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Abstract
In the periodic temporal graph realization problem introduced by Klobas et al. [SAND ’24] one
is given a period ∆ and an n × n matrix D of desired fastest travel times, and the task is to
decide if there is a simple periodic temporal graph with period ∆ such that the fastest travel time
between any pair of vertices matches the one specified by D. We generalize the problem from
simple temporal graphs to temporal graphs where each edge can appear up to ℓ times in each
period, for some given integer ℓ. For the resulting problem Multi-Label Periodic TGR, we
show that it is fixed-parameter tractable for parameter n and for parameter vc + ∆, where vc is
the vertex cover number of the underlying graph. We also show the existence of a polynomial
kernel for parameter nu + dmax, where nu is the number of non-universal vertices of the underlying
graph and dmax is the largest entry of D. Furthermore, we show that the problem is NP-hard for
each ℓ ≥ 5, even if the underlying graph is a tree, a case that was known to be solvable in polynomial
time if the task is to construct a simple periodic temporal graph, that is, if ℓ = 1.
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1 Introduction

Graph realization problems are problems where one is given information about a certain
property of a graph, such as the matrix of shortest-path distances or the degree sequence,
and wants to decide whether there exists a graph for which that property matches the given
information (and to find such a graph, if it exists). A wide range of graph realization problems
have been studied for static graphs for many years, with the work by Erdős and Gallai [9]
on realizing a given degree sequence and the work by Hakimi and Yau [10] on realizing a
given distance matrix by an edge-weighted graph being two particularly early examples. In
recent years, temporal graphs, i.e., graphs whose edge set may change in each time step,
have received substantial attention. In temporal graphs, one usually considers paths that
traverse at most one edge in each time step (and we also do so in this paper), although
non-strict paths where several edges can be traversed in the same time step have also been
studied. Many classical graph problem have been adapted and studied in the temporal graph
setting (see [14] for an introduction to temporal graphs and [4] for a broader overview of
different classes of time-varying graphs). Therefore, considering graph realization problems
in the temporal graph setting is a natural and timely direction. Very recently, Klobas et
al. [12] have started this line of research and introduced the following periodic temporal
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graph realization problem (Periodic TGR): Given a period ∆ and an n × n integer matrix
D that specifies the desired fastest travel times for each pair of vertices, find a simple periodic
temporal graph G with period ∆ such that the fastest travel times in G match those given
by D (or decide that no such temporal graph exists). Here, a periodic temporal graph is
simple if each edge of the underlying graph appears exactly once in each period.

Klobas et al. [12] noted that the consideration of periodic temporal graphs can be motivated
by, for example, railway networks, satellite networks, or social networks. They showed that
Periodic TGR is NP-hard for any ∆ ≥ 3 and also W[1]-hard when parameterized by
the feedback vertex number of the underlying graph. (The latter result also applies to the
non-periodic version of the problem if the distance matrix can have entries equal to ∞.)
Here, the underlying graph is the graph containing edges between all vertex pairs that have
distance 1 according to D. They showed that the problem can be solved in polynomial time
if the underlying graph is a tree or a cycle, and that it is fixed-parameter tractable (FPT)
when parameterized by the feedback edge number of the underlying graph. Finally, they
raised a number of interesting questions for future research, including the investigation of
Periodic TGR with the vertex cover number of the underlying graph as parameter and
with parameter combinations that include a structural parameter and the period ∆.

Our contribution. In this paper, we follow up on the work by Klobas et al. [12]. Furthermore,
we generalize Periodic TGR from simple periodic temporal graphs to ℓ-label periodic
temporal graphs, i.e., to periodic temporal graphs where each edge of the underlying graph
is allowed to appear up to ℓ times in each period. This problem (Multi-Label Periodic
TGR) is defined as follows: Given a period ∆ and an n × n integer matrix D that specifies
the desired fastest travel times for each pair of vertices and a positive integer ℓ, find an
ℓ-label periodic temporal graph G with period ∆ such that the fastest travel times in G
match those given by D (or decide that no such temporal graph exists). Clearly, Periodic
TGR is the special case of Multi-Label Periodic TGR where ℓ = 1. We also consider
the non-periodic version (Multi-Label TGR). While Klobas et al. mainly considered
parameters that relate to how close the underlying graph is to being a tree, we explore also
the opposite end of the spectrum and consider a parameter that measures how close the
underlying graph is to being a clique, namely the number of non-universal vertices. As the
problem is trivial if the underlying graph is a clique, parameters that measure closeness to a
clique are interesting candidates for obtaining FPT algorithms.

We obtain the following main results:
The known NP-hardness proof for Periodic TGR [12] only applies to Multi-Label
Periodic TGR with ℓ = 1 and leaves open the complexity for ℓ ≥ 2. We show that
Multi-Label Periodic TGR is NP-hard for every ℓ ≥ 1 even if the largest entry in D

is 3. For ℓ ≥ 3, we show NP-hardness even if the underlying graph has a size-1 feedback
vertex set.
In contrast to the known result that Periodic TGR can be solved in polynomial time
for trees [12], we show that Multi-Label Periodic TGR is NP-hard for any ℓ ≥ 5
even if the underlying graph is a star.
Both Multi-Label Periodic TGR and Multi-Label TGR are FPT for parameter n.
Here, n is the number of vertices. (For Periodic TGR, this result is implied by the FPT
algorithm for parameter feedback edge number by Klobas et al. [12], but our algorithm is
conceptually simpler and can handle the multi-label problem variants.)
Multi-Label Periodic TGR is FPT for parameter vc + ∆, where vc is the vertex
cover number of the underlying graph.
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Multi-Label TGR can be solved in O(pn4) time if D has no entries equal to ∞, ℓ ≥ n2,
and the underlying graph is such that for each pair (u, v) of vertices the number of u-v
paths is at most p. For trees and cycles, we have p ≤ 2, and hence the algorithm runs in
polynomial time.
Multi-Label Periodic TGR admits a polynomial kernel for parameter nu + dmax and
is hence FPT for that parameter, where nu is the number of non-universal vertices of the
underlying graph and dmax is the largest entry of D.

The remainder of the paper is structured as follows. After discussing further related work
below, we give formal definitions and present preliminary results in Section 2. Our hardness
results are presented in Section 3, and our algorithmic results in Section 4. Section 5 gives
conclusions and open problems.

Proofs of statements marked with (⋆) are deferred to the full version.

