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Music is present in every known society but varies from place to place. What, 
if anything, is universal to music cognition? We measured a signature of 
mental representations of rhythm in 39 participant groups in 15 countries, 
spanning urban societies and Indigenous populations. Listeners reproduced 
random ‘seed’ rhythms; their reproductions were fed back as the stimulus 
(as in the game of ‘telephone’), such that their biases (the prior) could be 
estimated from the distribution of reproductions. Every tested group 
showed a sparse prior with peaks at integer-ratio rhythms. However, the 
importance of different integer ratios varied across groups, often reflecting 
local musical practices. Our results suggest a common feature of music 
cognition: discrete rhythm ‘categories’ at small-integer ratios. These 
discrete representations plausibly stabilize musical systems in the face of 
cultural transmission but interact with culture-specific traditions to yield 
the diversity that is evident when mental representations are probed across 
many cultures.

Music, like language, is conceived by Western scholars to consist of combi-
nations of discrete elements1. Musical notes are grouped into phrases and 
described in terms of discrete intervals in frequency and time. In Western 
music, these intervals are non-arbitrary, often defined by integer ratios 
between frequencies or durations. Although music is notated in terms of 
these intervals, actual musical performances can deviate considerably 

from notated intervals in frequency and time2–6. Discrete symbolic mental 
representations of music are thought to be aided by categorical percep-
tion7–11—the perceptual mapping of continuous spaces of signals onto 
discrete elements12. Yet most studies of music perception have been 
conducted on listeners in Western Europe or North America, leaving 
the cross-cultural generality of such discrete representations unclear.
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be composed (in accordance with other musical constraints) to form 
longer and more complex rhythms8,27,40. Small-integer-ratio rhythms 
are particular points in this space (Fig. 1b; the red crosses demarcate 
small-integer-ratio rhythms whose duration ratios are defined by inte-
gers less than 4), with isochrony (1:1:1) lying in the middle.

We previously found that iterated rhythm reproductions of 
US participants converged to stationary distributions, consistent 
with Bayesian inference under a prior. Moreover, the distributions 
for both musician and non-musician participants contained modes 
at small-integer-ratio rhythms26. Figure 1b shows example trajecto-
ries from an experiment in one group, which can be seen to gravitate 
towards small-integer ratios. The distribution of the reproductions can 
be estimated and visualized as kernel density estimates in the rhythm 
space (cross sections of the densities show that the densities have 
peaks near small-integer ratios; Fig. 1c; see also Extended Data Fig. 1).

Although the experiment results should in principle be influenced 
by motor noise, we found in practice that such noise is small enough 
to not substantially influence the results. In particular, the distribu-
tions for US musicians and non-musicians are similar despite much 
higher tapping precision for musicians26. Several additional strands of 
evidence support the idea that the distribution measured by the experi-
ment reflects a perceptual prior26 despite being dependent on motor 
responses (‘Discussion’). We also note that the goals of the present 
paper do not hinge on whether the mental representation measured by 
the experiment is purely perceptual in origin. The experiment measures 
the biases in how a heard rhythm is translated into a reproduction, as 
would shape musical practice and its cultural transmission irrespec-
tive of whether these biases reside entirely in the realm of perception. 
We refer to the result of the experiment as a ‘prior’, cognizant that it 
could in principle be partly distinct from a classical perceptual prior.

The iterated reproduction paradigm is well suited to cross-cultural 
experiments. The task is intuitive for participants, with minimal reli-
ance on verbal instructions, and is easy to run in the field, allowing us to  
run the same experiment across many different groups speaking  
different languages and with varying levels of education (Fig. 2). The 
paradigm also has the attractive feature of being independent of any 
specific hypothesis about the structure of rhythm representation. In 
particular, the experiment is not limited to testing whether phenomena 
prominent in Western listeners (discrete modes at small-integer ratios) 
are present in other cultures. A group of people could in principle 
exhibit a uniform prior (without discrete modes), or one with a com-
pletely different modal structure from that observed in Westerners.

