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Abstract. We establish laws of the iterated logarithm for intrinsic volumes of the
convex hull of many-step, multidimensional random walks whose increments have two
moments and a non-zero drift. Analogous results in the case of zero drift, where the
scaling is different, were obtained by Khoshnevisan. Our starting point is a version of
Strassen’s functional law of the iterated logarithm for random walks with drift. For the
special case of the area of a planar random walk with drift, we compute explicitly the
constant in the iterated-logarithm law by solving an isoperimetric problem reminiscent
of the classical Dido problem. For general intrinsic volumes and dimensions, our proof
exploits a novel zero–one law for functionals of convex hulls of walks with drift, of
some independent interest. As another application of our approach, we obtain iterated-
logarithm laws for intrinsic volumes of the convex hull of the centre of mass (running
average) process associated to the random walk.

1. Introduction and main results

Several fundamental aspects of the geometry of a stochastic process in Euclidean space
are captured by its associated process of convex hulls, and so analysis of convex hulls
of random processes may be demanded by applications of stochastic processes in which
geometry is important. For this reason, convex hulls of random walks and diffusions,
for example, have been studied motivated by models of animal movement in ecology, or
by algorithms for set estimation. We refer to [23] for a survey of the state of the field
around 2010; milestones in the earlier work include [5, 14, 17,35,38].

In the last decade or so, activity has increased significantly on several fronts; among
many papers, we mention [1, 2, 6, 12, 13, 18, 20, 24, 25, 44, 45]. Several works consider the
large-time asymptotics of random processes derived from geometrical functionals of the
convex hull (such as volume, diameter, perimeter, and so on), with results on expect-
ation and variance asymptotics, laws of large numbers, distributional limits, and large
deviations, for example. In the present work, we consider iterated-logarithm asymptotics,
i.e., almost-sure quantification of the lim sup growth rate of quantities like the volume
of the convex hull. Prior work here includes the deep contributions of Lévy [17] and
Khoshnevisan [14], but previous work considered only the case where the walk has zero
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drift. The case with non-zero drift is, as is to be expected, quite different, and that is
our focus. We expect our approach could be adapted to the lim inf growth rate, but we
leave that for future work.

On a probability space (Ω,F ,P), let Z,Z1, Z2, . . . be a family of i.i.d. random vari-
ables in Rd, d ∈ N := {1, 2, 3, . . .}, and let Sn :=

∑n
i=1 Zi describe the associ-

ated multidimensional random walk in Rd, started from S0 := 0, the origin. Let
Hn := hull{S0, S1, . . . , Sn}, where hullA denotes the convex hull of A ⊆ Rd (the smallest
convex subset of Rd which contains A). Write ∥ · ∥ for the d-dimensional Euclidean norm.
When vectors in Rd appear in formulas, they are to be interpreted as column vectors,
although, for typographical convenience, we sometimes write them as row vectors. De-
note the unit sphere in Rd by Sd−1 := {x ∈ Rd : ∥x∥ = 1}. For x ∈ Rd \ {0} we set
x̂ := x/∥x∥ ∈ Sd−1; we define 0̂ := 0. We will typically assume that the increments of
the random walk have finite second moments, and we will use the following associated
notation; we write E for expectation under P.
(M): Suppose that E(∥Z∥2) < ∞, and denote the mean increment vector by µ := EZ

(the drift) and the increment covariance matrix by Σ := E((Z − µ)(Z − µ)⊤).

The goal of this paper is to establish laws of the iterated logarithm (LILs) for geometric
functionals of Hn, particularly in the case where µ ̸= 0. When µ = 0, an elegant result
was provided by Khoshnevisan [14]. For example, when d = 2 and (M) holds with µ = 0
and Σ = I (identity), Khoshnevisan established that the area A(Hn) satisfies

lim sup
n→∞

A(Hn)

n log log n
=

1

π
, a.s.; (1.1)

the analogue of this result for Brownian motion had already been obtained by Lévy [17]
(see Example B.3 below for a result for volume of Hn in general dimensions). In fact,
Khoshnevisan established (1.1) under an inessential additional hypothesis, that coordin-
ates of Z are independent [14, p. 318], which we remove; see Theorem 2.4 below. If, still,
d = 2 and Σ = I, but we have µ ̸= 0, we are in a new setting, and a different scaling is
needed. A special case of our results (in Theorem 1.2 below) shows that, now

lim sup
n→∞

A(Hn)

n3/2
√
log log n

=
∥µ∥√
6
, a.s. (1.2)

To allow us to present one further example, we define

G0 := 0, and Gn :=
1

n

n∑
i=1

Si, for n ∈ N. (1.3)

The process Gn, n ∈ Z+, is the centre of mass process associated with the random walk.
Under assumption (M), Gn satisfies law of large numbers and central limit theorem
asymptotics of the same order as Sn, but, locally, Gn moves much more slowly, which
leads, for example, to the interesting fact that Gn is compact-set transient when µ = 0
and d = 2; see [10, 18, 19] for these and other properties. Here we consider its convex
hull, defined by Gn := hull{G0, G1, . . . , Gn}. By convexity, Gn ∈ Hn and so Gn ⊆ Hn; see
Figure 1 for a simulation picture. If d = 2, Σ = I, and µ ̸= 0, another application of the
ideas of the present paper (see Theorem 3.4 below) shows that

lim sup
n→∞

A(Gn)

n3/2
√
log log n

= ϑ∥µ∥, a.s., (1.4)

where ϑ ∈ (0,∞). It would be interesting to evaluate ϑ; presently, we do not have a
solution to the variational problem that characterizes ϑ, which seems to require some
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new ideas. In Proposition A.1 in Appendix A below, we show that ϑ ≥ 0.090435; for
comparison with (1.2), note that 1/

√
6 ≈ 0.40825.

Open problem. Compute the constant ϑ in (1.4).

Figure 1. Simulated trajectory of 5× 104 steps of a planar random walk with
non-zero drift, together with its convex hull (red). Also plotted are the traject-
ory (blue) of the centre of mass process of the walk defined via (1.3), and the
corresponding convex hull (green).

Our main iterated-logarithm result for Hn includes not only (1.2), but results for all
dimensions d and all intrinsic volumes, and permits general Σ. In most cases, however,
unlike (1.2), we do not have an explicit value for the constant. Our approach (like Khosh-
nevisan’s) is founded on Strassen’s functional law of the iterated logarithm, modified ap-
propriately to apply to walks with non-zero drift; in our setting, as in Khoshnevisan’s,
limiting constants can often be characterized by variational problems, but in only a lim-
ited number of instances is the solution known. We introduce some more notation in
order to state our main results.

Let C denote a non-empty, compact, convex subset of Rd, and Vd(C) its volume (d-
dimensional Lebesgue measure). If Cλ, λ > 0, denotes the parallel body Cλ := {x ∈ Rd :
infy∈C ∥x− y∥ ≤ λ}, then the Steiner formula of integral geometry [33, §4.1] says that

Vd(Cλ) =
d∑

k=0

λd−kκd−kVk(C), (1.5)

where κd := πd/2/Γ(1 + d
2
) is the d-dimensional volume of the unit-radius Euclidean ball

in Rd. The quantities Vk(C) on the right-hand side of (1.5) are the intrinsic volumes of C.
In particular, V0(C) ≡ 1, and the intrinsic volumes V1(C) and Vd−1(C) are proportional
to the mean width w(C) and (Minkowski) surface area S(C), respectively: specifically,
V1(C) =

dκd

2κd−1
w(C) and Vd−1 =

1
2
S(C), see e.g. [11, p. 104].

Consider the random variables Vk(Hn), k ∈ {1, . . . , d}. The strong law for the convex
hull in the case with drift (see Theorem 3.3.3 of [24]) says that if E ∥Z∥ <∞, then

lim
n→∞

n−1Hn = hull{0, µ} =: sµ, a.s., (1.6)

where the convergence is in the metric space of non-empty compact, convex sets with
the Hausdorff distance. The limit set sµ is a line segment of length ∥µ∥. As can be seen
from the Steiner formula (1.5) (see also [6, p. 7]), for µ ̸= 0, the only non-trivial intrinsic
volume of sµ is V1(sµ) = ∥µ∥; one has Vk(sµ) = 0 for k ≥ 2. This means that from the
strong law one obtains the rather limited information that, a.s.,

lim
n→∞

n−1V1(Hn) = ∥µ∥, and lim
n→∞

n−kVk(Hn) = 0, for k ≥ 2, (1.7)

where we have used the fact that Vk is continuous and homogeneous of order k (see
Definition 2.3 below).

Theorem 1.1, our first main result, gives more precise information about the a.s. large-n
behaviour of the intrinsic volumes Vk(Hn). Recall that the random walk Sn is genuinely
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d-dimensional if Z is not supported by any (d−1)-dimensional subspace [37, p. 72]; under
assumption (M), this is equivalent to Σ being (strictly) positive definite. Throughout the
paper, we write R+ := [0,∞).

Theorem 1.1. Suppose that (M) holds with µ ̸= 0. Let k ∈ {1, 2, . . . , d}. Then there
exists a constant Λ(d, k,LZ) ∈ R+, depending on d, k, and the law LZ of Z, such that

lim sup
n→∞

Vk(Hn)√
2k−1nk+1(log log n)k−1

= Λ(d, k,LZ), a.s. (1.8)

Moreover, if Sn is genuinely d-dimensional, then Λ(d, k,LZ) > 0.

When d = 1, the result (1.8) is already contained in (1.7), so the main interest in
Theorem 1.1 is when d ≥ 2 (see also Remarks 1.3 below). We do not have, in general, a
formula for the constants Λ(d, k,LZ) appearing in (1.8), but we do have a Strassen-type
variational characterization in the case k = d (the volume), in which case Λ(d, k,LZ)
depends on LZ only via µ and Σ, through an isoperimetric problem reminiscent of the
classical Dido problem, for which we can provide an explicit solution when d = 2. To
present these results (Theorem 1.2 below) we need some additional notation.

The symmetric, non-negative definite covariance matrix Σ defines a linear transform-
ation of Rd. If d ≥ 2 and µ ̸= 0 (non-zero drift), we denote by Σµ⊥ the matrix of the
linear transformation on Rd−1 induced by the action of Σ on the orthogonal complement
of the linear subspace generated by µ. In other words, if Σ is expressed in an orthonormal
basis of Rd that includes µ̂ = µ/∥µ∥ as a basis vector, the (d − 1)-dimensional reduced
covariance matrix Σµ⊥ is obtained by deleting the row/column corresponding to µ̂; note
that since Σ = E(ZZ⊤) − µµ⊤, in the definition of Σµ⊥ one could replace Σ by E(ZZ⊤)
and get the same reduced matrix.

For f : [0, 1] → Rd−1, d ≥ 2, define the space–time convex hull of f by

H(f) := hull
{
(t, f(t)) : 0 ≤ t ≤ 1

}
⊂ Rd. (1.9)

Let Ud−1, d ≥ 2, denote the set of f : [0, 1] → Rd−1, with f(0) = 0, whose Cartesian

components f1, . . . , fd−1 are absolutely continuous, and satisfy
∑d−1

i=1

∫ 1

0
f ′
i(s)

2ds ≤ 1.