Related work. For a general introduction to temporal graphs, we refer to the article by
Michail and Spirakis [14]. The only previous work dealing with the problems we consider
(but only for the case of simple temporal graphs) is the recent work by Klobas et al. [12],
which has already been discussed above. Other settings where the task is to assign time
labels to the edges of a graph in order to create a temporal graph have also been studied,
but mainly with the goal of ensuring certain temporal connectivity properties rather than
realizing pre-specified journey durations. For example, Akrida et al. [1] studied the problem
of assigning (multiple) labels to the edges of a given graph in such a way that the resulting
temporal graph is temporally connected (i.e., there exist u-v journeys for all pairs (u, v) of
vertices), with the objective of minimizing the total number of labels used. They showed
that O(n) labels suffice. Klobas et al. [11] showed that the problem can be solved optimally
in polynomial time but becomes NP-hard if restrictions are placed on the lifetime of the
temporal graph or if connectivity needs to be established only for a subset of the vertices.
Mertzios et al. [13] studied variations of the problem where the goal is to minimize the
maximum number of labels assigned to any single edge, termed the temporality of the
temporal graph. Note that the parameter ℓ that we consider in this paper corresponds to
the temporality. Enright et al. [8] considered the problem of reordering the snapshots of a
given temporal graph in order to minimize reachability.

2 Preliminaries

For details about parameterized complexity we refer to the standard monographs [5, 7].
For any integers i, j with i ≤ j we write [i, j] for the set {i, i + 1, i + 2, . . . , j}. We use

standard notation for (static) graphs (see, e.g., [6]). For a graph G = (V, E) and a vertex v

of G, we denote by NG(v) the neighbors of v in G and define NG[v] := NG(v) ∪ {v}. If the
graph is clear from the context, we may omit the subscript. We write uv to denote an edge
{u, v} in an undirected graph.

A temporal graph is a graph that evolves over discrete time steps and whose vertex set
remains the same while the edge set may be different in each time step. Two standard ways
to represent a temporal graph G with lifetime L are as follows: The first representation uses
a pair (G = (V, E), λ), where G = (V, E) is an undirected graph and λ : E → (2[1,L] \ {∅})
is a function that assigns to each e ∈ E the non-empty set of time steps during which e is
present. The graph G is called the underlying graph of G. We also call λ a multi-labeling to
emphasize that an edge can receive more than one label. The second representation uses a
sequence (G1, G2, . . . , GL) of snapshots or layers, where Gi = (V, Ei), for 1 ≤ i ≤ L, is the
graph on vertex set V that contains all edges that are present in time step i. The underlying
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graph is then the graph G = (V, E) with E =
⋃

i∈[1,L] Ei. The two representations are
mathematically equivalent, and each can be transformed into the other in a straightforward
way. For implementation purposes, we assume in this paper that temporal graphs are
represented in the form (G, λ), but for ease of exposition we will also often use terminology
that refers to the representation using explicit snapshots. We use the convention that n = |V |
and m = |E| throughout.

If a temporal graph G with lifetime L is considered as a non-periodic graph, one assumes
that the graph ceases to exist once time step L has passed. If G is considered as a periodic
graph (with period L), then it is assumed that the snapshots repeat after L time steps, i.e.,
Gi+zL = Gi for all i ∈ [1, L] and all positive integers z. A temporal graph with lifetime or
period L is called simple if every edge of the underlying graph appears in only one snapshot
among the first L time steps, i.e., if |λ(e)| = 1 for all e ∈ E. For simple temporal graphs, we
also write λ(e) = t instead of λ(e) = {t} if t ∈ [1, L] is the time step in which edge e appears.
For periodic temporal graphs, we usually denote the period by ∆ instead of L.

If an edge e is present in time step t of a temporal graph G, we say that (e, t) is a time-edge
of G. A u-v journey (or u-v temporal path) in G is a sequence ((e1, t1), (e2, t2), . . . , (er, tr))
of time-edges such that ti < ti+1 for 1 ≤ i < r and (e1, e2, . . . , er) is a u-v path in the
underlying graph of G. The journey starts or begins at u in time step t1, reaches or arrives
at v in time step tr, and has duration or travel time tr − t1 + 1. For vertices u, v and any
time step t, an earliest-arrival u-v journey at time t is a u-v journey that begins at u at
some time ≥ t and minimizes the time when it arrives at v. A fastest u-v journey is a u-v
journey of minimum duration, and the duration of that journey is referred to as the fastest
travel time from u to v.

A distance matrix D is an n × n matrix whose values are non-negative integers or ∞. If
all values are non-negative integers, we say that D is finite-valued. The rows (and columns)
of D correspond to n vertices, and we use V to denote the set of these n vertices. For two
vertices u, v ∈ V , we use Duv to denote the entry in row u and column v of D, and that
entry specifies the desired fastest travel time from u to v. We say that a temporal graph G
with vertex set V realizes D if, for any two vertices u, v ∈ V , the duration of a fastest u-v
journey in G is equal to Duv. (If Duv = ∞, this means that G does not contain any u-v
journey.) We can assume that Duv = 0 if and only if u = v, as otherwise there cannot exist
a temporal graph that realizes D. Furthermore, we can also assume for any pair (u, v) with
u ̸= v that Duv = 1 if and only if Dvu = 1, as a journey with duration one uses a single
time-edge and thus is also a journey in the opposite direction. We only consider distance
matrices that satisfy these assumptions throughout this paper. The graph G = (V, E) that
contains precisely those edges uv for which Duv = Dvu = 1 is called the underlying graph
induced by D as any temporal graph that realizes D must have underlying graph G.

As mentioned in the introduction, Klobas et al. [12] introduced the problem of constructing,
for a given n × n distance matrix D and period ∆, a periodic simple temporal graph with n

vertices and period ∆ that realizes D. We generalize this problem by allowing multiple labels
per edge, with an input parameter ℓ specifying how many labels an edge can receive at most:

Multi-Label Periodic TGR
Input: An integer ℓ, an n × n distance matrix D, and a period ∆.
Question: Is there a periodic temporal graph G with period ∆ that realizes D and
in which no edge receives more than ℓ labels?

For this problem we assume that D is finite-valued, as otherwise the problem could
be split into independent subproblems on temporally connected components. Note that,
contrary to the case of non-periodic temporal graphs, the temporal reachability relation in
periodic temporal graphs is symmetric and transitive.
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Furthermore, we also consider the non-periodic variant of the problem:

Multi-Label TGR
Input: An integer ℓ and an n × n distance matrix D.
Question: Is there a non-periodic temporal graph G (with arbitrary lifetime) that
realizes D and in which no edge receives more than ℓ labels?

For the non-periodic variant, we may allow the distance matrix to contain entries equal
to ∞. We use dmax = max{Duv | u, v ∈ V, Duv ̸= ∞} to refer to the largest finite entry of D.

