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Abstract

We propose a distribution-free distance-based method for high dimensional change

points that can address challenging situations when the sample size is very small com-

pared to the dimension as in the so-called HDLSS data or when non-sparse changes may

occur due to change in many variables but with small significant magnitudes. Our method

can detect changes in mean or variance of high dimensional observations as well as other

distributional changes. We present efficient algorithms that can detect single and mul-

tiple high dimensional change points. We use nonparametric metrics, including a new

dissimilarity measure and some new distance and difference distance matrices, to develop

a procedure to estimate change point locations. We also introduce a nonparametric test

to determine the significance of estimated change points. We provide theoretical guar-

anties for our method and demonstrate its empirical performance in comparison with

some of the recent methods for high dimensional change points. An R package called

HDDchangepoint is developed to implement the proposed method.

Keywords: Difference distance matrix; Dissimilarity measure; High dimensional change

point; High dimensional data; Wild binary segmentation.

1. Introduction

Change point analysis is frequently used in various fields such as economics, finance, engi-

neering, genetics and medical research. The main objective is to detect significant changes in
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the underlying distribution of a data sequence. The change point problem is well studied for

low dimensional data in the literature, however change point analysis is challenging for high

dimensional data which are growing in different domains. A change could happen in a small

or large subset of the variables and with a small or large magnitude, but when the sample size

is small compared to the number of variables it is difficult to distinguish a significant change

point from just random variability.

In recent years there has been increasing interest in the so-called high-dimensional low-

sample-size (HDLSS) data where the sample size n is very small while the dimension p can

be very large. The asymptotics for HDLSS data is different than the usual high dimensional

asymptotic setting (i.e., p > n → ∞) in the sense that p → ∞ but the sample size n can remain

fixed (e.g., Hall et al., 2005; Jung and Marron, 2009; Li, 2020). Detecting change points is more

challenging for HDLSS data with small samples. In this paper, we will see that recent methods

for high dimensional change points struggle to have a good performance with HDLSS data

where sample size is very small compared to dimension.

A common strategy in the literature of high dimensional change points is to simplify the

problem by reducing the dimension of data so a simpler algorithm such as a univariate change

point algorithm can be applied to the transformed data. This may be done using random

projection (e.g., Wang and Samworth, 2018; Hahn et al., 2020), geometric mapping (e.g.,

Grundy et al., 2020) or any other relevant techniques such as principal components (e.g., Xiao

et al., 2019), factor analysis (e.g., Barigozzi et al., 2018) and regularisation approaches (e.g., Lee

et al., 2016; Safikhani and Shojaie, 2022). This strategy relies on sparsity, often a significant

amount of sparsity, to maintain its oracle performance. Such techniques may not be suitable

for non-sparse change point problems. By non-sparse change points, we mean the changes that

can happen in many variables and with small significant magnitudes.

Another strategy is to search for change point locations through dissimilarity distances

between pairs of observations. This may be done using appropriate dissimilarity measures

2



such as the interpoint distances (e.g., Li, 2020) or the divergence measures based on Euclidean

distance (e.g., Matteson and James, 2014). Some authors including Garreau and Arlot (2018)

and Chu and Chen (2019) indirectly use interpoint distances to develop methods based on

counting the number of edges from a certain similarity graph constructed from interpoint

distances. The performance, especially power, of such methods generally depends on distance

measures and test statistics used, as also discussed in Li (2020). In this paper, we aim to develop

a novel powerful method for detecting high dimensional change points based on dissimilarity

measures, especially suitable for HDLSS data.

There has been a growing literature on change point analysis for high dimensional data in

recent years. We review some of the recent methods focusing on offline change point detec-

tion. Chen and Zhang (2015), Garreau and Arlot (2018) and Chu and Chen (2019) developed

change-point detection methods using kernels and similarity graphs. Wang and Samworth

(2018) proposed a two-stage procedure called inspect for estimation of change points, which

is based on random projection and sparsity. Their approach assumes the mean structure

changes in a sparse subset of the variables and requires the normality assumption. Enikeeva

and Harchaoui (2019) suggested a method for detecting a sparse change in mean in a sequence

of high dimensional vectors. This method was studied for a single change point detection

and was developed based on the normality assumption. Grundy et al. (2020) used geomet-

ric mapping to project the high dimensional data to two dimensions, namely distances and

angles. Their approach requires the normality assumption. Liu et al. (2020) developed a

general data-adaptive framework by extending the classical CUSUM statistic to construct a

U-statistic-based CUSUM matrix. Their approach is based on the independence assumption

for variables and is mainly studied for single change point detection. Li (2020) proposed an

asymptotic distribution-free distance-based procedure for change point detection in high di-

mensional data. Using the random projection approach of Wang and Samworth (2018), Hahn

et al. (2020) proposed a Bayesian algorithm to efficiently estimate the projection direction for
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change point detection. Yu and Chen (2021) established a bootstrap CUSUM test for finite

sample change point inference in high dimensions. Follain et al. (2022) extended the random

projection approach to estimate change points with heterogeneous missingness. There have

also been a few other methods, some of which are reviewed in Liu et al. (2022).

Below we highlight the importance of our work and summarise our main contributions.

i) Change point detection for HDLSS data, when the sample size is very small, is challenging

and understudied. Also, many of the existing methods focused on sparse change points

(e.g., Wang and Samworth, 2018; Enikeeva and Harchaoui, 2019; Follain et al., 2022). Our

method can deal with non-sparse high dimensional situations. Unlike existing methods

which mainly detect changes in mean of high dimensional observations, our method can

detect changes in mean or variance of observations and other distributional changes.

ii) Unlike most of the recent methods for high dimensional change point detection which

require the normality assumption as reviewed above, our approach does not require nor-

mality or any other distribution for variables. We use novel nonparametric tools to

develop a method to detect change point locations.

iii) Many of the recent methods in the literature either used a bootstrap/permutation proce-

dure or derived asymptotic distribution to test significance of change points (e.g., Wang

and Samworth, 2018; Yu and Chen, 2021). We establish both asymptotic and permuta-

tion procedures for our method to handle both small and large sample size situations.

iv) Our strategy is to search for change point locations through an n×n matrix of distances

instead of the n × p matrix of observations. Because the n × n matrix of distances has

a smaller dimension which does not grow with p, it would be easier mathematically and

computationally to investigate the distance matrix for a change point location.

We use the following notation throughout the paper. For a vector u ∈ Rp, we write the

Lq-norm as ∥u∥q =
(∑p

j=1 |uj|q
)1/q

. The infinity norm is defined as ∥u∥∞ = maxj |uj|. We
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write
√

as the short version of square root. For a real-value constant a, notation |a| denotes

the absolute value of a, while for a set C, |C| denotes the cardinality of C. Also, O(.) and o(.)

denote the usual big O and little o notation. We sometimes write Op(.) or op(.) to emphasise

them for p → ∞. We write OP (.) and oP (.) to denote, respectively, the big O in probability and

the little o in probability. We use
P→ and

D→ for convergence in probability and convergence in

distribution, respectively. We also define some more specific notation as we develop the paper.

2. Methodology

LetX1,X2, . . . ,Xn be a sequence of independent p-dimensional random vectors with unknown

probability distributions F1, F2, . . . , Fn, respectively. In high dimensional settings we have

p ≫ n and that the p variables in each observation X i = (X i1,X i2, . . . ,X ip) are potentially

correlated. We aim to develop a distribution-free approach, so we do not assume a parametric

form for the distributions F1, F2, . . . , Fn.

For the sake of clarity, we first present the proposed approach for detecting a single change

point in high dimensions and then extend the idea for multiple change point detection in Section

3. The problem of detecting a single change point in general can be formulated as the following

hypothesis testing problem
H0 : F1 = F2 = . . . = Fn

Hs
1 : F1 = . . . = Fτ−1 ̸= Fτ = . . . = Fn,

(1)

where τ is a change point location, which is unknown too. When conducting this single change

point problem, we first estimate the change point location τ and then test for significance of

the estimated change point.

Let X = [X1,X2, . . . ,Xn]
T represent the entire data as an n × p matrix. As discussed

in the introduction, the problem of change point detection in high dimensional situations

is challenging, especially when n is very small compared to p. In our approach, instead of

searching in the n× p space, we translate the problem into the lower dimensional space n× n
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without reducing the dimension of data. This is different than the dimensionality reduction

techniques such as random projection (e.g., Wang and Samworth, 2018), geometric mapping

(e.g., Grundy et al., 2020), principal components (e.g., Xiao et al., 2019) and factor analysis

(e.g., Barigozzi et al., 2018) which reduce the dimension of data. We propose a distance-based

method based on dissimilarity measures to find the change point location in the original data

X through the distance matrix of X. The dimension of the observed data X is n×p while the

dimension of its distance matrix is n × n, so it is easier mathematically and computationally

to investigate the distance matrix for a change point location as n is small compared to p in

high dimensions, especially in HDLSS data. We describe the idea in the sequel.

Let dij := d(X i,Xj) be a dissimilarity distance between observations X i and Xj, where

d(·, ·) is a suitable dissimilarity distance function for high dimensional vectors. Since our pro-

posal can be implemented with any suitable dissimilarity distance, we discuss the choice of

dissimilarity distance measure after illustrating the main mechanism. We use the dissimi-

larity measure dij to obtain the n × n distance matrix between all pairs of the observations

X1,X2, . . . ,Xn as follows

D =


d11 d12 . . . d1n

...
...

. . .
...

dn1 dn2 . . . dnn

 ,

in which d11 = . . . = dnn = 0.

To find the location of change point τ , we propose a procedure that finds an estimate of τ

by finding the maximum distance between observations in the distance matrix D. For this, we

define the distance difference between each pair of the observations as

∆ij := |dij − di,j−1|, i = 1, . . . , n, j = 2, . . . , n

∆i1 := 0, i = 1, . . . , n.

This gives the following n× n matrix of distance differences, which we call difference distance
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matrix,

∆ =


0 ∆12 . . . ∆1,n−1 ∆1n

...
...

. . .
...

...

0 ∆n2 . . . ∆n,n−1 ∆nn

 .

We then suggest an estimate of the change point location τ , based on the difference distance

matrix ∆, as follows

τ̂ = argmax
1≤j≤n

{ 1

n

n∑
i=1

∆ij

}
. (2)

The change point estimate τ̂ is the location of maximum slope among the column sums of the

difference distance matrix ∆ (a simple illustrative example will be given later in Figure 1). If

1
n

∑n
i=1 ∆ij = 0 for all j = 1, . . . , n or if they all are equal, then we set τ̂ = ∅, where the empty

set ∅ means no change point is detected.

It is known that the Euclidean distance is not appropriate for high dimensional situations.

A modified version of Euclidean distance can be obtained by dividing it by
√
p for convergence

guarantees in high dimensions, as suggested by Hall et al. (2005). One can use the modified

Euclidean distance dij = d(X i,Xj) = p−1/2∥X i −Xj∥2 or other Lq-norm distances in our ap-

proach. However, a more general dissimilarity measure that takes into account the information

of distances from all the n− 2 other observations can be defined as

dij = d(X i,Xj) =
1

n− 2

∑
l ̸=i,j

∣∣∥X i −X l∥D − ∥Xj −X l∥D
∣∣, (3)

where ∥·−·∥D can be any appropriate distance function. We here suggest two simple options for

this. A natural multivariate option is to use the modified Euclidean distance function ∥Xu −

X l∥D = p−1/2∥Xu −X l∥2 or modified L1-norm ∥Xu −X l∥D = p−1∥Xu −X l∥1. A univariate

option is to use a distance function based on differences between the sample mean and variance

of the observations. For this, let X̄p
i = p−1

∑p
j=1 X ij and Sp

Xi
=

√
p−1

∑p
j=1

(
X ij − X̄p

i

)2
denote, respectively, the mean and standard deviation of the i-th observation X i, i = 1, . . . , n.

We define ∥Xu − X l∥D =
√
(X̄p

u − X̄p
l )

2 + (Sp
Xu

− Sp
Xl

)2, which quantifies the differences

between the sample mean and variance of each pair of observations.
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The following theorem shows the dissimilarity measure d(X i,Xj) in (3) is a pseudometric,

that is d(X i,Xj) ≥ 0, d(X i,X i) = 0, d(X i,Xj) = d(Xj,X i) and d(X i,Xj) ≤ d(X i,X l) +

d(Xj,X l). The proof along with all other technical proofs are provided in Appendix A.

Theorem 1. The dissimilarity measure d(X i,Xj) in (3) is a pseudometric on X for n ≥ 3.

The following theorem indicates that proximity in terms of the modified Euclidean distance

implies proximity in terms of d(X i,Xj), but the converse implication does not hold.

Theorem 2. Consider the dissimilarity measure d(X i,Xj) in (3) and the Euclidean distance

∥X i −Xj∥2 for each pair of observations X i and Xj. We have d(X i,Xj) ≤ 1√
p
∥X i −Xj∥2.

In Section 4, we show that d(X i,Xj) → 0 if X i and Xj have the same distribution. The

computational cost of the dissimilarity measure d(X i,Xj) is of order O(np). The cost of

computing d(X i,Xj) for all 1 ≤ i < j ≤ n is O(n3p) with n not being fixed. The cost is O(p)

with fixed n as in HDLSS data.

We here provide a simple illustrative example with one change point for which we generate

5 observations from a standard multivariate normal distribution with p = 500 and another

5 observations from the same distribution but with the mean being shifted by 0.5. Figures

1a and 1b visualise all elements of the distance matrix D obtained using the dissimilarity

measure d(X i,Xj) in (3) with both the univariate distance function based on differences of

the sample mean and variance of observations and the multivariate distance function based on

the modified Euclidean distance. From both plots, it can be seen that the observations from the

first distribution show a larger dissimilarity with the observations from the second distribution,

and vice versa, so both distance functions capture the change point trend. More interestingly,

Figure 1c visualises all elements of the matrix ∆ based on the dissimilarity measure (3), which

indicates that the change point location (i.e., location 6) has the largest values ∆ij. Also,

Figure 1d presents all the column sums of ∆, which reveals the change point location exactly

as in the proposed estimate τ̂ in (2). In Section 4, we will prove that τ̂ is consistent for the

true change point, denoted by τ0, under some assumptions.
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(d) For the difference distance matrix ∆

Figure 1: Illustrative example with one change point: plots for all elements of the distance
matrix D obtained using the dissimilarity measure d(Xi,Xj) in (3) with both the uni-
variate and multivariate distance functions, as well as for all column sums of the difference
distance matrix ∆.

We now construct a test statistic based on the change point estimate τ̂ to conduct the

test whether or not the change point estimate τ̂ is statistically significant. Our proposed test

statistic uses the information of dij and ∆ij before and after the change point estimate τ̂ . For

this, considering the hypothesis test (1), we first define two sets of indices one for observations

before and one for observations after the change point estimate τ̂ as follows

∇−
τ̂ := {j : 1 ≤ j ≤ τ̂ − 1}, ∇+

τ̂ := {j : τ̂ ≤ j ≤ n}.