We previously observed a prior with small-integer-ratio modes 
in one Indigenous Amazonian society26. However, the integer ratios at 
which the modes occurred were different than in US participants. To 
test whether discrete modes at small-integer ratios are present across 
groups and to assess the nature and extent of cross-cultural variation, 
we ran the experiment in a large number of participant groups around 
the world.

Results
We tested 39 participant groups, spanning five continents and 15 
countries (Fig. 3a; see Extended Data Table 1 for a summary of each 
group’s demographics). The groups were chosen primarily to provide 
a strong test of (1) potential universality by comparing groups with 
diverse musical experiences and (2) the role of musical experience in 
shaping mental representations. We thus included groups ranging 
from industrialized to small-scale societies, as well as groups of musi-
cians and dancers from some non-Western societies. We also selected 
groups whose musical traditions were known to have distinct rhythmic 
characteristics to test whether any cross-cultural variability in mental 
representations could be explained by exposure to local musical styles. 
Where possible, we tested multiple groups from the same country 
that differed in the nature of their presumptive musical exposure. 
We also tested both university students and online participants in a 

Attempts to characterize music from around the world have sup-
ported the idea that there are universal properties of music, including 
a reliance on discrete elements defined by simple-integer ratios13–17. 
However, such analyses of musical corpora have largely relied on 
Western-trained researchers to annotate what they hear when listening 
to recordings from other cultures, with the unavoidable possibility that 
researchers’ perceptual biases influence the results. Experiments to 
assess mental representations across cultures could more definitively 
address commonalities and variation in music cognition but have thus 
far been limited to small numbers of societies18–31 or to participants on 
the internet32,33, who plausibly have extensive exposure to a distribution 
of music similar to that consumed by typical participants in Western 
Europe and North America. In addition, experiments in non-musicians 
in the United States have in some cases failed to find evidence  
for discrete musical features such as pitch intervals and chords34,35. 
The universality of psychological mechanisms supporting discrete 
representations of music has thus remained unclear, as has the extent to 
which such representations are biologically constrained to exhibit char-
acteristics found in Western European and North American listeners.

Here we present a large-scale study of cross-cultural variation 
in music cognition, measuring signatures of discrete mental repre-
sentations of rhythm in a large number of diverse participant groups 
around the world. We used a paradigm developed in an earlier study26 
to characterize Bayesian priors on simple periodic rhythms, which in 
US participants exhibit discrete peaks (modes) at rhythms composed 
of time intervals related by ratios of small integers (‘simple’ integer 
ratios such as 1:2 or 2:3 as opposed to 4:7 or 7:12)36. These modes bias the 
internal representation of presented rhythms by shifting them towards 
the rhythm represented by a mode, causing rhythms to be perceived 
categorically. We sought to assess the prevalence of this phenomenon 
in Western and non-Western listeners, as well as the relation of rhythm 
categories to culture-specific musical traditions. Throughout this 
paper, we at times use the term ‘Western’ as a summary term to refer 
to people from Western Europe or North America and ‘non-Western’ to 
refer to people from other geographical regions. We note that societies 
may differ on other dimensions as well (in particular, the Western socie-
ties we discuss are relatively educated, industrialized, rich and demo-
cratic37) and that there is a large degree of variability across Western 
societies and particularly within the residual category of non-Western 
societies. Our choice to contrast Western and non-Western listeners 
reflects the legacy of scholarship in this domain, which has often taken 
Western music as a reference point and has predominantly documented 
perception in Western listeners. Our use of this dichotomy should not 
be taken as an endorsement.

In the experiment, individuals are initially presented with a  
random ‘seed’ rhythm: a repeating cycle of three clicks, separated by 
three successive time intervals, which we constrained to sum to two 
seconds. Participants reproduce the pattern by tapping along to it 
(Fig. 1a). Empirically, the reproduction is biased away from the actual 
stimulus rhythm, as might be expected if the internal representation 
of the rhythm were influenced by a prior via Bayesian inference. The 
reproduction is then substituted as the stimulus, and the process is 
iterated26,38,39. If the stimulus representation is determined by Bayesian 
inference with a fixed prior, the reproduction should be further biased 
at each iteration by the prior, such that it is eventually indistinguishable 
from a sample from the prior. The prior can then be estimated by run-
ning the procedure multiple times with different random seed rhythms. 
Here we used a kernel density estimate from the last iteration of a large 
set of random seeds to approximate the prior (Methods).

