7/2
N = 1 +

(
2 + x2

1 + x2
2 + x−2

1 + x−2
2 + x1x2 + x−1

1 x−1
2 + x−1

1 x2 + x1x
−1
2

−x1x3 − x2x3 − x3x
−1
1 − x3x

−1
2

)
q + · · · . (3.115)

Here gauge invariants can be formed by pairing two Fermi multiplet contributions or one Fermi
multiplet with the 3d chiral. The Fermis contribute fermionic terms while the Neumann
chiral contributes a bosonic contribution.

We find that the half-index (3.114) coincides with

1
(q; q)2

∞

∑
m1,m2∈Z

qm2
1+m2

2x2m1
1 x2m2

2 (q1−m1x−1
1 x3; q)∞(q1−m2x−1

2 x3; q)∞
(q1±m1∓m2x±1 x

∓
2 ; q)∞

. (3.116)

The series expression (3.116) indicates that, as expected, the dual description is given by
the U(2)7/2,3/2 Chern-Simons theory with a fundamental 3d chiral with Dirichlet boundary
conditions.

3.4.2 k = −9/2

For the Chern-Simons level k = −9/2, one can take three fundamental Fermi multiplets along
with a single chiral multiplet obeying the Neumann boundary condition. The half-index
is given by

IISU(2)−9/2
N (xα; q) = (q; q)∞

2

∮
ds

2πis(s±2; q)∞

∏3
α=1

(
q

1
2 s±x±α ; q

) (
q

1
2 s∓x±α ; q

)
(
q

1
2 s±x4; q

)
∞

. (3.117)
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We find that the half-index (3.117) matches with

1
(q; q)3

∞

∑
m1,m2,m3∈Z

qm2
1+m2

2+m2
3x2m1

1 x2m2
2 x2m3

3
∏3

α=1(q1−mαx−1
α x4; q)∞∏3

α<β(q1±mα∓mβx±αx
∓
β ; q)∞

. (3.118)

The series expression (3.118) indicates that the dual description is given, as expected, by
the U(3)9/2,3/2 Chern-Simons theory with a fundamental chiral having Dirichlet boundary
conditions.

3.5 k = −2 − M

We expect the Neumann half-indices are equal to half-indices of dual U(M)2+M,2 theories
with Dirichlet boundary conditions for the gauge multiplet and a 3d fundamental chiral. We
have already described the case of M = 1 and here we list some further examples of dual
half-indices as well as a discussion of the cases with a line operator. These cases match the
duality of boundary conditions proposed in [5]

SU(2)−2−M pure CS with Neumann b.c. + M fund. Fermis
↔ U(M)2+M,2 pure CS with Dirichlet b.c. . (3.119)

3.5.1 k = −4

When Nf = Na = 0 and M = 2, we have k = −4. The half-index is given by

IISU(2)−4
N (xα; q) = (q; q)∞

2

∮
ds

2πis(s±2; q)∞
2∏

α=1

(
q

1
2 s±x±α ; q

)
∞

(
q

1
2 s±x∓α ; q

)
∞
. (3.120)

We find that the half-index (3.120) matches

1
(q; q)2

∞

∑
m1,m2∈Z

qm2
1+m2

2x2m1
1 x2m2

2
(q1±m1∓m2x±1 x

∓
2 ; q)∞

. (3.121)

The expression (3.121) can be interpreted as the vacuum character of the U(2)2 WZW model
or the pure U(2)4,2 Chern-Simons theory.

3.5.2 k = −4 one-point function

We find that the one-point function of the Wilson line in the fundamental representation
coincides with

⟨W1⟩SU(2)−4(xα; q) = − q1/2

(q; q)2
∞

∑
m1,m2∈Z

qm2
1+m2

2x2m1
1 x2m2

2 (qm1x1 + qm2x2)
(q1±m1∓m2x±1 x

∓
2 ; q)∞

. (3.122)

Accordingly, we obtain the q-difference equation satisfied by the half-index (3.120) and (3.122)

⟨W1⟩SU(2)−4(x1, x2; q) = −q1/2x1II
SU(2)−4
N (q1/2x1, x2; q) − q1/2x2II

SU(2)−4
N (x1, q

1/2x2; q).
(3.123)
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3.5.3 k = −5

For Nf = NA = 3 and M = 3, the Chern-Simons level is k = −5. The half-index is

IISU(2)−5
N (xα; q) = (q; q)∞

2

∮
ds

2πis(s±2; q)∞
3∏

α=1

(
q

1
2 s±x±α ; q

)
∞

(
q

1
2 s±x∓α ; q

)
∞
. (3.124)

We have confirmed that it agrees with

1
(q; q)3

∞

∑
m1,m2,m3∈Z

qm2
1+m2

2+m2
3x2m1

1 x2m2
2 x2m3

3∏3
α<β(q1±mα∓mβx±αx

∓
β ; q)∞

, (3.125)

which is identified with the vaccum character of the U(3)2 WZW model or the pure U(3)5,3
Chern-Simons theory.

3.5.4 k = −5 one-point function

We find that the one-point function of the fundamental Wilson line is given by

⟨W1⟩SU(2)−5(xα; q) = −q1/2

(q; q)3
∞

∑
m1,m2,m3∈Z

qm2
1+m2

2+m2
3x2m1

1 x2m2
2 x2m3

3 (qm1x1 + qm2x2 + qm3x3)∏3
α<β(q1±mα∓mβx±αx

∓
β ; q)∞

.

(3.126)
The half-index (3.124) and the one-point function (3.126) obey the q-difference equation

⟨W1⟩SU(2)−5(x1, x2, x3; q) = −q1/2x1II
SU(2)−5
N (q1/2x1, x2, x3; q)

− q1/2x2II
SU(2)−5
N (x1, q

1/2x2, x3; q)

− q1/2x3II
SU(2)−5
N (x1, x2, q

1/2x3; q). (3.127)

4 SU(3)

Let us study the line defect half-indices for the 3d N = 2 SU(3) Chern-Simons theory with
Wilson lines and Neumann boundary conditions for the vector multiplet. The Chern-Simons
level is fixed by

k = −
(

3 + Nf +Na

2 +M

)
. (4.1)

For gauge group SU(3) we have two independent gauge fugacities s1 and s2 with s3 =
s−1

1 s−1
2 in the computation of the half-indices and the correlation functions.