The two sets ∇−
τ̂ and ∇+

τ̂ are visualised in Figure 2, showing their connection with the change

point candidate τ̂ . We then propose the following test statistic for testing the significance of
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1 τ̂ − 1 τ̂ n

∇−
τ̂ ∇+

τ̂

Figure 2: The sets ∇−
τ̂ and ∇+

τ̂ with the estimated change point location τ̂ .

change point estimate τ̂

T (τ̂) =
1

n|∇−
τ̂ ||∇

+
τ̂ |

n∑
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

(
dij − dij′

)2
, (4)

where |∇−
τ̂ | = τ̂ − 1 and |∇+

τ̂ | = n− τ̂ + 1 are the cardinalities of ∇−
τ̂ and ∇+

τ̂ , respectively.

We will investigate the theoretical properties of the statistic T (τ̂) in Section 4. Intuitively,

the test statistic T (τ̂) quantifies the differences between distances for the observations before

change point and the observations after change point. If there is no change point then the

differences will be small, and if there is a change point then T (τ̂) will deviate from 0. In fact,

we will prove that as p → ∞

T (τ̂)
∣∣
H0

= oP (1), T (τ̂)
∣∣
Hs

1
= κ2

τ0
+ oP (1),

where κτ0 is specified in Theorem 3 with τ0 being the true change point. We can therefore

carry out the hypothesis test for a single change point and reject the null hypothesis H0 for

large values of T (τ̂). For large n, we conduct the test using the asymptotic distribution of T (τ̂)

under H0, when n, p → ∞. In Theorem 7, we will prove that the asymptotic distribution of

T (τ̂), denoted by GT (·), is a normal distribution as n, p → ∞ under some assumptions, so that

n|∇−
τ̂ ||∇

+
τ̂ |
(
T (τ̂)− 1

n|∇−
τ̂ ||∇+

τ̂ |

∑n
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂
mijj′

)
√∑n

i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
cijj′kll′

D→ N(0, 1),

under H0, where mijj′ and cijj′kll′ are specified in the statement of Theorem 7.

For small n, we use a permutation procedure based on T (τ̂) to conduct the test. Permu-

tation testing is useful here because all the observations have the same distribution under H0

and hence are exchangeable or permutable. In each permutation step, we randomly permute

the indices of observations before and after the change point estimate τ̂ , while holding the
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change point location, to get a random permutation sample. Based on R permutations, the

approximate permutation distribution of the test statistic, denoted by GTR
(t), is defined as

GTR
(t) =

1

R

R∑
r=1

I
(
Tr(τ̂) ≤ t

)
, (5)

where I(·) is the indicator function and Tr(τ̂) is the test statistic calculated for the r-th per-

mutation sample. The p-value of the permutation test, denoted by pperm, is given by

pperm = 1−GTR
(Tobs(τ̂)) =

1

R

R∑
r=1

I
(
Tr(τ̂) > Tobs(τ̂)

)
, (6)

where Tobs(τ̂) is the test statistic for the observed sample. Our theoretical results show that

PH0(pperm ≤ α) ≤ α for all 0 ≤ α ≤ 1. We will show the asymptotic and permutation tests are

equivalent asymptotically under H0, that is GTR
(t)

D→ GT (t) for all t as n, p → ∞. Algorithm

1 summarises our proposed method for single change point detection in high dimensional data.

Algorithm 1: Single change point detection

Input : A data sequence or matrix of observations X = [X1,X2, . . . ,Xn]
T .

Output: Change point estimate τ̂ , or “NA” if there is no significant change point.

Step 1: Calculate the n× n distance matrix D for the n× p data matrix X.
Step 2: Calculate the n× n difference distance matrix ∆.
Step 3: Calculate the change point estimate τ̂ . If τ̂ = ∅ stop the algorithm and return
“NA” for no detected change point. Otherwise, go to the next step.
Step 4: Calculate the test statistic T (τ̂).
Step 5: Apply the permutation test based on T (τ̂) if n is small, or the asymptotic
test if n is large, to test the significance of the change point estimate τ̂ .
Step 6: If it is significant, return the change point estimate τ̂ . Otherwise, return
“NA” for no significant change point.

In addition to estimation and hypothesis test for change point τ , we can also construct

confidence interval for change point location τ using the change point estimate τ̂ . Finding the

exact or asymptotic distribution of the change point estimate (2) is difficult due to the absolute

value functions in both the definition of ∆ij and the dissimilarity measure dij in (3). We instead

obtain a permutation-based confidence interval for τ . Unlike the above permutation procedure

which conducts under H0, we here obtain a permutation sample by separately permuting

observations before and after the change point location τ among themselves. The reason is
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that observations before the change point τ have the same distribution and observations after

the change point τ also have the same distribution. We calculate the change point estimate (2)

for each permutation sample from R permutations and denote these permutation estimates by

τ̂ ∗1 , . . . , τ̂
∗
R. Then, a 100(1− α)% confidence interval for change point location τ is

(2τ̂ − τ̂ ∗(1−α/2), 2τ̂ − τ̂ ∗(α/2)) (7)

in which τ̂(α/2) and τ̂(1−α/2) are, respectively, the (α/2)-th and (1 − α/2)-th percentiles of the

R ordered permutation estimates.

3. Multiple change point detection

In this section, we extend our approach to detect multiple change points in high dimensional

data. The problem of detecting multiple change points in general can be formulated as
H0 : F1 = F2 = . . . = Fn

Hm
1 : F1 = . . . = Fτ1−1 ̸= Fτ1 = . . . = Fτ2−1 ̸= Fτ2 = . . . = Fτs−1 ̸= Fτs = . . . = Fn,

(8)

where 1 < τ1 < τ2 < . . . < τs < n are the unknown change point locations and s is the number

of change points, which is also unknown. If the above null hypothesis is rejected, the main

objective will be to find the s change point estimates τ̂1, τ̂2, . . . , τ̂s.

Similar to the illustrative example in Figure 1 for single change point, Figure 3 shows

how the dissimilarity measure (3) and the proposed approach based on the difference distance

matrix ∆ can be helpful for finding multiple change points (here the same settings as previous

example but with two true change points at locations 6 and 11). To carry out the problem of

multiple change points, we use a recursive binary segmentation procedure on the basis of our

method for single change point detection. We also demonstrate combining with the wild binary

segmentation procedure of Fryzlewicz (2014) at the end of this section. We sequentially apply

the proposed single change point method to uncover all significant change points in the data

according to our asymptotic or permutation test. Suppose that s change points are detected
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Figure 3: Illustrative example with two change points: plots for all elements of the dis-
tance matrix D obtained using the dissimilarity measure d(Xi,Xj) in (3) with both
the univariate and multivariate distance functions, as well as for all column sums of the
difference distance matrix ∆.

sequentially and denoted by γ̂k, k = 1, . . . , s. We use the notation γ̂k because the detected

change points using binary segmentation are not necessarily in increasing order, when there

are more than one change point. Note that (τ̂1, τ̂2, . . . , τ̂s) = sort(γ̂1, γ̂2, . . . , γ̂s).

The recursive binary segmentation starts with applying the single change point algorithm to

the data sequence [X1,X2, . . . ,Xn], and if a change point is detected then the data sequence

will be split to two segments (data sub-sequences) before and after the detected change point

in order to continue the same process with each data sub-sequence separately for any further

change points. Let bk and ek denote the beginning and ending indices of observations for a data
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sub-sequence, say [Xbk ,Xbk+1, . . . ,Xek ], for finding a potential change point γ̂k. We apply the

single change point algorithm to this data sub-sequence and if a change point location γ̂k is

detected, we split the data sequence [Xbk ,Xbk+1, . . . ,Xek ] to two sub-sequences before and

after the change point γ̂k, say [Xbk ,Xbk+1, . . . ,X γ̂k−1] and [X γ̂k ,X γ̂k+1, . . . ,Xek ] respectively.

We apply the single change point algorithm to each of these two sub-sequences to check for

further change points. We continue the process until no further change points are detected.

For multiple change point detection, we extend the formula of single change point estimate

(2) and write the estimate of the change point location γk as follows

γ̂k = argmax
bk≤j≤ek

{ 1

ek − bk + 1

ek∑
i=bk

∆ij

}
, (9)

where we note that b1 = 1 and e1 = n, implying e1−b1+1 = n. When checking the significance

of the change point estimate γ̂k, we need to update both ∇− and ∇+ according to the change

point estimate γ̂k. For this, the two sets of indices for observations before and after the change

point estimate γ̂k are expressed as

∇−
γ̂k

= {j : bk ≤ j ≤ γ̂k − 1}, ∇+
γ̂k

= {j : γ̂k ≤ j ≤ ek}.

To conduct the test for significance of γ̂k, the test statistic can be defined similarly as

T (γ̂k) =
1

(ek − bk + 1)|∇−
γ̂k
||∇+

γ̂k
|

ek∑
i=bk

∑
j∈∇−

γ̂k

∑
j′∈∇+

γ̂k

(
dij − dij′

)2
,

which simplifies to the test statistic (4) when k = 1. Algorithm 2 summarises our method for

multiple change point detection.

We also incorporate the wild binary segmentation procedure of Fryzlewicz (2014) in our

proposal for multiple change points. For this, following the principle of wild binary segmenta-

tion, we first randomly draw a large number of pairs (b∗k, e
∗
k) from the whole domain {1, . . . , n}

including the pair (1, n), and find argmaxb∗k≤j≤e∗k

{
1

e∗k−b∗k+1

∑e∗k
i=b∗k

∆ij

}
for each draw. The can-

didate change point location is the one that has the largest
{

1
e∗k−b∗k+1

∑e∗k
i=b∗k

∆ij

}
among all the

draws. We test the significance of the change point candidate using either the asymptotic or
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Algorithm 2: Multiple change point detection

Input : A data sequence or matrix of observations X = [X1,X2, . . . ,Xn]
T .

Output: A list of significant change point estimates {τ̂1, τ̂2, . . . , τ̂s}, or “NA” if there
is no significant change point.

Step 1: Apply the single change point Algorithm 1 to the data sequence X. If there
is no significant change point, end the process and return “NA”. Otherwise, denote
the detected change point by γ̂1 and go to next step.
Step 2: Split the data sequence to two sub-sequences before and after the detected
change point. Apply Algorithm 1 to each of the two sub-sequences separately to check
for further change points.
Step 3: Repeat Step 2 until no further sub-sequences have significant change points.
Step 4: Denote all the detected change points by {γ̂1, γ̂2, . . . , γ̂s}. Return
(τ̂1, τ̂2, . . . , τ̂s) = sort(γ̂1, γ̂2, . . . , γ̂s) as a list of significant change points.

permutation test. If it is significant, the same procedure will be repeated to the left and to the

right of it. The process is continued recursively until there is no further significant change point.

The theory of wild binary segmentation shows it performs at least as good as the standard

binary segmentation. Algorithm 2 then easily updates with the wild binary segmentation.

4. Asymptotic results

We study the asymptotic properties of our method for detecting single and multiple high dimen-

sional change points. We establish the theory with both the multivariate modified Euclidean

distance function and the univariate distance function based on differences between the sam-

ple mean and variance of observations, although one could see that the theory could similarly

follow with other suitable distance measures including other Lq-norm distances. We study the

situations when both n and p approach infinity, as well as when p approaches infinity but n

remains finite as in HDLSS data.

To develop the asymptotic theory with d(X i,Xj) based on the multivariate modified Eu-

clidean distance function, according to Hall et al. (2005) we make the following three assump-

tions on observations X i = (X i1,X i2, . . . ,X ip), i = 1, . . . , n.

(A1) Assume that max
1≤i≤n

max
1≤j≤p

E(X4
ij) < ∞.
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(A2) Assume tr(Σi)/p → λi and p−1/2∥E(X i)− E(Xj)∥2 → ηij for 1 ≤ i, j ≤ n.

(A3) Assume
∑p

j=1

∑p
j′=1

j ̸=j′

Cov(X2
ij,X

2
ij′) = o(p2).

Alternatively, for using the univariate distance function based on differences between the

sample mean and variance of observations, we make the following assumptions.

(B1) Assume that max
1≤i≤n

max
1≤j≤p

E(X2
ij) < ∞.

(B2) Let S2
ij = (X ij − X̄p

i )
2 and define σ2

ij = E(S2
ij). Assume max

1≤i≤n
max
1≤j≤p

σ2
ij < ∞.

(B3) For all ϵ > 0 and i = 1, . . . , n, define

Ai =

p∑
j=1

E
(
(X ij − µ̄ij)

2
)
, Bi =

p∑
j=1

E
(
(X ij − µ̄ij)

2I(|X ij − µ̄ij| > ϵAi)
)
,

A∗
i =

p∑
j=1

E
(
(S2

ij − σ2
ij)

2
)
, B∗

i =

p∑
j=1

E
(
(S2

ij − σ2
ij)

2I(|S2
ij − σ2

ij| > ϵA∗
i )
)
,

and assume Bi

Ai
→ 0 and

B∗
i

A∗
i
→ 0 as p → ∞.

(B4) Assume
∑p

j=1

∑p
j′=1

j ̸=j′

Cov(X ij,X ij′) = o(p2) and
∑p

j=1

∑p
j′=1

j ̸=j′

Cov(S2
ij,S

2
ij′) = o(p2) as

p → ∞.

(B5) Assume
∑n

i=1

∑n
j=1

∑n
k=1

∑n
l=1

i ̸=j ̸=k ̸=l

Cov
(
∥X i −Xj∥2D, ∥Xk −X l∥2D

)
= o(n4) as n → ∞.

Assumptions (A1)-(A3) are required for the convergence of the modified Euclidean dis-

tance used by Hall et al. (2005), Li (2020), and many others. Assumption (A3) implies weak

dependence among variables and is only needed for the case of correlated variables, which is

trivial if the variables are independent. Assumptions (B1) and (B2) ensure bounded second

moments for convergence of the mean X̄p
i and standard deviation Sp

Xi
. Assumption (B3) is

the usual Lindeberg condition which is a common assumption for applying central limit the-

orem (a weaker condition compared to Lyapunov condition). Assumptions (B4)-(B5) imply

weak dependence among variables and are only required for the case of correlated variables.

Assumptions (B4) guarantees bounded covariances for the case of correlated variables X ij,

which is a typical assumption for dependent variables to satisfy the conditions for central limit

theorem and weak law of large numbers. Assumption (B5) is a similar covariance condition for

∥X i −Xj∥2D which can be simplified since ∥X i −Xj∥2D = (X̄p
i − X̄p

j)
2 + (Sp

Xi
− Sp

Xj
)2. Note

that Assumptions (B1) and (B2) imply
∑n

i=1

∑n
j=1 E

(
∥X i −Xj∥2D

)
< ∞. We also note that
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Assumptions (A3) and (B4)-(B5) hold for variables with the ρ-mixing property (e.g., Utev,

1990) as well as with the spatial dependence (e.g., Wang and Samworth, 2018), so we here

consider a more general dependence structure. For instance, under the spatial dependence

Cov(X ij,X ij′) ∝ ρ|j−j′| with |ρ| ≤ 1, it is easy to show
∑p

j=1

∑p
j′=1

j ̸=j′

Cov(X ij,X ij′) = o(p2).