The results of the experiment are plotted in a triangular ‘rhythm 
space’ of three-interval rhythms (Fig. 1b). Each of the three axes of the 
rhythm space represents one of the three intervals. Because the total 
duration of the three-element rhythm is constrained to 2,000 ms, 
two of the intervals are sufficient to uniquely specify the rhythm. The 
brief and simple rhythms defined by this space are elements that can 
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number of countries. Compared with the other participant groups 
in the same countries, university students and online participants 
had musical experience that was more like that of typical Western 
participants; these participant groups were intended to assess the 
potential effects of exposure to Western/globalized music on mental 
representations of rhythm, and thus the consequences of reliance 
on student and online participants in cross-cultural research37,41. We 
chose participant groups on the basis of these criteria in conjunction 
with practical constraints (we tested more groups in some countries 
than in others primarily due to constraints of testing time and access 
to particular populations).

The key questions we sought to answer were (1) whether all groups 
would exhibit discrete rhythm categories; (2) whether any discrete 
categories would consistently occur at small-integer-ratio rhythms; 
(3) how rhythm categories would vary across groups, if at all; and  
(4) whether any cross-cultural variation would be related to musical  
or other demographic characteristics of the group.

All groups exhibit priors with discrete modes
The measured priors are shown in Fig. 3b. Their most obvious feature 
is that they are non-uniform, being dominated in all cases by a set of 
relatively discrete modes that form local maxima in two dimensions. 
This need not have been the case—some or all priors could have been 
uniform or could have exhibited one-dimensional ridges rather than 
discrete two-dimensional modes. We substantiated this observation 
quantitatively in two ways. First, we found that in all 39 groups, 33% 
of the bins in the triangular rhythm space contained at least 61% of  
the rhythm reproductions in the fifth iteration (mean, 70.1%; range, 
61.8–81.7%), suggesting that most of the probability mass is concen-
trated in a small portion of the space. The odds of this happening by 
chance are very low (P < 0.001 for points randomly positioned in the 
rhythm triangle, via bootstrapping). Second, the peak of the distribu-
tion in all 39 groups was at least five times larger than the uniform den-
sity (the ratio of the peak to the uniform ranged from 5.3 to 13.1, with a 
mean of 8.8; this ratio was significantly greater than would be expected 
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Fig. 1 | Iterated reproduction experiment paradigm and analysis. a, Schematic 
of the experiment. Participants are presented with initially random seed rhythms 
(a repeating cycle of three clicks, defined by three inter-click time intervals) 
and reproduce them by tapping. The reproduction becomes the stimulus on 
the following iteration. This procedure is iterated five times (one ‘trial’). Credit: 
Felix Bernoully. b, The triangular rhythm space in which the results are plotted 
(shown here for candombe musicians in Uruguay, for illustration purposes). 
Each axis (side) of the triangle represents one of the three intervals in a rhythm. 
We constrained each interval to be at least 300 ms in duration, and the total 
pattern duration to be 2,000 ms, resulting in the space within the inner triangle. 
Small-integer-ratio rhythms, in which the time intervals are related by ratios with 
integers less than 4 (Methods), occupy a subset of points in the triangular rhythm 

space. Two example small-integer-ratio rhythms (1:1:2 and 1:1:1) are shown to the 
left. For these examples, the three intervals are marked with white lines, the solid 
rectangles mark the three clicks of a cycle, and the outlined rectangle marks the 
click that starts the subsequent repeated cycle. The coloured dots connected by 
lines show trajectories from example experimental trials. The inset shows the 
dynamics of one example trial in more detail, converging in this case to the 1:1:2 
rhythm. The distribution of reproductions is summarized with a kernel density 
estimate, plotted in greyscale over the rhythm triangle. c, Cross-sections through 
example modes in the prior shown in b, showing peaks at small-integer ratios; see 
also Extended Data Fig. 1. See Extended Data Fig. 2 and Supplementary Fig. 1 for 
the results of a second experiment conducted at a faster tempo by using a pattern 
duration of 1,000 ms.
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by chance; P < 0.001 for all groups, via bootstrapping), suggesting 
that all distributions were far from uniform and very ‘peaky’. Although 
some groups have modes that are elongated more in one direction  
than another, all modes had clear peaks (evident in cross-sectional 
plots of the densities shown in Extended Data Fig. 1).