4.1 k = −3

For Nf = 0 and M = 0, we have the 3d N = 2 SU(3) pure Chern-Simons theory with level
k = −3. Since there is no matter field, the half-index is trivial.
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4.1.1 One-point function

We find that the one-point function of the Wilson line W(k) transforming in the rank-k
symmetric representation is given by

⟨W(k)⟩SU(3)−3 =

q
k(k+3)

9 for k ≡ 0 mod 3
0 otherwise.

(4.2)

As for the case of SU(2)−2, this can be understood by noting that the half-index in the
presence of a Wilson line in some representation counts the BPS operators which can form a
gauge singlet in combination with the Wilson line representation.

Again, in this case the only boundary BPS operators are the gaugino λ− and its derivatives
Dn

z λ− which are in the adjoint representation of SU(3) and contribute fugacity −qn+1 in
addition to gauge fugacities. To form a gauge singlet together with the Wilson line rank-k
symmetric representation we need to combine these operators in a way which results in precisely
k anti-fundamental indices. Now, the adjoint representation has one fundamental and one anti-
fundamental index but for SU(3) a fundamental index is equivalent to two anti-fundamental
indices. However, these two anti-fundamental indices are antisymmetrized so cannot give
a non-vanishing contribution when contracted with the symmetrized Wilson line indices.
Instead we need to take two adjoint operators and replace the pair of fundamental indices
with a single anti-fundamental index, resulting in an operator with three anti-fundamental
indices, e.g. (λ−)α1

β1
(λ−)α2

β2
ϵα1α2β3 . We must take k/3 such operators to combine with the

rank-k symmetric representation Wilson line operator.
Since the gauginos and their derivatives are fermionic there are constraints on the number

of gauginos with a specific number of derivatives in order that the contraction with the k
symmetrized indices from the Wilson line does not result in a vanishing operator. It turns out
that the minimal choice is for each pairing to be formed from gauginos with the same number,
n, of derivatives and for no two pairs to have the same value of n. For example, consider
(λ−)α1

β1
(λ−)α2

β2
ϵα1α2β3(λ−)α4

β4
(Dzλ−)α5

β5
ϵα4α5β6 . Symmetrizing over β1, β2 and β4 shows that

the upper indices α1, α2 and α4 are antisymmetrized, and hence (λ−)α1
(β1

(λ−)α2
β2

(λ−)α4
β4) =

ϵα1α2α4(λ−)1
(β1

(λ−)2
β2

(λ−)3
β4). However ϵα1α2α4ϵα1α2β3ϵα4α5β6 = 2ϵβ3α5β6 which is obviously

antisymmetric in β3 and β6 and so would vanish when contacted with the symmetrized
Wilson line indices.

Therefore, for the minimal choice we have n in the range 0 ≤ n ≤ k/3− 1, giving fugacity∏k/3−1
n=0 q2(n+1) = q

∑k/3−1
n=0 2(n+1) = qk(k+3)/9. As for the SU(2)−2 case, for the non-minimal

case we get cancellations from operators where we replace a derivative with a gaugino, and
so there are no higher order contributions.

We now alternatively give an analytic proof directly from the half-index expression
which can also be used to discuss Wilson lines in other representations. In this case we are
interested in matrix integrals of the form

Iαβ = (q)2
∞

∮
ds1

2πis1

ds2
2πis2

 ∏
1≤i≤j≤3

(s±i s∓j ; q)∞

 sα
1 s

β
2 , (4.3)

where α, β ∈ Z.
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We now use the Jacobi triple product identity three times to get

Iαβ = 1
(q)∞

∑
l,m,n∈Z

(−1)l+m+n
∮

ds1
2πis1

ds2
2πis2

q
1
2 (l(l+1)+m(m+1)+n(n+1))

× sl+2m+n+α
1 s−l+m+2n+β

2

(
1 − s1s

−1
2 − s1s

2
2 + s3

1 + s3
1s

3
2 − s4

1s
2
2

)
. (4.4)

Now let γ = (α + β)/3 and define

cαγ = 1
(q)∞

∑
l,m,n∈Z

(−1)l+m+n
∮

ds1
2πis1

ds2
2πis2

q
1
2 (l(l+1)+m(m+1)+n(n+1))

× sl+2m+n+α
1 s−l+m+2n+β

2 . (4.5)

We see that the integrals pick up the contribution only for l = −m+ γ − α and n = −m− γ,
and so for integer γ we have

cαγ = 1
(q)∞

(−1)αq
1
2 (−α+α2−2αγ+2γ2) ∑

m∈Z
(−1)mq

1
2 (3m2−m−2mα) (4.6)

while cαγ = 0 if γ is not an integer.
We now evaluate this final sum using Euler’s pentagonal number theorem∑

m∈Z
(−1)mq

1
2 (3m2−m) = (q)∞ . (4.7)

By shifting m → m − α/3, m → m − (α − 1)/3 or m → m − (α + 1)/3 for α ≡ 0, 1,−1
mod 3 respectively, the first two cases reduce the sum to Euler’s pentagonal number theorem
while for α ≡ −1 mod 3 the result is zero since∑

m∈Z
(−1)mq

3
2 m(m−1) = 0 . (4.8)

due to the antisymmetry of the sum under m → 1 −m. The final result is

cαγ =


(−1)α/3q−

1
6 α(α−1), α = 0 mod 3

(−1)(α−1)/3q−
1
6 α(α−1), α = 1 mod 3

0, α = −1 mod 3 .
(4.9)

We can then easily calculate

Iαβ =


q

1
3 α(α−1)+γ(γ−α)

(
1 + q

2
3 α−γ + q−

1
3 α+γ + qα−γ + qγ + q

2
3 α
)
, α = 0 mod 3

−q
1
3 α(α−1)+γ(γ−α) (1 + qα−γ + qγ) , α = 1 mod 3

−q
1
3 α(α+1)+γ(γ−α−1) (1 + q−α+2γ + qγ

)
, α = −1 mod 3

(4.10)

where we recall that this applies for γ = (α + β)/3 ∈ Z, otherwise Iαβ = 0.
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It is now straightforward to calculate the charge-n Wilson line

⟨Wn⟩ = (q)2
∞

3!