Theorem 1.2. (i) For k = d ≥ 2, the constant Λ(d, k,LZ) in (1.8) is given by

Λ(d, d,LZ) = λd · ∥µ∥ ·
√

detΣµ⊥ , (1.10)

where the constants λd ∈ (0,∞) are given through the variational formula

λd := sup
f∈Ud−1

Vd(H(f)). (1.11)

In the planar case, the constant in (1.11) takes value λ2 =
√
3/6.

(ii) For k = 1, the constant Λ(d, k,LZ) is given by Λ(d, 1,LZ) = ∥µ∥.

Remarks 1.3. (a) If Sn is genuinely d-dimensional, then detΣµ⊥ > 0.

(b) In the case k = d ≥ 2, the statement (1.8) combined with (1.10) shows that the
volume of the convex hull satisfies the LIL

lim sup
n→∞

Vd(Hn)√
2d−1nd+1(log log n)d−1

= λd · ∥µ∥ ·
√

detΣµ⊥ , (1.12)

where λd is given by (1.11). When d = 2 and Σ = I, this plus the fact that λ2 =
√
3/6

gives our LIL for the area quoted at (1.2) above.
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(c) We do not, in general, have the solution to the variational problem (1.11) for d ≥ 3.
The claim in Theorem 1.2 that λ2 =

√
3/6 is established by solving the d = 2 variational

problem in (1.11). The solution is presented in Theorem 5.1 below.

(d) Generically, LILs are closely linked to large deviations; recent results on large de-
viations for planar random walks can be found in [1, 43]. In particular, in [1, 43] the
large-devitaions rate function for a large class of planar random walks with Gaussian
increments are computed, and these results provide an alterative route to extracting the
constant λ2 =

√
3/6: see Remark 5.2 below.

(e) In the case k = 1, the strong law in (1.7) demonstrates that the ‘lim sup’ in (1.8) is
in fact a limit (with the constant identified in Theorem 1.2(ii)).

Here we give a brief overview of the remaining part of the article. We obtain our LIL
for intrinsic volumes, Theorem 1.1, from a functional law of the iterated logarithm for
convex hulls of random walks with drift, in the vein of (and proved using) Strassen’s
celebrated functional law of the iterated logarithm [40]. Our result is a companion to a
LIL of Khoshnevisan [14] which applies to functionals of convex hulls of zero-drift random
walks. In Section 2 we review the Strassen-type theorem that we will need (Theorem 2.2)
and present a small extension of Khoshnevisan’s result (Theorem 2.4) to permit general
Σ. In Section 3 we present analogues of the Strassen and Khoshnevisan results in the
case of non-zero drift, and give the proof of Theorem 1.2, up to the evaluation of the
constant λ2. The classical normalization in the LIL is the Khinchin scaling function√
2n log log n; since our walks have non-zero drift, we instead scale the drift direction

linearly (order n), and the other coordinates with the Khinchin scaling: see (3.1) below.
The proof of Theorem 1.1 needs some additional work to overcome the fact that most
intrinsic volumes do not scale simply under our non-isotropic scaling transformation: the
main additional ingredient is a zero–one law for functionals of convex hulls of random
walks with non-zero drift. This zero–one law is the subject of Section 4, which also
contains the proof of Theorem 1.1. Section 5 is devoted to the evaluation of the constant
λ2 from Theorem 1.2, by solving a planar isoperimetric problem similar to the classical
Dido problem.

2. Iterated-logarithm laws of Strassen and Khoshnevisan

In this section we review Strassen’s functional LIL, first in the case of d-dimensional
Brownian motion (Theorem 2.1) and then for zero-drift random walk (Theorem 2.2).
We then present (a slight generalization of) a theorem of Khoshnevisan of functionals of
convex hulls of random walks (Theorem 2.4). As a first application, we deduce a shape
theorem extending one from [25] (Corollary 2.5). It is worth pointing out that the LILs of
Strassen and Khoshnevisan were both partially anticipated by a spectacular 1955 paper
of Lévy [17].

Let Cd denote the set of continuous f : [0, 1] → Rd, and let C0
d denote the subset of those

f ∈ Cd for which f(0) = 0. Endowed with the uniform (supremum) metric ρ∞ defined by
ρ∞(f, g) := sup0≤t≤1 ∥f(t) − g(t)∥, Cd is a complete metric space. In components, write
f = (f1, . . . , fd) ∈ Cd, so fi ∈ C1. If fi is absolutely continuous, then its derivative f ′

i

exists a.e. If all components of f are absolutely continuous, we say that f is absolutely
continuous; then the (componentwise) derivative f ′ := (f ′

1, . . . , f
′
d) exists a.e.

For f ∈ Cd, set

∥f∥22 :=
∫ 1

0

∥f(s)∥2ds =
d∑

i=1

∫ 1

0

fi(s)
2ds,
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which defines the L2 norm ∥ · ∥2. Let Ad denote the set of absolutely continuous f ∈ C0
d

with ∥f ′∥2 <∞. Then Ad is a Hilbert space (the Cameron–Martin space for the Wiener

measure [30, p. 339]) with inner product ⟨f, g⟩Ad
:=
∑d

i=1

∫ 1

0
f ′
i(s)g

′
i(s)ds, and norm

∥f∥Ad
:= ∥f ′∥2 =

(∫ 1

0

∥f ′(s)∥2ds
)1/2

. (2.1)

The unit ball
Ud := {f ∈ Ad : ∥f∥Ad

≤ 1} ⊂ C0
d (2.2)

is compact; see [30, §VIII.2]. Let B ∈ C0
d be a standard d-dimensional Brownian motion.

The Khinchin scaling function for the classical LIL is

ℓ(n) := 1 for n ∈ {0, 1, 2}, and ℓ(n) :=
√

2n log log n for n ≥ 3. (2.3)

For each n ∈ N, set

B⋆
n(t) :=

B(nt)

ℓ(n)
, for t ∈ [0, 1].

Strassen’s theorem for d-dimensional Brownian motion (cf. [40]) states the following.

Theorem 2.1 (Strassen’s LIL for Brownian motion). Let d ∈ N. A.s., the sequence B⋆
n

in C0
d is relatively compact, and its set of limit points is Ud as defined at (2.2).

In other words, Theorem 2.1 states that, a.s., (a) every subsequence of B⋆
n contains a

further subsequence that converges, its limit being some f ∈ Ud, and (b) for every f ∈ Ud,
there is a subsequence of B⋆

n that converges to f . For instructive proofs of Theorem 2.1,
see [31, pp. 225–230] (for d = 1) or [30, pp. 346–348], [7, pp. 21–24] (for general d).

To state the random-walk version of Strassen’s LIL, for n ∈ Z+, define linear interpol-
ation of the random walk trajectory, parametrized from time t = 0 to t = 1, by

Yn(t) := S⌊nt⌋ + (nt− ⌊nt⌋)Z⌊nt⌋+1, for t ∈ [0, 1]. (2.4)

Then Yn ∈ C0
d for every n ∈ Z+. Note also that hullYn[0, 1] = Hn, since the convex hull

of Yn[0, 1] is determined only by Yn(k/n), k ∈ {0, 1, . . . , n} (linear interpolation does not
affect the convex hull).

The symmetric, non-negative definite matrix Σ defined in (M) has a unique symmetric,
non-negative definite square-root Σ1/2, such that Σ1/2Σ1/2 = Σ. The matrix Σ1/2 acts
as a linear transformation of Rd via x 7→ Σ1/2x, x ∈ Rd, and, for f ∈ C0

d , the function
Σ1/2f ∈ C0

d is given by (Σ1/2f)(t) = Σ1/2f(t), t ∈ [0, 1]. If (M) holds with µ = 0, then
Donsker’s theorem [41, p. 393] says that n−1/2Yn converges weakly to Σ1/2B as n → ∞.
Strassen’s theorem for d-dimensional random walk (cf. [40]) is as follows.

Theorem 2.2 (Strassen’s LIL for random walk). Let d ∈ N. Suppose that (M) holds
with µ = 0. A.s., the sequence Yn/ℓ(n) in C0

d is relatively compact, and its set of limit
points is Σ1/2Ud.

The usual proof of the d = 1 case of Theorem 2.2 goes by Skorokhod embedding and
using the Brownian result, Theorem 2.1 (cf. [39, §3.5]). For d ≥ 2, one substitutes a more
sophisticated strong approximation argument, such as [29] or [8, Thm. 2]; Theorem 2.2
is also a consequence of more general results on Hilbert or Banach spaces [16, Ch. 8].

Define the Euclidean distance between points x, y ∈ Rd by ρE(x, y) := ∥x − y∥, and
between a point x ∈ Rd and a set A ⊆ Rd by ρE(x,A) := infy∈A ρE(x, y). Let K

0
d denote

the set of compact subsets of Rd containing 0, endowed with the Hausdorff metric defined
by ρH(C1, C2) := max{supx∈C1

ρE(x,C2), supy∈C2
ρE(y, C1)}. By C0

d ⊂ K0
d we denote the

set of all C ∈ K0
d that are convex. If f ∈ C0

d , then the trajectory f [0, 1] (interval image)
is in K0

d, and hull f [0, 1] is in C0
d (cf. [11, p. 44]). The following terminology is standard.
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Definition 2.3 (Homogeneous function). The function F : K0
d → R is homogeneous of

order β ∈ R+ if F (λA) = λβF (A) for all A ∈ K0
d and all scalar λ ∈ (0,∞).

The following geometrical consequence of Theorem 2.2 is essentially Proposition 3.2 of
Khoshnevisan [14], although we relax the assumptions in [14] to permit arbitrary Σ; see
also [15, pp. 465–6].

Theorem 2.4 (Khoshnevisan). Suppose that (M) holds with µ = 0. Let F : (K0
d, ρH) →

(R, ρE) be continuous and homogeneous of order β ∈ R+ (see Definition 2.3). Then

lim sup
n→∞

F (Hn)

ℓ(n)β
= sup

f∈Ud

F
(
Σ1/2 hull f [0, 1]

)
, a.s.

Proof. The mapping f 7→ hull f [0, 1] is continuous from (C0
d , ρ∞) to (K0

d, ρH) (see
e.g. Lemma 2.1 of [45]). Hence f 7→ F (hull f [0, 1]) is continuous from (C0

d , ρ∞) to (R, ρE).
By homogeneity and the fact that hullYn[0, 1] = Hn, we get

F (Hn)

ℓ(n)β
= F

(
Hn

ℓ(n)

)
= F

(
hullYn[0, 1]

ℓ(n)

)
,

so that the result follows from Theorem 2.2. □

This theorem applies to F = Vk an intrinsic volume, because the intrinsic volume
function Vk is continuous and homogeneous of order k (see e.g. Theorem 6.13 of [11,
p. 105]).