All groups exhibit modes at small-integer-ratio rhythms
Visual inspection of the modes suggests that they fall on small- 
integer-ratio rhythms (the red crosses superimposed on Fig. 3b). 
To quantify the extent to which this was the case, we computed the 
average distance between each fifth-iteration reproduction by all 
participants in a given group and the closest small-integer-ratio 
rhythm. This measure should be small for priors with modes that are 
perfectly centred on small-integer ratios. We compared this measure 
to a null distribution obtained by computing the average minimum 
distance from a random set of points. All groups produced priors that 
were closer to small-integer ratios than would be expected by chance 
(P < 0.001 in all cases, via bootstrapping, Bonferroni-corrected;  
Fig. 4a). Given the diversity of the participant groups, this result 
suggests that small-integer-ratio rhythm categories are a widespread 
feature of human mental representations. This conclusion is fur-
ther supported by two other measures of the overlap of the priors 
with small-integer ratios (including one where the null distribution 
was derived from random points constrained to be spaced simi-
larly to the integer ratios; Methods). We obtained similar results in 
13 groups who performed the same experiment at a faster tempo 
(pattern duration of 1,000 ms compared with 2,000 ms in the main 
experiment; Extended Data Fig. 2 and Supplementary Fig. 1). In all  
13 cases, the priors were again closer to small-integer ratios than 
would be expected by chance (P < 0.001 in all groups, via bootstrap-
ping; Extended Data Fig. 2b).

We also found that some of the rhythm categories were system-
atically biased away from the closest small-integer ratio. Of the 22 
analysed small-integer ratios, 9 had corresponding modes (estimated 
with a Gaussian mixture model) that were slightly but significantly 
biased away from the integer ratio (Fig. 4b). These biases were pre-
sent cross-culturally and were similar to those previously observed in  

US participants. Specifically, the short intervals in the categories 1:2:3 
and 2:1:3 (and their cyclic permutations) were consistently lengthened 
relative to the medium intervals, causing the rhythms to shift slightly 
towards the centre of the rhythm space (isochrony). This lengthening 
of the short element is characteristic of rhythm performance studied 
in European musicians42. A similar bias was present for 2:2:3 (and its 
cyclic permutations). This result suggests that some specific devia-
tions from small-integer ratios are also a widespread feature of mental 
representations of rhythm.

Another feature of the data that is common across cultures is the 
tendency for the response distributions to be symmetric across cyclic 
permutations (Fig. 3). For example, the modes at 1:1:2, 1:2:1 and 2:1:1 are 
about equally prominent for a given participant group. However, there 
was reason to think that the most frequently occurring permutations 
would be those where the long interval occurs at the end43–45, because 
if this configuration is played cyclically, the long interval provides a 
gap that helps the pattern to group according to Gestalt principles43. 
When we compared the frequency of each cyclic permutation in each 
participant group, we in fact found a consistent trend in this direction: 
the permutation with the long interval at the end occurred more fre-
quently in 31 of 39 groups (Extended Data Fig. 3). Similarly, in 33 of 39 
groups, participants placed their first tap immediately after the long 
interval, suggesting that most participants in most groups tended  
to hear this onset as the ‘beginning’ of the pattern. See Extended 
Data Fig. 3 (and ‘Cyclic permutations and an analysis of symmetry’ in  
Methods) for further analysis.

Rhythm priors vary cross-culturally
Despite the consistent presence of discrete modes that tend to overlap 
small-integer ratios, the measured priors varied across groups. To 
examine the dominant dimensions of variation, we performed mul-
tidimensional scaling46 on the measured priors. Two dimensions of 
variation captured considerable variance (85.9% of the variance in the 
intergroup distances measured by Jensen–Shannon divergence) and 
are shown here to facilitate visualization.