∮
ds1

2πis1

ds2
2πis2

 ∏
1≤i≤j≤3

(s±i s∓j ; q)∞

(sn
1 + sn

2 + s−n
1 s−n

2

)

= q
n(n−3)

9
(
1 + q

n
3 + q

2n
3
)

(4.11)

for n ≡ 0 mod 3 and the integral is zero otherwise.
These results can be used to derive the expression (4.2) for rank-k symmetric representa-

tion Wilson lines and indeed other representations although the calculations are in general
lengthy so we do not present any details here.

4.1.2 Grand canonical one-point function

We can consider the case where n = 3k and again calculate the grand canonical ensemble
by summing over the charge n, or equivalently over k

∑
k∈Z

⟨W3k⟩SU(3)−3Λk =Λ1/2
2∑

m=0
qm/2−1/4ϑ1

(
λ+mτ + 1

2; 2τ
)
. (4.12)

4.1.3 Two-point function

The two-point function of a pair of the Wilson lines transforming in the rank-k symmetric
representation is given by

⟨W(3l−m)W(3l−m)⟩
SU(3)−3 =

l+δm,0∑
n=0

q3n2+2n −
l∑

n=1
q3n2−2n (4.13)

where l = 1, 2, · · · ; m = 0, 1, 2.
In the large representation limit k → ∞, the two-point function becomes an infinite series

⟨W(∞)W(∞)⟩
SU(3)−3 =

∞∑
n=0

q3n2+2n −
∞∑

n=1
q3n2−2n. (4.14)

4.2 k = −7/2

Taking Nf = 1, Na = 0 and M = 1 with identification of the two global U(1) fugacities,
or equivalently taking a single fundamental chiral with Neumann boundary conditions, the
SU(3) Chern-Simons theory has level k = −7/2. The half-index is given by

IISU(3)−7/2
N (x; q) = (q; q)2

∞
3!

∮
ds1

2πis1

ds2
2πis2

∏
1≤i<j≤3

(s±i s∓j ; q)∞
3∏

i=1

(
q

1
2 six; q

)
∞
. (4.15)

It has an expansion

IISU(3)−7/2
N = 1 − x3q3/2 − x3q5/2 − x3q7/2 − x3q9/2 − x3q11/2 + x6q6 − x3q13/2

+ x6q7 − x3q15/2 + 2x6q8 − x3q17/2 + 2x6q9 − x3q19/2 + · · · . (4.16)
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We find that it precisely agrees with

∞∑
n=0

(−1)nq
3n2

2 x3n

(1 − q)(1 − q2) · · · (1 − qn) . (4.17)

These results can be understood in terms of the fundamental representation fermion in the
Neumann chiral multiplet and its derivates which must be combined in the antisymmetric
rank-3 representation to form a gauge singlet. Furthermore, no more than three such fermions
can appear with the same number of derivatives otherwise the product will vanish due to
antisymmetry.

4.2.1 One-point function

The one-point function of the Wilson line in the fundamental representation is evaluated as

⟨W1⟩SU(3)−7/2(x; q) = x2q − x5q9/2 − x5q11/2 − x5q13/2 − x5q15/2 − x5q17/2 − x5q19/2

− x5q21/2 + x8q11 − x5q23/2 + x8q12 − x5q25/2 + 2x8q13 + · · · .
(4.18)

We find that it is given by

∞∑
n=0

(−1)nq
3n2

2 +2n+1x3n+2

(1 − q)(1 − q2) · · · (1 − qn) . (4.19)

The half-index and the one-point function satisfy the q-difference equation

IISU(3)−7/2
N (q2/3x; q) = q−1x−2⟨W1⟩SU(3)−7/2(x; q). (4.20)

This can be interpreted in terms of the duality with the dual of the Wilson line being a vortex
line, but note that as for the similar SU(2)−5/2 theory the q-difference equation involves a
fractional power of q, in particular q(N−1)/N for SU(N)−N−1.

4.3 k = −4

When Nf +Na = 2 and M = 0 or Nf +Na = 0 and M = 1, we have the 3d N = 2 SU(3)
Chern-Simons theory with level k = −4. For Nf = Na = 0 and M = 1, the half-index
is given by the matrix integral

IISU(3)−4
N (x; q) = (q; q)2

∞
3!

∮
ds1

2πis1

ds2
2πis2

∏
1≤i<j≤3

(s±i s∓j ; q)∞

×
(
q

1
2 s±1 x

±; q
)
∞

(
q

1
2 s±2 x

±; q
)
∞

(
q

1
2 s∓1 s

∓
2 x

±; q
)
∞
. (4.21)

It can be expanded as

1 + q − (x3 + x−3)q3/2 + 2q2 − (x3 + x−3)q5/2 + 3q3 − 2(x3 + x−3)q7/2

+ 5q4 − 3(x3 + x−3)q9/2 + 7q5 − 5(x3 + x−3)q11/2 + (11 + x6 + x−6)q6 + · · · .
(4.22)
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This can be understood in terms of the gauge invariants which can formed from the funda-
mental fermion γ and the antifundamental fermion γ̄ in the 2d Fermi multiplet, and their
derivatives. Note that for gauge group SU(3) we can form a singlet from three fundamentals
or three antifundamentals, while a fundamental (antifundamental) can be formed from two
antifundamentals (fundamentals).

We find that the half-index is given by

IISU(3)−4
N (x; q) = 1

(q; q)∞
∑
n∈Z

(−1)nq
3n2

2 x3n. (4.23)

The expression (4.23) agrees with the vacuum character of the U(1)3 WZW model as expected
from the duality of boundary conditions proposed in [5]

SU(3)−4 pure CS with Neumann b.c. + fund. Fermi
↔ U(1)3 pure CS with Dirichlet b.c. . (4.24)

In the unflavored limit x → 1, it agrees with

φ(−q3/2)
f(−q) . (4.25)

4.3.1 One-point function

The one-point function of the Wilson line in the fundamental representation is expanded as

⟨W1⟩SU(3)−4(x; q) = −x−1q1/2 + x2q − x−1q3/2 + x2q2 − 2x−1q5/2 + (2x2 + x−4)q3

− 3x−1q7/2 + (3x2 + x−4)q4 − (x5 + 5x−1)q9/2 + (5x2 + 2x−4)q5 + · · · .
(4.26)

We find that it is given by

⟨W1⟩SU(3)−4(x; q) = qx2

(q; q)∞
∑
n∈Z

(−1)nq
3n2

2 +2nx3n = qx2IISU(3)−4
N (q2/3x; q) . (4.27)

This can be interpreted in terms of the duality with the dual of the Wilson line being a
vortex line, but note that as for the similar SU(2)−3 theory the q-difference equation involves
a fractional power of q, in particular q(N−1)/N for SU(N)−N−1.