If observations X i and Xj have the same distribution, we can write

λi = λj := λ∇−
τ
, ηij := η∇−

τ
∀i, j ∈ ∇−

τ ,

λi = λj := λ∇+
τ
, ηij := η∇+

τ
∀i, j ∈ ∇+

τ ,

and also

µ̄i = µ̄j := µ̄∇−
τ
, σi = σj := σ∇−

τ
∀i, j ∈ ∇−

τ ,

µ̄i = µ̄j := µ̄∇+
τ
, σi = σj := σ∇+

τ
∀i, j ∈ ∇+

τ ,

in which µ̄i = E(X̄p
i ) and σi =

√
E((Sp

Xi
)2) for i = 1, . . . , n. Note that µ̄i = p−1

∑p
j=1 µij

and σ2
i = p−1

∑p
j=1 σ

2
ij. The following theorem concerns the asymptotic behaviour of the

dissimilarity measure d(X i,Xj) for high dimensional observations.

Theorem 3. Consider the data sequence X1,X2, . . . ,Xn and dissimilarity measure d(X i,Xj)

in (3). Suppose that τ is a change point so that F1 = . . . = Fτ−1 ̸= Fτ = . . . = Fn. We have

d(X i,Xj) = oP (1) ∀ i ∈ ∇−
τ , j ∈ ∇−

τ or ∀ i ∈ ∇+
τ , j ∈ ∇+

τ ,

d(X i,Xj) = κτ + oP (1) ∀ i ∈ ∇−
τ , j ∈ ∇+

τ or ∀ i ∈ ∇+
τ , j ∈ ∇−

τ ,

as p → ∞, where for the modified Euclidean distance function, under Assumptions (A1)-(A3),

κτ =
1

N − 2

{(
|∇−

τ |−1
)∣∣√λ2

∇−
τ
+ λ2

∇+
τ
+ η2∇−

τ ∇+
τ
−
√
2λ2

∇−
τ

∣∣+(
|∇+

τ |−1
)∣∣√λ2

∇−
τ
+ λ2

∇+
τ
+ η2∇−

τ ∇+
τ
−
√
2λ2

∇+
τ

∣∣},
while for the univariate distance function based on differences between the sample mean and

variance, under Assumptions (B1)-(B4),

κτ =
∣∣√(µ̄∇−

τ
− µ̄∇+

τ
)2 + (σ∇−

τ
− σ∇+

τ
)2
∣∣.

The next two theorems provide guaranties for consistency of the proposed single change

point estimate (2) for high dimensional observations when p → ∞ and n is fixed, as well as

when p → ∞ and n diverges too.
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Theorem 4. Suppose that there is a true single change point τ0, 2 ≤ τ0 ≤ n, so that F1 =

. . . = Fτ0−1 ̸= Fτ0 = . . . = Fn. Under the assumptions of Theorem 3, (a) we have as p → ∞,

with any fixed n, 
1
n

∑n
i=1∆ij = oP (1) if j ̸= τ0,

1
n

∑n
i=1∆ij = κτ0 + oP (1) if j = τ0,

where κτ0 = O(1) under Assumptions (A1)-(A2) or (B1)-(B2).

(b) it follows τ̂ − τ0 = oP (1), hence the change point estimate τ̂ = argmax1≤j≤n

{
1
n

∑n
i=1∆ij

}
is consistent for τ0 as p → ∞.

From this theorem, the consistency of the proposed change point estimate holds when

p → ∞ and n is fixed as in HDLSS data. In the following result, we show that the consistency

also holds when n → ∞ as well, as one expects.

Theorem 5. Under the conditions in Theorem 4, we have as n → ∞ and p → ∞

max
1≤j≤n

{ 1

n

n∑
i=1

∆ij − I(j = τ0)κτ0

}
= oP (1).

The next theorem studies the asymptotic limit of the proposed test statistic (4) under the

null hypothesis H0 as well as under the alternative hypothesis Hs
1 .

Theorem 6. Suppose that there is a true single change point τ0, 2 ≤ τ0 ≤ n, and consider the

test statistic T (τ̂) in (4) based on the change point estimate τ̂ = argmax1≤j≤n

{
1
n

∑n
i=1∆ij

}
.

Under the above assumptions, we have as p → ∞

T (τ̂)
∣∣
H0

= oP (1), T (τ̂)
∣∣
Hs

1
= κ2

τ0
+ oP (1).

The following theorem proves that the asymptotic distribution of the test statistic (4) is a

normal distribution under above conditions when both n and p go to infinity.

Theorem 7. Consider the test statistic T (τ̂) in (4) for testing a significant change point.

Under the null hypothesis H0 and the above assumptions, we have as n → ∞ and p → ∞

Tsd(τ̂) :=
n|∇−

τ̂ ||∇
+
τ̂ |
(
T (τ̂)− 1

n|∇−
τ̂ ||∇+

τ̂ |

∑n
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂
mijj′

)
√∑n

i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
cijj′kll′

D→ N(0, 1),
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where Tsd(τ̂) is defined as standardised test statistic. For the univariate distance function we

have mijj′ = vij + v∗ij + vij′ + v∗ij′ + op(1) and

cijj′kll′ = Cov
(
∥X i −Xj∥2D + ∥X i −Xj′∥2D, ∥Xk −X l∥2D + ∥Xk −X l′∥2D

)
= Cov

(
∥X i −Xj∥2D, ∥Xk −X l∥2D) + Cov

(
∥X i −Xj∥2D, ∥Xk −X l′∥2D

)
+ Cov

(
∥X i −Xj′∥2D, ∥Xk −X l∥2D) + Cov

(
∥X i −Xj′∥2D, ∥Xk −X l′∥2D

)
,

where

Cov
(
∥X i −Xj∥2D, ∥Xk −X l∥2D

)
=



2(v2ij + v∗2ij ) + op(1) if i ̸= j, k ̸= l, i = k, j = l,

(v∗2ii + v∗2ii )/2 + op(1) if i ̸= j, k ̸= l, i = k, j ̸= l,

(v∗2jj + v∗2jj )/2 + op(1) if i ̸= j, k ̸= l, i ̸= k, j = l,

op(1) otherwise,

and vij = Var(X̄p
i ) + Var(X̄p

j) and v∗ij = Var(Sp
Xi

) + Var(Sp
Xj

). For the multivariate modified

Euclidean distance function we have mijj′ = E(p−1∥X i −Xj∥22) + E(p−1∥X i −Xj′∥22) and

cijj′kll′ = Cov
(
p−1∥X i −Xj∥22 + p−1∥X i −Xj′∥22, p−1∥Xk −X l∥22 + p−1∥Xk −X l′∥22

)
= Cov

(
p−1∥X i −Xj∥22, p−1∥Xk −X l∥22) + Cov

(
p−1∥X i −Xj∥22, p−1∥Xk −X l′∥22

)
+ Cov

(
p−1∥X i −Xj′∥22, p−1∥Xk −X l∥22) + Cov

(
p−1∥X i −Xj′∥22, ∥Xk −X l′∥22

)
.

Remark. We use estimates of the constant quantities vij and v∗ij to calculate mijj′ and cijj′kll′ .

Following Slutsky’s theorem, the result of Theorem 7 also holds when plugging in consistent

estimates of the quantities vij and v∗ij. For the univariate distance case, we get a consistent

estimate of Var(X̄p
i ) in vij using (under Assumption (B4))

Var(X̄p
i ) =

1

p2

p∑
l=1

p∑
l′=1

Cov(X il,X il′) =
1

p2

p∑
l=1

Var(X il) +
o(p2)

p2

and p−1
∑p

l=1 (X il − X̄p
i )

2− p−1
∑p

l=1 Var(X il)
P→ 0. Similarly, we get a consistent estimate of
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Var(Sp
Xi

) in v∗ij by first using (under Assumption (B4))

Var
(
(Sp

Xi
)2
)
=

1

p2

p∑
l=1

p∑
l′=1

Cov
(
(X il − X̄p

i )
2, (X il′ − X̄p

i )
2
)

=
1

p2

p∑
l=1

Var
(
(X il − X̄p

i )
2
)
+

o(p2)

p2

=
1

p2

p∑
l=1

E
(
(X il − X̄p

i )
4
)
− 1

p2

p∑
l=1

(
Var(X il)

)2
+ o(1)

=
1

p2

p∑
l=1

E
(
(X il − X̄p

i )
4
)
− p

(
Var(X̄p

i )
)2

+ o(1)

(10)

and p−1
∑p

l=1 (X il − X̄p
i )

4 − p−1
∑p

l=1 E
(
(X il − X̄p

i )
4
) P→ 0, and then applying the delta

method to obtain the required estimate as V̂ar(Sp
Xi

) = 1
4(Sp

Xi
)2
V̂ar

(
(Sp

Xi
)2
)
. Note that the last

equality in (10) is obtained by applying the Taylor expansion
(
Var(X il)

)2
=

(
pVar(X̄p

i )
)2

+

2pVar(X̄p
i )
(
Var(X il)− pVar(X̄p

i )
)
+ o(p). Also for the modified Euclidean distance case, un-

der Assumption (A3), we use the consistent estimates of E(∥X i − Xj∥22) and Cov
(
∥X i −

Xj∥22, ∥Xk −X l∥22
)
as obtained in Li (2020).

We now study the optimality and detection power of the proposed method and obtain

conditions for optimal detection rates and full power.

Theorem 8. Consider the conditions in Theorem 3 and Theorem 7. We have, as p → ∞,

PH0(|Tsd(τ̂)| > Zα/2) → α,

PHs
1
(|Tsd(τ̂)| > Zα/2) = 1− Φ

(
Zα/2

c

c∗
−

n2κ2
τ0

c∗
)
+ Φ

(
− Zα/2

c

c∗
−

n2κ2
τ0

c∗
)
+ o(1),

where Φ is the CDF of standard normal distribution, Zα/2 is the corresponding critical point

of standard normal distribution, c =
√∑n

i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
cijj′kll′ with

cijj′kll′ given in Theorem 7, and c∗ =
√∑n

i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
c∗ijj′kll′ with

c∗ijj′kll′ = cijj′kll′ + bijkl + bijkl′ + bij′kl + bij′kl′ where bijkl is specified in the proof of theorem.

Under Assumptions (B4)-(B5) or (A3) the covariances are bounded asymptotically, so c

and c∗ are finite. So, with κ2
τ0
> 0, the test is consistent and has full power as n → ∞, that is,

PHs
1
(|Tsd(τ̂)| > Zα/2) → 1, as n → ∞ and p → ∞.
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Also, with fixed n as in HDLSS data, the test is consistent if κ2
τ0
diverges. The following results

demonstrate this for two cases when there is a change point in mean and when there is change

in variance of observations considering the sparsity level and the change magnitude.

Corollary 1. Consider a change point in mean of high dimensional observations, while vari-

ance remains unchanged, with the mean shift δk := µik − µjk, k = 1, . . . , p, for all i ∈ ∇−
τ , j ∈

∇+
τ . Let S0 = {k : δk ̸= 0} be the set of variables having a change point with s0 := |S0| being

its cardinality or the sparsity level. Then, κ2
τ0
= 1

p2
(
∑

k∈S0
δk)

2 and

PHs
1
(|Tsd(τ̂)| > Zα/2) = 1−Φ

(
Zα/2

c

c∗
−
n2(

∑
k∈S0

δk)
2/p2

c∗
)
+Φ

(
−Zα/2

c

c∗
−
n2(

∑
k∈S0

δk)
2/p2

c∗
)
+o(1).

Hence, with fixed n, the test is consistent if (
∑

k∈S0
δk)

2 > p2/n2. In particular, when δk = δmin

for all k ∈ S0 with δmin = min
k∈S0

δk, the optimality is achieved if

s0 >
p

n|δmin|
or |δmin| >

p

ns0
.

Corollary 2. Consider a change point in variance of high dimensional observations, while

mean remains unchanged, with the variance shift ωk := σ2
ik − σ2

jk, k = 1, . . . , p, for all i ∈

∇−
τ , j ∈ ∇+

τ . Let S0 = {k : ωk ̸= 0} be the set of variables having a change point in this

case with s0 := |S0| being the sparsity level. Then, κ2
τ0

=
(
∑

k∈S0
ωk)

2

p2(σ∇−
τ0

+σ∇+
τ0

)2
. Hence, similar to

Corollary 1, with fixed n, the test is consistent if (
∑

k∈S0
ωk)

2 > p2/n2, where the assumption

of finite variance implies σ∇−
τ0
+ σ∇+

τ0
< ∞. In particular, when ωk = ωmin for all k ∈ S0 with

ωmin = min
k∈S0

ωk, the optimality is achieved if

s0 >
p

n|ωmin|
or |ωmin| >

p

ns0
.

We now demonstrate the consistency of multiple change point estimates from Algorithm 2

for multiple high dimensional change point detection.

Theorem 9. Suppose there are s true change points τ 01 , τ
0
2 , . . . , τ

0
s , 2 ≤ τ 01 < τ 02 < . . . < τ 0s ≤ n,

so that F1 = . . . = Fτ01−1 ̸= Fτ01
= . . . = Fτ02−1 ̸= Fτ02

= . . . = Fτ0s−1
̸= Fτ0s

= . . . = Fn. Assume

the minimum spacing between change points satisfies min
1≤i≤s−1

|τ 0i+1− τ 0i | ≥ Mnε for some M > 0
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and ε ≤ 1. Under the above assumptions, Algorithm 2 returns the change point estimates

(τ̂1, τ̂2, . . . , τ̂s) = sort(γ̂1, γ̂2, . . . , γ̂s) that satisfy ∥(τ̂1, τ̂2, . . . , τ̂s)− (τ 01 , τ
0
2 , . . . , τ

0
s )∥∞ = oP (1).

Note that the condition min
1≤i≤s−1

|τ 0i+1 − τ 0i | ≥ Mnε ensures that there are not too many

change points to detect, because it implies that s ≤
(

min
1≤i≤s−1

|τ 0i+1 − τ 0i |/M
)1/ε

since 0 ≤ s < n.

The following result shows that the asymptotic test and the permutation test are equivalent

asymptotically and that the permutation test is also unbiased when n → ∞ and p → ∞.

Theorem 10. Consider the asymptotic test with the distribution GT (t) obtained in Theorem 7

as well as the permutation test with the approximate permutation distribution GTR
(t) in (5) and

with the permutation-based p-value pperm in (6). Assume the above assumptions hold. Under

the null hypothesis H0 of no change points, we have as n → ∞ and p → ∞

(a) GTR
(t)

D→ GT (t) ∀ t,

(b) PH0(pperm ≤ α) ≤ α ∀ 0 ≤ α ≤ 1.

5. Numerical results

In this section, we evaluate the performance of the proposed methods under various simulation

scenarios and in comparison with some of the recent methods in the literature for high dimen-

sional change points. We compare our methods with the nonparametric method proposed by

Matteson and James (2014), called E-divisive, the method based on random projection devel-

oped by Wang and Samworth (2018), called Inspect, and the nonparametric method of Li et al.

(2019) for high dimensional change points, called HDcpdetect. In the simulations, we set the

tuning parameter selection of these methods as the recommended defaults in their R packages.