Basic observations. In the following, we present some basic observations about the problems
under consideration. First, we observe that each yes-instance of Multi-Label Periodic
TGR can be realized with at most n2 labels per edge.

▶ Lemma 1 (⋆). Let I be an instance of Multi-Label Periodic TGR or Multi-Label
TGR with ℓ ≥ n2. Then reducing ℓ to n2 yields an equivalent instance.

The argument to show Lemma 1 is that a solution only needs to realize one fastest u-v
journey for each of the n(n − 1) < n2 vertex pairs (u, v), and for each such u-v journey it
suffices to assign at most one additional label to every edge. Thus, it can never be necessary
to assign more than n2 labels to an edge.

Hence, in the following we assume that for each instance of Multi-Label Periodic
TGR under consideration, ℓ ≤ n2. Moreover, we can further assume that ℓ ≤ ∆, since no
edge can receive more than ∆ labels.

Next, we observe that a yes-instance can be realized by using time labels of value at
most ℓ · dmax · n2.

▶ Lemma 2 (⋆). Let I := (ℓ, D) (I := (ℓ, D, ∆)) be a yes-instance of Multi-Label TGR
(Multi-Label Periodic TGR). There is a solution for I with largest time label at most
ℓ · dmax · m ≤ ℓ · dmax · n2.

The proof of Lemma 2 considers gaps (sequences of edgeless snapshots) between non-empty
snapshots. For Multi-Label TGR it is clear that gaps of length greater than dmax − 1 are
never necessary and can be reduced by removing empty snapshots in the gap. As there are at
most mℓ snapshots with at least one edge, the result follows. For Multi-Label Periodic
TGR, if there is a gap that is longer than dmax − 1, we can perform a cyclic shift of the time
labels so that the longest gap appears in the final steps of the period. All gaps before that
final gap can then be reduced to size at most dmax − 1 in the same way as in the non-periodic
case, showing the lemma.

Note that for Multi-Label Periodic TGR, we can thus reduce ∆ to at most ℓ·n2·dmax ≥
ℓ · m · dmax + dmax if the period ∆ is larger than ℓ · m · dmax + dmax.

▶ Corollary 3. For an instance (ℓ, D, ∆) of Multi-Label Periodic TGR with ∆ >

ℓ · n2 · dmax, the instance (ℓ, D, ℓ · n2 · dmax) is an equivalent instance of Multi-Label
Periodic TGR.

Note that this also implies the existence of polynomial kernels for Multi-Label Periodic
TGR of size O(ℓ · n2 · dmax) ⊆ O(n4 · dmax), since ℓ can be reduced to n2 and ∆ can be
reduced to ℓ · n2 · dmax.
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3 NP-Hardness for Multi-Label Periodic TGR on restricted instances

In this section, we present three hardness results for Multi-Label Periodic TGR on
very restricted instances. Recall that Multi-Label Periodic TGR for ℓ = 1 is known to
be NP-hard for each ∆ ≥ 3 and that for ℓ = 1, Multi-Label Periodic TGR and Multi-
Label TGR are known to be NP-hard and W[1]-hard when parameterized by the feedback
vertex set number [12]. All three of our hardness results are obtained by reductions from a
restricted version of Vertex Cover. First, we show that for each ℓ ≥ 1, Multi-Label
Periodic TGR is NP-hard even if dmax = 3. Afterwards, we show that for each ℓ ≥ 5,
Multi-Label Periodic TGR is NP-hard even on stars, which stands in stark contrast to
the fact that for ℓ = 1 the problem can be solved in polynomial time on trees [12]. Finally,
we show hardness for ℓ ∈ {3, 4} on graphs that are very close to trees, that is, on graphs
with a feedback vertex set of size 1.

We start by showing that for each ℓ ≥ 1, Multi-Label Periodic TGR is NP-hard
even if dmax = 3 and the underlying graph is a dense split graph, i.e., a graph where the
non-universal vertices form an independent set.

▶ Theorem 4. For each ℓ ≥ 1, Multi-Label Periodic TGR is NP-hard even if the
underlying graph is a dense split graph, ∆ = 6, and dmax = 3.

Proof. We reduce from Vertex Cover which is known to be NP-hard even if the input
graph has maximum degree 3, contains no cycle of length three or four, and no two vertices
of degree 3 are adjacent [15].

Vertex Cover
Input: A graph G = (V, E) and an integer k.
Question: Is there a vertex cover of size at most k for G, that is, a set of vertices S

of size at most k, such that each edge of E is incident with at least one vertex of S?

Let ℓ ≥ 1. (Our reduction does not actually depend on ℓ; it thus shows NP-hardness for
all values of ℓ simultaneously.)

Let I := (G = (V, E), k) be an instance of Vertex Cover with the above restrictions
and let n := |V | with n ≥ 13. Clearly, we can assume k < n as I is trivially a yes-instance
otherwise. Without loss of generality, we assume that G contains four isolated edges x1x2,
y1y2, z1z2, and w1w2. (We can ensure this property for any graph by adding four isolated
edges and increasing k by four.) These four edges will be helpful to prove that D can be
realized with only one label per edge, if I is a yes-instance of Vertex Cover.

We construct an instance I ′ := (ℓ, D, ∆) of Multi-Label Periodic TGR as follows:
We set ∆ = 6. The underlying graph G′ := (V ′, E′) of I ′ is set to be a dense split graph with
V ′ = V ∪ S, where V is an independent set and S = {s1, s2, . . . , sk} is the vertex set of a
clique of size k. The edge set of G′ is therefore E′ = E′

1 ∪ E′
2, where E′

1 = {vs | v ∈ V, s ∈ S}
and E′

2 = {sisj | 1 ≤ i < j ≤ k}. Next, we describe the distance matrix D. As always, we
have Duu = 0 for all u ∈ V ′ and Duv = Dvu = 1 for all uv ∈ E′. Orient G by picking for
each edge uv ∈ E a direction (u, v) arbitrarily, and denote the resulting set of arcs by A. We
assume that the arcs corresponding to the four isolated edges mentioned above are (x2, x1),
(y2, y1), (z2, z1), and (w2, w1). For every (u, v) ∈ A, set Duv = 2 and Dvu = 3. For every
pair (u, v) of vertices that do not form an edge in E, set Duv = Dvu = 3. This completes
the construction of I ′. We show that I admits a vertex cover of size at most k if and only if
I ′ is a yes-instance of Multi-Label Periodic TGR.