When we turn off the flavored fugacity x → 1, it agrees with

−q1/2ψ(q3/2)
ψ(q1/2)

, (4.28)

where ψ(q) is Ramanujan’s theta function (A.10).
The one-point function of the Wilson line of charge 2 is obtained from the one-point

function (4.27) of the fundamental Wilson line upon replacing x → x−1 and changing the
overall sign

⟨W2⟩SU(3)−4(x; q) = − qx−2

(q; q)∞
∑
n∈Z

(−1)nq
3n2

2 +2nx−3n. (4.29)
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The half-index (4.21) and the one-point function (4.29) obey the q-difference equation,
following from (4.27)

IISU(3)−4
N (q2/3x; q) = −q−1x−2⟨W2⟩SU(3)−4(x−1; q). (4.30)

By relabelling n → −n in (4.29) we have

⟨W2⟩SU(3)−4(x; q) = − qx−2

(q; q)∞
∑
n∈Z

(−1)nq
3n2

2 −2nx3n (4.31)

so we also have the q-difference equation

IISU(3)−4
N (q−2/3x; q) = −q−1x2⟨W2⟩SU(3)−4(x; q). (4.32)

Furthermore, we find that the one-point functions of the Wilson line of larger charges are
given by the half-index (4.21) and the one-point functions (4.27) and (4.29). For example,

⟨W3⟩SU(3)−4 = IISU(3)−4
N , (4.33)

⟨W4⟩SU(3)−4 = (1 + q + q2)⟨W1⟩SU(3)−4 , (4.34)
⟨W5⟩SU(3)−4 = −q3⟨W2⟩SU(3)−4 , (4.35)

⟨W6⟩SU(3)−4 = −q3IISU(3)−4
N , (4.36)

⟨W7⟩SU(3)−4 = −q2⟨W1⟩SU(3)−4 , (4.37)
⟨W8⟩SU(3)−4 = −q3(1 + q2 + q4)⟨W2⟩SU(3)−4 , (4.38)

⟨W9⟩SU(3)−4 = q9IISU(3)−4
N , (4.39)

⟨W10⟩SU(3)−4 = −q8⟨W1⟩SU(3)−4 , (4.40)
⟨W11⟩SU(3)−4 = −q7⟨W2⟩SU(3)−4 , (4.41)

⟨W12⟩SU(3)−4 = q9(1 + q3 + q6)IISU(3)−4
N . (4.42)

Note that Wilson lines of negative charge are related to those of positive charge since
if we replace the integration variables (gauge fugacities) si with s−1

i in the expression for
⟨Wn⟩(x; q) we get the expression for ⟨W−n⟩(x−1; q). For example we see that ⟨W−1⟩(x; q) =
⟨W1⟩(x−1; q) = −⟨W2⟩(x; q).

From this we can conjecture the general case of ⟨Wk⟩SU(3)−4 is given by the following:

• A factor


IISU(3)−4

N , k ≡ 0 mod 3
⟨W1⟩SU(3)−4 , k ≡ 1 mod 3
⟨W2⟩SU(3)−4 , k ≡ 2 mod 3

• A factor (1 + qk/4 + qk/2) for k ≡ 0 mod 4 for k ̸= 0

and a factor of a single power of q and a sign ±1 which we haven’t determined but can
be deduced from (4.10).
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4.4 k = −5/2 − M

We expect the Neumann half-indices are equal to half-indices of dual U(M)5/2+M,5/2 theories
with Dirichlet boundary conditions for the gauge multiplet and a 3d fundamental chiral. We
have already described the case of M = 1 where we identified the Fermi and 3d chiral U(1)
fugacities, equivalent to considering instead the case of a singe 3d fundamental chiral with
Dirichlet boundary conditions. Here we list some results for M = 2 and M = 3 but the
one-point functions of Wilson lines operators are more complicated than in the case of integer
Chern-Simons level and we don’t have any general conjectures or q-difference equations
relating these one-point functions to the half-index in the absence of Wilson lines.

4.4.1 k = −9/2

For the Chern-Simons level k = −9/2, we take two fundamental Fermi multiplets and a
single fundamental chiral multiplet with the Neumann boundary condition. The half-index
is given by

IISU(3)−9/2
N (xα; q) = (q; q)2

∞
3!

∮
ds1

2πis1

ds2
2πis2

∏
1≤i<j≤3

(s±i s∓j ; q)∞
3∏

i=1

2∏
α=1

(
q

1
2 s±i x

±
α ; q

)
∞(

q
1
2 six3; q

)
∞

.

(4.43)

It has an expansion

IISU(3)−9/2
N = 1 +

(
2 + x1

x2
+ x2
x1

− x3
x1

− x3
x2

)
q +

(
x2

1x3 + x2
2x3 + x1x2x3

−x3
1 − x−3

1 − x3
2 − x−3

2 − x−1
1 x−2

2 − x−2
1 x−1

2 − x1x
2
2 − x2

1x2
)
q3/2 + · · · .

(4.44)

This result is easily interpreted in terms of the two fundamental fermions γi and antifun-
damental fermions γ̄ifrom the two Fermi multiplets, along with the fundamental scalar ϕ
from the 3d chiral with Neumann boundary conditions.

We find that it precisely coincides with

1
(q; q)2

∞

∑
m1,m2∈Z

(−1)m1+m2q
3
2 (m2

1+m2
2)x3m1

1 x3m2
2 (q1−m1x−1

1 x3; q)∞(q1−m2x−1
2 x3; q)∞(

q1+m1−m2 x1
x2

; q
)
∞

(
q1+m2−m1 x2

x1
; q
)
∞

.

