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1.1 Introduction

Deep learning provides a suite of approaches for fitting multi-layer neural

networks to data. Deep neural networks have been shown to achieve re-

markable prediction accuracy on several problems in important domains

such as computer vision, speech processing, and natural language process-

ing. Training these models is usually done off-line and separately for each

individual task. Attempts to develop an effective lifelong learning process

for neural networks, so that they can be trained in an incremental way to

solve a set of different tasks, have been hindered by either catastrophic for-

getting, where models quickly forget previous tasks when trained on a new

task using vanilla stochastic gradient descent (French, 1999; Goodfellow

et al., 2014), or catastrophic intransigence (Chaudhry et al., 2018) where

they fail to adapt sufficiently to new data.

In this chapter, we develop a framework for performing lifelong learn-

ing in deep neural networks using a probabilistic modelling and inference.

*Equal contributions.
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Specifically, we formalise a general Bayesian framework that can handle

lifelong learning in deep models in a natural and principled way. If ex-

act inference can be performed, our framework can automatically avoid

catastrophic forgetting during the learning process. The framework is also

general in the sense that it can cover both discriminative and generative

deep learning models, as well as the task-aware (Kirkpatrick et al., 2017;

Abati et al., 2020) and task-agnostic (Aljundi et al., 2019; Zeno et al., 2021)

lifelong learning settings.

As a realisation of this framework, we introduce Variational Continual

Learning (VCL) (Nguyen et al., 2018; Swaroop et al., 2018), one of the

first works to use the Bayesian framework to derive a new lifelong learning

approach. VCL uses online variational inference to approximate the poste-

rior after each task is observed. Using a previously developed method for

variational inference in neural networks, called Bayes by Backprop (Blun-

dell et al., 2015), VCL effectively learns the variational parameters of the

approximate posterior at each iteration by maximising the variational lower

bound. This maximisation process is done using a stochastic gradient-based

optimiser such as Adam (Kingma and Ba, 2015). To further mitigate catas-

trophic forgetting due to successive posterior approximations, we enhance

VCL with an episodic memory (called a coreset) and show how variational

inference can be performed for lifelong learning in the presence of such

coresets.

We also emphasise several practical considerations when using VCL,

namely the importance of long training runs, the use of the local repa-

rameterisation trick (Kingma et al., 2015), and sensible initialisation of the

variational parameters. In practice, these techniques can greatly improve

model accuracy over a naive application of Bayes by Backprop. Our ex-

periments show that VCL with these improvements performs competitively

against several state-of-the-art methods on the popular Split MNIST and

Permuted MNIST benchmarks for lifelong learning. We also explore the

pruning effect of VCL and the role it plays in utilising model capacity for

learning a sequence of tasks.

Finally, we end the chapter by briefly discussing several improvements

to VCL that have been developed in recent years, such as natural-gradient

variational inference methods (Chen et al., 2018; Khan et al., 2018; Osawa

et al., 2019), Generalised VCL with FiLM layers (Loo et al., 2021), function-

space regularisation (Titsias et al., 2020; Pan et al., 2020), and the Stein

gradient method for choosing coresets (Chen et al., 2018). We also outline

future research directions for using Bayesian inference to develop a realistic
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lifelong learning procedure for deep neural networks.

1.2 Lifelong Learning from the Bayesian Perspective

In this section, we formalise the general Bayesian approach to lifelong learn-

ing. Consider the lifelong learning setting where there is a potentially in-

finite stream of data batches D1,D2,D3, . . . that arrive over time, and we

have a model with parameters θ that we need to continually adapt to the

observed data. Under the Bayesian framework, we place a prior distribu-

tion p(θ) over θ, and every time we observe a batch Di, we update our

posterior using the likelihood p(Di|θ). Formally, the posterior distribution

p(θ|D1:T ) after observing T data batches D1,D2, . . . ,DT is obtained using

Bayes’ rule:

p(θ|D1:T ) ∝ p(θ)

T∏
i=1

p(Di|θ) ∝ p(θ|D1:T−1)p(DT |θ). (1.1)

In the above equation, p(θ|D1:T−1) ∝ p(θ)
∏T−1

i=1 p(Di|θ) is the previous
posterior obtained after observing the first T − 1 batches. This equation

provides a natural way to handle lifelong learning using Bayesian princi-

ples: at every time step T , we only need to maintain the current posterior

p(θ|D1:T ), and we will continually update this posterior in light of new

observations using Bayes’ rule.

The formulation for performing Bayesian lifelong learning outlined

above is very general. It covers both the case where the probabilistic model

is discriminative and the case where it is generative. It also covers the

task-aware and task-agnostic lifelong learning settings. We now outline

these settings in more detail.