Khoshnevisan also formulated a version of Theorem 2.4 for Brownian motion (which is
deduced from Theorem 2.1 in the same way as Theorem 2.4 is obtained from Theorem 2.2);
important antecedent results in that setting are due to Lévy [17] and Evans [9, §1.3].
A further consequence (of either Theorem 2.2 or Theorem 2.4) is the following “shape

theorem” for convex hulls of walks with zero drift and finite variance, which says, roughly
speaking, that the process Hn achieves every possible shape infinitely often. This con-
trasts with the case µ ̸= 0, where the strong law (1.6) says that the shape converges to
a line segment. Corollary 2.5 is an extension of Theorem 1.5 of [25], which dealt with
the case d = 2, to general dimensions; the proof of [25] also readily extends to prove Co-
rollary 2.5, so we only indicate the argument here to demonstrate how the Strassen-type
results can be applied. Write diamA := supx,y∈A ρE(x, y) for the diameter of A ∈ K0

d.

Corollary 2.5 (Shape theorem). Suppose that (M) holds with µ = 0, and that Σ is
(strictly) positive definite. Then for every C ∈ C0

d with diamC = 1,

lim inf
n→∞

ρH

(
Hn

diamHn

, C

)
= 0, a.s.

Proof. Since Σ is full rank, the random walk Sn is genuinely d-dimensional. It holds that
limn→∞ diamHn = ∞, a.s., which can be seen as a consequence of the classical LIL; see
also (B.2) below. For f ∈ C0

d , define F (f) := hull f [0, 1]/ diam f [0, 1] if diam f [0, 1] > 0,
and {0} otherwise. Then F : (C0

d , ρ∞) → (K0
d, ρH) is continuous outside the set {f :

diam f [0, 1] = 0} (cf. Lemma 3.6 of [25]) and this set has Wiener measure zero, hence
Theorem 2.2 implies, similarly to in the proof of Theorem 2.4, that, a.s.,

Hn

diamHn

has as it set of limit points

{
hull Σ1/2f [0, 1]

diamΣ1/2f [0, 1]
: f ∈ Ud

}
.

Any C ∈ C0
d can be arbitrarily well-approximated in Hausdorff distance by a polytope

Σ1/2 hull{x1, . . . , xm} for some finite set of points xi ∈ Rd (see Theorem 1.8.16 of [33]).

Given x1, . . . , xm, set Lk :=
∑k−1

i=1 ∥xi+1 − xi∥ for 1 ≤ k ≤ m, and define hm ∈ C0
d by

hm(Lk/Lm) = xk for 1 ≤ k ≤ m, with linear interpolation; in words, hm is a polygonal
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path, parametrized by arc length, that visits 0, x1, . . . , xm in sequence. Then h′m(t) = Lm

for a.e. t ∈ [0, 1], so fm := hm/
√
Lm has fm ∈ Ud, and hull Σ1/2fm[0, 1]/ diamΣ1/2fm[0, 1]

approximates C/ diam(C) = C with an error that can be made arbitrarily small. □

One can apply Theorem 2.4 to obtain LILs for various functionals: see Appendix B for
some examples that extend slightly some of those from [14].

3. A Strassen-type theorem for the case with drift

In this section we present analogues of the LIL results of Section 2 for the case of a
non-zero drift; essentially these results are obtained by combining the strong law of large
numbers for the drift with Strassen’s law for the coordinates orthogonal to the drift. To
motivate the random-walk result, we first consider the case of Brownian motion with
drift in Rd, d ≥ 2. Suppose that X is a Brownian motion with drift µ ∈ Rd \ {0} and
infinitesimal covariance matrix Σ, so that X(t) = µt+ Σ1/2B(t) for t ∈ R+.
Without loss of generality, we suppose coordinates are chosen so that the standard

orthonormal basis (e1, . . . ed) of Rd, d ≥ 2, has e1 = µ̂. Write Xi(t) := e⊤i X(t). For
2 ≤ i, j ≤ d, we have Xi(t) = e⊤i Σ

1/2B(t), and so E(Xi(t)Xj(t)) = e⊤i Σej. Let Σµ⊥ denote
the matrix obtained from Σ by omitting the first row and column, i.e.,(

Σµ⊥
)
ij
:= Σi+1,j+1, for 1 ≤ i, j ≤ d− 1,

which is the (symmetric, non-negative definite) infinitesimal covariance matrix of
X2, . . . , Xd. Note that detΣµ⊥ is the first principal minor of Σ.

For n ∈ N, define ψn : Rd → Rd, acting on x = (x1, . . . , xd), by

ψn(x1, . . . , xd) =

(
x1
n
,
x2
ℓ(n)

, . . . ,
xd
ℓ(n)

)
. (3.1)

Let Iµ : [0, 1] → R+ denote the function Iµ(t) = ∥µ∥t, and set

Wd,µ,Σ := {g = (Iµ,Σ
1/2

µ⊥
f) : f ∈ Ud−1}, for d ≥ 2.

Observe that if f ∈ Ad−1, then (since entries of Σ are uniformly bounded) Σ
1/2

µ⊥
f ∈ Ad−1

too; since I ′µ(t) = ∥µ∥, it follows that g = (Iµ, f) ∈ Ad whenever f ∈ Ad−1. In particular,
Wd,µ,Σ ⊂ Ad. To enable us to include the (somewhat trivial) case d = 1 in our statements,
we also set W1,µ,Σ := {Iµ}.

Theorem 3.1. Suppose that µ ̸= 0. A.s., the sequence (ψn(X(nt)))t∈[0,1] in C0
d is relat-

ively compact, and its set of limit points is Wd,µ,Σ.

Proof. The strong law of large numbers (in functional form, see e.g. Theorem 3.4 in [18])
says that (X1(nt)/n)t∈[0,1] converges a.s. in (C0

d , ρ∞) to Iµ as n → ∞. On the other
hand, Strassen’s theorem for Brownian motion on Rd−1 (Theorem 2.1) implies that

((X2(nt), . . . , Xd(nt))/ℓ(n))t∈[0,1] has as its limit points Σ
1/2

µ⊥
Ud−1. □

Here is the random-walk formulation. Recall the definition of Yn ∈ C0
d from (2.4).

Theorem 3.2. Suppose that (M) holds with µ ̸= 0. A.s., the sequence ψn(Yn) in C0
d is

relatively compact, and its set of limit points is Wd,µ,Σ. In particular, if F : (C0
d , ρ∞) →

(R, ρE) is continuous, then lim supn→∞ F (ψn(Yn)) = suph∈Wd,µ,Σ
F (h), a.s.

Proof. The proof runs along the same lines as that of Theorem 3.1, but in place of
Theorem 2.1 one applies its random-walk analogue, Theorem 2.2. □

As a corollary, we obtain an analogue of Khoshnevisan’s theorem (Theorem 2.4) in the
case with drift.
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Corollary 3.3. Suppose that (M) holds with µ ̸= 0. Let F : (K0
d, ρH) → (R, ρE) be

continuous. Then

lim sup
n→∞

F (ψn(Hn)) = sup
h∈Wd,µ,Σ

F (hullh[0, 1]), a.s.

As another application of Theorem 3.2, we give a LIL for the volume of the convex hull
Gn of the centre of mass process defined at (1.3), which includes the case d = 2 stated
at (1.4) above. Define g : (C0

d , ρ∞) → (C0
d , ρ∞) for all f ∈ C0

d by

gf (0) := 0, and gf (t) :=
1

t

∫ t

0

f(s)ds for 0 < t ≤ 1.

One verifies that gf is indeed in C0
d , since limt↓0 gf (t) = f(0) = 0.

Theorem 3.4 (LIL for the convex hull of the centre of mass). Suppose that (M) holds
with µ ̸= 0. Then

lim sup
n→∞

Vd(Gn)√
2d−1nd+1(log log n)d−1

= λ̃d ·
∥µ∥
2

·
√

detΣµ⊥ , a.s.,

where the constants λ̃d are given via the variational formula

λ̃d := sup
f∈Ud−1

Vd(H(gf )). (3.2)

We defer the proof of Theorem 3.4 to Section A, since the proof runs along similar
lines to parts of the proofs of our main results. We end this section with the proofs of
our LIL for Vd(Hn), Theorem 1.2.

Proof of Theorem 1.2. By the scaling property of volumes, for n ∈ N,

Vd(ψn(Hn)) =
Vd(Hn)

nℓ(n)d−1
.

Then, by Corollary 3.3 with G = Vd, we obtain, a.s.,

lim sup
n→∞

Vd(Hn)√
2d−1nd+1(log log n)d−1

= sup
h∈Wd,µ,Σ

Vd(hullh[0, 1]).

Now h ∈ Wd,µ,Σ has h = (Iµ,Σ
1/2

µ⊥
f) for some f ∈ Ud−1, and, by scaling, if h0 := (Ie1 , f),

Vd(hullh[0, 1]) = ∥µ∥ · detΣ1/2

µ⊥
· Vd(hullh0[0, 1]) = ∥µ∥ ·

√
detΣµ⊥ · Vd(H(f)),

where H is defined at (1.9). Thus we deduce (1.12) and characterize the constant λd
via (1.11). This completes the proof of part (i) of Theorem 1.2. For part (ii) of the
theorem, we simply note from comparison of the strong law of large numbers in (1.7)
with (1.8) in the case k = 1, we identify that Λ(d, 1,LZ) = ∥µ∥. □

The proof of Theorem 1.1 needs more work, because for k ̸= d the functional Vk does
not behave so nicely under the scaling operation ψn. The idea is to use the Strassen-
type result Theorem 3.2 to obtain upper and lower bounds of matching order, and then
conclude using a zero–one law. The next section presents this zero–one law (Theorem 4.4),
which is of some independent interest, and then gives the proof of Theorem 1.1.
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4. A zero–one law for walks with drift

Define H∞ := ∪n∈Z+Hn = hull{S0, S1, S2, . . .}. The event {H∞ = Rd}, that the convex
hull asymptotically fills out all of space, has probability 0 or 1 as a consequence of the
Hewitt–Savage zero–one law (see [20, p. 335]). Theorem 3.1 of [25, p. 7] provides a zero–
one law for tail events associated with H0,H1, . . . in the case where P(H∞ = Rd) = 1;
this follows from a Hewitt–Savage argument based on the fact that for every k ∈ N
the initial trajectory S0, . . . , Sk is eventually enclosed in Hn for all n large enough, with
probability 1. In the case with E ∥Z∥ < ∞, one has either P(H∞ = Rd) = 1 if µ = 0
(Corollary 9.4 in [20]), or P(H∞ = Rd) = 0 if µ ̸= 0 (Proposition 4.2 and Theorem 9.2
in [20]). In particular, in the case where µ ̸= 0, the zero–one law of [25] does not apply;
see [20, §9] for some further remarks.

The purpose of this section is to provide a zero–one law that can be applied when µ ̸= 0.
In this case, one cannot hope for a zero–one law that applies to all tail events of the type
studied in [25], because in the case µ ̸= 0, initial steps of the walk are rather likely to
remain as vertices of the convex hull for all time, and hence retain influence on values
of functionals (see Remark 4.5 below for one such example). Our zero–one law will be
stated for functionals acting on C0

d, which we call macroscopic (Definition 4.1 below),
having the property that, roughly speaking, changes to the convex set around the origin
have relatively negligible influence on the values of the functional when it is sufficiently
large; hence the influence of the initial points is lost.