(4.45)

The series expression (4.45) demonstrates that the dual description is indeed given by the
U(2)9/2,5/2 Chern-Simons theory with a fundamental chiral with Dirichlet boundary conditions.

4.4.2 k = −11/2

Taking two fundamental Fermi multiplets and a single fundamental chiral multiplet with
the Neumann boundary condition, the Chern-Simons level k = −11/2 is allowed. The
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half-index reads

IISU(3)−11/2
N (xα; q) = (q; q)2

∞
3!

∮
ds1

2πis1

ds2
2πis2

∏
1≤i<j≤3

(s±i s∓j ; q)∞
3∏

i=1

3∏
α=1

(
q

1
2 s±i x

±
α ; q

)
∞(

q
1
2 six4; q

)
∞

.

(4.46)

We find that it precisely coincides with

1
(q; q)3

∞

∑
m1,m2,m3∈Z

∏3
α=1(−1)mαq

3
2 m2

αx3mα
α (q1−mαx−1

α x4; q)∞∏3
α<β

(
q1+mα−mβ xα

xβ
; q
)
∞

(
q1+mβ−mα

xβ

xα
; q
)
∞

. (4.47)

The series expression (4.47) demonstrates that the dual description is given by the U(3)11/2,5/2
Chern-Simons theory with a fundamental 3d chiral having Dirchlet boundary conditions.

4.5 k = −3 − M

We expect the Neumann half-indices are equal to half-indices of dual U(M)3+M,3 theories
with Dirichlet boundary conditions for the gauge multiplet and a 3d fundamental chiral. We
have already described the case of M = 1 and here we list some further examples noting
consistency with the duality of boundary conditions proposed in [5]

SU(N)−3−M pure CS with Neumann b.c. + M fund. Fermis
↔ U(M)3+M,3 pure CS with Dirichlet b.c. . (4.48)

4.5.1 k = −5

When M = 2, we have the pure Chern-Simons theory with level k = −5. The half-index is

IISU(3)−5
N (xα; q) = (q; q)2

∞
3!

∮
ds1

2πis1

ds2
2πis2

∏
1≤i<j≤3

(s±i s∓j ; q)∞

×
2∏

α=1

(
q

1
2 s±1 x

±
α ; q

)
∞

(
q

1
2 s±2 x

±
α ; q

)
∞

(
q

1
2 s∓1 s

∓
2 x

±
α ; q

)
∞
. (4.49)

It agrees with the vacuum character of the U(2)3 WZW model

1
(q; q)2

∞

∑
m1,m2∈Z

(−1)m1+m2q
3
2 (m2

1+m2
2)x3m1

1 x3m2
2(

q1+m1−m2 x1
x2

; q
)
∞

(
q1+m2−m1 x2

x1
; q
)
∞

. (4.50)

4.5.2 k = −5 one-point function

Similarly, we find that the one-point function of the fundamental Wilson line is given by

⟨W1⟩SU(3)−5(xα; q)

= q

(q; q)2
∞

∑
m1,m2∈Z

(−1)m1+m2q
3
2 (m2

1+m2
2)x3m1

1 x3m2
2 (q2m1x2

1 + q2m2x2
2 + qm1+m2x1x2)(

q1+m1−m2 x1
x2

; q
)
∞

(
q1+m2−m1 x2

x1
; q
)
∞

.

(4.51)

We have the q-difference equation

⟨W1⟩SU(3)−5(x1, x2; q) = qx2
1II

SU(3)−5
N (q2/3x1, x2; q) + qx2

2II
SU(3)−5
N (x1, q

2/3x2; q)

+ qx1x2II
SU(3)−5
N (q1/3x1, q

1/3x2; q). (4.52)
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4.5.3 k = −6

For M = 3, we have the pure Chern-Simons theory with level k = −6. We have the half-index

IISU(3)−6
N (xα; q) = (q; q)2

∞
3!

∮
ds1

2πis1

ds2
2πis2

∏
1≤i<j≤3

(s±i s∓j ; q)∞

×
3∏

α=1

(
q

1
2 s±1 x

±
α ; q

)
∞

(
q

1
2 s±2 x

±
α ; q

)
∞

(
q

1
2 s∓1 s

∓
2 x

±
α ; q

)
∞
. (4.53)

It matches with the vacuum character of the U(3)3 WZW model

1
(q; q)3

∞

∑
m1,m2,m3∈Z

(−1)m1+m2+m3q
3
2 (m2

1+m2
2+m2

3)x3m1
1 x3m2

2 x3m3
3∏3

α<β

(
q1+mα−mβ xα

xβ
; q
)
∞

(
q1+mβ−mα

xβ

xα
; q
)
∞

. (4.54)

4.5.4 k = −6 one-point function

We find that the one-point function of the fundamental Wilson line is given by

⟨W1⟩SU(3)−6(xα; q)

= q

(q; q)3
∞

∑
m1,m2,m3∈Z

(−1)m1+m2+m3q
3
2 (m2

1+m2
2+m2

3)x3m1
1 x3m2

2 x3m3
3∏3

α<β

(
q1+mα−mβ xα

xβ
; q
)
∞

(
q1+mβ−mα

xβ

xα
; q
)
∞

× (q2m1x2
1 + q2m2x2

2 + q2m3x2
3 + qm1+m2x1x2 + qm1+m3x1x3 + qm2+m3x2x3).

(4.55)

The q-difference equation satisfied by the half-index (4.53) and the one-point func-
tion (4.55) is

⟨W1⟩SU(3)−6(x1, x2, x3; q)

= qx2
1II

SU(3)−6
N (q2/3x1, x2, x3; q) + qx2

2II
SU(3)−6
N (x1, q

2/3x2, x3; q)

+ qx2
3II

SU(3)−6
N (x1, x2, q

2/3x3; q) + qx1x2II
SU(3)−6
N (q1/3x1, q

1/3x2, x3; q)

+ qx1x3II
SU(3)−6
N (q1/3x1, x2, q

1/3x3; q) + qx2x3II
SU(3)−6
N (x1, q

1/3x2, q
1/3x3; q).