We assess the performance of all the methods for detecting a single change point as well as

multiple change points under different scenarios, especially for the challenging situation when n

is very small compared to p as in HDLSS data. We investigate the performance of our asymp-

totic and permutation tests using both the univariate and multivariate distance functions. In
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the simulations we find that the results of our method with the univariate and multivariate

distance functions are quite similar, so for simplicity of presentation and comparisons with the

other methods, we avoid presenting duplicate results unless when the results are different as in

Section 5.4. Some simulation results are deferred to Appendix B due to space limitation.

5.1. Simulations for a single change in mean

We first start with the case of a single change point in mean of high dimensional observations,

where we generate data with n random observations X1,X2, . . . ,Xn from a p-variate normal

distribution, where the first 3n/5 observations are generated from N(µ1,Σ) and the other 2n/5

observations are generated fromN(µ2,Σ). We consider different high dimensional settings with

n ∈ {45, 90} and p ∈ {500, 1000, 1500}, as well as with µ1 = 0p and µ2 ∈ {0p, (0.1× 13p/4, 0×

1p/4), (0.2× 13p/4, 0× 1p/4)} where 0p and 1p denote p-dimensional vectors of zeros and ones,

respectively. We here set Σ = σ2
pV p where σ2

p ∈ {0.5, 1} and V p represents the covariance

structure of data. In the simulations, we consider two covariance structures: the uncorrelated

structure V p = Ip where Ip is the identity matrix of size p, and the correlated autoregressive

structure V p =
[
V ij

]p
i,j=1

=
[
0.5|i−j|]p

i,j=1
. Note that the true change point location here is

τ1 = 3n/5 + 1 for all scenarios, except for the scenario when µ1 = µ2 = 0p as it implies there

is no change point. We consider 250 replications for each simulation scenario and use R = 200

random permutations for the permutation test. We apply each of the change point methods to

the generated data sets and record, in addition to the change point estimates, the frequency and

average number of detected change points over 250 replications for each method. The results

on frequency and average number of the change points detected are presented in Table 1. From

the table, it can be seen that all the methods perform well when there is no change point, but

for the cases with a true change point our proposed method based on both the asymptotic

and permutation tests performs better than all the other methods E-divisive, Inspect and

HDcpdetect. On average across the 250 replications, the proposed method detects the change
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Table 1: Frequency and average number of the detected change points over 250 replications
by each of the methods when there is one true change point, also including the case with
no change point.

µ2 n p Number of
true change

points

Method Frequency of the
detected change

points

Average number
of detected

change points
0 1

45 500 0 Permutation 0.98 0.02 0.02
45 500 0 Asymptotic 0.98 0.02 0.02

0p 45 500 0 E-divisive 0.97 0.03 0.03
45 500 0 Inspect 0.97 0.03 0.03
45 500 0 HDcpdetect 0.98 0.02 0.02
45 1000 0 Permutation 0.97 0.03 0.03
45 1000 0 Asymptotic 0.96 0.04 0.04

0p 45 1000 0 E-divisive 0.95 0.05 0.05
45 1000 0 Inspect 0.94 0.06 0.06
45 1000 0 HDcpdetect 0.96 0.04 0.04
45 1500 0 Permutation 0.95 0.05 0.05
45 1500 0 Asymptotic 0.95 0.05 0.05

0p 45 1500 0 E-divisive 0.96 0.04 0.04
45 1500 0 Inspect 0.94 0.06 0.06
45 1500 0 HDcpdetect 0.96 0.04 0.04
45 500 1 Permutation 0.80 0.20 0.20
45 500 1 Asymptotic 0.73 0.27 0.27

(0.1× 13p/4, 0× 1p/4) 45 500 1 E-divisive 0.83 0.17 0.17
45 500 1 Inspect 0.91 0.09 0.09
45 500 1 HDcpdetect 0.87 0.13 0.13
45 1000 1 Permutation 0.42 0.58 0.58
45 1000 1 Asymptotic 0.33 0.67 0.67

(0.1× 13p/4, 0× 1p/4) 45 1000 1 E-divisive 0.67 0.33 0.33
45 1000 1 Inspect 0.93 0.07 0.07
45 1000 1 HDcpdetect 0.71 0.29 0.29
45 1500 1 Permutation 0.16 0.84 0.84
45 1500 1 Asymptotic 0.13 0.87 0.87

(0.1× 13p/4, 0× 1p/4) 45 1500 1 E-divisive 0.38 0.62 0.62
45 1500 1 Inspect 0.93 0.07 0.07
45 1500 1 HDcpdetect 0.49 0.51 0.51
45 500 1 Permutation 0.12 0.88 0.88
45 500 1 Asymptotic 0.10 0.90 0.90

(0.2× 13p/4, 0× 1p/4) 45 500 1 E-divisive 0.14 0.86 0.86
45 500 1 Inspect 0.77 0.23 0.23
45 500 1 HDcpdetect 0.15 0.85 0.85
45 1000 1 Permutation 0.00 1.00 1.00
45 1000 1 Asymptotic 0.00 1.00 1.00

(0.2× 13p/4, 0× 1p/4) 45 1000 1 E-divisive 0.03 0.97 0.97
45 1000 1 Inspect 0.72 0.28 0.28
45 1000 1 HDcpdetect 0.05 0.95 0.95
45 1500 1 Permutation 0.00 1.00 1.00
45 1500 1 Asymptotic 0.00 1.00 1.00

(0.2× 13p/4, 0× 1p/4) 45 1500 1 E-divisive 0.02 0.98 0.98
45 1500 1 Inspect 0.63 0.37 0.37
45 1500 1 HDcpdetect 0.02 0.98 0.98
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point in a higher frequency compared to the other methods under all scenarios considered. We

note that the method Inspect of Wang and Samworth (2018) is not very competitive under

such non-sparse high dimensional scenarios because it requires sparsity and performs better

with much larger sample sizes n when p is very large (see Wang and Samworth, 2018; Hahn

et al., 2020; Follain et al., 2022). Also, Figure 4 presents the box plots of the estimated change

point from each of the methods over 250 replications. The box plots show that the proposed

method also produces a more accurate change point estimate compared to the other methods.

The performance of our method for the correlated autoregressive structure is similar, so we

skip the similar results because of space limitation.

5.2. Simulations for multiple changes in mean

We next consider the case of multiple change points in mean of high dimensional observations,

where we use the same simulation settings as before but here with three true change points in

the simulated data. For this, we generate data with n random observations X1,X2, . . . ,Xn

from a p-variate normal distribution, where the first 3n/10 observations are generated from

N(µ1 = 0p,Σ), the next n/5 observations are generated from N(µ2,Σ), the next 3n/10 ob-

servations are generated from N(2µ2,Σ) and the last n/5 observations are generated from

N(3µ2,Σ). So the three true change point locations here are τ1 = 3n/10 + 1, τ2 = n/2 + 1

and τ3 = 4n/5 + 1. We again use 250 replications for each simulation scenario and apply the

proposed method and the other methods to the generated data sets. We here set the minimum

segment length to 5. For each method we calculate the frequency and average number of the

correctly detected change points over 250 replications. We also calculate the total number of

change points detected (correct or incorrect detection). Table 2 shows the results on frequency

and average number of the correctly detected change points for each method. From the results

in Table 2, we can see that all the methods tend to perform well in the cases when there is

no change point. For the cases with three true change points, our method based on both the
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(a) p = 500 and µ2 = (0.1× 13p/4, 0× 1p/4)
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(b) p = 1000 and µ2 = (0.1× 13p/4, 0× 1p/4)
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(c) p = 1500 and µ2 = (0.1× 13p/4, 0× 1p/4)
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(d) p = 500 and µ2 = (0.2× 13p/4, 0× 1p/4)
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(e) p = 1000 and µ2 = (0.2× 13p/4, 0× 1p/4)
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(f) p = 1500 and µ2 = (0.2× 13p/4, 0× 1p/4)

Figure 4: The estimate of change point from each of the methods over 250 replications
with a true single change point at location 3n/5 + 1 = 28 when n = 45.
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Table 2: Frequency and average number of the correctly detected change points over 250
replications by each of the methods when there are three true change points, also including
the case with no change points.

µ2 n p Number of
true change

points

Method Frequency of the
detected change points

Average number
of detected

change points
0 1 2 3

90 500 0 Permutation 0.97 0.03 0.00 0.00 0.03
90 500 0 Asymptotic 0.97 0.03 0.00 0.00 0.03

0p 90 500 0 E-divisive 0.96 0.04 0.00 0.00 0.04
90 500 0 Inspect 0.95 0.05 0.00 0.00 0.05
90 500 0 HDcpdetect 0.96 0.04 0.00 0.00 0.04
90 1000 0 Permutation 0.97 0.03 0.00 0.00 0.03
90 1000 0 Asymptotic 0.96 0.04 0.00 0.00 0.04

0p 90 1000 0 E-divisive 0.95 0.05 0.00 0.00 0.05
90 1000 0 Inspect 0.96 0.04 0.00 0.00 0.04
90 1000 0 HDcpdetect 0.95 0.05 0.00 0.00 0.05
90 1500 0 Permutation 0.96 0.04 0.00 0.00 0.04
90 1500 0 Asymptotic 0.96 0.04 0.00 0.00 0.04

0p 90 1500 0 E-divisive 0.96 0.04 0.00 0.00 0.04
90 1500 0 Inspect 0.94 0.06 0.00 0.00 0.06
90 1500 0 HDcpdetect 0.94 0.06 0.00 0.00 0.06
90 500 3 Permutation 0.32 0.46 0.20 0.02 0.92
90 500 3 Asymptotic 0.24 0.48 0.26 0.02 1.06

(0.1× 13p/4, 0× 1p/4) 90 500 3 E-divisive 0.30 0.56 0.12 0.02 0.86
90 500 3 Inspect 0.56 0.38 0.06 0.00 0.50
90 500 3 HDcpdetect 0.32 0.62 0.06 0.00 0.74
90 1000 3 Permutation 0.09 0.24 0.56 0.11 1.69
90 1000 3 Asymptotic 0.06 0.27 0.50 0.17 1.77

(0.1× 13p/4, 0× 1p/4) 90 1000 3 E-divisive 0.07 0.60 0.23 0.10 1.36
90 1000 3 Inspect 0.46 0.45 0.09 0.00 0.63
90 1000 3 HDcpdetect 0.20 0.63 0.14 0.03 1.00
90 1500 3 Permutation 0.00 0.05 0.19 0.76 2.71
90 1500 3 Asymptotic 0.00 0.05 0.15 0.80 2.75

(0.1× 13p/4, 0× 1p/4) 90 1500 3 E-divisive 0.05 0.25 0.46 0.24 1.89
90 1500 3 Inspect 0.22 0.58 0.19 0.01 0.99
90 1500 3 HDcpdetect 0.08 0.44 0.38 0.10 1.50
90 500 3 Permutation 0.00 0.02 0.18 0.80 2.78
90 500 3 Asymptotic 0.00 0.02 0.16 0.82 2.80

(0.2× 13p/4, 0× 1p/4) 90 500 3 E-divisive 0.00 0.02 0.24 0.74 2.72
90 500 3 Inspect 0.06 0.30 0.36 0.28 1.86
90 500 3 HDcpdetect 0.01 0.45 0.14 0.40 1.93
90 1000 3 Permutation 0.00 0.00 0.00 1.00 3.00
90 1000 3 Asymptotic 0.00 0.00 0.00 1.00 3.00

(0.2× 13p/4, 0× 1p/4) 90 1000 3 E-divisive 0.00 0.00 0.14 0.86 2.86
90 1000 3 Inspect 0.00 0.13 0.57 0.30 2.16
90 1000 3 HDcpdetect 0.00 0.53 0.19 0.28 1.75
90 1500 3 Permutation 0.00 0.00 0.00 1.00 3.00
90 1500 3 Asymptotic 0.00 0.00 0.00 1.00 3.00

(0.2× 13p/4, 0× 1p/4) 90 1500 3 E-divisive 0.00 0.00 0.02 0.98 2.98
90 1500 3 Inspect 0.00 0.08 0.35 0.57 2.49
90 1500 3 HDcpdetect 0.00 0.85 0.04 0.11 1.26
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(a) The cases of three true change points in mean with
µ2 = (0.1× 13p/4, 0× 1p/4)
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(b) The cases of three true change points in mean with
µ2 = (0.2× 13p/4, 0× 1p/4)

Figure 5: Average number of the total change points detected (correct or incorrect detec-
tion) over 250 replications by each of the methods for multiple change point detection.

asymptotic and permutation tests outperforms all the other methods in all scenarios consid-

ered. The frequency of the correctly detected change points, reported in the table, shows that

the proposed method detects the true change points more accurately compared to the other

methods. The performance of our method and the E-divisive by Matteson and James (2014)

improves when the dimension p increases, but this is not the case for the Inspect by Wang and

Samworth (2018) as it relies on sparsity and tends to improve with the sample size n (see Wang

and Samworth, 2018; Hahn et al., 2020; Follain et al., 2022). The average number of correctly

detected change points over the 250 replications is much closer to the actual number of true

change points for our method in the case of multiple change points too. The results on average

number of the total change points detected (correct or incorrect) are reported in Figures 5a

and 5b, which suggest that our method does not over-detect or under-detect change points.

5.3. Simulations for a change in variance

We then investigate the performance of the methods for detecting a change in variance of obser-

vations while mean remains unchanged. We consider two scenarios for this when the variance

of observations is increased by 0.1 and 0.2, that is Σ1 = 0.5V p and Σ2 ∈ {0.6V p, 0.7V p},
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Table 3: Frequency and average number of the detected change points over 250 replications
by each of the methods when there is a true change in variance of observations.