Write A△B := (A \ B) ∪ (B \ A) for the symmetric difference of sets A and B. Let
Bd(0, r) := {x ∈ Rd : ∥x∥ ≤ r} denote the closed d-dimensional Euclidean ball of radius
r ∈ R+ centred at the origin.

Definition 4.1. We say F : C0
d → R+ is macroscopic if for every ε ∈ (0, 1) and r ∈ R+

there exists v ∈ R+ such that∣∣∣∣F (C1)

F (C2)
− 1

∣∣∣∣ ≤ ε for all C1, C2 ∈ C0
d with C1△C2 ⊆ Bd(0, r) and F (C1) ≥ v. (4.1)

Remark 4.2. Note that if F (C2) ≥ v and |F (C1) − F (C2)| ≤ εF (C2), then F (C1) ≥
(1 − ε)F (C2) ≥ (1 − ε)v; hence one can formulate (4.1) equivalently with the condition
F (C2) ≥ v rather than F (C1) ≥ v.

The macroscopic property in Definition 4.1 lends itself to our present application (see
Proposition 4.6 for an explanation), but is also general enough to include the intrinsic
volumes that are our main interest here, as well as a wide range of other examples, as we
indicate in the next remark.

Remark 4.3. Let F : K0
d → R+ (i.e., acting upon compact but not necessarily convex sets).

Then F is monotone if for every A,B ∈ K0
d with A ⊆ B, it holds that F (A) ≤ F (B), and

F is subadditive if for every A,B ∈ K0
d, F (A∪B) ≤ F (A)+F (B). Take C1, C2 ∈ C0

d (i.e.,
convex) with C1△C2 ⊆ Bd(0, r). Clearly C1 ⊆ (C1∩C2)∪hull(C1\C2), while C1\C2 ⊆ C1

and so (since C1 is convex) hull(C1 \ C2) ⊆ C1. Hence C1 = (C1 ∩ C2) ∪ hull cl(C1 \ C2),
which expresses the convex compact set C1 as the union of two convex compact sets (‘cl’
denotes closure). Then, if F is monotone and subadditive,

F (C1) ≤ F (C1 ∩ C2) + F (hull cl(C1 \ C2)) ≤ F (C2) + F (Bd(0, r)). (4.2)

The similar argument with C1, C2 interchanged shows that if F is both monotone and
subadditive, then it satisfies the smoothness property

|F (C1)− F (C2)| ≤ F (Bd(0, r)), for all C1, C2 ∈ C0
d with C1△C2 ⊆ Bd(0, r). (4.3)
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If (4.3) holds, then∣∣∣∣F (C1)

F (C2)
− 1

∣∣∣∣ ≤ F (Bd(0, r))

F (C2)
, for all C1, C2 ∈ C0

d with C1△C2 ⊆ Bd(0, r),

which implies that F is macroscopic (cf. Remark 4.2). Moreover, observe that in the
inequality (4.2) the monotonicity and subadditivity of F is required only on convex sets;
in particular, it suffices that F : C0

d → R+ be a monotone valuation (cf. [11, p. 110]
or [33, p. 172]). Some particular examples are as follows.

• Intrinsic volumes are monotone valuations, hence macroscopic on C0
d.

• Other monotone valuations include the rotation volumes and rigid motion volumes
examined recently in [22].

• The diameter function A 7→ diamA is monotone and subadditive on K0
d (for the

latter, recall that on K0
d every set contains 0), hence macroscopic on C0

d.
• If Sn is any transient random walk on Zd, the associated capacity cap : K0

d → R+

is given by cap(A) :=
∑

x∈A∩Zd P(x+Sn /∈ A, for all n ∈ N), and cap is monotone
and subadditive (see e.g. [37, §25]), hence macroscopic.

• Fix d = 2 and λ > 0, and consider the function Fλ(A) which counts the number of
faces of A ∈ C0

d whose length exceeds λ. Then the function A 7→ Fλ(hullA) on K0
d

is neither monotone nor subadditive. We believe Fλ is nevertheless macroscopic,
but we do not investigate this further here.

This list of examples shows that the class of macroscopic functionals contains functions
quite different in nature from intrinsic volumes.

Here is the formulation of our zero–one law; we emphasize that we do not assume that
E(∥Z∥2) <∞.

Theorem 4.4 (Zero–one law). Let d ≥ 2. Suppose that E ∥Z∥ < ∞ and µ ̸= 0, and
that F : (C0

d, ρH) → (R+, ρE) is macroscopic (see Definition 4.1). Suppose also that

lim
n→∞

F (Hn) = +∞, a.s. (4.4)

Then F (Hn) satisfies a zero–one law in the sense that for every sequence bn ∈ (0,∞),

lim sup
n→∞

F (Hn)

bn
is a.s. constant in [0,+∞]. (4.5)

Remark 4.5. The condition (4.4) cannot be removed, in general. To see this, suppose that
E ∥Z∥ < ∞ and µ ̸= 0, and consider the functional F (A) = − infx∈A(µ

⊤x). Then F :
K0

d → R+ is monotone and subadditive, hence macroscopic (see Remark 4.3). However,
the random variables Yn := F (Hn) satisfy limn→∞ Yn = Y∞ := − infx∈H∞(µ⊤x), a.s.,
which is just − infn∈Z+ Tn where Tn = µ⊤Sn is a one-dimensional random walk with
strictly positive drift. As long as Tn is non-degenerate, Y∞ therefore has a non-trivial
distribution, so (4.5) is violated (for bn ≡ b, constant), and (4.4) fails. Note that the
event {Y∞ ≤ y} is also a tail event for Hn in the sense of [25, p. 7].

For a d-dimensional real matrix M , the matrix (operator) norm induced by the Eu-
clidean norm is ∥M∥op := supu∈Sd−1 ∥Mu∥. We need a short calculation. For any ab-
solutely continuous f ∈ C0

d and any non-negative definite, d-dimensional matrix M , we
have, adapting [14, p. 387],

Mf(t)−Mf(s) =

∫ t

s

(Mf ′(u))du,
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and hence, by the triangle and Jensen inequalities,

sup
0≤s≤t≤1

∥Mf(t)−Mf(s)∥ ≤ ∥M∥op
∫ 1

0

∥f ′(u)∥du ≤ ∥M∥op

√∫ 1

0

∥f ′(u)∥2du. (4.6)

Now we can complete the proof of our LIL for intrinsic volumes, Theorem 1.1.

Proof of Theorem 1.1. Let k ∈ {1, . . . , d}. It suffices to suppose that Sn is genuinely
d-dimensional (for if not, work instead in Rd′ for d′ < d); hence detΣµ⊥ > 0. We will
prove that there exist constants 0 < c1 < c2 <∞ (where c1, c2 depend only on d, k, µ,Σ)
for which

c1 ≤ lim sup
n→∞

Vk(Hn)√
nk+1(log log n)k−1

≤ c2, a.s. (4.7)

Without loss of generality, choose the basis of Rd so that µ̂ is the first coordinate vector.
For r ∈ R+, define the rectangle Rd(x, h; r) := [x, x + h] × [−r, r]d−1. We will apply
Theorem 3.2, which says that ψn(Yn) in C0

d is relatively compact, and its set of limit points

isWd,µ,Σ. Consider h = (Iµ,Σ
1/2

µ⊥
f) with f ∈ Ud−1 (so that h ∈ Wd,µ,Σ). Then (4.6) applied

to f ∈ Ud−1 and with M = Σ
1/2

µ⊥
shows that supf∈Ud−1

diam(Σ
1/2

µ⊥
f [0, 1]) is bounded by a

finite constant. This means that there exists r1 ∈ R+ such that hullh[0, 1] ⊂ Rd(0, ∥µ∥; r1)
for every h ∈ Wd,µ,Σ. Since Wd,µ,Σ is the set of limit points for ψn(Yn), it follows that for
every r > r1 there exists a (random, a.s.-finite) n0 such that ψn(Yn) ⊆ Rd(−1, 2+ ∥µ∥; r)
for all n ≥ n0, say. Hence by (3.1) we conclude that, a.s.,

Hn ⊆ Rd(−n, (2 + ∥µ∥)n; rℓ(n)), for all but finitely many n ∈ Z+. (4.8)

On the other hand, it is not hard to see that, provided detΣµ⊥ > 0, there exist r0 > 0,
δ0 ∈ (0, 1/2) and some h ∈ Wd,µ,Σ for which Rd(δ0, 1− 2δ0; r0) ⊆ hullh[0, 1]. Thus, from
Theorem 3.2, for every δ ∈ (δ0, 1/2) and r ∈ (0, r0) we have that, a.s.,

Hn ⊇ Rd(δn, n− 2δn; rℓ(n)), for infinitely many n ∈ Z+. (4.9)

Finally, the claim (4.7) follows from (4.8) and (4.9) together with the fact that

Vk(Rd(x, h; r)) = ed,k(h, 2r, 2r, . . . , 2r) =

(
d− 1

k − 1

)
h(2r)k−1 +

(
d− 1

k

)
(2r)k, (4.10)

where ed,k is the kth elementary symmetric polynomial in d arguments; one can find (4.10)
as Proposition 5.5 in [21]. This completes the proof of (4.7).

A consequence of (4.7) is that limn→∞ Vk(Hn) = +∞, a.s. By the zero–one law (The-
orem 4.4) and the fact that the intrinsic volume functional Vk is macroscopic (see Re-
mark 4.3), we obtain that there is a constant Λ ∈ [0,+∞] for which

lim sup
n→∞

Vk(Hn)√
2k−1nk+1(log log n)k−1

= Λ, a.s. (4.11)

Then (4.11) combined with (4.7) shows that 0 < Λ <∞ (recalling that we have assumed
that Sn is genuinely d-dimensional). This completes the proof of (1.8). □

The rest of this section is devoted to the proof of Theorem 4.4. For k ∈ Z+, let
Πk denote the set of all π : N → N such that π is a permutation on 1, 2, . . . , k and
π(n) = n for all n > k. Then the random walk Sπ (for π ∈ Πk) defined by Sπ

0 := 0 and
Sπ
n :=

∑n
i=1 Zπ(i), n ∈ N, takes the same increments as S, but with a permutation among

the first k; note that Sπ
n = Sn for all n ≥ k. Let Hπ

n := hull{Sπ
0 , . . . , S

π
n}.

For ℓ, n ∈ Z+, define

Hℓ,n := hull{0, Sℓ, Sℓ+1, . . . , Sn} for n ≥ ℓ, and Hℓ,n := {0} for n < ℓ, (4.12)
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and also define
Hℓ,∞ :=

⋃
n∈Z+

Hℓ,n = hull{0, Sℓ, Sℓ+1, . . .}. (4.13)

Define Hπ
ℓ,n, n ∈ Z+ ∪ {∞}, analogously to (4.12)–(4.13) in terms of Sπ. Then, for every

k ≤ ℓ and all π ∈ Πk, it holds that Hℓ,n = Hπ
ℓ,n ⊆ Hπ

n for all n ∈ Z+ ∪ {∞}.
The next proposition shows that for every k ∈ Z+, every permutation of Z1, . . . , Zk

changes the convex hullHn only within a finite region (with a random radius that depends
on k but not on n). Indeed, it follows from (4.15) below that

Hπ1
n △Hπ2

n ⊆ Bd(0, Rk), for all n ∈ Z+ and all π1, π2 ∈ Πk, a.s. (4.14)

In particular, this means that macroscopic functionals are asymptotically approximately
invariant under Πk. This property is the key to our proof of Theorem 4.4. Theorem 6.2.2
of McRedmond [24] established a result along somewhat similar lines for the space-time
convex hull of a one-dimensional random walk.