(4.56)

5 SU(N)

In agreement with the analytic results for SU(2) and SU(3), we propose conjectures for
general SU(N) gauge group. We have numerically confirmed them for higher N .

5.1 k = −N

When Nf = 0 and M = 0, we have the 3d N = 2 SU(N) pure Chern-Simons theory
with level k = −N . When the vector multiplet obeys the Neumann boundary condition
in the absence of the Wilson line, there is no gauge invariant BPS local operator which
contributes to the half-index.
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5.1.1 One-point function

We conjecture that the one point function for a charge n Wilson line in the 3d N = 2 SU(N)
pure Chern-Simons theory is given by

⟨Wn⟩SU(N)−N (q)

= (q; q)N−1
∞

N !

∮ (N−1∏
i=1

dsi

2πisi

) N∏
i ̸=j

(sis
−1
j ; q)∞

 (sn
1 + sn

2 + · · · + sn
N )

=

(−1)k(N−1)∑N−1
l=0 q(N−1)k(k−1)/2+lk = (−1)k(N−1)q(N−1)k(k−1)/2(1−qkN )

1−qk , n = kN

0, n ̸= kN

(5.1)

where k,N ∈ Z noting that sN = (s1s2 · · · sN−1)−1. It is straightforward to see the zero
result in the case that n is not a multiple of N .

Also we conjecture that the one-point function of the Wilson line W(kN) transforming
in the rank-kN symmetric representation is given by

W
SU(N)−N

(kN) = (−1)(N−1)kq
N−1

2 k(k+1). (5.2)

This result follows from the same argument used for SU(2)−2 and in particular SU(3)−3.
Here we group N − 1 operators Dn

z λ− to create an operator with N fundamental indices so
we can contract with kN synmmetrized indices from a Wilson line in the rank-kN symmetric
representation by taking k such groups. The minimal (non-vanishing) case is when the
groups have distinct n in the range 0 ≤ n ≤ k− 1 giving fugacity ∏k−1

n=0(−1)N−1q(N−1)(n+1) =
(−1)(N−1)kq

N−1
2 k(k+1).

5.1.2 Grand canonical one-point function

Now, consider the case where n is a multiple of N , and calculate the grand canonical ensemble
by summing over the charge n, or equivalently over k∑

k∈Z
⟨WkN ⟩SU(N)−N Λk = (−1)N−1Λq−(N−1)/2AN−1(τ, λ; τ) −AN−1(0, λ+ τ ; τ)

= iN+1Λ1/2
N−1∑
m=0

qm/2−(N−1)/8ϑ1

(
λ+mτ + N − 2

2 ; (N − 1)τ
)
,

(5.3)

where for the first line we note that the first order, level k Appell-Lerch sums can be defined as

Ak(u, v; τ) = Uk/2 ∑
n∈Z

(−1)knqkn(n+1)/2V n

1 − Uqn
(5.4)

where we have denoted q = exp(2πiτ), U = exp(2πiu) and V = exp(2πiv). The Appell-Lerch
sums are holomorphic but not modular. However, they have modular completions which
are the weight 1 Jacobi forms [40, 41]

Âk(u, v; τ) = Ak(u, v; τ) + Rk(u, v; τ) (5.5)
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where

Rk(u, v; τ) = −i
2kU(k−1)/2

k−1∑
m=0

ϑ1

(
v +m

k
+ (k − 1)τ

2k ; τ
k

)
×R

(
u− v +m

k
− (k − 1)τ

2k ; τ
k

)
(5.6)

R(w; τ) =
∑

ν∈Z+1/2

(
sgn(ν) − Erf

(√
2πτ2

(
ν + Im(w)

τ2

)))
× (−1)ν−1/2W−νq−ν2/2

(5.7)

and τ2 = Im(τ). These functions and higher order Appell-Lerch sums [42] have appeared in
relation to black hole physics [43, 44] and supergroup WZW models arising as topologically
tgwisted theories at the intersection of M2- and M5-branes [45, 46].

It is interesting to note that using the elliptic transformation properties of ÂN−1 there
is an identity

(−1)N−1Λq−(N−1)/2ÂN−1(τ, λ; τ) − ÂN−1(0, λ+ τ ; τ) = 0 (5.8)

so we can also write∑
k∈Z

⟨WkN ⟩SU(N)−N Λk = (−1)N Λq−(N−1)/2RN−1(τ, λ; τ) + RN−1(0, λ+ τ ; τ) . (5.9)

5.1.3 Two-point function

We conjecture that the two-point function of a pair of Wilson line operators in the large
symmetric representation is given by

⟨W(∞)W(∞)⟩
SU(N)−N = Ψ(q2N−1, q) (5.10)

where Ψ(a, b) is the false general Ramanujan’s theta function (A.13). In addition to the
result (3.13) for SU(2) and (4.13) for SU(3), we have checked that (5.10) is correct for SU(4)
and SU(5) by expanding the large symmetric Wilson line two-point functions up to order q10.
The r.h.s. of (5.10) is called the false general Ramanujan’s theta function of order N [37].
The identities of false general Ramanujan’s theta functions arise from the Bailey pairs [47].
For example, for SU(2) we have [48, 49]

⟨W(∞)W(∞)⟩
SU(2)−2 = Ψ(q3, q) =

∞∑
n=0

(−1)n2
qn(n+1)(q; q2)n

(−q; q2)n+1(−q2; q2)n
. (5.11)

For N = 3 we have [47]

⟨W(∞)W(∞)⟩
SU(3)−3 = Ψ(q5, q) =

∞∑
n=0

(−1)nq3n(n+1)/2(q; q)3n+1
(q3; q3)2n+1

. (5.12)

For SU(4) it follows that [50]

⟨W(∞)W(∞)⟩
SU(4)−4 = Ψ(q7, q) =

∞∑
n=0

(−1)nq2n(n+1)(q4; q4)n(q; q2)2n+1
(q4; q4)2n+1

. (5.13)
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For SU(5) one finds [37]

⟨W(∞)W(∞)⟩
SU(5)−5 = Ψ(q9, q) =

∞∑
n=0

(−1)n(n+1)/2qn(n+3)/2
(−q; q2)n+1

. (5.14)

For general N it can be also expressed as [51]

⟨W(∞)W(∞)⟩
SU(N)−N = (q)∞

∞∑
l1=0

· · ·
∞∑

lN−1=0

q
∑N−1

j=1 ij(ij+1)

(q)2
lN−1

∏N−2
j=1 (q)lj

(5.15)

where ij = ∑N−1
s=j ls. It would be intriguing to figure out the physical meaning of such series

expressions of the large representation two-point functions.