(⇒) Let C = {c1, c2, . . . , ck} be a vertex cover of size k for I. (If I has a vertex cover
smaller than k, we can add arbitrary vertices to it until |C| = k.) In the following, we
describe a labeling of the edges of G′ that realizes D. This labeling is visualized in Figure 1.
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Without loss of generality, assume ck−3 = x1, ck−2 = y1, ck−1 = z1, and ck = w1. For
i = 1, 2, . . . , k − 2, assign one time label to each edge in E′

1 that is incident with si in G′ as
follows:

For each incoming arc (u, ci) of ci in A, set λ(usi) := 1.
Set λ(cisi) := 2.
For each outgoing arc (ci, v) of ci in A, set λ(vsi) := 3.
For each other vertex r ∈ V \ NG[ci], set λ(rsi) := 5.

Note that these labels generate journeys of duration 2 exactly for the incoming and outgoing
arcs of ci in A.

For i = k − 1 and i = k, we do essentially the same, but all assigned time labels are
shifted by two time steps. Recall that ck−1 = z1 (ck = w1) and that z1 (w1) has no outgoing
neighbor and only one incoming neighbor, namely z2 (w2). The time labels are assigned as
follows:

Set λ(z2sk−1) := λ(w2sk) := 5 and λ(sk−1z1) := λ(skw1) := 6.
For each vertex r ∈ V \ {z1, z2}, set λ(rsk−1) = 3, and
For each vertex r ∈ V \ {w1, w2}, set λ(rsk) = 3.

Note that these labels again generate journeys of duration 2 exactly for the arcs incident
with z1 and w1, that is, arcs (z2, z1) and (w2, w1). As C is a vertex cover of G, every edge in
E is an incoming or outgoing arc in A of at least one vertex in C. Hence, it is clear that a
u-v journey of duration 2 is created for all pairs (u, v) with Duv = 2.

Finally, set λ(e) := 4 for all e ∈ E′
2.

We claim that λ is a solution to I ′. First, note that each edge e ∈ E′ receives only a
single label. We have already shown above that the journeys of duration 2 that are created
are exactly those for all vertex pairs (u, v) with Duv = 2. Furthermore, we can show that a
journey of duration 3 is generated for each vertex pair (u, v) ∈ V × V as follows: Choose
i = k − 1 if u /∈ {z1, z2} and i = k otherwise. Since {z1, z2} and {w1, w2} are disjoint, this
implies that at time step 3 the edge usi exists. Similarly, choose j = k − 3 if v /∈ {x1, x2}
and j = k − 2 otherwise. Since {x1, x2} and {y1, y2} are disjoint, this implies that at time
step 5 the edge sjv exists. The u-v journey of duration 3 is then as follows: Take edge usi

at time 3, edge sisj at time 4, and edge sjv at time 5. Thus, λ solves I ′, and hence I ′ is a
yes-instance of Multi-Label Periodic TGR.

(⇐) Assume that λ is a solution that realizes D and maps each e ∈ E′ to a subset of [1, 6].
For each si ∈ S, let Ni denote the set of edges in E′

1 that are incident with si. Note that
for every distance Duv = 2, there is an i ∈ [1, k], such that a u-v journey with duration 2 is
realized by edges of Ni, since such a journey must pass from u to si and then from that si

to v.

▷ Claim 5. Let Pi be the set of vertex pairs (u, v) ∈ V ×V for which λ realizes a u-v journey
of duration 2 using edges of Ni. Then there exists a vertex ui that all vertex pairs in Pi have
in common.

Proof. We show that it is impossible that λ realizes journeys of duration two for two disjoint
vertex pairs (u, v) and (a, b) in V × V using the edges of Ni. This implies that any two vertex
pairs in Pi share a common vertex. As E does not contain cycles of length 3, this implies
further that there exists one vertex that is common to all vertex pairs in Pi.

Assume for a contradiction that λ realizes journeys of duration 2 for two disjoint vertex
pairs (u, v) and (a, b) in V × V using edges of Ni. Assume without loss of generality that
usi is present at time 1 and vsi at time 2. Let j be such that asi is present at time j and
bsi at time j + 1, where we use the convention that 6 + 1 = 1. Also, let z be a vertex in V

SAND 2024
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v1 v2 v3 v4

v1 v2 v3 v4

S si. . . . . .

1 2 5 3

a b

S

a b

si sj. . .

3 5

4

Figure 1 An example how the distances between different vertices are realized in the constructed
instance of Multi-Label Periodic TGR in the proof of Theorem 4. Top left shows an input instance
of Vertex Cover excluding the additional isolated arcs (w2, w1), (x2, x1), (y2, y1), and (z2, z1).
Bottom left shows how the distances representing the arcs incident with vertex v2 can be realized if
vertex v2 is selected to be the ith vertex of the vertex cover. Top right represents any two distinct
vertices a and b of G and bottom right shows how an a-b journey of duration 3 can be realized by
using two of the four vertices of {sk−3, sk−2, sk−1, sk} ⊆ S. Here, i = k − 1 if a /∈ {z1, z2} and i = k

otherwise, and j = k − 3 if b /∈ {x1, x2} and j = k − 2 otherwise. The labels of the dashed edges are
not depicted, since they depend on a, b, i, and j.

that is adjacent to no vertex in {u, v, a, b} in G (such a vertex must exists as we assume that
n ≥ 13, G has maximum degree 3, and G contains the edges uv and ab). Let k be a time
step in which the edge siz is active. Note that k /∈ {6, 1, 2, 3} as otherwise z has a journey of
duration 2 from or to u or v, a contradiction to λ being a solution while z is adjacent to
neither u nor v. Hence, k ∈ {4, 5}. By symmetry, we can assume k = 4.

Now we show that we obtain a contradiction no matter what the value of j is:
j = 1: We have journeys of duration 2 from u to v, u to b, a to v and a to b, implying
that G must contain the 4-cycle uvab, a contradiction.
j = 2: We have journeys of duration 2 from u to v, u to a, a to b, and v to b, implying a
4-cycle uvba, a contradiction.
j = 6: We have journeys of duration 2 from a to b, a to u, b to v, and u to v, implying a
4-cycle abvu, a contradiction.
j = 3: We have an a-z journey of duration 2, a contradiction to z not being adjacent to a.
j = 4: We have a z-b journey of duration 2, a contradiction to z not being adjacent to b.
j = 5: We have a z-a journey of duration 2, a contradiction to z not being adjacent to a.