Proposition 4.6. Let d ≥ 2. Suppose that E ∥Z∥ < ∞ and µ ̸= 0. A.s., it holds for
every k ∈ Z+ that there exists Rk <∞ for which

Hπ
n \ Hπ

k,n ⊆ Bd(0, Rk), for all n ∈ Z+ and all π ∈ Πk. (4.15)

A crucial geometrical ingredient in the proof of Proposition 4.6 is provided by the next
lemma, which says that Hn eventually contains cylinders with axis in the µ̂ direction of
arbitrary radius and height. Define the cylinder Cd(x, h; r) := [x, x+h]×Bd−1(0, r) ⊂ Rd.
Denote Oµ := {u ∈ Sd−1 : u⊤µ = 0} for the sphere (a copy of Sd−2) orthogonal to µ.

Lemma 4.7. Let d ≥ 2. Suppose that E ∥Z∥ < ∞ and µ ̸= 0. Fix r, h ∈ R+ and
k ∈ N. Then, a.s., there exists x ∈ R+ such that, for all but finitely many n ∈ Z+,
Cd(x, h; r) ⊆ Hk,n.

Proof. For x ∈ Rd, define x⊥ ∈ Rd−1 to be the projection of x onto the (d−1)-dimensional
subspace orthogonal to µ, and then set H⊥

k,n := hull{0, S⊥
k, S

⊥
k+1, . . . , S

⊥
n} for n ≥ k. Here

S⊥ = (S⊥
n)n∈Z+ is a random walk on Rd−1 with mean drift E[Z⊥] = 0 in Rd−1. Corollary 9.4

in [20] implies that H⊥
k,∞ := ∪n≥kH⊥

k,n satisfies P(H⊥
k,∞ = Rd−1) = 1 for all k ∈ Z+.

Fix r, h ∈ R+ and k ∈ N. Then there exists an a.s.-finite n0 ∈ Z+ (a stopping time)
such that Bd−1(0, r) ⊆ H⊥

k,n for all n ≥ n0. Then set x := max0≤n≤n0 µ̂
⊤Sn (so x ∈ R+

is a.s. finite). Since, by the strong law of large numbers, limn→∞ µ̂⊤Sn = ∞, a.s., there
exists an a.s.-finite n1 ≥ n0 such that µ̂⊤Sn > x + h for all n ≥ n1. There also exists an
a.s.-finite r1 > r such that H⊥

k,n1
⊆ Bd−1(0, r1). Furthermore, there exists an a.s.-finite

n2 ≥ n1 such that Bd−1(0, 1 + r1) ⊆ H⊥
k,n for all n ≥ n2. Therefore, H⊥

k,n1
is contained in

the interior of H⊥
k,n2

, and so H⊥
k,n2

= hull{S⊥
n1+1, S

⊥
n1+2, . . . , S

⊥
n2
}.

The preceding argument reveals two properties of Hk,n2 . First, since Bd−1(0, r) ⊆
H⊥

k,n0
⊆ H⊥

k,n2
and every z ∈ H⊥

k,n0
has µ̂⊥z ≤ x, it holds that

for every u ∈ Oµ, there exists s ≤ x such that sµ̂+ ru ∈ Hk,n2 . (4.16)

Second, since Bd−1(0, 1 + r1) ⊆ H⊥
k,n2

= hull{S⊥
n1+1, S

⊥
n1+2, . . . , S

⊥
n2
}, where r1 > r, and

every n ≥ n1 has µ̂⊥Sn ≥ x+ h, it holds that

for every u ∈ Oµ, there exists s ≥ x+ h such that sµ̂+ ru ∈ Hk,n2 . (4.17)

It follows from (4.16) and (4.17), by convexity, that Cd(x, h; r) ⊆ Hk,n2 . □

Proof of Proposition 4.6. Fix k ∈ Z+ (which we suppress in some of the subsequent
notation). For n ∈ N ∪ {∞}, x ∈ R+ and u ∈ Oµ, define

rn(x, u) := sup{r ∈ R+ : xµ̂+ ur ∈ Hk,n},
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where Hk,n is given by (4.13). Furthermore, for r ∈ R+ define

Xr := inf
{
x ∈ R+ : inf

u∈Oµ

r∞(x, u) ≥ r
}
.

A consequence of Lemma 4.7 is that

P(Xr <∞) = 1, for every r ∈ R+. (4.18)

Since, for fixed k, Hk,n is a non-decreasing sequence (in n) of compact sets, if Xr < ∞,
there is a (random but a.s. finite) time τr > k such that, for every n ≥ τr, the convex
hull Hk,n contains Xrµ̂+ rOµ, a sphere in the (d− 1)-dimensional hyperplane orthogonal
to µ at distance Xr from the origin in the µ̂ direction. In particular, rn(Xr, u) ≥ r for all
n ≥ τr and all u ∈ Oµ.

Set T :=
∑k

i=1 ∥Zi∥. Consider the (a.s.-finite) X2T and associated time τ2T > k with
the property described in the preceding paragraph. Then Hk,n ⊆ Hn contains the sphere
X2T µ̂ + 2TOµ for every n ≥ τ2T . Moreover, the random variables X2T and τ2T are
invariant under permutations π ∈ Πk of Z1, . . . , Zk (since T is invariant, and τr is defined
in terms of Hk,n). Hence Hπ

n contains the sphere X2T µ̂ + 2TOµ for every n ≥ τ2T and
every π ∈ Πk.
For n ≥ τ2T , let Γn := {X2T µ̂+ urn(X2T , u) : u ∈ Oµ}, which is the relative boundary

of Hk,n in the hyperplane orthogonal to µ̂ at distance X2T . For every π ∈ Πk, the points
Sπ
0 , . . . , S

π
k are contained in the cylinder {xµ̂ + TOµ : |x| ≤ T}. Hence for every z ∈ Γn

and every j ∈ {1, . . . , n}, the angle formed between vectors Sπ
j −z and µ̂ (in their common

plane) is bounded below by

θ0 = arctan

(
T

T +X2T

)
> 0.

Every u ∈ Oµ has E[u⊤Z] = 0, and so the strong law of large numbers says that, as
n → ∞, n−1u⊤Sn → 0, a.s. This holds a.s. simultaneously for every u in a countable
dense subset of Oµ, and hence n−1 supu∈Oµ

(u⊤Sn) → 0, a.s., as n → ∞. On the other

hand, a.s., n−1µ⊤Sn → ∥µ∥2 > 0. Thus

lim
n→∞

supu∈Oµ
(u⊤Sn)

µ⊤Sn

= 0, a.s.

Consequently, there exists a random time ℓk ∈ N such that Sn stays in a cone with vertex
at some xµ̂ (x ∈ R+) and angular span θ0/2, say, for all n ≥ ℓk.
It follows that, for every π ∈ Πk and every n ≥ ℓk, no S

π
0 , . . . , S

π
k can be included in

any face of Hn which also includes some member of {Sℓk , Sℓk+1, . . .}. Let F π
n denote those

faces of Hπ
n which include at least one of Sπ

0 , . . . , S
π
k , and Gπ

n denote those faces of Hπ
n

which use none of Sπ
0 , . . . , S

π
k , and set Rk :=

∑ℓk
i=1 ∥Zi∥. Since faces in F π

n can include
only Sπ

0 , . . . , S
π
ℓk
, every point of F π

n lies in Bd(0, Rk), and the points Sπ
0 , . . . , S

π
k can only

appear as vertices in F π
n (and in no other faces of Hπ

n). This means that Hπ
n \ Bd(0, Rk)

is invariant under π ∈ Πk. Moreover, the vertices of faces in Gπ
n are necessarily from

Sk+1, Sk+2, . . ., which are included in Hk,n. Hence Hπ
n ⊆ Hk,n ∪ Bd(0, Rk) for every

π ∈ Πk. This completes the proof of (4.15). □

Proof of Theorem 4.4. SinceHk,n ⊆ Hn, the symmetric differenceHn△Hk,n = Hn\Hk,n.
Proposition 4.6 then shows that, for every k ∈ Z+, a.s., there exists Rk < ∞ such that,
for every n ∈ Z+, Hn △Hk,n ⊂ Bd(0, Rk). Suppose that F is macroscopic. Then, taking
C1 = Hn and C2 = Hk,n in (4.1), we see that for every ε > 0 there exists v ∈ R+
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(depending on Rk) such that∣∣∣∣ F (Hn)

F (Hk,n)
− 1

∣∣∣∣ ≤ ε whenever F (Hn) ≥ v.

By (4.4), it thus follows that, for every ε > 0, a.s.,

(1− ε) lim sup
n→∞

F (Hk,n)

bn
≤ lim sup

n→∞

F (Hn)

bn
≤ (1 + ε) lim sup

n→∞

F (Hk,n)

bn
.

Since ε > 0 was arbitrary, we conclude that

ξ := lim sup
n→∞

F (Hn)

bn
= lim sup

n→∞

F (Hk,n)

bn
, a.s.

But F (Hk,n) is in the k-permutable σ-algebra. Thus ξ is also in the k-permutable σ-
algebra (extended, as usual, up to a.s.-equivalence). Since k was arbitrary, it follows
that ξ is a.s. constant in [0,+∞], by the Hewitt–Savage zero–one law (see [4, pp. 232–
238] for details, including the definition of the extended permutable σ-algebra). □

5. Evaluating the constant in the planar case

5.1. Solution to the isoperimetric problem. In this section we work with d = 2,
which means our variational problem concerns functions f ∈ A1, i.e. (see §2) f : [0, 1] → R
that are absolutely continuous, have f(0) = 0, and satisfy

∫ 1

0
f ′(u)2du <∞. We will write

A := A1 for simplicity; it is, however, helpful to generalize the domain of our functions
from [0, 1] to [0, x].

For x ∈ (0,∞), let Ax denote the set of f : [0, x] → R that are absolutely continuous,
have f(0) = 0, and satisfy

∫ x

0
f ′(u)2du < ∞; note that A1 = A. Given f ∈ Ax,

denote by f and f the least concave majorant and greatest convex minorant of f over

[0, x], so that the continuous functions f : [0, x] → R and f : [0, x] → R are such that

f(u) ≤ f(u) ≤ f(u) for all u ∈ [0, x], f(0) = f(0) = 0, f(x) = f(x) = f(x), f is concave,

f is convex, and the difference f − f is minimal. It is easy to see that

f(u) < f(u) for all u ∈ (0, x), unless f is linear. (5.1)

For f ∈ Ax and Borel I ⊆ [0, x], define functionals

AI(f) :=

∫
I

(
f(u)− f(u)

)
du, (5.2)

LI(f) :=

∫
I

√
1 + f ′(u)2du, (5.3)

ΓI(f) :=

∫
I

f ′(u)2du. (5.4)

Note that we do not include in the notation the dependence on the upper endpoint x of
the domain of f . If I = [a, b] is an interval, we write A[a,b] = Aa,b for simplicity; similarly
for La,b and Γa,b. When x = 1, Γ0,1(f) = ∥f∥2A as defined at (2.1), and Γ0,1(f) ≤ 1 for
all f ∈ U1. Also, by Cauchy–Schwarz, the arc length functional L satisfies

L0,1(f)
2 ≤

∫ 1

0

(1 + f ′(u)2)du = 1 + Γ0,1(f), (5.5)

and so supf∈U1
L0,1(f) =

√
2 (the supremum being attained by f(u) = u).