5.2 k = −N − 1/2

For Nf = 1, Na = 0 and M = 1, or with just a single 3d fundamental chiral with Dirichlet
boundary conditions, we have the SU(N) Chern-Simons theory with level k = −N − 1/2. For
the latter theory, having a singe Dirichlet chiral, or for the former theory with a specialisation
of the global U(1) fugacities, for N = 4, 5 the half-indices are expanded as

IISU(4)−9/2
N (x; q) = 1 + x4q2 + x4q3 + x4q4 + x4q5 + x4q7 + (x4 + x8)q8

+ (x4 + x8)q9 + (x4 + 2x8)q10 + · · · , (5.16)

IISU(5)−11/2
N (x; q) = 1 − x5q5/2 − x5q7/2 − x5q9/2 + · · · . (5.17)

We conjecture that the half-index is given by

IISU(N)−N−1/2
N (x; q) =

∞∑
n=0

(−1)Nnq
Nn2

2 xNn

(1 − q)(1 − q2) · · · (1 − qn) . (5.18)

which is consistent with a dual U(1)N−1/2 theory with a single Dirichlet chiral after identifi-
cation of the U(1) global flavor symmetry with the U(1) global symmetry arising fom the
Dirichlet boundary condition for the vector multiplet.

5.2.1 One-point function

For example, for N = 4 we find that the one-point function has an expansion

⟨W1⟩SU(4)−9/2(x; q) = −x3q3/2 − x7q13/2 − x7q15/2 − x7q17/2 − x7q19/2 + · · · . (5.19)

It precisely agrees with

−
∞∑

n=0

q2n2+3n+ 3
2x4n+3

(1 − q)(1 − q2) · · · (1 − qn) . (5.20)

We are led to propose an expression of the one-point function for general N

⟨W1⟩SU(N)−N−1/2(x; q) =
∞∑

n=0

(−1)Nn+(N−1)q
Nn2

2 +(N−1)n+ N−1
2 xNn+(N−1)

(1 − q)(1 − q2) · · · (1 − qn) . (5.21)

Consequently, we find the q-difference equation

IISU(N)−N−1/2
N (q(N−1)/Nx; q) = (−1)N−1q−(N−1)/2x−(N−1)⟨W1⟩SU(N)−N−1/2(x; q). (5.22)
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5.3 k = −N − 1

For N = 4, 5 the half-indices are evaluated as

IISU(4)−5
N (x; q) = 1 + q + (2 + x4 + x−4)q2 + (3 + x4 + x−4)q3 + (5 + 2x4 + 2x−4)q4

+ (7 + 3x4 + 3x−4)q5 + · · · , (5.23)

IISU(5)−6
N (x; q) = 1 + q + 2q2 − (x5 + x−5)q5/2 + 3q3 − (x5 + x−5)q7/2 + 5q4

− (2x5 + 2x−5)q9/2 + 7q5 + · · · . (5.24)

We conjecture that, consistent with a dual U(1)N theory with no matter content, the
half-index is given by

IISU(N)−N−1
N (x; q) = 1

(q; q)∞
∑
n∈Z

(−1)Nnq
Nn2

2 xNn, (5.25)

which becomes
φ((−q1/2)N )

f(−q) (5.26)

in the unflavored limit.

5.3.1 One-point function

For N = 4, 5 the one-point functions can be expanded as

⟨W1⟩SU(4)−5 = −x−1q1/2 − (x3 + x−1)q3/2 − (x3 + 2x−1)q5/2 − (2x3 + 3x−1 + x−5)q7/2

− (3x3 + 5x−1 + x−5)q9/2 − (5x3 + 7x−1 + 2x−5)q11/2 + · · · , (5.27)
⟨W1⟩SU(5)−6 = −x−1q1/2 − x−1q3/2 + x4q2 − 2x−1q5/2 + x4q3 − 3x−1q7/2

+ (2x4 + x−6)q4 − 5x−1q9/2 + (3x4 + x−6)q5 + · · · . (5.28)

We find that they precisely coincide with

− q
3
2x3

(q; q)∞
∑
n∈Z

q2n2+3nx4n, (5.29)

q2x4

(q; q)∞
∑
n∈Z

(−1)nq
5n2

2 +4nx5n, (5.30)

respectively. In particular, the unflavored one-point function for the SU(4) theory is

⟨W1⟩SU(4)−5 = −q1/2(−q; q)2
∞. (5.31)

We conjecture that for general N we have

⟨W1⟩SU(N)−N−1(x; q) = 1
(q; q)∞

∑
n∈Z

(−1)Nn+(N−1)q
Nn2

2 +(N−1)nxNn+(N−1). (5.32)

The expressions (5.25) and (5.32) satisfy the q-difference equation

IISU(N)−N−1
N

(
q(N−1)/Nx; q

)
= (−1)N−1q−(N−1)/2x−(N−1)⟨W1⟩SU(N)−N−1(x; q). (5.33)

This should have an interpretation in terms of a dual description with a vortex line but we
do not have a precise derivation of this equation — we leave that for future work.
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5.4 k = −N − M

Now we can generalize the result for the SU(N)k pure Chern-Simons theory with k ≤ −N − 1
being integer. This can be realized when Nf = Na = 0, M ̸= 0 where the level is given by
k = −N −M . The half-index is given by the matrix integral

IISU(N)−N−M

N (xα; q) = (q; q)N−1
∞

N !

∮ (N−1∏
i=1

dsi

2πisi

)∏
i ̸=j

(sis
−1
j ; q)∞

 N∏
i=1

M∏
α=1

(
q

1
2 s±i x

±
α ; q

)
∞
,

(5.34)

where ∏i si = 1 and ∏
α xα = 1.