Figure 5a shows the measured priors for each group arranged 
according to their positions in this space. The four groups lying at the 

a b d

e f g
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Fig. 2 | Example testing sites. a, Yaranda, Bolivia. b, Montevideo, Uruguay. c, Sagele, Mali. d, Spitzkoppe, Namibia. e, Pleven, Bulgaria. f, Bamako, Mali. g, D’Kar, 
Botswana. h, Stockholm, Sweden. i, Guizhou, China. j, Mumbai, India. Verbal informed consent was obtained from the individuals in each photo.
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‘corners’ of the multidimensional scaling space provide a snapshot 
of the variation across groups, along with features that consistently 
appear (Fig. 5a, insets). All groups show modes at isochrony (1:1:1) and 
1:1:2. However, the presence of other small-integer rhythms varies. We 
quantified the prominence of different integer-ratio rhythms as the 

weights on individual components of a Gaussian mixture model fitted 
to the data (with each component constrained to be unambiguously 
associated with a different integer ratio; see Extended Data Fig. 4 for 
the weights of components for all groups). The presence or absence of 
a mode at the 3:3:2 rhythm is a major source of variation, accounting 
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Fig. 3 | Summary results of iterated rhythm reproduction in 15 countries. 
a, Map of test sites. Credit: Felix Bernoully. b, Rhythm priors from all 39 groups 
tested. Musicians are labelled as ‘Western’ if they predominantly play Western 
music and ‘local’ if they predominantly play any other style. See Methods for the 

criteria used to classify participants as ‘musicians’ or ‘non-musicians’. The red 
crosses demarcate small-integer-ratio rhythms whose duration ratios are defined 
by integers less than or equal to 3. NM, non-musicians; WM, musicians (Western); 
LM, musicians (local); DA, dancers; ST, students (non-musicians); OL, online.
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for the horizontal dimension of the multidimensional scaling space 
(position along this dimension was highly correlated with the weight 
on the 3:3:2 category; r37 = 0.90; P < 0.001; 95% confidence interval 
(CI), (0.81, 0.94); Fig. 5b). The first dimension was also correlated with 
a reduction in the weight of the ‘simpler’ categories, including isoch-
rony (1:1:1: r37 = −0.46; P = 0.028; 95% CI, (−0.67, −0.16); 1:1:2: r37 = −0.64; 
P < 0.001; 95% CI, (−0.8, −0.41); 2:2:1: r37 = −0.61; P < 0.001; 95% CI, 
(−0.77, −0.36)). The second multidimensional scaling dimension is 
less obviously interpretable but also correlated significantly with two 
of the small-integer-ratio rhythms (1:2:3: r37 = 0.56; P = 0.001; 95% CI, 
(0.3, 0.75); 1:3:2: r37 = 0.62; P < 0.0001; 95% CI, (0.38, 0.78); Extended 
Data Fig. 5), and it thus can be seen as partially embodying the strength 
of 6/8 rhythms. The groups at the corners also exhibit variation in the 
presence of 2:2:1, such that all possible combinations of modes at 2:2:1 
and 3:3:2 occur: the Tsimane’ non-musicians from Bolivia show neither 
of these two modes, the San musicians from Botswana show both,  
the dancers from Mali show 3:3:2 but not 2:2:1 and the non-musicians 
from China show 2:2:1 but not 3:3:2. We also analysed the data using 
principal component analysis; the first two components captured 
variation along the same modes highlighted by the multidimensional 
scaling analysis (Extended Data Fig. 6).

The US and UK participant groups were all positioned close to  
the centre of the multidimensional scaling space. One speculative  
possibility is that this position reflects the widespread influence of 
Western music around the world, with different cultures having incor-
porated its influence in different ways.