Discriminative model setting. For discriminative models such as clas-

sifiers, for any t ∈ {1, 2, . . . , T}, each data batch Dt consists of Nt labelled

examples {(x(n)
t , y

(n)
t )}Nt

n=1 and Eq. (1.1) can be rewritten as:

p(θ|D1:T ) ∝ p(θ|D1:T−1)

NT∏
n=1

p(y
(n)
T |θ,x(n)

T ), (1.2)

where p(y|θ,x) is the likelihood of the parameters θ from the labelled

example (x, y).
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Generative model setting. For generative models, such as deep gener-

ative models which are often trained using the variational auto-encoder

approach (Kingma and Welling, 2014; Rezende et al., 2014), for any

t ∈ {1, 2, . . . , T}, each data batch Dt consists of Nt unlabelled examples

{x(n)
t }Nt

n=1, and Eq. (1.1) can be rewritten as:

p(θ|D1:T ) ∝ p(θ|D1:T−1)

NT∏
n=1

p(x
(n)
T |θ), (1.3)

where p(x|θ) is the likelihood of θ from the unlabelled example x.

Task-aware lifelong learning setting. Task-aware lifelong learning

refers to the setting where the learner is aware of the time when a task

switches to a new task (Kirkpatrick et al., 2017; Abati et al., 2020). This

setting usually requires additional knowledge of which task each data batch

Di belongs to, and this knowledge will allow the learner to adjust its learn-

ing procedure accordingly. For deep neural networks, a typical way to deal

with task changes in the task-aware setting is to extend the network archi-

tecture with task-specific parameters whenever a new task arrives, while

maintaining a set of shared network parameters for all tasks. The task-

specific parameters can simply be a classifier head (Zenke et al., 2017) or

an entire network column (Rusu et al., 2016). Fig. 1.1 illustrates multi-head

networks that use a separate head for each task.

The Bayesian lifelong learning formalism encapsulated in Eq. (1.1) can

easily handle these types of network extension. Specifically, whenever a

new task T arrives, we add the task-specific parameters θH
T to the network,

resulting in a new set of parameters θ = {θH
1:T ,θ

S}, and extend the current

posterior p(θH
1:T−1,θ

S |D1:T−1) to a new posterior p(θH
1:T ,θ

S |D1:T−1) with

some “prior” distribution for θH
T . Then we can update the posterior for the

whole model, including θH
T , using Eq. (1.1) and data DT for the new task.

Task-agnostic lifelong learning setting. In contrast to the task-aware

setting above, task-agnostic or task-free lifelong learning considers a more

difficult scenario where the learner does not know the exact time when a

task switches (Aljundi et al., 2019; Jerfel et al., 2019; He et al., 2020; Zeno

et al., 2021; Jin et al., 2021). In other words, the learner only receives a

data batch Di at each time step without knowing which task Di belongs to.

In this case, we typically do not use multi-head architectures and maintain

only a single shared network for all tasks. Our formulisation in Eq. (1.1)

can be applied directly to this setting without any modifications. Other
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(a) (b)

Fig. 1.1: Schematics of multi-head networks, including both the proba-

bilistic graphical model (left) and network architecture (right), reproduced

from Nguyen et al. (2018). (a) A multi-head discriminative model showing

how network parameters might be shared. The lower-level network is pa-

rameterised by the variables θS and is shared across multiple tasks. Each

task t ∈ {1, 2, . . . , T} has its own “head network” θH
t mapping to the out-

puts from a common hidden representation. The full set of parameters

is therefore θ = {θH
1:T ,θ

S}. (b) A multi-head generative model (see Sec-

tion 1.3.3 for details) with shared network parameters. For each task t, the

head networks θH
t generate the intermediate level representations from the

latent variables zt.

Bayesian approaches such as natural VCL (Tseran et al., 2018) or Bayesian

structural adaptation (Kumar et al., 2021) can also be applied to this task-

agnostic setting.

In principle, our Bayesian framework for lifelong learning presented in

this section can handle continual learning naturally without suffering from

catastrophic forgetting or catastrophic intransigence. Ideally, if we can

always maintain the exact posterior p(θ|D1:T ) after observing the last data

batch DT , we would not lose any information from the prior and previous

observations, and thus by design would be able to overcome catastrophic

forgetting.

In practice, however, the posterior distributions are usually intractable,

especially for complex models like neural networks. Hence, approximations

are usually required to maintain the tractability of the (approximate) pos-

teriors. Typically, after observing the data batch DT , an approximation

method will replace the intractable true posterior p(θ|D1:T ) by a tractable

approximate distribution qT (θ), which would be used as the prior to com-
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pute the next approximate posterior. Formally,

p(θ|D1:T ) ≈ qT (θ) = proj
(
qT−1(θ)p(DT |θ)

)
, (1.4)

where proj(p∗(θ)) is a projection operation on an intractable, un-normalised

distribution p∗(θ) that returns a tractable, normalised approximate distri-

bution. Different projection operations can be used in Eq. (1.4), such as

Laplace’s approximation, variational inference, moment matching, or im-

portance sampling. These projections respectively lead to online updating

methods known as Laplace propagation (Smola et al., 2004), online varia-

tional inference (Ghahramani and Attias, 2000; Sato, 2001; Broderick et al.,

2013), assumed density filtering (Maybeck, 1982), and sequential Monte

Carlo (Liu and Chen, 1998). In the next section, we will extend the vari-

ational inference approach to online learning to support continual learning

of neural networks.