We conjecture that the half-index (5.34) is equal to

1
(q; q)M

∞

∑
m1,··· ,mM∈Z

(−1)N
∑M

α=1 mαq
N
2
∑M

α=1 m2
α
∏M

α=1 x
Nmα
α∏M

α<β(q1±mα∓mβx±αx
∓
β ; q)∞

. (5.35)

We have numerically checked the cases for N = 4 and N = 5 as well. The q-series (5.35)
can be viewed as the vacuum character of the U(M)N WZW model so that the identity
verifies the duality of boundary conditions proposed in [5]

SU(N)−N−M pure CS with Neumann b.c. + M fund. Fermis
↔ U(M)N+M,N pure CS with Dirichlet b.c. . (5.36)

5.4.1 One-point function

The one-point function of the Wilson line in the fundamental representation is given by

⟨W1⟩SU(N)−N−M (xα; q)

= (q; q)N−1
∞

N !

∮ (N−1∏
i=1

dsi

2πisi

)∏
i ̸=j

(sis
−1
j ; q)∞

 N∏
i=1

M∏
α=1

(
q

1
2 s±i x

±
α ; q

)
∞

N∑
i=1

si, (5.37)

We conjecture that the one-point function (5.37) is equal to

(−1)N−1q(N−1)/2

(q; q)M
∞

∑
m1,··· ,mM∈Z

(−1)N
∑M

α=1 mαq
N
2
∑M

α=1 m2
α
∏M

α=1 x
Nmα
α∏M

α<β(q1±mα∓mβx±αx
∓
β ; q)∞

×
∑
ij≥0

i1+i2+···i|k|−N =N−1

qi1m1+i2m2+···+iM mMxi1
1 x

i2
2 · · ·xiM

M . (5.38)

The one-point function (5.37) can be obtained from the half-index (5.34) according to the
q-difference equation

⟨W1⟩SU(N)−N−M (x1, · · · , xM ; q)

= (−1)N−1q(N−1)/2 ∑
ij≥0

i1+i2+···iM =N−1

 M∏
j=1

x
ij

j

 IISU(N)−N−M

N

(
qi1/Nx1, q

i2/Nx2, · · · , qiM /NxM

)
.

(5.39)
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5.5 k = −N − M + 1/2

When we introduce a single fundamental chiral multiplet in the fundamental representation
obeying the Neumann boundary condition as well as M fundamental Fermi multiplets, we find
the Chern-Simons theory with fractional level k = −N −M + 1/2. We have the half-index

IISU(N)k

N (xα; q) = (q; q)N−1
∞

N !

∮ (N−1∏
i=1

dsi

2πisi

)∏
i ̸=j

(sis
−1
j ; q)∞

 N∏
i=1

M∏
α=1

(
q

1
2 s±i x

±
α ; q

)
∞(

q
1
2 sixM+1; q

)
∞

,

(5.40)

where ∏i si = 1 and ∏
α xα = 1.

We conjecture that the integral expression (5.40) agrees with the series expresion

1
(q; q)M

∞

∑
m1,··· ,mM∈Z

(−1)N
∑M

α=1 mαq
N
2
∑M

α=1 m2
α
∏M

α=1 x
Nmα
α∏M

α<β(q1±mα∓mβx±αx
∓
β ; q)∞

×
M∏

α=1
(q1−mαx−1

α xM+1; q)∞.

(5.41)

This is consistent with the dual theory having Dirichlet boundary conditions for the
U(M)N+M+1/2,N+1/2 vector multiplet and Dirichlet boundary conditions for the fundamental
3d chiral. We have numerically confirmed the conjectural identity for N = 4 and N = 5 as well.
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A Special functions

A.1 Dedekind eta function

The Dedekind eta function is defined by

η(τ) := q
1

24

∞∏
n=1

(1 − qn) (A.1)

where q = e2πiτ , τ ∈ H. It obeys

η(τ + 1) = e
πi
12 η(τ), (A.2)

η(−1/τ) =
√
τ/i. (A.3)

A.2 Jacobi theta functions

The Jacobi theta functions are defined by

ϑ1(z; τ) =
∑
n∈Z

(−1)n− 1
2 q

1
2 (n+ 1

2 )2
xn+ 1

2 = −
∑
n∈Z

eπiτ(n+ 1
2 )2+2πi(z+ 1

2 )(n+ 1
2 ), (A.4)

ϑ2(z; τ) =
∑
n∈Z

q
1
2 (n+ 1

2 )2
xn+ 1

2 =
∑
n∈Z

eπiτ(n+ 1
2 )2+2πiz(n+ 1

2 ), (A.5)
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ϑ3(z; τ) =
∑
n∈Z

q
n2
2 xn =

∑
n∈Z

eπiτn2+2πinz, (A.6)

ϑ4(z; τ) =
∑
n∈Z

(−1)nq
n2
2 xn =

∑
n∈Z

eπin2+2πi(z+ 1
2 )n (A.7)

with q = e2πiτ , x = e2πiz, τ ∈ H and z ∈ C.

A.3 General Ramanujan’s theta function

General Ramanujan’s theta function is given by [22]

f(a, b) =
∑
m∈Z

a
m(m+1)

2 b
m(m−1)

2 = (−a; ab)∞(−b; ab)∞(ab; ab)∞ (A.8)

where |ab| < 1.
For |q| < 1 we introduce

φ(q) := f(q, q) =
∑
n∈Z

qn2 = (−q;−q)∞
(q;−q)∞

, (A.9)

ψ(q) := f(q, q3) =
∞∑

n=0
q

n(n+1)
2 = (q2; q2)∞

(q; q2)∞
, (A.10)

f(−q) := f(−q,−q2) =
∑
n∈Z

(−1)nq
n(3n−1)

2 = (q; q)∞, (A.11)

χ(q) := (−q; q2)∞. (A.12)

A.4 False general Ramanujan’s theta function

False general Ramanujan’s theta function is given by [37].

Ψ(a, b) :=
∞∑

m=0
a

m(m+1)
2 b

m(m−1)
2 −

∞∑
m=1

a
m(m−1)

2 b
m(m+1)

2 . (A.13)

Note that unlike general Ramanujan’s theta function, false general Ramanujan’s theta
function is not invariant under exchange of a and b.
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any medium, provided the original author(s) and source are credited.
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