Cross-cultural variation is less evident in university students
The positioning of the groups in the multidimensional scaling space 
(Fig. 5a) also suggests that the priors in university students and online 
participants from countries around the world are relatively similar to 
each other and to the priors of US participants. To quantify this effect 
in students, we first measured the distance ( Jensen–Shannon diver-
gence) between the estimated priors for pairs of student groups in 
different countries and compared it to that for pairs of non-student 
groups (from the same countries from which the student groups were 
drawn). This comparison revealed that the distance between student 
groups was significantly smaller than that between non-student groups 
(P = 0.004, permutation test; Cohen’s d = 1.06; difference of mean dis-
tances, 0.039; 95% CI, (0.03, 0.05); Fig. 6a). This result indicates that 
student participants underrepresent cross-cultural diversity. This 
conclusion is supported by the self-reported music listening habits of 
the participants, which are notably more similar between the student 
groups than between the corresponding non-student groups from the 
same countries (Fig. 6b,c and Supplementary Table 2).

Cross-cultural variation is less evident in online participants
We conducted an analogous analysis in online participants and obtained 
a similar result (smaller intergroup distances than for non-online 
groups; P = 0.03, permutation test; Cohen’s d = 1.46; difference of mean 
distances, 0.047; 95% CI, (0.02, 0.07); Fig. 6d). This result indicates that 
online participants also underrepresent cross-cultural diversity. As with 
the student groups, this conclusion is supported by self-reported music 
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listening habits, which are more similar between the online groups 
than between non-online groups from the same countries (Fig. 6e,f 
and Supplementary Table 2).

Students and online participants resemble US participants
To quantify the similarity of student and online groups to US partici-
pants, we measured the average distance (again using Jensen–Shannon 
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The insets show rhythm priors for the four participant groups lying at the corners 
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Extended Data Fig. 3 for an analysis of differences between cyclic permutations. 
b, Strength of the 3:3:2 rhythm (the average weight of the components at 
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divergence as the distance measure) between priors of either student 
or online groups to the prior of the US student group (taken as a repre-
sentative group of US participants). We then compared these two  
average distances to those between the US group and random sets of 
groups of the same size (who were not students or online participants). 
Student and online groups were significantly closer to US participants 
than were the other groups (students: P < 0.001; Cohen’s d = 2.7;  
difference of mean distances, 0.027; 95% CI, (0.009, 0.05); online: 
P = 0.014; Cohen’s d = 1.86; difference of mean distances, 0.032; 95% 
CI, (0.002, 0.07); via bootstrapped Jensen–Shannon divergence, as 
described in ‘Analysis of student and online groups’ in Methods).

While the online participants spanned a wide range of ages, student  
participants tended to be younger than other groups (Extended Data 
Table 1). To control for possible effects of age, we repeated both analyses,  
restricting participants to the age range of 20–40 (Methods). The 
pairwise distance between student and online groups was still signifi-
cantly smaller than that between non-student and non-online groups 
(students: P < 0.001; Cohen’s d = 1.66; difference in means, 0.069; 
95% CI, (0.05, 0.08); online: P < 0.001; Cohen’s d = 2.78; difference 
in means, 0.081; 95% CI, (0.05, 0.1); via bootstrapping). So was the 
distance between the US student group and other student and online 
groups when compared with that between the US student group and 
non-student/non-online groups (students: P < 0.001; Cohen’s d = 3.33; 
mean difference, 0.058; 95% CI, (0.03, 0.09); online: P < 0.001; Cohen’s 
d = 1.88; mean difference, 0.055; 95% CI, (0.02, 0.1); via bootstrapping).  

In addition, we compared priors of younger (under 35) and older (over 35)  
online participants and found no significant differences in each of 
the three tested locations (via bootstrapped Jensen–Shannon diver-
gence; US online group: P = 0.09; Cohen’s d = 0.66; mean difference 
in distance, 0.02; 95% CI, (−0.03, 0.06); India online group: P = 0.11; 
Cohen’s d = 1.4; mean difference in distance, −0.007; 95% CI, (−0.07, 
0.05); Brazil online group: P = 0.4; Cohen’s d = 0.32; mean difference 
in distance, −0.002; 95% CI, (−0.09, 0.1)).

These findings suggest that certain lifestyle factors associated  
with student and online participants (plausibly including socio- 
economic status or access to global media and internet) involve expo-
sure to globalized culture that is sufficient to produce mental repre-
sentations of rhythm that are similar to those of US residents. As a 
consequence, student and online participants (the populations typi-
cally studied in psychology, neuroscience and music cognition37,41,47,48) 
underrepresent global variability in music perception37.