Here is the main result of this section.
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Theorem 5.1. Let x, γ ∈ (0,∞). The unique f ∈ Ax that maximizes A0,x(f) subject to
Γ0,x(f) ≤ γ is f = f ⋆

x,γ given by

f ⋆
x,γ(u) =

√
3γ

x3
u(x− u), for 0 ≤ u ≤ x, (5.6)

which has Γ0,x(f
⋆
x,γ) = γ and A0,x(f

⋆
x,γ) =

√
3γx3/6.

Remark 5.2. As kindly pointed out to us by Vlad Vysotsky, the Strassen-type functional
in the variational problem corresponding to Theorem 5.1 is exactly the large-deviations
rate function for a degenerate, non-centred Gaussian distribution. The solution to this
isoperimetric problem is given in Proposition 2.15 of [1]. The proof (by approximating
the degenerate distribution by non-degenerate ones) is omitted, but is it is fully covered
in Theorem 1 of the very recent preprint [43].

The following subsections lay out the proof of Theorem 5.1. Before doing so, we
make some remarks on the relation of Theorem 5.1 to some of the classical problems
of isoperimetry. Dido’s Problem is to find the rectifiable planar curve of a given length
to maximize the area of the corresponding convex hull. In terms of the area and arc-
length functions A0,1 and L0,1 defined at (5.2) and (5.3), the solution to the Dido problem
reduces to the statement (see e.g. Theorem 1.1 of [42]) that

A0,1(f) ≤
L0,1(f)

2

2π
, for all f ∈ A,

with equality attained by the semicircle described by f(u) =
√
u(1− u). The function

f ⋆ := f ⋆
1,1 has L0,1(f

⋆) = 1+
√
3
6
arcsinh(

√
3) ≈ 1.380173 and A0,1(f

⋆) =
√
3/6 ≈ 0.288675;

the semicircle whose curved boundary has the same arc length has area ≈ 0.303171.
The fact that the optimal curve in Dido’s problem is a semicircle had been known

since antiquity, although proofs that are fully rigorous by modern standards are more
recent: see e.g. [26,28,34,42] for precise statements and proofs of this result and higher-
dimensional analogues, and e.g. [46] for a survey of neighbouring results in isoperimetric
problems.

5.2. Preliminaries. We will show that it suffices to prove Theorem 5.1 for the case
x = γ = 1. To do so, we first establish some basic results on how the functionals A
and Γ behave under affine transformations. Given f : R+ → R, define the function
fa,x : R+ → R by

fa,x(u) := af(u/x).

Lemma 5.3. Let a, x ∈ (0,∞). If f ∈ A, then

A0,x(fa,x) = axA0,1(f), and Γ0,x(fa,x) =
a2

x
Γ0,1(f).

On the other hand, if f ∈ Ax, then

A0,1(fa,1/x) =
a

x
A0,x(f), and Γ0,1(fa,1/x) = a2xΓ0,x(f).

Proof. Suppose that f ∈ A. The affine transformation (u, y) 7→ (xu, ay) preserves con-
vexity. Thus if f and f are the concave majorant and convex minorant, respectively,

fa,x = af(u/x) and f
a,x

= af(u/x). Hence

A0,x(fa,x) =

∫ x

0

(
fa,x(u)− f

a,x
(u)
)
du
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= a

∫ x

0

(
f(u/x)− f(u/x)

)
du

= ax

∫ 1

0

(
f(v)− f(v)

)
dv = axA0,1(f).

Moreover, since f ′
a,x(u) =

a
x
f ′(u/x),

Γ0,x(fa,x) =

∫ x

0

f ′
a,x(u)

2du =
a2

x2

∫ x

0

f ′(u/x)2du

=
a2

x

∫ 1

0

f ′(v)2dv =
a2

x
Γ0,1(f).

The other case is similar. □

The next lemma shows that it suffices to consider the case of f : [0, 1] → R subject to
Γ0,1(f) ≤ 1.

Lemma 5.4. Suppose that there exists a unique f ∈ A that maximizes A0,1(f) subject to
Γ0,1(f) ≤ 1; denote this f by f ⋆. Then for any x, γ ∈ (0,∞) there exists a unique f ∈ Ax

that maximizes A0,x(f) subject to Γ0,x(f) ≤ γ, and this f is f ⋆
x,γ given by

f ⋆
x,γ(u) =

√
γxf ⋆(u/x), for u ∈ [0, x]. (5.7)

Moreover,

Γ0,x(f
⋆
x,γ) = γ, and A0,x(f

⋆
x,γ) =

√
γx3A0,1(f

⋆). (5.8)

Proof. Suppose existence of the optimal f ⋆ ∈ A is given, as described, with Γ0,1(f
⋆) =

γ ∈ (0, 1]. Then f ∈ A defined by f(u) = γ−1/2f ⋆(u) has Γ0,1(f) = 1 and A0,1(f) =
γ−1/2A0,1(f

⋆) (as follows from the x = 1 case of Lemma 5.3). This would contradict
optimality of f ⋆ unless γ = 1; hence Γ0,1(f

⋆) = 1.
Define f ⋆

x,γ by (5.7). Then, by (5.7) and Lemma 5.3, we have Γ0,x(f
⋆
x,γ) = γΓ0,1(f

⋆) = γ

(as argued above), and A0,x(f
⋆
x,γ) =

√
γx3A0,1(f

⋆), as claimed at (5.8). It remains to
prove optimality and uniqueness of f ⋆

x,γ.
Suppose that there is an f0 ∈ Ax for which Γ0,x(f0) = γ0 ∈ (0,∞) with γ0 ≤ γ, and

A0,x(f0) ≥ A0,x(f
⋆
x,γ). Then we can define f ∈ A by f(u) = (γx)−1/2f0(xu) for u ∈ [0, 1].

By Lemma 5.3, this f has Γ0,1(f) = γ0/γ ≤ 1 and

A0,1(f) =
1√
γx3

A0,x(f0) ≥
1√
γx3

A0,x(f
⋆
x,γ) = A0,1(f

⋆),

by (5.8). This is in contradiction to optimality of f ⋆ unless A0,x(f0) = A0,x(f
⋆
x,γ); hence

f ⋆
x,γ ∈ Ax maximizes A0,x subject to Γ0,x(f) ≤ γ. Moreover, suppose A0,x(f0) = A0,x(f

⋆
x,γ)

so that A0,1(f) = A0,1(f
⋆). Then, by uniqueness, f = f ⋆, and hence f0 = f ⋆

x,γ, i.e., we
get uniqueness of f ⋆

x,γ. □

5.3. Reduction to non-negative bridges. Lemma 5.4 shows that to prove The-
orem 5.1, it suffices to suppose that x = 1 and γ = 1. In this subsection we further
reduce the class of functions that we need to consider; the next step is to show that it
suffices to work with bridges. Let B := {f ∈ A : f(1) = 0} (the set of bridges) and
B+ := {f ∈ B : f(u) ≥ 0 for all u ∈ [0, 1]} (non-negative bridges). Observe that if f ∈ B
then f ∈ B+ and −f ∈ B+, so A0,1(f) = A0,1(f) + A0,1(−f). Moreover, if f ∈ B+ then
f ≡ 0 and so

A0,1(f) = A0,1(f) =

∫ 1

0

f(u)du ≥
∫ 1

0

f(u)du, for f ∈ B+, (5.9)
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with equality if and only if f is concave.
For f ∈ A, define f̂ : [0, 1] → R by

f̂(u) := f(u)− uf(1), for 0 ≤ u ≤ 1. (5.10)

Lemma 5.5. Suppose that f ∈ A. Then (i) f̂ ∈ B; (ii) A0,1(f̂) = A0,1(f); and (iii)

Γ0,1(f̂) ≤ Γ0,1(f), with equality if and only if f(1) = 0.

Proof. The function g defined by g(u) := f(u)−uf(1) is concave, since f is concave, and

satisfies f̂(u) ≤ g(u) for all u ∈ [0, 1]. Moreover, if g is any concave majorant of f̂ , then
the function u 7→ g(u) + uf(1) is a concave majorant of f ; hence g must be the least

concave majorant of f̂ . Similarly, g(u) := f(u) − uf(1) is the greatest convex minorant

of f . Thus A0,1(f̂) =
∫ 1

0
(f(u)− f(u))du = A0,1(f), as claimed. Now, since f(0) = 0, we

have f(1) =
∫ 1

0
f ′(u)du, and hence

Γ0,1(f) =

∫ 1

0

f ′(u)2du =

∫ 1

0

(f ′(u)− f(1))
2
du+ f(1)2 = Γ0,1(f̂) + f(1)2,

so that Γ0,1(f̂) ≤ Γ0,1(f), with equality if and only if f(1) = 0. In particular, f̂ ∈ A, and

f̂(1) = 0 by (5.10), so in fact f̂ ∈ B. □

Subsequent reductions will be based on some surgeries applied to our functions. To
describe them, we introduce notation associated with the faces of the convex hull.
Suppose that f ∈ B is not the constant (zero) function. Consider the concave majorant

f of f : [0, 1] → R+. Then [0, 1] can be partitioned as [0, 1] = E+ ∪ F+, where E+ are
the indices of extreme points of f [11, p. 75], and F+ are indices of points in the interior
of faces of f : that is, t ∈ F+ if and only if there is a unique supporting half-plane at
(t, f(t)) whose boundary ((t, f(t)) + vα)α∈R, v ∈ R2, intersects H(f) for α in an open
interval containing 0.

Similarly, we have [0, 1] = E− ∪ F−, where E− and F− correspond to extreme points
and faces of f . Write E := E− ∪ E+. Note that H(f) = hull{(t, f(t)) : t ∈ E}. Moreover,

every t ∈ E has f(t) = f(t) (if t ∈ E+) or f(t) = f(t) (if t ∈ E−), and, since f is not
linear, the observation (5.1) shows that E− ∩E+ ∩ (0, 1) = ∅, and so we can speak of E as
being the set of extreme points, without the possibility of duplications. Put differently,
every t ∈ (0, 1) must belong to at least one of F+,F−, i.e., F+ ∪ F− = (0, 1).

The set F+ is a union of disjoint (maximal) open intervals in [0, 1], each interval
corresponding to the horizontal span of a face of f . For every n ∈ N there are at
most finitely many such intervals of length more than 1/n, so F+ is a union of at most
countably many disjoint open intervals. Enumerate the intervals of F+ from left to right
by (u+k , v

+
k ), k ∈ I+f . Similarly, enumerate the intervals of F− by (u−k , v

−
k ), k ∈ I−f . By

construction u±k , v
±
k ∈ E for all k. For reference, we summarize the preceding discussion

in the following lemma.