As all cases lead to a contradiction, the assumption that λ realizes journeys of duration 2 for
two disjoint vertex pairs (u, v) and (a, b) cannot hold. ◁

By Claim 5, all vertex pairs for which λ realizes a journey of duration 2 using the edges
of Ni have a common vertex ui. As a journey of duration 2 must be realized for every edge
uv of G (either from u to v or from v to u, depending on how the edge has been oriented),
the set U = {u1, u2, . . . , uk} is a vertex cover of G. Furthermore, |U | ≤ k, and hence I is a
yes-instance of Vertex Cover. ◀

Note that in contrast to hardness for dmax = 3 that we have just shown, for each ℓ ≥ 2,
it is not difficult to see that Multi-Label Periodic TGR can be solved in polynomial
time if dmax ≤ 2: If ∆ = 1, the problem is polynomial time solvable, since there is only a
single temporal multi-labeling. If dmax = 1, the underlying graph is a clique and the distance
matrix is realizable by any periodic multi-labeling. If dmax = 2, then the instance is a trivial
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no-instance, if the underlying graph has diameter larger than 2. Otherwise, if the underlying
graph has diameter at most two, we can label each edge with label 1 and 2 (since ℓ ≥ 2) and
so ensure a path between any two vertices of duration 2 that starts at time step 1.

▶ Observation 6. For each ℓ ≥ 2 Multi-Label Periodic TGR can be solved in polynomial
time if dmax ≤ 2.

We now shift to considering the structure of the realized graph. Next, we show that
for ℓ ≥ 5, Multi-Label Periodic TGR is NP-hard even on stars. This implies that
Multi-Label Periodic TGR is NP-hard even if ℓ + vc ∈ O(1), and so FPT algorithms for
parameter ℓ + vc are impossible, unless P = NP.

▶ Theorem 7 (⋆). For each ℓ ≥ 5, Multi-Label Periodic TGR is NP-hard even if the
underlying graph is a star.

Proof sketch. Let ℓ ≥ 5. We again reduce from Vertex Cover where the input graph
contains no cycle of length three or four, the input graph has a maximum degree of 3, and
no two vertices of degree 3 are adjacent.

Let I := (G = (V, E), k) be an instance of Vertex Cover with the above restrictions
and let n := |V | be larger than 10. We construct an instance I ′ := (ℓ, D, ∆) of Multi-Label
Periodic TGR as follows: The underlying graph G′ := (V ′, E′) of I ′ is a star with center c

and leaf set V ∪ {v∗, w∗}. We set Dw∗v∗ := Dv∗w∗ := n2 and for each vertex v ∈ V , we
set Dvv∗ := Dv∗v := Dvw∗ := Dw∗v := n2. For each two distinct vertices u and v of V , we
set Duv := Dvu := 2 if uv is an edge of E, and Duv := Dvu := n2, otherwise. Finally, we
set ∆ := (k + 2) · (n2 + 1) = k · n2 + 2n2 + k + 2. This completes the construction of I ′.

Note that each temporal path between any two vertices u and v of G′ distinct from the
center vertex c is of the form ucv. Since each vertex of V ′ \ {c} has only one incident edge
in G′, we may say in the following that for a temporal multi-labeling, a vertex v ∈ V ′ \ {c}
is active in time step i, if the edge cv exists in time step i.

Observe that for each vertex u ∈ V , journeys of travel time 2 from u to all its neighbors
in G and vice versa can be realized in three consecutive time steps: u is active in the first
and the third of these time steps and all vertices of NG(u) are active in the second time step.
Hence, the journeys of duration 2 from u to all its neighbors in G start in the first time step
and end in the second time step, and the journeys of duration 2 from all neighbors of u in
G to u start in the second time step and end in the third time step. If G admits a vertex
cover of size k, all required journeys of travel time 2 can thus be realized in k such groups of
three consecutive time steps, with a separation of n2 − 2 edgeless time steps between them
(to avoid creating journeys of travel time shorter than n2 between pairs of vertices that are
independent in G). In addition to these k(n2 + 1) time steps, a further 2(n2 + 1) time steps
can be used to realize all the required journeys of travel time n2. For the other direction, we
can show that any feasible realization must have a similar structure, implying the existence
of a vertex cover of size at most k. The detailed proof of correctness is deferred to the full
version. ◀

Since the hardness result above only holds for ℓ ≥ 5, we note that we can also show that
for ℓ ≥ 3, the problem is still NP-hard even on graphs with a size-1 feedback vertex set.

▶ Theorem 8 (⋆). For each ℓ ≥ 3, Multi-Label Periodic TGR is NP-hard even if the
underlying graph has diameter two and a feedback vertex set of size one.
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4 Parameterized algorithms

In this section, we present FPT algorithms for Multi-Label Periodic TGR and Multi-
Label TGR for several parameter combinations. First, we give FPT algorithms for both
problems parameterized by n in Section 4.1. Section 4.2 presents our FPT algorithm for
Multi-Label Periodic TGR parameterized by vc + ∆. Section 4.3 discusses our O(pn4)-
time algorithm for instances of Multi-Label TGR with finite-valued D, ℓ ≥ n2, and
underlying graphs that have at most p different u-v paths for each vertex pair (u, v). Finally,
the polynomial kernel for parameter dmax + nu is shown in Section 4.4, where nu denotes the
number of non-universal vertices in the underlying graph.

4.1 Parameterization by the number of vertices
In this section, we present an FPT algorithm for parameter n for Multi-Label Periodic
TGR. The key idea is to enumerate all possibilities for the sequence of snapshots that contain
at least one edge (and some extra information that specifies for each pair (u, v) a snapshot
in which a u-v journey of shortest duration begins). For each possibility, we use an integer
linear program (ILP) to decide whether it is possible to assign these snapshots to time steps
in such a way that the resulting periodic temporal graph realizes D. The approach extends
to Multi-Label TGR as well.

▶ Theorem 9. Multi-Label Periodic TGR can be solved in nO(ℓ·n2) · |I|O(1) time and
nO(n4) · |I|O(1) time, where |I| denotes the encoding length of the instance.

Proof. Let an instance I = (ℓ, D, ∆) of Multi-Label Periodic TGR be given. Recall
that we can assume that ℓ ≤ n2 due to Lemma 1. Let K = ℓm and T = min{K, ∆}. Note
that T ≤ ℓm ∈ O(n2 ·n2) ⊆ nO(1). We observe that there are at most K non-empty snapshots
in any realization, as each of the m edges can occur in at most ℓ snapshots. Furthermore, it is
clear that there are at most ∆ non-empty snapshots, so the number of non-empty snapshots
is at most T . The number of sequences of at most T non-empty snapshots in which each of
the m edges occurs in at most ℓ snapshots (and in at least one snapshot) can be bounded by
T ℓm = T K , as each such sequence can be encoded by assigning to each of ℓm edge copies
(with ℓ copies of each edge) a number in [1, T ] that identifies the snapshot in which it occurs.
(If an edge occurs fewer than ℓ times, this can be captured by assigning some of its copies
the same number.) Thus, we can enumerate all such sequences in T O(K) ⊆ nO(ℓ·n2) time.