1.3 Variational Inference for Lifelong Learning

In this section, we describe Variational Continual Learning (VCL), a

method for continual/lifelong learning with deep neural networks using vari-

ational inference. VCL can be used together with an episodic memory to

reduce catastrophic forgetting in these networks. We illustrate how VCL

can be applied to discriminative and generative models, and note some

practical considerations when using the method. Finally, we show some

experimental evaluations and discuss the pruning effects of this method.

1.3.1 Variational Continual Learning

VCL applies Eq. (1.4) above with a projection operation that minimises

the Kullback–Leibler (KL) divergence between the input distribution and

the output approximate distribution. More specifically, the approximate

posterior qT (θ) in Eq. (1.4) is computed by:

qT (θ) = argmin
q∈Q

KL
(
q(θ) ∥ 1

ZT
qT−1(θ)p(DT |θ)

)
, (1.5)

where the minimisation is considered over a family Q of distributions, and

ZT is the normalising constant of qT−1(θ)p(DT |θ) that is usually not re-

quired to solve this optimisation problem. During the learning process for

VCL, the zeroth approximate posterior is set to be the prior, q0(θ) = p(θ),

and subsequent approximate posteriors are computed using Eq. (1.5) every

time a new batch of data DT is received.
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As discussed in Section 1.2, if we can maintain the true posterior at every

iteration, we will be able to avoid catastrophic forgetting. For instance, if

the family Q contains all of the true posteriors and assuming we can always

find the true posterior when solving the minimisation problem (1.5), then

catastrophic forgetting can be overcome. In practice, however, we usually

choose a simpler distribution family Q, such as Gaussian distributions,

leading to information loss that can cause catastrophic forgetting to occur.

To mitigate this potential forgetting problem, VCL can be extended to

include a small episodic memory (Lopez-Paz and Ranzato, 2017), also called

a coreset, which contains representative examples from previous batches

of data to help the model refresh important information before making

predictions.

This Coreset VCL algorithm can be described as follows. At every

iteration T , we observe a new batch of data DT and construct a coreset CT

from DT∪CT−1, where CT−1 is the previous coreset. Instead of maintaining

the approximate posterior qT (θ) ≈ p(θ|D1:T ), Coreset VCL maintains an

approximate posterior q̃T (θ) ≈ p(θ|D1:T \ CT ) that approximates the true

posterior after observing all data except those in the current coreset. In the

lifelong learning setting, q̃T (θ) can be updated using the following recursion:

q̃T (θ) = proj
(
q̃T−1(θ) p(DT ∪ CT−1 \ CT |θ)

)
= argmin

q∈Q
KL

(
q(θ) ∥ 1

Z̃
q̃T−1(θ) p(DT ∪ CT−1 \ CT |θ)

)
, (1.6)

where p(DT ∪CT−1 \CT |θ) is the likelihood contribution from data points

that are either not selected for the current coreset or removed from the

previous coreset, and Z̃ is the normalisation constant. The recursion (1.6)

ensures the approximate posterior q̃T (θ) incorporates all non-coreset obser-

vations in the first T iterations.

When making predictions (e.g. in a classification problem) on a vali-

dation or test set, Coreset VCL first refreshes the important information

stored in the current coreset CT by making the variational update:

qT (θ) = argmin
q∈Q

KL
(
q(θ) ∥ 1

Z
q̃T (θ)p(CT |θ)

)
, (1.7)

and then uses qT (θ) to make prediction on a test input x∗:

p(y∗|x∗,D1:T ) ≈
∫

qT (θ)p(y
∗|θ,x∗)dθ. (1.8)

By using Eq. (1.7), qT (θ) incorporates all observations D1:T and thus can

be thought of as an approximation of p(θ|D1:T ). Furthermore, applying
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this equation immediately before making predictions enables the trained

model to be less forgetful of the important information in the coreset CT .

In principle, the coreset CT can be constructed from DT ∪ CT−1 using

various methods. The simplest methods use random sampling or K-center

clustering to construct the coreset (Nguyen et al., 2018). More sophisti-

cated methods include using Stein gradients (Chen et al., 2018), bilevel

optimisation (Borsos et al., 2020), or diverse samples selection (or rainbow

memory) (Bang et al., 2021).

1.3.2 VCL for Discriminative Models

In this section, we shall illustrate how VCL can be used with discriminative

probabilistic models. Note that the schematics for discriminative multi-

head networks are shown in Figure 1.1(a). We will focus on vanilla VCL

without the coreset here, but the formulation below can be extended easily

to Coreset VCL.