Culture-specific variation can be linked to the music in a group
What underlies the observed variation across groups? In princi-
ple, variation could be due to any of the many factors that varied  
across groups, including non-musical factors such as the rhythms 
prominent in spoken language or in environmental sounds. But in 
several cases, variation in rhythm priors had obvious links to rhythms 
prominent in local musical systems. For instance, the mode at the 2:2:3  
rhythm was pronounced in groups that have this rhythm in their  
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local musical tradition49–51: traditional musicians in Turkey, Botswana 
and Bulgaria (Fig. 7a,b). As shown in Fig. 7c, the weights assigned 
to the 2:2:3 rhythm in a Gaussian mixture model fit to the prior of  
each group were sub stantially higher in these groups than in most  
other groups (P = 0.003, via a one-sided Wilcoxon rank-sum test; 
Cohen’s d = 2.17; mean difference in weight, 0.011; 95% CI, (0.003, 
0.02)). This result is consistent with previous developmental work 
showing differences in sensitivity to the 2:2:3 rhythm in US and Turkish  
adults52, but not infants53, suggesting that sensitivity to the rhythm 
may be lost without exposure.

The 3:3:2 rhythm can also be related to specific musical systems—
in this case, those of African and Afro-diasporic music. In particular,  

it features prominently in many sub-Saharan musical styles54,55, is  
popular in Afro-Cuban and Latin music (where it is referred to as  
‘tresillo’), and is characteristic of many Afro-diasporic traditions  
from Cuba, Brazil, Uruguay and North America56–59, among others  
(Fig. 7d,e). In the priors estimated from the experiment, the 3:3:2 mode 
was strongest in dancers from the Sagele village in Mali (Figs. 5b and 
7e). We recorded a representative corpus of their musical repertoire 
and found that 46% of the excerpts recorded in the corpus featured 
a prominent 3:3:2 pattern (see Methods for additional details). We 
similarly found strong 3:3:2 weights in all other groups of musicians 
and dancers from African and Afro-diaspora traditions (musicians 
from Botswana, Mali, Uruguay and Brazil, and both US and UK jazz 
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Fig. 7 | Rhythm priors reflect established culture-specific musical features. 
a, Dancers and musicians from Ensemble Trakiya in Plovdiv, Bulgaria. Here and 
in other panels, verbal informed consent was obtained from the groups in each 
photo. Credit: Ivan Banchev. b, Musicians from D’Kar, Botswana. Credit: Van 
K. Yang. c, Violin plots showing the strength of the 2:2:3 rhythm for all tested 
groups, separated into those in whose music the rhythm is prominent, and 
all other groups. Here and in other violin plots in this paper, the open circle 
plots the median, and the top and bottom of the grey bar plot the 75th and 25th 
percentiles. Whiskers (thin lines) are computed using Tukey’s method and reflect 
the range of non-outlier points (see 'Violin plots' for details). The violin plots are 
kernel density estimates of the data distribution. Here and in f,i, the asterisks 

mark statistical significance via one-sided Wilcoxon rank-sum tests (***P < 0.001; 
**P < 0.01; *P < 0.05). The 2:2:3 rhythm is strongly represented in the priors of 
traditional musicians in Bulgaria, Turkey and Botswana, when compared with  
all other groups. d, Members of a candombe group in Montevideo, Uruguay.  
e, Dancers and musicians from the Sagele village in Mali. f, The strength of the 
3:3:2 rhythm for all tested groups, separated into those in whose music the 
rhythm is prominent (that is, the music of African and Afro-diasporic traditions), 
and all other groups. g, Rhythm prior for drummers from Bamako, Mali, showing 
modes at 3:3:2 and 7:2:3. h, A performance of the Maraka dance (featuring the 
7:2:3 rhythm) at a traditional wedding in Bamako, Mali. i, Strength of the 7:2:3 
rhythm for all tested groups.
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musicians; Fig. 7f; significantly higher weights for this mode when 
compared with the other participant groups, P < 0.001, via a one-sided 
Wilcoxon rank-sum test; Cohen’s d = 2.60; mean difference in weight, 
0.043; 95% CI, (0.035, 0.051)).