For each such sequence S of non-empty snapshots, we enumerate all possibilities of
assigning to each vertex pair (u, v) with Duv > 1 a number suv in [1, |S|] that identifies the
snapshot in which the journey from u to v that realizes the duration Duv starts. (Note that
if suv = i, this means that the journey starts in the i-th non-empty snapshot. That snapshot
will be present in some time step ti in [1, ∆] that has not yet been determined.) The number
of possibilities to be enumerated is bounded by T n2 ⊆ nO(n2).

Intuitively, we want to proceed along the following lines: For each combination of a
sequence S of snapshots and an assignment of values suv to vertex pairs (u, v) with Duv > 1,
we want to use an ILP to check whether we can assign the i-th snapshot of S to a time step ti,
for all i, in such a way that the resulting periodic temporal graph realizes D. To be able
to formulate the constraints of the ILP, we use an auxiliary temporal graph, without gaps
between the snapshots of S, to determine for each pair (u, v) of vertices and each starting
snapshot i the snapshot at which v can first be reached if starting at u in snapshot i. The
constraints of the ILP can then express that the gaps inserted between the snapshots must
be such that (1) the duration of the u-v journey starting in snapshot suv is equal to Duv,
and (2) the duration of the u-v journey starting in any other snapshot is at least Duv. The
variables of the ILP represent the time steps to which the snapshots get assigned.
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Formally, we process each combination of a sequence S of snapshots and assignment of
values suv to vertex pairs (u, v) with Duv > 1 as follows. Let L = |S| and S = (S1, S2, . . . , SL).
Build a periodic temporal graph GS with period L such that the edges present in time steps
i + zL for all integers z ≥ 0 are those of Si, for 1 ≤ i ≤ L. For every (u, v) ∈ V × V with
Duv > 1 and every i ∈ [1, L], we denote by q(u, v, i) the tuple (j, z), such that each fastest
u-v journey in GS starting at time i ends in time step j + zL, where 1 ≤ j ≤ L. Note that
computing q(u, v, i) can be done in polynomial time, since finding a path of shortest duration
from u to v starting at time step i can be done in polynomial time on non-periodic temporal
graphs [3, 17], and we can simply unroll GS n times to obtain a non-periodic temporal graph
on which the shortest duration of any journey between u and v remains the same. This is
discussed in detail for a more general class of periodic temporal graphs in [2, Remark 1].
Note that in a periodic temporal graph, for any pair (u, v) of vertices for which a u-v journey
exists, there exists a u-v journey of shortest duration that starts in a snapshot of the first
period. Therefore, it suffices to consider only start times i ∈ [1, L] for u-v journeys in GS .

We want to determine whether there exist values ti for 1 ≤ i ≤ L with 1 ≤ t1 < t2 <

· · · < tL ≤ ∆ such that the periodic temporal graph G defined as follows realizes D:
for each i ∈ [1, L], Si is the set of edges of G that are present in time step ti, and
no edge is present in any of the time steps in [1, ∆] \ {ti | 1 ≤ i ≤ L}.

Observe that q(u, v, i) = (j, z) if and only if the earliest-arrival journey from u to v in G starting
at time ti reaches v in time step tj + z∆ (and thus has duration δ(u, v, ti) = tj + z∆ − ti + 1).
This is because GS can be obtained from G by removing all empty snapshots.

The temporal graph G realizes D if, for all (u, v) with D(u, v) > 1, δ(u, v, ti) = Duv for
at least one ti and δ(u, v, ti) ≥ Duv for all ti. The purpose of the value suv that we have
enumerated is to give a value of i with the property that δ(u, v, ti) = Duv. We can then
formulate the following ILP with variables t1, t2, . . . , tL to check whether there exist values
of these variables such that G realizes D:

tj + z∆ − ti + 1 = Duv ∀(u, v) with Duv > 1, i = suv, q(u, v, i) = (j, z)
tj + z∆ − ti + 1 ≥ Duv ∀(u, v) with Duv > 1, ∀i ̸= suv, q(u, v, i) = (j, z)
t1 ≥ 1
ti − ti−1 ≥ 1 ∀i with 2 ≤ i ≤ L

tL ≤ ∆

(ILP)

Note that there is no objective function as we only want to check feasibility, i.e., check
whether there exist values t1, . . . , tL that satisfy the constraints. The first two constraints
express that the earliest-arrival path from u to v starting in time step tsuv

has duration
Duv and the earliest-arrival paths from u to v starting in any other time step have duration
at least Duv. The last three constraints ensure that 1 ≤ t1 < t2 < · · · < tL ≤ ∆. Thus, a
feasible solution of the ILP gives a periodic temporal graph that is a solution to the given
instance I of Multi-Label Periodic TGR.

As the ILP has L ≤ T variables, we can solve each such ILP instance in (log L)O(L) ·
|I|O(1) ⊆ (log n)O(ℓ·n2) · |I|O(1) time [16]. We solve the ILP once for each combination of a
sequence S of non-empty snapshots and an assignment of values suv to all pairs (u, v) with
Duv > 1. Thus, we solve nO(ℓ·n2) different ILPs. The resulting overall running-time is then
nO(ℓ·n2) · |I|O(1). The claimed running-time follows because we can assume ℓ ≤ n2. The
algorithm is correct because, if I is a yes-instance, one of the enumerated combinations of a
sequence of snapshots and an assignment of values suv corresponds to a realization of D, and
for that combination a realization of D will be obtained from the solution of the ILP. ◀
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For the special case ℓ = 1 of Multi-Label Periodic TGR, our FPT algorithm of
Theorem 9 has a running time of nO(n2) · |I|O(1) and is a conceptually simpler FPT algorithm
for Periodic TGR than the FPT algorithm for n that is implied by the algorithm for
Periodic TGR parameterized by the feedback edge number of the underlying graph from [12].
The main advantage of our approach is that it extends to arbitrary ℓ. Furthermore, our
approach also works for the non-periodic version.

▶ Corollary 10 (⋆). Multi-Label TGR can be solved in nO(ℓ·n2) · |I|O(1) time and nO(n4) ·
|I|O(1) time, where |I| denotes the encoding length of the instance.

4.2 Parameterization by the vertex cover number plus the period
In this section we give an FPT algorithm for Multi-Label Periodic TGR parameterized
by vc + ∆. The key idea of our approach is to show that any given instance can be reduced
to one where the number of vertices in the independent set that have the same neighbors
can be bounded by a function of the parameter. It then suffices to apply the FPT algorithm
for parameter n to this reduced instance.

▶ Theorem 11. There is an FPT algorithm for Multi-Label Periodic TGR parameterized
by vc + ∆.