For discriminative models, for any t ∈ {1, 2, . . . , T}, each data batch Dt

contains Nt labelled examples {(x(n)
t , y

(n)
t )}Nt

n=1. The update rule for VCL

in Eq. (1.5) can be rewritten as maximising the variational lower bound to

the online marginal log-likelihood:

qT (θ) = argmax
q∈Q

LT
VCL(q(θ)), (1.9)

where

LT
VCL(q(θ)) =

∑
(x,y)∈DT

Eq(θ)

[
log p(y|θ,x)

]
−KL(q(θ)||qT−1(θ)). (1.10)

If the family Q comprises Gaussian mean-field approximate posteriors, then

q(θ) =
∏D

d=1 N (θd;µd, σ
2
d), where D is the number of dimensions of θ and

θ = (θ1, θ2, . . . , θD). In this case, we can find q(θ) by maximising Eq. (1.9)

with respective to the variational parameters {µd, σd}Dd=1 which are the

mean and the diagonal covariance of the Gaussian. This optimisation prob-

lem can be done using Bayes by Backprop (Blundell et al., 2015) and re-

quires Monte Carlo approximation of the expected log-likelihood term in

the approximate marginal likelihood.

1.3.3 VCL for Generative Models

This section discusses how VCL can be applied to Bayesian generative mod-

els, specifically to deep generative models as often learned using the varia-

tional auto-encoder (VAE) framework (Kingma and Welling, 2014; Rezende
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et al., 2014). In a standard VAE setup, we model the likelihood of each

example x as p(x|θ) =
∫
p(x|z,θ)p(z)dz, where z are the latent variables

and p(x|z,θ) is defined by a neural network with parameters θ. Given

an unlabelled dataset D, the model is trained by maximising the following

variational lower bound:

LVAE(θ,ϕ) =
∑
x∈D

Eqϕ(z|x)

[
log

p(x|z,θ)p(z)
qϕ(z|x)

]
, (1.11)

where qϕ(z|x) is the approximate posterior of the latent variables (or the

encoder), and ϕ denotes the variational parameters of this approximate

posterior.

In the lifelong learning setting, we sequentially receive batches of data,

where for any t ∈ {1, 2, . . . , T}, each data batch Dt contains Nt unlabelled

examples {x(n)
t }Nt

n=1. The schematics for multi-head generative models used

in this setting are shown in Figure 1.1(b). In VCL, we use a Bayesian VAE

model where we approximate the posterior p(θ|D1:T ) with a variational

distribution qT (θ). We can then rewrite the VCL update rule (1.5) as

maximising the full variational lower bound:

qT (θ),ϕ = argmax
q,ϕ

LT
VCL(q(θ),ϕ), (1.12)

where

LT
VCL(q(θ),ϕ) =

∑
x∈DT

Eq(θ)Eqϕ(z|x)

[
log

p(x|z,θ)p(z)
qϕ(z|x)

]
−KL(q(θ)||qT−1(θ)).

(1.13)

In this formulation, the encoder network qϕ(z|x) is parameterised by ϕ and

can be either task-specific or partly shared among different tasks. Similarly

to discriminative models, we can solve the optimisation problem (1.12) by

using backpropagation.

1.3.4 Relationship to Other Work

VCL can sometimes be regarded as a regularisation-based approach to life-

long learning. Specifically, in the variational lower bound of Eq. (1.10)

or Eq. (1.13), the first term on the right-hand side (usually called the ex-

pected log-likelihood term) favours approximate posteriors that maximise

the expected log-likelihood of the training data. The second term in these

equations, usually called the KL-to-prior term, serves as a regulariser that

pulls the approximate posterior towards the prior (i.e. the previous approx-

imate posterior).
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Several lifelong learning methods for discriminative deep neural net-

works also employ a regularisation-based approach that maximises the fol-

lowing general objective at each iteration T :

LT (θ) =
∑

(x,y)∈DT

log p(y|θ,x)− 1

2
λT (θ − θT−1)

⊺Σ−1
T−1(θ − θT−1), (1.14)

where the matrix ΣT−1 controls the relative regularisation strength of each

element of θ and λT controls the overall strength of the regulariser.

There are several instances of this regularisation-based approach. For

example, Laplace Propagation (Smola et al., 2004) applies Laplace’s ap-

proximation at each iteration, leading to the recursion Σ−1
T = ΦT +Σ−1

T−1,

with ΦT = −∇∇θ

∑
(x,y)∈DT

log p(y|θ,x)
∣∣∣
θ=θT

and λT = 1. An-

other popular regularisation-based lifelong learning algorithm that also

takes inspiration from Bayesian principles is Elastic Weight Consolida-

tion (EWC) (Kirkpatrick et al., 2017). This algorithm approximates

ΦT ≈ diag
(∑

(x,y)∈DT
(∇θ log p(y|θ,x))2

∣∣∣
θ=θT

)
and modifies the regu-

larisation term to 1
2λT

∑T−1
t=1 (θ − θt−1)

⊺Φt(θ − θt−1). The regularisation

strengths in Σ−1
T can also be computed using path integrals, as in the

Synaptic Intelligence (SI) algorithm (Zenke et al., 2017). The performance

of SI and VCL has been analysed and shown to be correlated with the

complexity of the observed tasks by Nguyen et al. (2019).