(µ1,Σ1) (µ2,Σ2) n p Method Frequency of the
detected change

points

Average number
of detected

change points
0 1

(0p, 0.5V p) (0p, 0.6V p) 45 500 Permutation 0.87 0.13 0.13
(0p, 0.5V p) (0p, 0.6V p) 45 500 Asymptotic 0.85 0.15 0.15
(0p, 0.5V p) (0p, 0.6V p) 45 500 E-divisive 0.98 0.02 0.02
(0p, 0.5V p) (0p, 0.6V p) 45 500 Inspect 0.98 0.02 0.02
(0p, 0.5V p) (0p, 0.6V p) 45 500 HDcpdetect 0.99 0.01 0.01
(0p, 0.5V p) (0p, 0.6V p) 45 1000 Permutation 0.32 0.68 0.68
(0p, 0.5V p) (0p, 0.6V p) 45 1000 Asymptotic 0.29 0.71 0.71
(0p, 0.5V p) (0p, 0.6V p) 45 1000 E-divisive 0.96 0.04 0.04
(0p, 0.5V p) (0p, 0.6V p) 45 1000 Inspect 0.96 0.04 0.04
(0p, 0.5V p) (0p, 0.6V p) 45 1000 HDcpdetect 0.98 0.02 0.02
(0p, 0.5V p) (0p, 0.6V p) 45 1500 Permutation 0.09 0.91 0.91
(0p, 0.5V p) (0p, 0.6V p) 45 1500 Asymptotic 0.08 0.92 0.92
(0p, 0.5V p) (0p, 0.6V p) 45 1500 E-divisive 0.96 0.04 0.04
(0p, 0.5V p) (0p, 0.6V p) 45 1500 Inspect 0.97 0.03 0.03
(0p, 0.5V p) (0p, 0.6V p) 45 1500 HDcpdetect 0.97 0.03 0.03
(0p, 0.5V p) (0p, 0.7V p) 45 500 Permutation 0.09 0.91 0.91
(0p, 0.5V p) (0p, 0.7V p) 45 500 Asymptotic 0.09 0.91 0.91
(0p, 0.5V p) (0p, 0.7V p) 45 500 E-divisive 0.86 0.14 0.14
(0p, 0.5V p) (0p, 0.7V p) 45 500 Inspect 0.97 0.03 0.03
(0p, 0.5V p) (0p, 0.7V p) 45 500 HDcpdetect 0.98 0.02 0.02
(0p, 0.5V p) (0p, 0.7V p) 45 1000 Permutation 0.00 1.00 1.00
(0p, 0.5V p) (0p, 0.7V p) 45 1000 Asymptotic 0.00 1.00 1.00
(0p, 0.5V p) (0p, 0.7V p) 45 1000 E-divisive 0.72 0.28 0.28
(0p, 0.5V p) (0p, 0.7V p) 45 1000 Inspect 0.94 0.06 0.06
(0p, 0.5V p) (0p, 0.7V p) 45 1000 HDcpdetect 0.97 0.03 0.03
(0p, 0.5V p) (0p, 0.7V p) 45 1500 Permutation 0.00 1.00 1.00
(0p, 0.5V p) (0p, 0.7V p) 45 1500 Asymptotic 0.00 1.00 1.00
(0p, 0.5V p) (0p, 0.7V p) 45 1500 E-divisive 0.49 0.51 0.51
(0p, 0.5V p) (0p, 0.7V p) 45 1500 Inspect 0.95 0.05 0.05
(0p, 0.5V p) (0p, 0.7V p) 45 1500 HDcpdetect 0.96 0.04 0.04

while the mean of observations is the same, that is µ1 = µ2. The simulation results for all the

methods considered are reported in Table 3. From the results, one can see that our proposed

method based on both the asymptotic and permutation tests perform well in detecting such a

change in variance, but the other methods do not have power for detecting the change point

due to the variance of observations.
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5.4. Simulations for change in distribution while mean and variance

remain unchanged

It is a challenging problem for many methods in the literature to detect a change in distribution

while the mean and variance of observations remain unchanged. We consider two simulation

scenarios for this with n = 45 and a change in distribution at location 28 when the variables for

observations are generated from N(0, 5/3) and t(5) respectively, both having the same means

and variances, as well as from N(1, 1) and Exp(1). Considering the asymptotic limit of the

univariate distance function and the modified Euclidean distance, they might not distinguish

between distributions when their mean and variance are the same, so we here also include the

modified L1 norm distance to see how it performs in this situation. Thus, we try our method

with these three distance functions all using the permutation test for a fair comparison. The

simulation results over 250 replications for our methods and the other methods are reported in

Table 4. The results show that all the methods perform quite poorly in this case as expected,

except our method with the modified L1 norm distance function which performs reasonably

good in this challenging situation. This is because the asymptotic limit of the L1 norm distance

does not simplify to expressions in terms of the mean and variance of observations.

6. Real data application

We apply the proposed method to a real data application from the US stock return data.

The data set is available at https://www.finance.yahoo.com and can be obtained using the R

package BatchGetSymbols for different time periods. The data we use here holds the daily

closing prices of stocks from the S&P 500 index during the first year of COVID-19 pandemic

between 1st January 2020 and 30th June 2020, which results in n = 125 time points and

p = 496 stocks. This specific time period is chosen because based on the experts analysis

reported in Statista Research Department (2022), the S&P 500 index showed much volatility
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Table 4: Frequency and average number of the detected change points over 250 replications
by each of the methods when there is a change in distribution of observations while their
mean and variance remain the same.

Two different
distributions

n p Number of
true change

points

Method Frequency of the
detected change

points

Average number
of detected

change points
0 1

45 500 1 Univariate 0.86 0.14 0.14
45 500 1 L2 norm 0.84 0.16 0.16
45 500 1 L1 norm 0.74 0.26 0.26

N(0, 5/3) & t(5) 45 500 1 E-divisive 0.55 0.45 0.45
45 500 1 Inspect 0.99 0.01 0.01
45 500 1 HDcpdetect 0.98 0.02 0.02
45 1000 1 Univariate 0.83 0.17 0.17
45 1000 1 L2 norm 0.80 0.20 0.20
45 1000 1 L1 norm 0.69 0.31 0.31

N(0, 5/3) & t(5) 45 1000 1 E-divisive 0.51 0.49 0.49
45 1000 1 Inspect 0.97 0.03 0.03
45 1000 1 HDcpdetect 0.96 0.04 0.04
45 1500 1 Univariate 0.80 0.20 0.20
45 1500 1 L2 norm 0.77 0.23 0.23
45 1500 1 L1 norm 0.66 0.34 0.34

N(0, 5/3) & t(5) 45 1500 1 E-divisive 0.50 0.50 0.50
45 1500 1 Inspect 0.94 0.06 0.06
45 1500 1 HDcpdetect 0.94 0.06 0.06
45 500 1 Univariate 0.99 0.01 0.01
45 500 1 L2 norm 0.98 0.02 0.02
45 500 1 L1 norm 0.58 0.42 0.42

N(1, 1) & Exp(1) 45 500 1 E-divisive 0.99 0.01 0.01
45 500 1 Inspect 0.96 0.04 0.04
45 500 1 HDcpdetect 0.99 0.01 0.01
45 1000 1 Univariate 0.98 0.02 0.02
45 1000 1 L2 norm 0.95 0.05 0.05
45 1000 1 L1 norm 0.29 0.71 0.71

N(1, 1) & Exp(1) 45 1000 1 E-divisive 0.98 0.02 0.02
45 1000 1 Inspect 0.94 0.06 0.06
45 1000 1 HDcpdetect 0.98 0.02 0.02
45 1500 1 Univariate 0.96 0.04 0.04
45 1500 1 L2 norm 0.90 0.10 0.10
45 1500 1 L1 norm 0.09 0.91 0.91

N(1, 1) & Exp(1) 45 1500 1 E-divisive 0.92 0.08 0.08
45 1500 1 Inspect 0.93 0.07 0.07
45 1500 1 HDcpdetect 0.97 0.03 0.03
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(a) The prices for all the 496 stocks in the S&P 500 data
over the time period 1/1/2020 and 30/6/2020. Note
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(b) Dissimilarity visualisation of S&P 500 data using
dissimilarity measure d(Xi,Xj) with the modified Eu-
clidean distance function (red solid line) and univariate
distance function (blue dashed line).

Figure 6: Change point plots for the S&P 500 data over the time period 1/1/2020 and
30/6/2020 during the COVID-19 pandemic. In plot (b) the two trading days 13th and
16th March 2020 show the largest total dissimilarity from all the other days and are
marked by vertical bars (in green).

and dropped by about 20% in early March 2020 entering into a bear market. While the drop

was the steepest one-day fall since 1987, S&P 500 index began to recover at the start of April

2020. Stock markets fell in the wake of the COVID-19 pandemic, with investors fearing its

spread could destroy economic growth. Figure 6a shows a rough display of the price changes for

all the stocks over this time period, where all the stock prices are standardised for visualisation

purpose. One can see the very steep drop around early March 2020, as explained. The drop

seems to be happened for a majority of stocks with some different magnitudes, suggesting a

non-sparse high dimensional change point problem here.

Figure 6b displays the dissimilarity visualisation of the S&P 500 data using the dissimilarity

measure d(X i,Xj) with both the modified Euclidean distance function and the univariate dis-

tance function, which show a similar trend. Note that the column sums of the two dissimilarity

indices are drawn for those trading days in the first half of 2020. The figure suggests that the

trading days 13th and 16th March 2020 show the largest total dissimilarity from all the other

observations and are marked by vertical bars.

We first implement our distribution-free method, using our R package HDDchangepoint,
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to find significant change points in this high dimensional data set. Our method with the

asymptotic test, using both distance functions, returns six change point locations, namely

51, 57, 66, 95, 106, 112. The method with the permutation test returns four change point

locations, namely 51, 57, 66, 95. While the two tests produce four common change points, the

permutation test is a bit conservative considering the dimension of data, which is in line with

our numerical results. The asymptotic p-values for these four significant change points are

5.64e−09, 5.06e−04, 1.27e−05 and 2.50e−07, respectively. Also, the same four change points

are obtained when we use 10 or 15 as the minimum segment length for the binary segmentation.

We then apply the E-divisive method of Matteson and James (2014) with the minimum segment

length being 15, which detects seven significant change points, namely 15, 37, 48, 68, 80, 95,

106. Also, the random projection method of Wang and Samworth (2018) finds nine change

point locations, namely 18, 35, 44, 50, 65, 78, 99, 111, 124. The HDcpdetect method of Li et al.

(2019) only finds two change point locations 48, 80. As in our numerical results, HDcpdetect

tends to detect fewer change points when there are multiple change points (see Figures 5a and

5b), and the random projection method shows a lower accuracy in such high dimensional data

with a small sample size (see Table 2). Considering our simulation results especially those in

Table 2 for multiple change points, we believe our estimates of change point locations are more

accurate, especially the detected locations 51 and 57 which coincide with the steep drop in the

stock prices in early March 2020 due to the COVID-19 impact on the market. Some further

results on our analysis of this data set is reported in Appendix C.

7. Concluding remarks

We have proposed a distance-based method for detecting single and multiple change points

in non-sparse high dimensional data. The proposed approach is based on new dissimilarity

measures and some proposed distance and difference distance matrices, which does not require

normality or any other specific distribution for the observations. However, we note that our
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asymptotic tests require up to four finite moments of the distribution. Our method is especially

useful for change point detection in HDLSS data when the sample size is very small compared

to the dimension of data. This is an understudied problem in the literature of high dimensional

change points. Our method can handle non-sparse high dimensional situations where changes

may happen in many variables and with small significant magnitudes. We have introduced a

novel test statistic to formally test the significance of estimated change points and established

its asymptotic and permutation distributions to address both small and large sample size situ-

ations. We have shown that our proposed estimates of change point locations are consistent for

the true unknown change points under some standard conditions and that our proposed tests

are consistent asymptotically. Our simulation results showed that both asymptotic and permu-

tation tests perform well compared to some of the recent methods for high dimensional change

points. Our R package HDDchangepoint for implementation of the proposed method, including

both the recursive binary segmentation and the wild binary segmentation as well as the real data

application, can be obtained from “https://github.com/statistics11/HDDchangepoint”.

The R package returns significant change point estimates and their corresponding p-values,

and it can also be applied with any other dissimilarity measure specified by the user.
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Supplementary materials for “A distribution-free

method for change point detection in non-sparse high

dimensional data”

Appendix A: Technical proofs

Appendix A.1: Proof of Theorem 1

Considering the definition of d(X i,Xj), we can easily observe d(X i,Xj) ≥ 0, d(X i,X i) = 0

and d(X i,Xj) = d(Xj,X i). To prove the triangle inequality d(X i,Xj) ≤ d(X i,X l) +

d(Xj,X l), we first note that if n = 3,

d(X i,Xj) =
∣∣∥X i −X l∥D − ∥Xj −X l∥D

∣∣
=

∣∣∥X i −X l∥D − ∥Xj −X l∥D + ∥X i −Xj∥D − ∥X i −Xj∥D
∣∣

=
∣∣(∥X i −Xj∥D − ∥Xj −X l∥D)− (∥X i −Xj∥D − ∥X i −X l∥D)

∣∣
=

∣∣(∥X i −Xj∥D − ∥X l −Xj∥D)− (∥Xj −X i∥D − ∥X l −X i∥D)
∣∣

≤
∣∣∥X i −Xj∥D − ∥X l −Xj∥D

∣∣+ ∣∣∥Xj −X i∥D − ∥X l −X i∥D
∣∣

≤ d(X i,X l) + d(Xj,X l).

(A.1)

So d(X i,Xj) ≤ d(X i,X l) + d(Xj,X l) holds for n = 3. For n ≥ 4 and any Xk with k ≥ 4,∣∣∥X i −Xk∥D − ∥Xj −Xk∥D
∣∣ = ∣∣∥X i −Xk∥D + ∥Xk −X l∥D − ∥Xk −X l∥D − ∥Xj −Xk∥D

∣∣
≤

∣∣∥X i −Xk∥D − ∥X l −Xk∥D
∣∣+ ∣∣∥Xj −Xk∥D − ∥X l −Xk∥D

∣∣.
(A.2)

Using (A.1) and (A.2), we obtain∑
k ̸=i,j

∣∣∥X i −Xk∥D − ∥Xj −Xk∥D
∣∣ ≤ ∑

k ̸=i,l

∣∣∥X i −Xk∥D − ∥X l −Xk∥D
∣∣

+
∑
k ̸=j,l

∣∣∥Xj −Xk∥D − ∥X l −Xk∥D
∣∣.

Hence, d(X i,Xj) ≤ d(X i,X l) + d(Xj,X l) for n ≥ 3.

1



Appendix A.2: Proof of Theorem 2

Using the triangle inequality for d(X i,Xj) proved in Theorem 1, we find

d(X i,Xj) =
1

n− 2

∑
l ̸=i,j

∣∣∥X i −X l∥D − ∥Xj −X l∥D
∣∣

≤ 1

n− 2

∑
l ̸=i,j

∣∣∥X i −Xj∥D + ∥Xj −X l∥D − ∥Xj −X l∥D
∣∣

=
1

n− 2

∑
l ̸=i,j

∥X i −Xj∥D

= ∥X i −Xj∥D.

Hence, the theorem immediately follows if the multivariate modified Euclidean distance func-

tion is used for distance function ∥ · − · ∥D. If the univariate distance function based on

differences between the sample mean and variance of the observations is used, we can write

∥X i −Xj∥22 =
p∑

k=1

(
X ik −Xjk

)2
=

p∑
k=1

(
X ik − X̄p

i + X̄p
i −Xjk − X̄p

j + X̄p
j

)2
=

p∑
k=1

(
(X ik − X̄p

i )− (Xjk − X̄p
j) + (X̄p

i − X̄p
j)
)2

= p(Sp
Xi

)2 + p(Sp
Xj

)2 + p(X̄p
i − X̄p

j)
2 − 2

p∑
k=1

(X ik − X̄p
i )(Xjk − X̄p

j)

= p(Sp
Xi

− Sp
Xj

)2 + p(X̄p
i − X̄p

j)
2 − 2

p∑
k=1

(X ik − X̄p
i )(Xjk − X̄p

j) + 2pSp
Xi

Sp
Xj

≥ p(Sp
Xi

− Sp
Xj

)2 + p(X̄p
i − X̄p

j)
2

= p∥X i −Xj∥2D,

where the inequality is obtained using
∑p

k=1 (X ik − X̄p
i )(Xjk − X̄p

j) ≤ pSp
Xi

Sp
Xj

which holds

by the Cauchy–Schwarz inequality. Hence, d(X i,Xj) ≤ 1√
p
∥X i −Xj∥2.