Recall that ℓ is upper bounded by ∆. Hence, to show Theorem 11, it is sufficient to
present an FPT algorithm for parameter vc + ∆ + ℓ. Let (ℓ, D, ∆) be the given instance of
Multi-Label Periodic TGR. Recall that vc denotes the size of a minimum vertex cover
of the underlying graph G = (V, E). Observe that the number of possible label sets assigned
to any particular edge e ∈ E can be bounded by ∆ℓ: Each of the up to ℓ labels assigned to
the edge is a value in [1, ∆], and combinations where fewer than ℓ labels are assigned to the
edge can be modeled as assigning the same label several times.

We call two vertices u, v ∈ V distance twins if they have the same distance to every
vertex in V \ {u, v} and to each other. This means that their rows in the distance matrix
D are identical, and their columns in D are identical, up to the obvious difference in the
intersection of their rows with their columns: Duu = 0, Duv = Dvu, and Dvv = 0. Note that
the distance twin relation is an equivalence relation on V .

Let C be a vertex cover of G of size vc, and let I = V \ C be the independent set that
is the complement of C. Partition I into neighborhood classes I = {I1, I2, . . . , It} based on
adjacency to C, i.e., two vertices u, v ∈ I are in the same class Ij if and only if N(u) = N(v).
Note that, t ≤ 2vc.

Consider one part Ij of the partition I. For each vertex u ∈ Ij , there are at most ∆vc·ℓ

different ways of assigning label sets to the (at most vc) edges incident with u. For any
fixed labeling λ of E, call two vertices u, v ∈ Ij label twins if for every vertex w ∈ N(u),
λ(uw) = λ(vw). The label twin relation partitions the set Ij into equivalence classes that we
call label classes. Note that there can be at most ∆vc·ℓ label classes for Ij .

Observe that all vertices u, v in a label class have the same distance to every vertex in
V \ {u, v} and to each other. This means that, if λ realizes D, then u and v must be distance
twins. The distance twin relation partitions Ij into distance classes. If Ij contains more than
∆vc·ℓ distance classes, the given instance is a no-instance, because at most ∆vc·ℓ different
distance classes can be realized by the at most ∆vc·ℓ different label classes.

▶ Observation 12. If a neighborhood class contains more than ∆vc·ℓ distance classes, then
the considered instance is a trivial no-instance of Multi-Label Periodic TGR.
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If Ij contains at most ∆vc·ℓ different distance classes, it suffices to keep 2∆vc·ℓ of the
vertices in each such class, while any additional vertices of the class can be deleted (i.e., the
corresponding rows and columns of there vertices can be removed from D).

▶ Lemma 13 (⋆). Let Ij be a neighborhood class and let F denote a distance class of Ij of
size more than 2∆vc·ℓ. Then removing one vertex of F from G yields an equivalent instance.

With this statement at hand, we are now able to present the algorithm for Multi-Label
Periodic TGR.

Proof of Theorem 11. For each neighborhood class Ij of I and each distance class F of Ij

with |F | > 2∆vc·ℓ, remove |F | − 2∆vc·ℓ arbitrary vertices from F . Due to Lemma 13, this
yields an equivalent instance, where each distance class contains at most 2∆vc·ℓ vertices.
If the resulting instance contains at most vc + 2vc · 2∆2vc·ℓ vertices, the FPT algorithm is
obtained by applying the algorithm behind Theorem 9. Otherwise, if the resulting instance
contains more than vc+2vc ·2∆2vc·ℓ vertices, there is a neighborhood class Ij such that Ij has
more than ∆vc·ℓ distance classes. This is correct, since the new instance contains exactly vc
vertex cover vertices, at most 2vc neighborhood classes, and at most 2∆vc·ℓ vertices in each
distance class. Due to Observation 12, we can thus correctly output that the instance under
consideration is a trivial no-instance of Multi-Label Periodic TGR. ◀

Recall that Multi-Label Periodic TGR is NP-hard even if ℓ = 1 and ∆ = 3 [12]
and that Theorem 7 shows that Multi-Label Periodic TGR is NP-hard even if ℓ = 5
and vc = 1. Hence, neither of the considered parameters can be omitted to still obtain an FPT
algorithm for Multi-Label Periodic TGR. Still, the question remains whether there is an
FPT algorithm parameterized by vc alone for the case ℓ = 1 (Periodic TGR), or if one can
replace ∆ in the combined parameter by some potentially smaller parameter. In particular,
the parameterized complexity of Multi-Label Periodic TGR when parameterized by vc +
dmax + ℓ is open.

4.3 Efficient algorithm for Multi-Label TGR on graphs with few paths
While we have shown Multi-Label Periodic TGR to be NP-hard for any ℓ ≥ 5 even if the
underlying graph is a star, we show in this section that Multi-Label TGR can be solved
in polynomial time if the underlying graph is a tree and ℓ ≥ n(n − 1) and D is finite-valued.
In fact, our result is more general and solves the problem in polynomial time whenever the
number of different u-v paths in the underlying graph can be bounded by a polynomial, for
each vertex pair (u, v).

As a subproblem we consider the problem Path Realization that is defined as follows:
Given a distance matrix D, a pair (u, v) with u ̸= v, and a u-v path P = (u0 = u, u1, . . . , ur =
v) in the underlying graph, decide if one can assign one time label to each edge on P in such
a way that, in the temporal graph on P with those time labels, the u-v journey has duration
Duv, while any ui-uj journey with 0 ≤ i < j ≤ r has duration at least Duiuj

. Here, we use
the convention that the duration of a ui-uj journey is ∞ if there is no ui-uj journey in the
temporal graph on P with the time labels assigned.

Intuitively, the purpose of solving Path Realization is to decide whether it is possible
to assign time labels to the edges of P in such a way that a u-v journey of duration Duv is
realized while no u′-v′ journey that is too short (i.e., has duration strictly less than Du′v′)
is created. The key ingredient of the proof is the following lemma that shows that Path
Realization can be solved in polynomial time. For the main result of this section we only
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need to be able to solve Path Realization for finite-valued distance matrices, but since
our approach can also handle entries equal to ∞, we present the lemma for this more general
case.

▶ Lemma 14 (⋆). Path Realization can be solved in O(r2) time.

We say that the underlying graph G = (V, E) is p-path-diverse if the number of u-v paths in
G is bounded by p for each pair (u, v) of vertices in V .

▶ Theorem 15 (⋆). Multi-Label TGR can be be solved in O(pn4) time if the underlying
graph is p-path-diverse and ℓ ≥ n(n − 1) and D is finite-valued.