There have been several work that take Bayesian approaches to life-

long learning. Ritter et al. (2018) used Bayesian online learning with the

block-diagonal Kronecker factored approximation of the Hessian to update

their quadratic penalty for each new task. Ebrahimi et al. (2020) trained

variational Bayesian neural networks using learning rates adapted from the

uncertainty induced by the probability distribution of the network’s pa-

rameters. Kessler et al. (2021) employed hierarchical Indian buffet process

priors for Bayesian neural networks to allow the model to use resources more

effectively in lifelong learning. Wang et al. (2021) developed a method for

dynamically expanding and combining model parameters to actively for-

get knowledge that interferes with learning new tasks. Farquhar and Gal

(2018) proposed using generative adversarial networks to generate data for

old tasks that can be used together with VCL. Zeno et al. (2021) considered

the task-agnostic lifelong learning setting and derived fixed-point updates

for variational Bayesian neural networks. Chen et al. (2021) developed a

generative regularisation approach to prevent catastrophic forgetting, and

finally, Bayesian lifelong learning with non-stationary data was considered
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by Kurle et al. (2020).

1.3.5 Practical Considerations for VCL

We now discuss applications of VCL to discriminative lifelong learning

benchmarks. As discussed in Section 1.3.2, we use Bayes by Back-

prop (Blundell et al., 2015) to optimise the means and variances {µd, σd}Dd=1

of our mean-field Gaussian approximating family, optimising the objective

function (1.10). This involves Monte Carlo sampling of the expected log-

likelihood term, and we use Adam (Kingma and Ba, 2015) to optimise the

function.

There are several details that, although seemingly technically trivial, are

practically important and will greatly improve results over naively apply-

ing Bayes by Backprop for VCL. Crucially, we optimise for a much longer

time than previous works, and do not early-stop. Although progress can

sometimes appear to stall during optimisation, in reality progress is just

extremely slow. We can also speed up the algorithm’s convergence rate

using two simple techniques: using the local reparameterisation trick and

improving the initialisation of the variational parameters.

Local reparameterisation trick. We can employ the local reparame-

terisation trick (Kingma et al., 2015) during Monte Carlo sampling of the

likelihood term. Specifically, instead of sampling each (Gaussian) weight in-

dependently, we sample the pre-activation latent variables just before each

neuron’s non-linearity (this latent variable is a linear combination of the

neuron’s input weights). This leads to two improvements: (i) it reduces the

variance of stochastic gradients during sampling, and (ii) it is marginally

quicker as we sample fewer random variables. The first improvement is

particularly important as it speeds up convergence drastically, substantially

reducing the number of epochs required for convergence.

Initialisation. Another important trick is to improve the initialisation

of the weights of our neural network when running the optimiser. We

experimented with (i) initialising the mean-field Gaussian weights by setting

the means at the maximum likelihood solution of a deterministic neural

network and setting the variances to be small, (ii) initialising the means

to be small and random and setting the variances to be small, and (iii)

initialising at the means and variances of the prior. We find that using

(ii) improves the convergence speed and reduces the standard deviation



June 3, 2024 8:30 ws-book9x6 Lifelong Learning Book Chapter output page 12

12 Lifelong Learning Book Chapter

in final accuracy across many runs. Intuitively, this is because initialising

randomly allows the network to quickly learn the best trade-off between the

new task’s data (the expected log-likelihood term) and information from

previous tasks (the KL-to-prior term). Specifically, the means are randomly

initialised to be of the order 10−1 and the variances are initialised of the

order 10−3.

1.3.6 Experimental Evaluations of VCL

In this section, we show some experimental evaluations of VCL after incor-

porating the practical tips in Section 1.3.5. We consider the following two

lifelong learning benchmarks, both of which use the popular MNIST hand-

written digit recognition dataset. Code to run all experiments is available

at: https://github.com/nvcuong/variational-continual-learning.

Split MNIST. In this benchmark, we have to sequentially solve five bi-

nary classification tasks from the MNIST dataset: {0v1}, {2v3}, {4v5},
{6v7}, {8v9}. The challenge in Split MNIST is to obtain good perfor-

mance on new tasks while retaining performance on old ones. We assume a

task-aware setting and use the previously discussed multi-head setup. We

train a one-hidden-layer neural network with 200 units and ReLU activa-

tion functions, and use a standard Normal prior for the first task. We train

for 600 epochs (with batch size 256), using Adam learning rate 5 × 10−3,

and report mean and standard deviation over 10 runs. Results are sum-

marised in Table 1.1. Without coresets, we achieve a final test accuracy

of 98.5±0.4%, and with a coreset of 40 randomly chosen data points per

task, we achieve 98.2±0.4% (coresets are not required to improve results on

this benchmark). These are improvements compared to previous lifelong

learning methods such as Elastic Weight Consolidation (Kirkpatrick et al.,

2017), which achieves 63.1%, and Laplace Propagation (Smola et al., 2004),

which achieves 61.2%.