Lemma 5.6. Suppose f ∈ B is not the zero function. There exist two partitions of [0, 1],
E+ ∪ F+ = E− ∪ F− = [0, 1], with the following properties.

• Each set F± is the union of pairwise disjoint intervals: F± = ∪k∈I±f
(u±k , v

±
k ),

where u±k , v
±
k ∈ E±, it holds that 0 ≤ u±1 < v±1 < u±2 < · · · ≤ 1, and the index set

I±f is finite or countably infinite.
• We have F+ ∪ F− = (0, 1).
• For all t ∈ E+, f(t) = f(t), and, for all t ∈ E−, f(t) = f(t).

The following result shows that it suffices to consider non-negative bridges.
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Proposition 5.7. For every f ∈ B, there exists f s ∈ B+ for which (i) Γ0,1(f
s) = Γ0,1(f);

and (ii) A0,1(f
s) ≥ A0,1(f).

The proof of the Proposition 5.7 uses a kind of symmetrization, which is a common
idea in isoperimetric problems (see e.g. the recent work [3, 36]).

Definition 5.8. Suppose f ∈ B, and define the intervals (u+k , v
+
k ), k ∈ I+f , and (u−k , v

−
k ),

k ∈ I−f , as in Lemma 5.6. Define f s+ : [0, 1] → R by

f s+(t) :=

{
f(u+k ) + f(v+k )− f(u+k + v+k − t) if t ∈ [u+k , v

+
k ], k ∈ I+f

f(t) otherwise.

Similarity, define

f s−(t) :=

{
f(u−k + v−k − t)− f(u−k )− f(v−k ) if t ∈ [u−k , v

−
k ], k ∈ I−f

−f(t) otherwise.

See Figure 2 for an illustration: f s+ is constructed by a sequence of reflections (more
accurately, each is a time-reversal and change of sign) across each straight-line face of the
concave majorant of f ; similarly, f s− is derived from the convex minorant. The proof of
Proposition 5.7 amounts to establishing that the f s in the claim therein can be chosen
to be one of f s+ or f s− defined at Definition 5.8. The following series of properties will
establish this.

Lemma 5.9. Suppose f ∈ B, and consider the functions f s+ and f s− defined at Defin-
ition 5.8. Then (i) f s+ ∈ B+ with f s+(u) ≥ f(u) for all u ∈ [0, 1]; (ii) f s− ∈ B+ with
f s−(u) ≥ −f(u) for all u ∈ [0, 1]; (iii) Γ0,1(f

s−) = Γ0,1(f
s+) = Γ0,1(f); (iv)∫ 1

0

f s+(u)du =

∫ 1

0

(
2f(u)− f(u)

)
du and

∫ 1

0

f s−(u)du =

∫ 1

0

(
f(u)− 2f(u)

)
du; (5.11)

and (v) max(A0,1(f
s+), A0,1(f

s−)) ≥ A0,1(f).

Proof. Consider the function f s+. If t ∈ E+, then f s+(t) = f(t) = f(t). Otherwise,
t ∈ (u+k , v

+
k ) for some k ∈ I+f . On this interval, f is the line segment (face) given by

f(t) = f(u+k ) +

(
t− u+k
v+k − u+k

)(
f(v+k )− f(u+k )

)
, for t ∈ (u+k , v

+
k ),

and f(t) ≤ f(t) for all t ∈ (u+k , v
+
k ). Hence, for t ∈ (u+k , v

+
k ),

f s+(u+k + v+k − t)− f(u+k + v+k − t) = f(v+k )− f(t)−
(
v+k − t

v+k − u+k

)(
f(v+k )− f(u+k )

)
= f(t)− f(t) ≥ 0. (5.12)

An analogous argument gives

f s−(u−k + v−k − t) + f(u−k + v−k − t) = f(t)− f(t) ≥ 0, for t ∈ (u−k , v
−
k ). (5.13)

Since f is absolutely continuous, the function f s+ is also absolutely continuous. Hence
the derivative d

dt
f s+(t) exists for a.e. t ∈ [0, 1]. Since f s+ coincides with f on E+, we

have d
dt
f s+(t) = f ′(t) for a.e. t ∈ E+. On the other hand, for t ∈ F+, we have d

dt
f s+(t) =

f ′(u+k + v+k − t) for a.e. t ∈ (u+k , v
+
k ), and so

Γu+
k ,v+k

(f s+) =

∫ v+k

u+
k

f ′(u+k + v+k − t)2dt = Γu+
k ,v+k

(f),



ITERATED-LOGARITHM LAWS FOR CONVEX HULLS OF RANDOM WALKS WITH DRIFT 20

the last equality obtained using the substitution s = u+k + v+k − t. Hence Γ0,1(f
s+) =

Γ0,1(f). A similar argument shows that Γ0,1(f
s−) = Γ0,1(f), verifying (iii). Moreover,

the fact that Γ0,1(f
s+) < ∞ together with the relation (5.12) implies (i), and, similarly,

from (5.13) we get (ii).
Finally, f s+(t) = f(t) = f(t) unless t ∈ (u+k , v

+
k ) for some k ∈ I+f , where, from (5.12),∫ v+k

u+
k

(
f s+(u)− f(u)

)
du =

∫ v+k

u+
k

(
f(u)− f(u)

)
du,

and then the first formula in (5.11) follows by summing over k ∈ I+f . Similarly,
from (5.13), ∫ v−k

u−
k

(
f s−(u) + f(u)

)
du =

∫ v−k

u−
k

(
f(u)− f(u)

)
du,

from which we obtain the second formula in (5.11). Since f s+ and f s− are both in B+,
from (5.9) and (5.11) we conclude that,

A0,1(f
s+) + A0,1(f

s−) ≥
∫ 1

0

(
f s+(u) + f s−(u)

)
du = 2

∫ 1

0

(
f(u)− f(u)

)
du = 2A0,1(f),

which implies (v). □

Figure 2. Plot of an example f ∈ B (black line), the faces of f, f corresponding

to F (red lines), and the reflection construction of f s+ and −f s− (blue lines).

Proof of Proposition 5.7. Lemma 5.9 shows that we may take f s to be whichever one of
f s+ or f s− achieves the maximum in max(A0,1(f

s+), A0,1(f
s−)). □

Our final reduction is simple: we can replace a non-negative bridge by its concave
majorant.
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Lemma 5.10. Suppose that f ∈ B+. Then f ∈ B+ has A0,1(f) = A0,1(f) and Γ0,1(f) ≤
Γ0,1(f).

Proof. Suppose that f ∈ B+. It follows from Lemma 5.6 that we can recover f from f
by replacing f over every interval [u+k , v

+
k ] by the straight line segment from (u+k , f(u

+
k ))

to (v+k , f(v
+
k )). This preserves the value of the area enclosed by the concave majorant,

but can not increase the value of Γ0,1, since for h ∈ A and 0 ≤ a ≤ b ≤ 1, we have∫ b

a
h′(u)du = h(b)− h(a), and

Γa,b(h) =

∫ b

a

h′(u)2du =

∫ b

a

(
h′(u)− h(b)− h(a)

b− a

)2

du+
(h(b)− h(a))2

b− a
,

which is minimized when h(u) = h(a) +
(
u−a
b−a

)
(h(b)− h(a)) is the straight line. □

5.4. Identifying the optimal function. The reductions in Section 5.3 show that we
can reduce the problem to that of non-negative bridges that are their own least concave
majorant. The final step is the following.

Lemma 5.11. Suppose that f ∈ B. Then∫ 1

0

f(u)du ≤
√
3

6
,

with equality if and only if f = f ⋆.

Remark 5.12. Lemma 5.11 is closely related to results of Schmidt [32], although Schmidt’s
main results are concerned with functions with changes of sign; we give a short self-
contained proof here, and indicate where a key step in our argument can be substituted
by a secondary result from [32]. See also [27] (particularly Chapters IV & XV) for a host
of adjacent results.

Proof of Lemma 5.11. Suppose that f ∈ B. Observe that∫ 1/2

0

f(u)du =

∫ 1/2

0

(∫ u

0

f ′(y)dy

)
du =

∫ 1/2

0

(
f ′(y)

∫ 1/2

y

du

)
dy

=
1

2

∫ 1/2

0

(1− 2y) f ′(y)dy

≤ 1

2

√∫ 1/2

0

(1− 2y)2dy

∫ 1/2

0

f ′(u)2du,

where the last inequality is Cauchy–Schwarz, and the condition for equality is that f ′(y)
and 1− 2y are linearly dependent. Since f(0) = 0, that is∫ 1/2

0

f(u)du ≤ 1√
24

(
Γ0,1/2(f)

)1/2
, (5.14)

with equality in (5.14) if and only if f(x) = θ0x(1 − x) for all 0 ≤ x ≤ 1/2 and some
θ0 ∈ R. (The inequality (5.14) is the λ = 1/2, a = 1, b = 2 case of (20) in [32, p. 306].)
The same argument with g(u) = f(1− u) shows that∫ 1

1/2

f(u)du ≤ 1√
24

(
Γ1/2,1(f)

)1/2
, (5.15)
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with equality in (5.15) if and only if f(x) = θ1x(1 − x) for all 1/2 ≤ x ≤ 1 and some
θ1 ∈ R. From (5.14) and (5.15) we obtain∫ 1

0

f(u)du =

∫ 1/2

0

f(u)du+

∫ 1

1/2

f(u)du

≤ 1√
24

{√
Γ0,1/2(f) +

√
Γ1/2,1(f)

}
. (5.16)

Suppose that Γ0,1(f) = γ ∈ R+. Now, by Jensen’s inequality,
√
α+

√
β

2
≤
√

α+β
2
, with

equality if and only if α = β, so we have from (5.16) that∫ 1

0

f(u)du ≤
√

γ

12
,

with equality if and only if both equality holds in the Cauchy–Schwarz and Jensen
inequalities, i.e., Γ0,1/2(f) = Γ1/2,1(f) = γ

2
, f(x) = θ0x(1 − x) for x ∈ [0, 1

2
], and

f(x) = θ1x(1−x) for x ∈ [1
2
, 1]. Thus in the case of equality, we must have θ20 = θ21 = 3γ,

and f(x) =
√
3γx(1− x), which is f ⋆ when γ = 1. □

We can now complete the proof of Theorem 5.1.

Proof of Theorem 5.1. Lemma 5.5, Proposition 5.7, and Lemma 5.10 show that to every
f ∈ A one can associate f̃ ∈ B+ ⊂ A that is non-negative and concave, and for which
A0,1(f̃) ≥ A0,1(f) but Γ0,1(f̃) ≤ Γ0,1(f). Hence the optimal A0,1(f) is attained by some

f ∈ B+ that is non-negative and concave. For such an f , we have f = f and f ≡ 0, so
A0,1(f) is simply the integral of f ; Lemma 5.11 then shows that f ⋆ is optimal. □

Appendix A. Proof of the LIL for the centre of mass

This section deals with the centre of mass processGn defined by (1.3), and its associated
convex hull Gn = hull{G0, G1, . . . , Gn}. In particular, we prove our LIL in this context,
Theorem 3.4, which in the planar case is the statement (1.4), and Proposition A.1, which
gives a lower bound on the constant in (1.4).