The maximum number of u-v paths for any vertex pair (u, v) can be bounded by n!,
so the running-time of the algorithm of Theorem 15 is bounded by O(n! · n4). Thus, the
algorithm is an FPT algorithm for Multi-Label TGR parameterized by n that is simpler
and more efficient than that of Theorem 9 in Section 4.1, but only works for instances with
a finite-valued distance matrix and ℓ ≥ n(n − 1).

As trees are 1-path-diverse and cycles are 2-path-diverse, we obtain the following corollary.

▶ Corollary 16. Multi-Label TGR can be be solved in O(n4) time if the underlying graph
is a tree or a cycle, ℓ ≥ n(n − 1), and D is finite-valued.

4.4 A polynomial kernel

In this section, we present a kernel for Multi-Label Periodic TGR for the combined
parameter dmax + nu, where nu := |{v ∈ V | N [v] ̸= V }| denotes the number of non-universal
vertices of the underlying graph. Note that nu is never larger than the number of entries
of D of value larger than 1, since for each non-edge {u, v} of G, Duv > 1 and Dvu > 1.
Hence, the kernel we present also implies a kernel for Multi-Label Periodic TGR for the
parameter combination dmax + |{Duv | u, v ∈ V, Duv > 1}|. We also show that this kernel
transfers to Multi-Label TGR for finite-valued distance matrices.

▶ Theorem 17 (⋆). Multi-Label Periodic TGR admits a kernel of size O(min{ℓ ·
nu4 · dmax, nu8 · dmax}). More precisely, this kernel has O(nu2 · dmax) vertices and a period
of O(min{ℓ · nu4 · dmax, nu8 · dmax}) and does not increase the value of ℓ.

Proof. Let I := (ℓ, D, ∆) be an instance of Multi-Label Periodic TGR where dmax
denotes the largest non-infinite entry of D and where G = (V, E) is the underlying graph
implied by the distance matrix D. Moreover, let X denote the set of all vertices of G that
are not universal and let nu := |X|.

If n ∈ O(nu2), then D contains O(nu4) entries of size at most dmax each. Moreover,
due to Lemma 2, we can reduce ∆ to O(ℓ · nu4 · dmax) ⊆ O(nu8 · dmax). This then implies
a polynomial kernel of the desired size. Hence, in the following, we assume that n > nu2.
Note that this implies that there is at least one universal vertex v∗ in G. Hence, for any
two vertices u and w of G distinct from v∗, there is the path uv∗w of length two in G.
Consequently if I is a yes-instance of Periodic TGR, the largest possible time that can be
realized between any two vertices of G is ∆ + 1, since traversing the path uv∗w takes time at
most ∆ + 1. In other words, I is a trivial no-instance of Periodic TGR if D contains an
entry larger than ∆ + 1. In the following, we thus assume that dmax ≤ ∆ + 1. We distinguish
two cases.
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Case 1: ∆ ≥ 3dmax. We show in this case that I is a trivial yes-instance of Multi-Label
Periodic TGR even when assigning only a single label to each edge. This proof is deferred
to the full version.

Case 2: ∆ < 3dmax. Let RX denote the set of directed pairs of vertices of X for which
the distance is not trivially realized, that is, RX := {(u, v) ∈ X × X | u ≠ v, Duv > 1}.
If G contains no more than nu2 · dmax universal vertices, then n ∈ O(nu2 · dmax) and the
polynomial kernel follows directly, since ℓ ≤ ∆ ∈ O(dmax) and D contains O(nu2) entries of
value larger than 1. Otherwise, if G contains at least nu2 · dmax universal vertices, we remove
an arbitrary set Z of universal vertices from G such that nu2 · dmax universal vertices remain.
This then gives the kernel of desired size due to the above argumentation. In the full version,
we show that the so obtained instance I ′ := (ℓ, D′, ∆) of Multi-Label Periodic TGR is a
yes-instance if and only if I is a yes-instance of Multi-Label Periodic TGR. ◀

Note that this implies the following polynomial kernel for Periodic TGR.

▶ Corollary 18. Periodic TGR admits a polynomial kernel of size O(nu4 · d2
max). More

precisely, this kernel has O(nu2 · dmax) vertices and a period of O(nu4 · dmax).

Moreover, we can derive the following result for Multi-Label TGR on finite-valued
distance matrices.

▶ Corollary 19 (⋆). On finite-valued distance matrices, Multi-Label TGR is FPT when
parameterized by nu and admits a kernel of size O(nu4 + nu2 · dmax). More precisely, this
kernel has O(nu2) vertices and does not increase the value of ℓ.

5 Conclusion and open questions

In this paper, we have studied multi-label versions of the temporal realization problem
introduced by Klobas et al. [12] and presented various hardness results and FPT algorithms
for different parameters or parameter combinations. There are a number of interesting
directions for future work. While our hardness results exclude FPT algorithms for Multi-
Label Periodic TGR parameterized by the vertex cover number alone (unless P = NP),
the question whether such an FPT algorithm exists for Periodic TGR remains open. With
respect to the polynomial kernel of size O(nu4 · d2

max) that we have obtained, an interesting
question is whether a kernel whose size is a polynomial of nu alone exists. To answer
this question, one first has to analyze whether the problem admits a polynomial kernel for
parameter n alone. A question in relation to our FPT algorithms for parameter n is whether
the subproblem that we solve using ILP can be solved more efficiently using a combinatorial
algorithm.

Furthermore, it would be interesting to analyze the computational complexity of Multi-
Label Periodic TGR on stars and trees for ℓ ∈ {2, 3, 4}. Klobas et al. [12] have shown
that the problem on trees is polynomial for ℓ = 1, while we have shown that it is NP-hard
on stars for ℓ ≥ 5, so the status for ℓ ∈ {2, 3, 4} is open for stars and trees.

For Multi-Label TGR, NP-hardness has so far only been shown in the case that the
distance matrix can have entries equal to ∞ and ℓ = 1 [12]. It would be interesting to
analyze the complexity for finite-valued distance matrices and for ℓ > 1. For the problem
variant where a maximum allowed label L is specified as part of the input (i.e., a bound on
the lifetime of the temporal graph that can be built to realize D), our NP-hardness proofs
of Section 3 should translate. We expect that our FPT algorithms for parameter n and for
parameter vc + ∆ (which then becomes vc + L) can also be adapted to that case even if the
distance matrix contains entries of value ∞.
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Given that we have shown that Multi-Label Periodic TGR is NP-hard even if
dmax = 3 for every ℓ ≥ 1, and that it can be solved in polynomial time if dmax ≤ 2 for all
ℓ ≥ 2, it would be interesting to settle the complexity of the problem for ℓ = 1 and dmax = 2.
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