Permuted MNIST. This benchmark consists of tasks received sequen-

tially, each of which is the standard (10-way) MNIST classification task,

with the pixels having undergone a fixed permutation randomly selected

for each task. Ideally, a network with two or more hidden layers would

use lower layer(s) to ‘de-permute’ the images and higher layer(s) to solve

MNIST, which is then constant between tasks (we use a single-head setup as

this is a task-agnostic setting). We train a two-hidden-layer model with 100



June 3, 2024 8:30 ws-book9x6 Lifelong Learning Book Chapter output page 13

Lifelong Learning for Deep Neural Networks with Bayesian Principles 13

Table 1.1: Final average test accuracy on Split MNIST for various methods.

Methods with an asterisk (*) use some sort of episodic memory. Results

marked with a double asterisk (**) were taken or read from a graph in the

respective papers.

Method Hidden
layer size

Final average
test accuracy

VCL {200} 98.5±0.4%

*VCL + 40 random coreset {200} 98.2±0.4%

EWC (Kirkpatrick et al., 2017) {200} 63.1%

Laplace Propagation (Smola et al., 2004) {200} 61.2%

SI (Zenke et al., 2017) {200} 98.9%

Vadam VCL (Tseran et al., 2018) {256, 256} 99.2%**

UCL (Ahn et al., 2019) {256, 256} 99.7%**

units in each layer and ReLU activation functions, again using a standard

Normal prior for the first task. We train for 800 epochs (with batch size

1024), using Adam learning rate 5× 10−3, and report the mean and stan-

dard deviation over 5 runs. Results are summarised in Table 1.2. Without

coresets, VCL achieves a final average test accuracy of 93±1%, and with

coresets, VCL achieves 94.6±0.3%. For reference, training the same net-

work but seeing all the data together (batch mode) has an accuracy of 97%

(this is an upper bound on the performance possible with this model and

inference scheme).

1.3.7 Discussion

We now look into how VCL continually learns tasks, exploring how it uses

its model capacity, primarily by looking at the learned weights in the model.

Split MNIST. We first consider the model trained without coresets (al-

though exactly the same effects happen with coresets). When we look at

weight values into and out of each unit after training, we find that only

one unit is being used in each of the five tasks. This is despite having 200

units in the single layer; the remaining units are pruned out as part of the

optimisation process. The five active (un-pruned) units are plotted in Fig-

ure 1.2. This effect is similar to that observed in Trippe and Turner (2017),

with entire units pruned out, as opposed to just individual weights. The
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Table 1.2: Final average test accuracy on Permuted MNIST for various

methods (results taken from respective papers). A hidden layer size of

{n1, n2} indicates two hidden layers, the lower hidden layer having n1 hid-

den units and the upper hidden layer having n2 units (followed by a softmax

over the 10 MNIST classes). Methods with an asterisk (*) use some sort

of episodic memory. Results marked with a double asterisk (**) were read

from a graph in the source paper. Results with a dagger (†) are from

Chaudhry et al. (2019).

Method Hidden

layer size

Number

of tasks

Final average

test accuracy

VCL {100, 100} 10 93±1%

*VCL + 200 random coreset {100, 100} 10 94.6±0.3%

Kronecker-factored Laplace {100, 100} 50 90%

(Ritter et al., 2018) {100, 100} 10 96%**

EWC (Kirkpatrick et al., 2017) {2000, 2000} 10 97%

{100, 100} 10 84%

SI (Zenke et al., 2017) {2000, 2000} 10 97%
{100, 100} 10 86%

CLNP (Golkar et al., 2019) {2000, 2000} 10 98.42±0.04%

{100, 100} 10 95.8%

*A-GEM (Chaudhry et al., 2019) {256, 256} 20 89.1±0.14%

{256, 256} 10 92.3%**

BLLL-REG (Ebrahimi et al., 2020) {100, 100} 10 92.2%

*GEM {256, 256} 20 89.5±0.48%†

(Lopez-Paz and Ranzato, 2017b) {256, 256} 10 93.1%**†

{100, 100} 20 80%

Riemannian Walk {256, 256} 20 85.7±0.56%†

(Chaudhry et al., 2018) {256, 256} 10 91.6%**†

Progressive NNs {256, 256} 20 93.5±0.07%†

(Rusu et al., 2016) {256, 256} 10 94.6%**†

pruned units appear to have input weights at or near the prior (standard

normal Gaussian), with output weights near a delta function (zero mean,

small variance), therefore minimising their effect on the output prediction.

Removing all pruned units from the network does not change the network’s

accuracy.

This pruning effect seems to be due to the choice of the inference scheme.