Appendix A.3: Proof of Theorem 3

First, we give the proof for the multivariate distance function based on the modified Euclidean

distance. For this, using the weak law of large numbers and under Assumptions (A1)-(A3), it

2



is straightforward to show (see also Hall et al., 2005)

p−1/2∥X i −Xj∥2
P→

√
2λ2

∇−
τ

∀ i ∈ ∇−
τ , j ∈ ∇−

τ

p−1/2∥X i −Xj∥2
P→

√
2λ2

∇+
τ

∀ i ∈ ∇+
τ , j ∈ ∇+

τ

p−1/2∥X i −Xj∥2
P→

√
λ2
∇−

τ
+ λ2

∇+
τ
+ η2∇−

τ ∇+
τ

∀ i ∈ ∇−
τ , j ∈ ∇+

τ

p−1/2∥X i −Xj∥2
P→

√
λ2
∇−

τ
+ λ2

∇+
τ
+ η2∇−

τ ∇+
τ

∀ i ∈ ∇+
τ , j ∈ ∇−

τ .

(A.3)

Recall ∥X i −Xj∥D = p−1/2∥X i −Xj∥2 in this case. We then write

d(X i,Xj) =
1

n− 2

∑
l ̸=i,j

∣∣∥X i −X l∥D − ∥Xj −X l∥D
∣∣

=
1

n− 2

{ ∑
l∈∇−

τ −{i,j}

∣∣∥X i −X l∥D − ∥Xj −X l∥D
∣∣

+
∑

l∈∇+
τ −{i,j}

∣∣∥X i −X l∥D − ∥Xj −X l∥D
∣∣}.

(A.4)

Inserting (A.3) into (A.4) leads to the result stated in the theorem for d(X i,Xj) for each i

and j belonging to ∇−
τ or ∇+

τ accordingly.

Next, we provide the proof for the univariate distance function based on differences between

the sample mean and variance of the observations. For this, using the weak law of large numbers

and under Assumptions (B1)-(B4), we have X̄p
i − µ̄∇−

τ

P→ 0 ∀ i ∈ ∇−
τ and X̄p

i − µ̄∇+
τ

P→ 0 ∀ i ∈

∇+
τ as p → ∞. Similarly, Sp

Xi
− σ∇−

τ

P→ 0 ∀ i ∈ ∇−
τ and Sp

Xi
− σ∇+

τ

P→ 0 ∀ i ∈ ∇+
τ as p → ∞.

Hence, recalling ∥X i −Xj∥D =
√
(X̄p

i − X̄p
j)

2 + (Sp
Xi

− Sp
Xj

)2 in this case, we get

∥X i −Xj∥D
P→ 0 ∀ i ∈ ∇−

τ , j ∈ ∇−
τ

∥X i −Xj∥D
P→ 0 ∀ i ∈ ∇+

τ , j ∈ ∇+
τ

∥X i −Xj∥D −
∣∣√(µ̄∇−

τ
− µ̄∇+

τ
)2 + (σ∇−

τ
− σ∇+

τ
)2
∣∣ P→ 0 ∀ i ∈ ∇−

τ , j ∈ ∇+
τ

∥X i −Xj∥D −
∣∣√(µ̄∇−

τ
− µ̄∇+

τ
)2 + (σ∇−

τ
− σ∇+

τ
)2
∣∣ P→ 0 ∀ i ∈ ∇+

τ , j ∈ ∇−
τ .

Again inserting the above into (A.4) will give the result stated in the theorem for d(X i,Xj)

for each i and j belonging to ∇−
τ or ∇+

τ accordingly.
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Appendix A.4: Proof of Theorem 4

(a) Since τ0 is the true change point, using the result of Theorem 3 it is straightforward to find

that as p → ∞

∆ij = oP (1) ∀ i = 1, . . . , n, j ̸= τ0

∆ij = κτ0 + oP (1) ∀ i = 1, . . . , n, j = τ0.

Therefore, if j ̸= τ0, we have 1
n

∑n
i=1∆ij = oP (1). If j = τ0, we have as p → ∞

1

n

n∑
i=1

∆ij =
1

n

n∑
i=1

∆i,τ0

=
1

n

∑
i∈∇−

τ0

∆i,τ0 +
1

n

∑
i∈∇+

τ0

∆i,τ0

=
1

n
|∇−

τ0
|κτ0 + oP (1) +

1

n
|∇+

τ0
|κτ0 + oP (1)

= κτ0 + oP (1),

where in the last step we used the fact that |∇−
τ0
|+ |∇+

τ0
| = n.

(b) Using the result of part (a) and the fact that argmax is a continuous function, we find

that as p → ∞

τ̂ = argmax
1≤j≤n

{ 1

n

n∑
i=1

∆ij

}
= argmax

1≤j≤n

{ 1

n

n∑
i=1

∆ijI(j ̸= τ0) +
1

n

n∑
i=1

∆ijI(j = τ0)
}

= argmax
1≤j≤n

{ 1

n

n∑
i=1

oP (1)I(j ̸= τ0) +
1

n

n∑
i=1

(κτ0 + oP (1))I(j = τ0)
}

P→ argmax
1≤j≤n

{ 1

n

n∑
i=1

κτ0I(j = τ0)
}

= argmax
1≤j≤n

{
κτ0I(j = τ0)

}
= τ0,

and hence τ̂ − τ0 = oP (1), where oP (1) follows from the third equality above. This completes

the proof of theorem.
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Appendix A.5: Proof of Theorem 5

First, using the result of Theorem 4, we have for any fixed n

1

n

n∑
i=1

∆ij − I(j = τ0)κτ0 = oP (1) as p → ∞.

Furthermore, when p → ∞ and with any fixed n, ∆ij has a degenerate distribution at κτ0 for

all i = 1, . . . , n as

P (∆ij = κτ0) →

1 if j = τ0

0 if j ̸= τ0.

Thus, E(∆ij) → I(j = τ0)κτ0 < ∞ and E(∆2
ij) → I(j = τ0)κ

2
τ0

< ∞ as p → ∞. Then, using

the weak law of large numbers when n → ∞, we have

1

n

n∑
i=1

∆ij −
1

n

n∑
i=1

E(∆ij)
P→ 0 as n → ∞. (A.5)

Also, for any fixed n, we have as p → ∞

1

n

n∑
i=1

E(∆ij) →
1

n

n∑
i=1

I(j = τ0)κτ0 = I(j = τ0)κτ0 . (A.6)

From (A.5) and (A.6), we get

1

n

n∑
i=1

∆ij − I(j = τ0)κτ0 = oP (1) as n, p → ∞.

Hence, we find as n → ∞ and p → ∞

max
1≤j≤n

{ 1

n

n∑
i=1

∆ij − I(j = τ0)κτ0

}
= max

1≤j≤n

{{
I(j = τ0)κτ0 + oP (1)

}
− I(j = τ0)κτ0

}
= oP (1),

which completes the proof.

Appendix A.6: Proof of Theorem 6

Using Theorem 3, under the null hypothesis of no change points, we have as p → ∞

dij = d(X i,Xj) = oP (1) ∀ i, j = 1, . . . , n.

5



This implies T (τ̂) = oP (1) under the null hypothesis H0.

Using Theorem 3, under the alternative hypothesis Hs
1 , we get as p → ∞

dij = oP (1) ∀ i ∈ ∇−
τ̂ , j ∈ ∇−

τ̂

dij = oP (1) ∀ i ∈ ∇+
τ̂ , j ∈ ∇+

τ̂

dij = κτ0 + oP (1) ∀ i ∈ ∇−
τ̂ , j ∈ ∇+

τ̂

dij = κτ0 + oP (1) ∀ i ∈ ∇+
τ̂ , j ∈ ∇−

τ̂ .

We note that this result initially holds for the two sets ∇−
τ0

and ∇+
τ0
, and consequently for ∇−

τ̂

and ∇+
τ̂ since τ̂ is a consistent estimate of τ0 as shown in Theorem 4.

Using the above result, we find as p → ∞

T (τ̂) =
1

n|∇−
τ̂ ||∇

+
τ̂ |

n∑
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

(
dij − dij′

)2
=

1

n|∇−
τ̂ ||∇

+
τ̂ |

n∑
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

d2ij +
1

n|∇−
τ̂ ||∇

+
τ̂ |

n∑
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

d2
ij′

− 2

n|∇−
τ̂ ||∇

+
τ̂ |

n∑
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

dijdij′

=
1

n|∇−
τ̂ |

n∑
i=1

∑
j∈∇−

τ̂

d2ij +
1

n|∇+
τ̂ |

n∑
i=1

∑
j′∈∇+

τ̂

d2
ij′

− 2

n|∇−
τ̂ ||∇

+
τ̂ |

n∑
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

dijdij′

=
1

n|∇−
τ̂ |

∑
i∈∇−

τ̂

∑
j∈∇−

τ̂

d2ij +
1

n|∇−
τ̂ |

∑
i∈∇+

τ̂

∑
j∈∇−

τ̂

d2ij +
1

n|∇+
τ̂ |

∑
i∈∇−

τ̂

∑
j′∈∇+

τ̂

d2
ij′

+
1

n|∇+
τ̂ |

∑
i∈∇+

τ̂

∑
j′∈∇+

τ̂

d2
ij′

− 2

n|∇−
τ̂ ||∇

+
τ̂ |

n∑
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

dijdij′

= oP (1) +
{ |∇+

τ0
|

n
κ2
τ0
+ oP (1)

}
+
{ |∇−

τ0
|

n
κ2
τ0
+ oP (1)

}
+ oP (1)− oP (1)

=
|∇−

τ0
|+ |∇+

τ0
|

n
κ2
τ0
+ oP (1)

= κ2
τ0
+ oP (1),

which holds under the alternative hypothesis Hs
1 .
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Appendix A.7: Proof of Theorem 7

We first prove the asymptotic distribution when using the univariate distance function ∥X i −

Xj∥D =
√
(X̄p

i − X̄p
j)

2 + (Sp
Xi

− Sp
Xj

)2 in (3). To obtain the asymptotic distribution of the

test statistic T (τ̂) in this case, we know from the result of Theorem 6 that, under Hs
1 ,

T (τ̂) = κ2
τ0
+ oP (1),

and furthermore, under H0, T (τ̂) = oP (1) as p → ∞. Let us define

W (τ̂) :=
1

n|∇−
τ̂ ||∇

+
τ̂ |

n∑
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

{
∥X i −Xj∥2D + ∥X i −Xj′∥2D

}
,

which can be rewritten as

W (τ̂) =
1

n|∇−
τ̂ ||∇

+
τ̂ |

∑
i∈∇−

τ̂

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

{
∥X i −Xj∥2D + ∥X i −Xj′∥2D

}
+

1

n|∇−
τ̂ ||∇

+
τ̂ |

∑
i∈∇+

τ̂

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

{
∥X i −Xj∥2D + ∥X i −Xj′∥2D

}
.

Using the asymptotic results for ∥X i − Xj∥D given in the proof of Theorem 3, one can find

that as p → ∞

W (τ̂) =


κ2
τ0
+ oP (1) underHs

1

oP (1) underH0,

and furthermore

∥X i −Xj∥2D + ∥X i −Xj′∥2D =


κ2
τ0
+ oP (1) i ∈ ∇−

τ̂ , j ∈ ∇−
τ̂ , j

′ ∈ ∇+
τ̂

κ2
τ0
+ oP (1) i ∈ ∇+

τ̂ , j ∈ ∇−
τ̂ , j

′ ∈ ∇+
τ̂ ,

and

(
dij − dij′

)2
=


κ2
τ0
+ oP (1) i ∈ ∇−

τ̂ , j ∈ ∇−
τ̂ , j

′ ∈ ∇+
τ̂

κ2
τ0
+ oP (1) i ∈ ∇+

τ̂ , j ∈ ∇−
τ̂ , j

′ ∈ ∇+
τ̂ .

Therefore, the asymptotic distribution of T (τ̂) is the same as the asymptotic distribution of

W (τ̂) when both p and n go to infinity. It thus suffices to derive the asymptotic distribution
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of W (τ̂) as it is easier to calculate. For this, we first note that using CLT as p → ∞ and under

Assumptions (B1)-(B4), we have

v
−1/2
ij

(
(X̄p

i − X̄p
j)− (µ̄i − µ̄j)

) D→ N(0, 1),

v
∗−1/2
ij

(
(Sp

Xi
− Sp

Xj
)− (σi − σj)

) D→ N(0, 1),

(A.7)

in which

vij = Var(X̄p
i ) + Var(X̄p

j) =
1

p2

p∑
l=1

p∑
l′=1

Cov(X il,X il′) +
1

p2

p∑
l=1

p∑
l′=1

Cov(Xjl,Xjl′),

v∗ij = Var(Sp
Xi

) + Var(Sp
Xj

) =
1

4σ2
i p

2

p∑
l=1

p∑
l′=1

Cov
(
(X il − X̄p

i )
2, (X il′ − X̄p

i )
2
)

+
1

4σ2
jp

2

p∑
l=1

p∑
l′=1

Cov
(
(Xjl − X̄p

j)
2, (Xjl′ − X̄p

j)
2
)
.

Note that we used the delta method to obtain the second equation in (A.7) following the

asymptotic normality of (Sp
Xi

)2 and (Sp
Xj

)2. From (A.7), we get as p → ∞

v−1
ij (X̄p

i − X̄p
j)

2 − χ2
1(v

−1
ij (µ̄i − µ̄j)

2)
D→ 0,

v∗−1
ij (Sp

Xi
− Sp

Xj
)2 − χ2

1(v
∗−1
ij (σi − σj)

2)
D→ 0,

(A.8)

where χ2
a(b) denotes a noncentral chi-squared variable whose asymptotic distribution is non-

central chi-squared with the degrees of freedom a and the noncentrality parameter b. Since in

this case ∥X i −Xj∥2D = (X̄p
i − X̄p

j)
2 + (Sp

Xi
− Sp

Xj
)2, using (A.8) we obtain the expectation

and variance of ∥X i −Xj∥2D when p → ∞ as follows

E
(
∥X i −Xj∥2D

)
=

[
(vij + v∗ij) + (µ̄i − µ̄j)

2 + (σi − σj)
2
]
+ op(1)

Var
(
∥X i −Xj∥2D

)
=

[
2(v2ij + v∗2ij ) + 4vij(µ̄i − µ̄j)

2 + 4v∗ij(σi − σj)
2
]
+ op(1).