Proof of Theorem 3.4. Observe that f 7→ gf is a (Lipschitz) continuous functional since,
for all f1, f2 ∈ C0

d ,

∥gf1(t)− gf2(t)∥ ≤ 1

t

∫ t

0

∥f1(s)− f2(s)∥ds, for 0 < t ≤ 1,

so ρ∞(gf1 , gf2) ≤ ρ∞(f1, f2). Hence the functional f 7→ hull gf [0, 1] is continuous from
(C0

d , ρ∞) → (C0
d, ρH). Recall the definition of the interpolated trajectory Yn from (2.4).

Theorem 3.2 implies that the sequence ψn(hull gYn [0, 1]) in C0
d is relatively compact, and its

set of limit points is {H(gh) : h ∈ Wd,µ,Σ}. Every h ∈ Wd,µ,Σ is of the form h = (Iµ,Σ
1/2

µ⊥
f)

for f ∈ Ud−1, and then gh = (Iµ/2,Σ
1/2

µ⊥
gf ). We can now argue similarly to in the proof

of Theorem 1.2 above to get

lim sup
n→∞

Vd(hull gYn [0, 1])√
2d−1nd+1(log log n)d−1

= λ̃d ·
∥µ∥
2

·
√
detΣµ⊥ , a.s., (A.1)

with λ̃d as defined at (3.2). The LIL at (A.1) does not yet yield the LIL in Theorem 3.4,
because, unlike the analogous step in the proof of Theorem 1.2, there is a discrepancy
between hull gYn [0, 1] (for the interpolated path Yn) and Gn. To quantify the error, write
for n ∈ N and t ∈ [0, 1],

∆n(t) := gYn(t)−G⌊nt⌋.
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We claim that

lim sup
n→∞

sup
t∈[0,1]

∥∆n(t)∥ <∞, a.s. (A.2)

The bound (A.2) will allow us to bound the difference between Vd(hull gYn [0, 1]) and
Vd(Gn) using the Steiner formula (1.5); to do so, we need bounds on the lower intrinsic
volumes. At this point we can apply Theorem 3.2, and argue as in the proof of The-
orem 1.1 that, similarly to (4.7), for each k ∈ {1, 2, . . . , d}, there is a constant C < ∞
for which

lim sup
n→∞

Vk(Gn)√
nk+1(log log n)k−1

≤ C, a.s. (A.3)

(Note that in (A.3) we are not claiming that the lim sup is a.s. constant, and we have
not claimed that the zero–one law in Theorem 4.4 applies.) From (A.2), (A.3), and
monotonicity of intrinsic volumes, we obtain from the Steiner formula (1.5) that, for
every ε > 0,

lim
n→∞

|Vd(hull gYn [0, 1])− Vd(Gn)|
n(d/2)+ε

= 0, a.s. (A.4)

Then (A.4) together with (A.1) yields the LIL in Theorem 3.4.
It remains to verify the claim (A.2). For t ∈ [0, 1] and n ∈ N,∫ t

0

Yn(s)ds =

∫ ⌊nt⌋/n

0

Yn(s)ds+

∫ t

⌊nt⌋/n
Yn(s)ds.

For simplicity of notation, write k := ⌊nt⌋ and θ := nt − ⌊nt⌋, so that k ∈ {0, 1, . . . , n}
and 0 ≤ θ < 1, and t = k+θ

n
. Then∫ t

0

Yn(s)ds =
k−1∑
i=0

∫ (i+1)/n

i/n

Yn(s)ds+

∫ (k+θ)/n

k/n

Yn(s)ds,

where, for any θ ∈ [0, 1], by (2.4),∫ (i+θ)/n

i/n

Yn(s)ds =

∫ (i+θ)/n

i/n

(Si + (ns− i)Zi+1) ds =
θ

n
Si +

θ2

2n
Zi+1.

It follows that∫ t

0

Yn(s)ds =
1

n

k−1∑
i=0

Si +
1

2n
Sk +

θ

n
Sk +

θ2

2n
Zk+1 =

k

n
Gk +

2θ − 1

2n
Sk +

θ2

2n
Zk+1.

Hence, for k ≥ 1,

gYn(t) =
1

t

∫ t

0

Yn(s)ds =
k

k + θ
· n
k

∫ t

0

Yn(s)ds =
k

k + θ

[
Gk +

2θ − 1

2k
Sk +

θ2

2k
Zk+1

]
.

Thus we obtain, by the triangle inequality,

lim sup
n→∞

sup
0≤t≤1

∥gYn(t)−G⌊nt⌋∥ ≤ ∥Z1∥+ sup
k∈N

[
∥Gk∥
k

+
∥Sk∥
2k

+
∥Zk+1∥
2k

]
,

which is a.s. finite, since the strong law implies that ∥Sk∥/k → ∥µ∥ and ∥Gk∥/k → ∥µ∥/2
(see e.g. Proposition 1.1 of [19]). This verifies (A.2) and hence completes the proof. □

In the remainder of this section, we establish the following bound on the constant ϑ
from (1.4).

Proposition A.1. It holds that ϑ ≥ 0.090435.
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Proof. The d = 2 case of Theorem 3.4 says that, if µ ̸= 0,

lim sup
n→∞

A(Gn)√
2n3 log log n

= λ̃2 ·
∥µ∥
2

·
√

detΣµ⊥ ,

where, by (3.2), λ̃2 := supf∈U1
A(H(gf )). Comparison with (1.4) shows that

ϑ =
1√
2
· sup
f∈U1

A(H(gf )). (A.5)

The proof of Proposition A.1 goes by exhibiting an f ∈ U1 for which A(H(gf )) ≥
0.127894575. Define the one-parameter family fa : [0, 1] → R (a2 ≤ 27) by

fa(t) := at2 log t−

(
2a

3
+

3

2

√
1− a2

27

)
t2 +

(
2a

3
+

√
1− a2

27

)
t. (A.6)

Then the choice a = 4.059781 yields the stated bound (we explain below the origin of
this choice of parametric family, and the numerical choice of a). Indeed, the concave
majorant of gf for f = fa with this choice of a coincides with gf over an interval [0, t0]
and then follows the straight line to (1, 0); numerical calculation gives t0 ≈ 0.65213156
and then A(H(gf )) ≥ 0.127894575, as claimed. □

We end this section with an heuristic explanation for how we went about looking for
the f exhibited in the proof of Proposition A.1, as this may prove useful for readers who
seek to improve our bound. First note that some calculus yields∫ 1

0

gf (t)dt =

∫ 1

0

f(t) log(1/t)dt = gf (1) +

∫ 1

0

f ′(u)u log u du.

While it is not at all clear that the reductions for the analogous problem presented in
Section 5.3 are applicable in this case, following the reasoning of Lemma 5.11 suggests
trying to choose f to

maximize

∫ 1

0

f ′(u)u log u du, subject to

∫ 1

0

f(u)du = 0,

∫ 1

0

f(u)2du ≤ 1. (A.7)

The f which solves (A.7) is of the form f(t) = at2 log t+ bt2+ ct, and the two constraints
in (A.7) fix b and c, to give the one-parameter family fa defined at (A.6). The optimal

fa for (A.7) has a = 6
√
3/7, which gives

∫ 1

0
gf (t)dt =

√
21/6 ≈ 0.12729. However,

the gf that results from f = fa is non-concave, so in fact A(H(gf )) ≈ 0.12781. This
means that (A.7) is not the correct optimization problem to evaluate ϑ; but restricting
ourselves to functions fa of the form given at (A.6), we may nevertheless try to maximize

A(H(gf )). Rather than a = 6
√

3/7 ≈ 3.927922, numerical experimentation shows that
a better choice is a = 4.059781, as we used in the proof of Proposition A.1.

Appendix B. Some extensions of Khoshnevisan’s examples for the
zero-drift case

If Y ∼ N (0,Σ) for a symmetric, nonnegative-definite d-dimensional matrix Σ with
symmetric square-root Σ1/2, then u⊤Y is univariate normal with mean 0 and variance
u⊤Σu. Since Σ is symmetric, its largest eigenvalue is given by

σ2
⋆ := sup

u∈Sd−1

(u⊤Σu) = sup
u∈Sd−1

Var(u⊤Y ) = sup
u∈Sd−1

∥Σ1/2u∥2 = ∥Σ1/2∥2op = ∥Σ∥op. (B.1)

Then σ⋆ is the largest eigenvalue of Σ1/2; let eΣ ∈ Sd−1 denote a unit-length eigenvector
of Σ1/2 corresponding to σ⋆.
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Example B.1 (Diameter). Suppose that d ∈ N and (M) holds with µ = 0. Then

lim sup
n→∞

diamHn√
2n log log n

= σ⋆, a.s. (B.2)

To prove this, observe that, from (4.6) applied to f ∈ Ud with M = Σ1/2,

sup
f∈Ud

diam(Σ1/2f [0, 1]) ≤ sup
f∈Ud

∥Σ1/2∥op = σ⋆, (B.3)

by (B.1). On the other hand,

diam(Σ1/2f [0, 1]) ≥
∣∣e⊤Σ(Σ1/2(f(1)− f(0)))

∣∣ = σ⋆
∣∣e⊤Σf(1)∣∣ .

Take f(t) = eΣt, so ∥f ′(u)∥2 = 1 and f ∈ Ud, to see that

sup
f∈Ud

diam(Σ1/2f [0, 1]) ≥ σ⋆. (B.4)

Combining (B.3) and (B.4), we obtain (B.2) by an application of Theorem 2.4 with
F (A) = diamA, noting that the diameter functional is homogeneous of order β = 1.
This extends Khoshnevisan’s Example 4.1 [14, pp. 387–388], which had Σ = I. △

Remark B.2. The result (B.2) may be compared with

lim sup
n→∞

∥Sn∥√
2n log log n

= σ⋆, a.s., (B.5)

as can be obtained either from Strassen’s theorem (Theorem 2.2), or directly from the
one-dimensional Hartman–Wintner LIL [4, p. 382]. Indeed, the one-dimensional random
walk u⊤Sn satisfies

lim sup
n→∞

u⊤Sn√
2n log log n

= σu, a.s.,

where σ2
u := u⊤Σu. This holds simultaneously for all u in a countable dense subset of Sd−1,

which is enough to conclude (B.5), since ∥x∥ = supu∈Sd−1(u⊤x) and supu∈Sd−1(u⊤Σu) = σ2
⋆.

Example B.3 (Volume). Suppose that d ∈ N and (M) holds with µ = 0. Then, there
exists a constant vd ∈ (0,∞) such that

lim sup
n→∞

Vd(Hn)

(2n log log n)d/2
= (detΣ)d/2vd, a.s., (B.6)

where vd := supf∈Ud
Vd(hull f [0, 1]). Khoshnevisan [14, p. 389] established (B.6) in the

case Σ = I and proved that v2 = 1/(2π). The case of general Σ follows from Theorem 2.4
with F = Vd (a functional that is homogeneous of order β = d) in the same way as
described in [14], accounting for the linear transformation Σ1/2. △
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