Intuitively, the pruning effect can be explained by looking at the optimi-
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Fig. 1.2: The active units learned for Split MNIST without coresets. Rows

correspond to stages of lifelong learning. Left: means, Centre: variances,

Right: output weights for each task’s two classes. Exactly the same effect

is observed when incorporating coresets.

sation function (1.10). By reducing the effect of a unit on the output

prediction (e.g. setting output weights to have zero mean and small vari-

ance), the input weights to the unit can be set to their prior. The increase

in the KL-to-prior term due to the small variance of the output weights is

offset by the reduction in the KL-to-prior term from the numerically more

input weights. Provided the expected log-likelihood term does not change

too much, a pruned solution is therefore more optimal. We now focus on

what our pruned solutions reveal about how our model approaches lifelong

learning tasks, and debate whether the pruning effect is a feature or a bug

for lifelong learning.

As the model only uses one hidden unit per task, it has learned to use

a fraction of its total capacity to successfully learn binary classifiers in the

Split MNIST experiment. The high accuracies indicate this is an efficient

use of model capacity. The remaining unused units can be used for other

tasks that we may see in the future. This implies that pruning is a beneficial

feature for lifelong learning, forcing the model to efficiently use its capacity.

Additionally, the pruning effect allows us to see some forward and back-

ward transfer (see Figure 1.2), which are both important qualities in a good

lifelong learning solution. Forward transfer is visible when previous tasks’

active units have non-zero weights for subsequent tasks. For example, unit

2, which was learned after task 2 (classifying digits {2v3}), has non-zero

output weights after task 4 (classifying {6v7}). The model therefore uses

some information about the task {2v3} in solving the task {6v7}. This
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is highlighted in green in the right of Figure 1.2. Although less visible in

the plots, there is also backward transfer in the same units: unit 2’s input

weights change slightly after training on task 4 ({6v7}), potentially chang-

ing accuracy on task 2. In this case however, any backward transfer does

not result in different accuracies; this could be because there is no potential

for improvement given the high accuracies involved.

The exact same effects are seen when we train the model with coresets:

the same pruning effect occurs (Figure 1.2 is similar when trained with

coresets), and similar accuracies are obtained (within one standard devia-

tion). This shows that for a simple task such as multi-head Split MNIST,

there is no need for incorporating coresets.

This pruning effect is also similar to that considered in Golkar et al.

(2019), where they prune out entire units. However, they have hyperpa-

rameters that control the degree of pruning (and corresponding accuracy

loss). Previous work on variational inference for Bayesian neural networks

has found that variational inference methods can be used to prune large

parts of the network (Louizos et al., 2017), and we show here how this prun-

ing is done over units as opposed to weights (see also Trippe and Turner

(2017)). In comparison to Golkar et al. (2019), our method automatically

prunes out entire units and is able to re-use the units for both forward and

backward transfer.

Permuted MNIST. We now look into how the two-hidden-layer model

learns the Permuted MNIST task (results in Table 1.2). We first consider

the model trained without coresets. We find that there is still pruning

within the network. The numbers of active (un-pruned) units after training

on each task are summarised in Figure 1.3.

There are more active units in Permuted MNIST than were in Split

MNIST, perhaps due to the more difficult nature of Permuted MNIST

(classifying between 10 digits, as opposed to between 2). However, only

11 units are used in the second hidden layer, with the remaining 89 units

pruned out. Additionally, the output weights on these 11 units do not

change between tasks. This confirms that the hidden layers effectively de-

permute the images, allowing the output weights to just classify between

the 10 digits.

Beyond re-using the upper level weights, there is not much evidence

of forward or backward transfer. We should expect this from Permuted

MNIST because the network trains on all MNIST digits on the first task

itself, hence already learning the ‘best’ way to classify between MNIST
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Fig. 1.3: Number of active units per hidden layer after each task in Per-

muted MNIST, without coresets. Exactly the same effect is observed when

incorporating coresets.

digits. Any subsequent permuted images have little room to improve upon

this. Instead, the remaining focus of Permuted MNIST seems to be on en-

suring we use available model capacity as efficiently as possible. Increasing

the model capacity improves results: training a network with 250 units in

the lower hidden layer (instead of 100) improves final average test accuracy

to 95.5% (10 tasks).

Incorporating coresets also improves results. However, the number of

active units (plotted in Figure 1.3) looks the same. Instead, training VCL

with coresets (which can be viewed as changing the order in which the

model trains on data, or, changing the schedule with which we visit training

data) appears to reinforce previous tasks’ images: it lowers forgetting in the

network.

Table 1.2 summarises some recent works’ results on Permuted MNIST.