(A.9)
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Furthermore, it is straightforward to see that

Cov
(
∥Xi −Xj∥2D, ∥Xk −X l∥2D

)
=

Var
(
∥Xi −Xj∥2D

)
if i ̸= j, k ̸= l, i = k, j = l,

Cov
(
(X̄p

i − X̄p
j )

2, (X̄p
i − X̄p

l )
2
)
+Cov

(
(Sp

Xi
− Sp

Xj
)2, (Sp

Xi
− Sp

Xl
)2) if i ̸= j, k ̸= l, i = k, j ̸= l,

Cov
(
(X̄p

i − X̄p
j )

2, (X̄p
k − X̄p

j )
2
)
+Cov

(
(Sp

Xi
− Sp

Xj
)2, (Sp

Xk
− Sp

Xj
)2) if i ̸= j, k ̸= l, i ̸= k, j = l,

Var
(
∥Xi −Xj∥2D

)
if i ̸= j, k ̸= l, i = l, j = k,

Cov
(
(X̄p

i − X̄p
j )

2, (X̄p
k − X̄p

i )
2
)
+Cov

(
(Sp

Xi
− Sp

Xj
)2, (Sp

Xk
− Sp

Xi
)2) if i ̸= j, k ̸= l, i = l, j ̸= k,

Cov
(
(X̄p

i − X̄p
j )

2, (X̄p
j − X̄p

l )
2
)
+Cov

(
(Sp

Xi
− Sp

Xj
)2, (Sp

Xj
− Sp

Xl
)2) if i ̸= j, k ̸= l, i ̸= l, j = k,

0 otherwise,

(A.10)

To calculate the covariances in (A.10), we know from the theory of normal distribution that if

(Z1, Z2) ∼ N(µZ1 , µZ2 , σ
2
Z1
, σ2

Z2
, ρZ1,Z2) then Cov(Z2

1 , Z
2
2) = 4µZ1µZ2Cov(Z1, Z2)+2Cov2(Z1, Z2),

so we get

Cov
(
(X̄p

i − X̄p
j)

2, (X̄p
i − X̄p

l )
2
)
−
[
2(µ̄i − µ̄j)(µ̄i − µ̄l)vii + v2ii/2

]
→ 0

Cov
(
(Sp

Xi
− Sp

Xj
)2, (Sp

Xi
− Sp

Xl
)2
)
−

[
2(σi − σj)(σi − σl)v

∗
ii + v∗2ii /2

]
→ 0,

where we used the fact that Cov
(
(X̄p

i − X̄p
j), (X̄

p
i − X̄p

l )
)
= Var(X̄p

i ) = vii/2 and Cov
(
(Sp

Xi
−

Sp
Xj

), (Sp
Xi

− Sp
Xl

)
)
= Var(Sp

Xi
) = v∗ii/2. We calculate the other covariance terms in (A.10)

similarly.

Now, when n → ∞ we find that the asymptotic distribution of W (τ0) converges to a normal

distribution using CLT and under Assumptions (B1)-(B5), as follows

n|∇−
τ0
||∇+

τ0
|
(
W (τ0)− 1

n|∇−
τ0

||∇+
τ0

|

∑n
i=1

∑
j∈∇−

τ0

∑
j′∈∇+

τ0
mijj′

)
√∑n

i=1

∑
j∈∇−

τ0

∑
j′∈∇+

τ0

∑n
k=1

∑
l∈∇−

τ0

∑
l′∈∇+

τ0
cijj′kll′

D→ N(0, 1), (A.11)

where

mijj′ = E
(
∥X i −Xj∥2D

)
+ E

(
∥X i −Xj′∥2D

)
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and

cijj′kll′ = Cov
(
∥X i −Xj∥2D + ∥X i −Xj′∥2D, ∥Xk −X l∥2D + ∥Xk −X l′∥2D

)
= Cov

(
∥X i −Xj∥2D, ∥Xk −X l∥2D

)
+ Cov

(
∥X i −Xj∥2D, ∥Xk −X l′∥2D

)
+ Cov

(
∥X i −Xj′∥2D, ∥Xk −X l∥2D

)
+ Cov

(
∥X i −Xj′∥2D, ∥Xk −X l′∥2D

)
.

Note that for this result, in addition to Assumption (A5), we require E
(
∥X i −Xj∥2D

)
< ∞

which is directly followed from Assumptions (A1) and (A2).

Letting p → ∞, we can calculate both mijj′ and cijj′kll′ using the results in (A.9) and (A.10)

obtained as p → ∞. In particular,

mijj′ = E
(
∥X i −Xj∥2D

)
+ E

(
∥X i −Xj′∥2D

)
= (vij + v∗ij + vij′ + v∗ij′) + (µ̄i − µ̄j)

2 + (σi − σj)
2 + (µ̄i − µ̄j′)

2 + (σi − σj′)
2 + op(1).

The asymptotic normality in (A.11) also holds if we replace τ0 with τ̂ as it is consistent for

τ0. Therefore, we find as n → ∞ and p → ∞

n|∇−
τ̂ ||∇

+
τ̂ |
(
W (τ̂)− 1

n|∇−
τ̂ ||∇+

τ̂ |

∑n
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂
mijj′

)
√∑n

i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
cijj′kll′

D→ N(0, 1).

Under the null hypothesis H0, the asymptotic distribution of W (τ̂) when n → ∞ and p → ∞

simplifies since µ̄i = µ̄j and σi = σj for all i and j under H0, resulting in the following simpler

formulae

mijj′ = vij + v∗ij + vij′ + v∗ij′ + op(1)
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and

Cov
(
∥X i −Xj∥2D, ∥Xk −X l∥2D

)
=



2(v2ij + v∗2ij ) + op(1) if i ̸= j, k ̸= l, i = k, j = l,

(v∗2ii + v∗2ii )/2 + op(1) if i ̸= j, k ̸= l, i = k, j ̸= l,

(v∗2jj + v∗2jj )/2 + op(1) if i ̸= j, k ̸= l, i ̸= k, j = l,

2(v2ij + v∗2ij ) + op(1) if i ̸= j, k ̸= l, i = l, j = k,

(v∗2ii + v∗2ii )/2 + op(1) if i ̸= j, k ̸= l, i = l, j ̸= k,

(v∗2jj + v∗2jj )/2 + op(1) if i ̸= j, k ̸= l, i ̸= l, j = k,

op(1) otherwise.

For the multivariate modified Euclidean distance function ∥X i −Xj∥D = p−1/2∥X i −Xj∥2,

we similarly define

W ∗(τ̂) :=
1

n|∇−
τ̂ ||∇

+
τ̂ |

n∑
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

{
p−1∥X i −Xj∥22 + p−1∥X i −Xj′∥22

}
,

which has the same asymptotic limit as T (τ̂) when both p and n go to infinity under H0. Again

using CLT as above, we obtain in this case

mijj′ = E(p−1∥X i −Xj∥22) + E(p−1∥X i −Xj′∥22),

and

cijj′kll′ = Cov
(
p−1∥X i −Xj∥22 + p−1∥X i −Xj′∥22, p−1∥Xk −X l∥22 + p−1∥Xk −X l′∥22

)
= Cov

(
p−1∥X i −Xj∥22, p−1∥Xk −X l∥22) + Cov

(
p−1∥X i −Xj∥22, p−1∥Xk −X l′∥22

)
+ Cov

(
p−1∥X i −Xj′∥22, p−1∥Xk −X l∥22) + Cov

(
p−1∥X i −Xj′∥22, ∥Xk −X l′∥22

)
.

Appendix A.8: Proof of Theorem 8

As we obtained in Theorem 7, the asymptotic distribution of the test statistic T (τ̂) is a normal

distribution in general underH0 or underH
s
1 . So, the proof is straightforward for PH0(|Tsd(τ̂)| >

Zα/2) → α using the standard normal distribution of Tsd(τ̂) under H0. To prove the second
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result, we work with the distribution of Tsd(τ̂) under H
s
1 by writing

PHs
1
(Tsd(τ̂) > Zα/2) = PHs

1

(n|∇−
τ̂ ||∇

+
τ̂ |
(
T (τ̂)− 1

n|∇−
τ̂ ||∇+

τ̂ |

∑n
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂
mijj′

)
√∑n

i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
cijj′kll′

> Zα/2

)

= PHs
1

(n|∇−
τ̂ ||∇

+
τ̂ |
(
T (τ̂)− 1

n|∇−
τ̂ ||∇+

τ̂ |

∑n
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂
(mijj′ + aijj′)

)
√∑n

i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
cijj′kll′

>

Zα/2 −
∑n

i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂
aijj′

√∑n
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
cijj′kll′

)

= PHs
1

(n|∇−
τ̂ ||∇

+
τ̂ |
(
T (τ̂)− 1

n|∇−
τ̂ ||∇+

τ̂ |

∑n
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂
(mijj′ + aijj′)

)
√∑n

i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
c∗ijj′kll′

>

Zα/2

√∑n
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
cijj′kll′ −

∑n
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂
aijj′

√∑n
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
c∗ijj′kll′

)
= PHs

1

(
Z >

Zα/2

√∑n
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
cijj′kll′ −

∑n
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂
aijj′

√∑n
i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
c∗ijj′kll′

)
+ o(1),

where aijj′ = (µ̄i − µ̄j)
2 + (σi − σj)

2 + (µ̄i − µ̄j′)
2 + (σi − σj′)

2 and c∗ijj′kll′ = cijj′kll′ + bijkl +

bijkl′ + bij′kl + bij′kl′ in which

bijkl =



4vij(µ̄i − µ̄j)
2 + 4v∗ij(σi − σj)

2 if i ̸= j, k ̸= l, i = k, j = l,

2(µ̄i − µ̄j)(µ̄i − µ̄l)vii + 2(σi − σj)(σi − σl)v
∗
ii if i ̸= j, k ̸= l, i = k, j ̸= l,

2(µ̄i − µ̄j)(µ̄k − µ̄j)vjj + 2(σi − σj)(σk − σj)v
∗
jj if i ̸= j, k ̸= l, i ̸= k, j = l,

4vij(µ̄i − µ̄j)
2 + 4v∗ij(σi − σj)

2 if i ̸= j, k ̸= l, i = l, j = k,

2(µ̄i − µ̄j)(µ̄k − µ̄i)vii + 2(σi − σj)(σk − σi)v
∗
ii if i ̸= j, k ̸= l, i = l, j ̸= k,

2(µ̄i − µ̄j)(µ̄j − µ̄l)vjj + 2(σi − σj)(σj − σl)v
∗
jj if i ̸= j, k ̸= l, i ̸= l, j = k,

0 otherwise.
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Then, since
n∑

i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

aijj′ =
n∑

i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

(µ̄i − µ̄j)
2 + (σi − σj)

2 + (µ̄i − µ̄j′)
2 + (σi − σj′)

2

=
∑
i∈∇−

τ̂

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

(µ̄i − µ̄j)
2 + (σi − σj)

2 + (µ̄i − µ̄j′)
2 + (σi − σj′)

2

+
∑
i∈∇+

τ̂

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

(µ̄i − µ̄j)
2 + (σi − σj)

2 + (µ̄i − µ̄j′)
2 + (σi − σj′)

2

=
∑
i∈∇−

τ̂

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

(µ̄i − µ̄j′)
2 + (σi − σj′)

2

+
∑
i∈∇+

τ̂

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

(µ̄i − µ̄j)
2 + (σi − σj)

2

= |∇−
τ̂ |

∑
i∈∇−

τ̂

∑
j′∈∇+

τ̂

(µ̄i − µ̄j′)
2 + (σi − σj′)

2

+ |∇+
τ̂ |

∑
i∈∇−

τ̂

∑
j∈∇−

τ̂

(µ̄i − µ̄j)
2 + (σi − σj)

2

= |∇−
τ̂ ||∇

−
τ̂ ||∇

+
τ̂ |
(
(µ̄∇−

τ
− µ̄∇+

τ
)2 + (σ∇−

τ
− σ∇+

τ
)2
)

+ |∇+
τ̂ ||∇

−
τ̂ ||∇

+
τ̂ |
(
(µ̄∇−

τ
− µ̄∇+

τ
)2 + (σ∇−

τ
− σ∇+

τ
)2
)

= (|∇−
τ̂ |+ |∇+

τ̂ |)|∇
−
τ̂ ||∇

+
τ̂ |κ

2
τ0

= n|∇−
τ̂ ||∇

+
τ̂ |κ

2
τ0

and |∇−
τ̂ ||∇

+
τ̂ | = O(n), we find

PHs
1
(Tsd(τ̂) > Zα/2) = PHs

1

(
Z > Zα/2

c

c∗
−

n2κ2
τ0

c∗
)
+ o(1) = 1− Φ

(
Zα/2

c

c∗
−

n2κ2
τ0

c∗
)
+ o(1),

(A.12)

where we used the short notation c =
√∑n

i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
cijj′kll′ and

c∗ =
√∑n

i=1

∑
j∈∇−

τ̂

∑
j′∈∇+

τ̂

∑n
k=1

∑
l∈∇−

τ̂

∑
l′∈∇+

τ̂
c∗ijj′kll′ as stated in the theorem.

It is also clear to obtain similarly

PHs
1
(Tsd(τ̂) < −Zα/2) = PHs

1

(
Z < −Zα/2

c

c∗
−

n2κ2
τ0

c∗
)
+ o(1) = Φ

(
− Zα/2

c

c∗
−

n2κ2
τ0

c∗
)
+ o(1).

(A.13)

From (A.12) and (A.13), we get

PHs
1
(|Tsd(τ̂)| > Zα/2) = 1− Φ

(
Zα/2

c

c∗
−

n2κ2
τ0

c∗
)
+ Φ

(
− Zα/2

c

c∗
−

n2κ2
τ0

c∗
)
+ o(1).
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Appendix A.9: Proof of Corollary 1

The proof of this corollary is straightforward using the result of Theorem 8. See also the proof

of next corollary.

Appendix A.10: Proof of Corollary 2

Using the result of Theorem 8, the proof of this corollary is also straightforward and we just

prove κ2
τ0

=
(
∑

k∈S0
ωk)

2

p2(σ∇−
τ0

+σ∇+
τ0

)2
in this case. For this, first recall σ2

i = p−1
∑p

k=1 σ
2
ik, i = 1, . . . , n.

Since σ2
i − σ2

j = (σi − σj)(σi + σj), we can write for i ∈ ∇−
τ , j ∈ ∇+

τ

(σi − σj)
2 =

(σ2
i − σ2

j )
2

(σi + σj)2
=

(
p−1

∑p
k=1 σ

2
ik − p−1

∑p
k=1 σ

2
jk

)2
(σi + σj)2

=
p−2(

∑p
k=1 ωk)

2

(σi + σj)2
. (A.14)

Considering that the mean of observations is unchanged in this case, we get from (A.14) that

κ2
τ0
=

p−2(
∑p

k=1 ωk)
2

(σ∇−
τ0
+ σ∇+

τ0
)2

=
(
∑

k∈S0
ωk)

2

p2(σ∇−
τ0
+ σ∇+

τ0
)2
.

Appendix A.11: Proof of Theorem 9

Let us define the notation

∆̄j,bk,ek :=
1

ek − bk + 1

ek∑
i=bk

∆ij, j = 1, . . . , n.

We can then rewrite the change point estimate (9) as

γ̂k = argmax
bk≤j≤ek

{
∆̄j,bk,ek

}
.