As can be seen, different papers use different numbers of hidden units in

their hidden layers, and test over different numbers of tasks. However,

as the findings in this paper indicate, Permuted MNIST primarily tests for

model capacity, highlighting how we cannot faithfully compare results when

model capacity and number of tasks differ. We propose that when using

Permuted MNIST as a benchmark in lifelong learning, model capacity is

kept fairly limited (for example, two hidden layers with either 100 or 256

hidden units each), and number of tasks is kept high (minimum 10, possibly

more). Of all methods, Ritter et al. (2018) and Golkar et al. (2019) achieve

significantly superior results, as they use a relatively small network and

test over many tasks. Note that 2000 units in two hidden layers is an
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extremely large model for 10 tasks: as Golkar et al. (2019) note, they can

achieve high (as good as single-task) performance having pruned out a

large proportion of their network. With such a large model capacity, this

benchmark no longer tests any desiderata in lifelong learning aside from

avoiding catastrophic forgetting, which many other benchmarks can also

do.

Many papers often use Permuted MNIST to demonstrate how their

method (and other baseline methods) exhibit some of lifelong learning’s

desiderata. For example, they show some form of resistance to forgetting or

efficient use of model capacity via metrics or plots. In this case, comparing

the final average test accuracy is no longer so important, but we believe far

better comparisons would be achieved if a more challenging hidden layer

size and number of tasks was used.

1.4 Improvements to VCL

There has been follow-up work that uses core ideas that we have discussed

above and looks at generalising and improving them. We shall briefly dis-

cuss them in this section.

Natural-gradient variational inference. One strand of work opti-

mises the variational objective function (1.5) with natural-gradients in-

stead of using Bayes by Backprop to optimise for the variational parame-

ters (Chen et al., 2018; Khan et al., 2018; Osawa et al., 2019). Natural-

gradient update steps are a principled way of incorporating the information

geometry of the distribution being optimised (Amari, 1998). By incorpo-

rating the geometry of the distribution, we expect to take gradient steps in

much better directions, speeding up gradient based optimisation. By using

such natural-gradient variational inference, the objective (1.5) is therefore

optimised quicker with the same performance on MNIST benchmarks (Os-

awa et al., 2019; Eschenhagen, 2019). The faster optimisation has also

allowed the VCL objective function to be scaled to larger benchmarks (Es-

chenhagen, 2019) and architectures.

Generalised VCL and FiLM layers. It is possible to temper the KL-

to-prior term in the variational objective function (1.10). Loo et al. (2021)

showed that this modification to VCL (called Generalised VCL) recovers

Online EWC (Schwarz et al., 2018) as a limiting case, allowing for interpola-

tion between the two approaches. This leads to a theoretical generalisation
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and increased performance on several benchmarks.

Loo et al. (2021) also introduced task-specific FiLM layers (Perez et al.,

2018) to take advantage of and reduce pruning in variational Bayesian neu-

ral networks, finding that this also leads to improved performance. These

FiLM layers linearly modulate features in a neural network, and making

these additional parameters task-specific allows useful features for a task

to be amplified and inappropriate ones ignored. This improves the prun-

ing effect by allowing FiLM layers to prune units, instead of relying on

the output weights of a unit to become zero-mean low-variance distribu-

tions. Loo et al. (2021) find that FiLM layers reduce pruning and improves

performance of VCL (and Generalised VCL) on many benchmarks.

Function-space regularisation. Over a sequence of many tasks, inde-

pendent regularisation of weights can still lead to forgetting. Instead, we

are ultimately interested in neural network outputs or predictions, and we

want to maintain these predictions over the course of many tasks. This

has led to ideas to regularise the function space of neural networks directly,

instead of only regularising in the weight space (Titsias et al., 2020; Pan

et al., 2020). These methods store input-output pairs (the memorable ex-

amples), similar to coresets in VCL, but regularise them directly in the loss

function. They are derived from the variational objective function, and use

the same core idea of variational updates for continual learning. They show

significantly better performance than VCL on larger scale problems, and

are a promising direction of future research.

Improving coreset selection with Stein gradients. In the original

version of VCL, coresets are chosen without knowledge of the approximate

posterior using e.g. random sampling or K-center clustering. Chen et al.

(2018) proposed an improvement to VCL that uses Stein gradients to con-

struct the coresets. This method iteratively updates a coreset and moves it

closer to samples from the posterior distribution, thus allowing the coreset

to be constructed using the approximate posteriors without changing the in-

ference procedure. Coresets constructed using Stein gradients are shown to

outperform random and K-center coresets on the Permuted MNIST bench-

mark.
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1.5 Conclusions and Future Directions

This chapter has introduced the Bayesian approach to lifelong learning for

deep neural networks. This Bayesian framework provides a principled way

to tackle lifelong learning and has a great potential for future research. One

important question is how to scale Bayesian inference in general, and for life-

long learning in particular, to a large dataset such as ImageNet (Deng et al.,

2009) and for very deep neural networks. A good solution to this question

would enable applications of Bayesian methods to several state-of-the-art

deep models in computer vision or natural language processing that contain

several million parameters. Another important direction for future explo-

rations is to improve function-space regularisation approaches, potentially

by using better posterior approximations and better memorable example

selection mechanisms, and scale these approaches to larger datasets.
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