For clarity of the proof, first consider the case when there are two true change points τ 01 , τ
0
2 ,

2 ≤ τ 01 < τ 02 ≤ n. Similar to the proof of Theorem 4, it is straightforward to show as p → ∞

that

∆̄j,bk,ek = oP (1) j ̸= τ 01 , τ
0
2

∆̄j,bk,ek = κτ01
+ oP (1) j = τ 01

∆̄j,bk,ek = κτ02
+ oP (1) j = τ 02 ,

(A.15)
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where κτ0i
, i = 1, 2, are obtained by plugging in τ 0i in the formula of κτ given in Theorem 3.

Note that the above result holds with any bk and ek. The binary segmentation starts with

k = 1, bk = 1 and ek = n, so

γ̂1 = argmax
1≤j≤n

{
∆̄j,1,n

}
,

and using (A.15) we find as p → ∞

γ̂1 = argmax
1≤j≤n

{
∆̄j,1,n

}
= argmax

1≤j≤n

{
∆̄j,1,nI(j ̸= τ 01 , τ

0
2 ) + ∆̄j,1,nI(j = τ 01 ) + ∆̄j,1,nI(j = τ 02 )

}
= argmax

1≤j≤n

{
oP (1)I(j ̸= τ 01 , τ

0
2 ) + (κτ01

+ oP (1))I(j = τ 01 ) + (κτ02
+ oP (1))I(j = τ 02 )

}
P→ argmax

1≤j≤n

{
κτ01

I(j = τ 01 ) + κτ02
I(j = τ 02 )

}
.

Hence, we get either γ̂1
P→ τ 01 or γ̂1

P→ τ 02 , depending on which of κτ01
and κτ02

is larger. First,

if κτ01
> κτ02

, we get γ̂1
P→ τ 01 and then split the data sequence to two sub-sequences before and

after γ̂1: one with b2 = 1 and e2 = γ̂1 − 1, and one with b2 = γ̂1 and e2 = n. Then, since

γ̂1
P→ τ 01 < τ 02 , we have either

γ̂2 = argmax
1≤j≤γ̂1−1

{
∆̄j,1,γ̂1−1

}
= argmax

1≤j≤γ̂1−1

{
oP (1)

} P→ argmax
1≤j≤γ̂1−1

{
0
}
= ∅ (A.16)

where the empty set ∅ means no change point returned as defined in the paper, or

γ̂2 = argmax
γ̂1≤j≤n̂

{
∆̄j,γ̂1,n

}
= argmax

γ̂1≤j≤n̂

{
∆̄j,γ̂1,nI(j ̸= τ 02 ) + ∆̄j,γ̂1,nI(j = τ 02 )

}
= argmax

γ̂1≤j≤n̂

{
oP (1)I(j ̸= τ 02 ) + (κτ02

+ oP (1))I(j = τ 02 )
}

P→ argmax
γ̂1≤j≤n

{
κτ02

I(j = τ 02 )
}

= τ 02 .

Thus, we must have γ̂2
P→ τ 02 . Second, if κτ01

< κτ02
, then we get γ̂1

P→ τ 02 and we can similarly

as above show that γ̂2
P→ τ 01 . If we further split the data sub-sequences before and after the

second change point estimate γ̂2, no more γ̂k will converge by considering (A.15) and a similar

15



calculation as in (A.16). So, denoting (τ̂1, τ̂2) = sort(γ̂1, γ̂2), we have ∥(τ̂1, τ̂2) − (τ 01 , τ
0
2 )∥∞ =

oP (1) for this case of two true change points.

Now suppose there are s true change points τ 01 , τ
0
2 , . . . , τ

0
s , 2 ≤ τ 01 < τ 02 < . . . < τ 0s ≤ n.

Similar to the above, we obtain as p → ∞

∆̄j,bk,ek = oP (1) j ̸= τ 01 , τ
0
2 , . . . , τ

0
s

∆̄j,bk,ek = κτ01
+ oP (1) j = τ 01

∆̄j,bk,ek = κτ02
+ oP (1) j = τ 02

...

∆̄j,bk,ek = κτ0s
+ oP (1) j = τ 0s .

(A.17)

The binary segmentation starts with k = 1, bk = 1 and ek = n, so

γ̂1 = argmax
1≤j≤n

{
∆̄j,1,n

}
,

and using (A.17) we find as p → ∞

γ̂1 = argmax
1≤j≤n

{
∆̄j,1,n

}
= argmax

1≤j≤n

{
∆̄j,1,nI(j ̸= τ 01 , τ

0
2 , . . . , τ

0
s ) +

s∑
i=1

∆̄j,1,nI(j = τ 0i )
}

= argmax
1≤j≤n

{
oP (1)I(j ̸= τ 01 , τ

0
2 , . . . , τ

0
s ) +

s∑
i=1

(κτ0i
+ oP (1))I(j = τ 0i )

}
P→ argmax

1≤j≤n

{ s∑
i=1

κτ0i
I(j = τ 0i )

}
.

Hence, we have γ̂1
P→ τ 0k1 for a τ 0k1 , k1 ∈ {1, . . . , s}, for which κτ0k1

= max{κτ01
, κτ02

, . . . , κτ0s
}.

Then, we split the data sequence to two sub-sequences before and after γ̂1: one with b2 = 1 and

e2 = γ̂1 − 1, and one with b2 = γ̂1 and e2 = n. Applying the same process as above for the two

true change points case to each of these two sub-sequences, we find for the next change point

estimates γ̂2 and γ̂3 that γ̂2
P→ τ 0k2 and γ̂3

P→ τ 0k3 where we have either τ
0
k2

< τ 0k1 and τ 0k3 > τ 0k1 or

τ 0k2 > τ 0k1 and τ 0k3 < τ 0k1 . Continuing this process, we find ∥(τ̂1, τ̂2, . . . , τ̂s)− (τ 01 , τ
0
2 , . . . , τ

0
s )∥∞ =

oP (1), as p → ∞. We note that for the last two sub-sequences no additional change points will

16



converge using the same argument as above for the case with two change points according to

a similar calculation as in (A.16).

Appendix A.12: Proof of Theorem 10

(a) First, because under the null hypothesis H0 all the variables X1,X2, . . . ,Xn have the

same distribution, Tr(τ̂) must have the same distribution as T (τ̂) under H0 for all random

permutations, and hence

E(GTR
(t)) =

1

R

R∑
r=1

P
(
Tr(τ̂) ≤ t

)
= P

(
T (τ̂) ≤ t

)
.

This then implies E(GTR
(t)) → GT (t) for all t as n → ∞ and p → ∞ under H0, since the

asymptotic distribution of T (τ̂) is GT (t) using Theorem 7. To show that GTR
(t)

D→ GT (t), it

suffices to prove that Var(GTR
(t)) → 0 as n → ∞ and p → ∞. This holds because

E(G2
Tr
(t)) =

1

R2

R∑
r=1

R∑
r′=1

P
(
Tr(τ̂) ≤ t, Tr′(τ̂) ≤ t

)
= P

(
T (τ̂) ≤ t, T (τ̂) ≤ t

)
→ G2

T (t).

It should be noted that this holds only under H0 because the variables would not have the

same distribution under the alternative hypothesis.

(b) Using part (a) above, as n → ∞ and p → ∞, we can write for 0 ≤ α ≤ 1

PH0(pperm ≤ α) = PH0(1−GTR
(Tobs(τ̂)) ≤ α) → PH0(1−GT (Tobs(τ̂)) ≤ α)

= PH0(GT (Tobs(τ̂)) ≥ 1− α) = P (U ≥ 1− α) = α,

where U denotes a random variable having uniform distribution on the interval (0,1).

Appendix B: Additional simulation results

We here provide some further simulation results on our proposed method and in comparison

with the other methods, as well as on the computations of our method using the wild binary

segmentation versus the recursive binary segmentation.
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Appendix B1: Simulations for change points with non-normal data

We also evaluate the performance of our methods in detecting high dimensional change points

when the distribution of observations is not normal. For this, we generate data from the asym-

metric chi-squared distribution with one degree of freedom and scale the simulated observations

to have the same mean and variance as in the previous cases of normal distribution. Table A.1

presents the results on frequency and average number of the detected change points for this

scenario. We can see that our method based on both the asymptotic and permutation tests

performs better than the other methods. Unlike our method as well as E-divisive and HDcpde-

tect which are distribution-free, the performance of the Inspect is more affected compared to

the previous results as this method requires the normality of observations.

Appendix B2: Computation time and wild binary segmentation

We here report the computation time of our method for multiple change point detection and also

evaluate the use of wild binary segmentation in our approach as described at the end of Section

3. We are interested to see how the wild binary segmentation may improve the results. For this,

we consider the same change point problem with three true change points as before, focusing

on the cases with n = 90, p ∈ {500, 1000, 1500} and µ2 = (0.1×13p/4, 0×1p/4). The three true

change point locations are thus {28, 46, 73}. We report the percentage of times the first detected

change point is a true change point (this is important for any binary segmentation), the average

number of the true change points detected and the average computation time, on a desktop

PC (2.50 GHz+64 GB RAM), for our multiple change point algorithm once with the recursive

binary segmentation and once with the wild binary segmentation using 1000 random draws,

across 250 replications. The results, which are presented in Table A.2, show that the wild binary

segmentation slightly improves the results compared to the recursive binary segmentation. We

note that our single change point algorithm is consistent so it tends to produce a true change

point, thus the two binary segmentation procedures perform similarly well. As the results
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Table A.1: Frequency and average number of the detected change points over 250 replica-
tions by each of the methods when data are generated from chi-squared distribution with
one degree of freedom and when there is one true change point, also including the case
with no change point.

µ2 n p Number of
true change

points

Method Frequency of the
detected change

points

Average number
of detected

change points
0 1

45 500 0 Permutation 0.98 0.02 0.02
45 500 0 Asymptotic 0.97 0.03 0.03

0p 45 500 0 E-divisive 0.97 0.03 0.03
45 500 0 Inspect 0.98 0.02 0.02
45 500 0 HDcpdetect 0.97 0.03 0.03
45 1000 0 Permutation 0.97 0.03 0.03
45 1000 0 Asymptotic 0.97 0.03 0.03

0p 45 1000 0 E-divisive 0.96 0.04 0.04
45 1000 0 Inspect 0.97 0.03 0.03
45 1000 0 HDcpdetect 0.97 0.03 0.03
45 1500 0 Permutation 0.96 0.04 0.04
45 1500 0 Asymptotic 0.96 0.04 0.04

0p 45 1500 0 E-divisive 0.96 0.04 0.04
45 1500 0 Inspect 0.97 0.03 0.03
45 1500 0 HDcpdetect 0.95 0.05 0.05
45 500 1 Permutation 0.85 0.15 0.15
45 500 1 Asymptotic 0.84 0.16 0.16

(0.1× 13p/4, 0× 1p/4) 45 500 1 E-divisive 0.86 0.14 0.14
45 500 1 Inspect 0.97 0.03 0.03
45 500 1 HDcpdetect 0.88 0.12 0.12
45 1000 1 Permutation 0.54 0.46 0.46
45 1000 1 Asymptotic 0.47 0.53 0.53

(0.1× 13p/4, 0× 1p/4) 45 1000 1 E-divisive 0.60 0.40 0.40
45 1000 1 Inspect 0.96 0.04 0.04
45 1000 1 HDcpdetect 0.62 0.38 0.38
45 1500 1 Permutation 0.22 0.78 0.78
45 1500 1 Asymptotic 0.18 0.82 0.82

(0.1× 13p/4, 0× 1p/4) 45 1500 1 E-divisive 0.39 0.61 0.61
45 1500 1 Inspect 0.94 0.06 0.06
45 1500 1 HDcpdetect 0.44 0.56 0.56
45 500 1 Permutation 0.20 0.80 0.80
45 500 1 Asymptotic 0.17 0.83 0.83

(0.2× 13p/4, 0× 1p/4) 45 500 1 E-divisive 0.21 0.79 0.79
45 500 1 Inspect 0.89 0.11 0.11
45 500 1 HDcpdetect 0.23 0.77 0.77
45 1000 1 Permutation 0.04 0.96 0.96
45 1000 1 Asymptotic 0.04 0.96 0.96

(0.2× 13p/4, 0× 1p/4) 45 1000 1 E-divisive 0.06 0.94 0.94
45 1000 1 Inspect 0.88 0.12 0.12
45 1000 1 HDcpdetect 0.08 0.92 0.92
45 1500 1 Permutation 0.00 1.00 1.00
45 1500 1 Asymptotic 0.00 1.00 1.00

(0.2× 13p/4, 0× 1p/4) 45 1500 1 E-divisive 0.02 0.98 0.98
45 1500 1 Inspect 0.86 0.14 0.14
45 1500 1 HDcpdetect 0.04 0.96 0.96
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Table A.2: Computation time when there are three true change points and results on using
the wild binary segmentation (WBS) versus the recursive binary segmentation (RBS) in
our method over 250 replications, when µ2 = (0.1× 13p/4, 0× 1p/4).

Test n p True change
point

locations

Segmentation
method

Percentage of times
the first detected
change point is a
true change point

Average
number of
detected

change points

Computation
time (in
minute)

90 500 {28, 46, 73} RBS 0.38 1.04 1.52
90 500 {28, 46, 73} WBS 0.43 1.15 3.11
90 1000 {28, 46, 73} RBS 0.60 1.73 1.64
90 1000 {28, 46, 73} WBS 0.72 1.80 5.30
90 1500 {28, 46, 73} RBS 0.91 2.72 1.69

Asymptotic

90 1500 {28, 46, 73} WBS 0.91 2.72 7.28
90 500 {28, 46, 73} RBS 0.38 0.93 26.44
90 500 {28, 46, 73} WBS 0.42 1.03 43.51
90 1000 {28, 46, 73} RBS 0.58 1.68 37.09
90 1000 {28, 46, 73} WBS 0.69 1.74 67.12
90 1500 {28, 46, 73} RBS 0.91 2.70 57.17

Permutation

90 1500 {28, 46, 73} WBS 0.91 2.71 96.91

indicate, the use of wild binary segmentation requires a fairly more computation time.

Appendix C: Additional results on our data application

For the S&P 500 data, we also calculate confidence intervals for the detected change point

locations using our method. For this, we use the confidence interval formula (7) obtained

at the end of Section 2 in the paper. Figure A.1 shows the 95% confidence intervals for the

detected change point locations.

Finally, a rather naive approach in high dimensional settings which entirely ignores the

high dimensional nature of the data is to aggregate the data for example calculate the means

of observations and then apply a univariate change point method to the means of observations.

To test this ad hoc approach on the S&P 500 data, we compute the means of 125 observations

and apply the wild binary segmentation of Fryzlewicz (2014) using CUSUM as a univariate

technique to the means of 125 observations. It returns sixteen significant change points 28, 37,

46, 49, 51, 55, 57, 58, 63, 66, 68, 80, 95, 99, 106, 112, whose significance are confirmed using

the changepoints function as in the wbs package. The number of significant change points

detected is too large compared to all the other methods considered in the paper, which could
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Figure A.1: S&P 500 data: 95% confidence intervals for the detected change points using
the proposed method. The estimated change points are also highlighted using red dots.

be misleading especially the detection of several successive change points.
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