Perceptual modes can occur at moderately complex 
integer-ratio rhythms
Another example of an idiosyncratic feature that can be linked to 
a musical system is the mode at 7:2:3 evident in drummers in Mali  
(Fig. 7g). This rhythm is noteworthy because it is defined by a rela-
tively complex integer ratio. We took several steps to establish that 
this rhythm is prominent in the local musical tradition (see ‘Analysis 
of specific modes’ in Methods). First, we observed that some partici-
pants recognized the rhythm during the experiment session. They 
identified it as ‘Maraka’, which is a popular local piece of dance music 
that uses a 7:2:3 rhythmic pattern (Fig. 7h). To validate this recogni-
tion of the rhythm in the musician groups we tested, we conducted 
post-experiment interviews after the end of the main experimental 
session with the help of an ethnographer team member (R.P.). We esti-
mated the empirical modes of the distribution, synthesized stimuli 
corresponding to the mode near 7:2:3 and asked participants to identify 
it. The Malian drummer participants repeatedly identified the pattern 
as ‘Maraka’.

As shown in Fig. 7i, the 7:2:3 mode was stronger in the three groups 
from Mali than in all other groups (P = 0.005, via a one-sided Wilcoxon 
rank-sum test; d.f. = 37; Cohen’s d = 2.33; mean difference in weight, 
0.0082; 95% CI, (0.007, 0.01)). This result suggests that even relatively 
complex rhythms can form perceptual categories but that they are 
strongly dependent on musical experience within cultural environ-
ments where the corresponding rhythm prevails.

Culture-specific rhythm priors predict categorical perception
To test whether the rhythm ‘categories’ (modes) in the measured 
priors could predict perceptual categorization, we simulated cat-
egorization judgements with a Bayesian model based on a Gaussian 
mixture model fit to the estimated priors from each group (in which 
each mixture component corresponds to a rhythm category). We then 
compared the results to previously published categorization judge-
ments by Western musicians of rhythms at different points within 
the rhythm triangle9. Because the category choices were defined 
by musical notation, this experiment was possible only in Western 
musicians. The results of the experiment can be expressed as a set 
of regions that are associated with each musically notated rhythm 
(Extended Data Fig. 7a). The categories predicted by priors measured 
in US participant groups generally provided good matches to the 
experimentally obtained category boundaries of Western musicians 
(Extended Data Fig. 7b, left). By contrast, the category boundaries for 
the non-Western groups we tested provided worse matches (Extended 
Data Fig. 7b, right). We quantitatively assessed the match between the 
categories predicted by a group’s prior and those measured in Western 
musicians via the average of the distances over all points in the triangle 
between the categories assigned by the model and the majority cat-
egory in the Desain and Honing experiment (see ‘Category predictions 
from rhythm priors’ in Methods). As shown in Extended Data Fig. 7c,  
when evaluated in this way, both the non-Western non-musician 
groups and the non-Western musician and dancer groups that we 
tested produced significantly worse matches than the Western 
groups (here defined as student, Western musician and US groups) 
via Wilcoxon rank-sum tests (non-Western non-musicians: P = 0.021; 
Cohen’s d = 1.2; difference of mean distances, 0.01; 95% CI, (0.0035, 
0.015); non-Western musician and dancer groups: P = 0.003; Cohen’s 
d = 1.2; difference of mean distances, 0.015; 95% CI, (0.0062, 0.023)). 
This result is consistent with the idea that the prior measured by our 
iterated tapping experiment reflects a perceptual representation 
and so can predict purely perceptual judgements. The result also 

shows that the cross-cultural variation in the measured priors has  
the expected consequences for perceptual category predictions  
(in this case, worse predictions of Western musicians’ categories  
for groups whose musical experience presumptively deviates sub-
stantially from that of Western musicians).

Musicianship does not obviously alter rhythm priors
We previously found that rhythm priors were similar for musicians and 
non-musicians in Boston, USA26, suggesting that priors are driven by 
‘passive’ exposure to music rather than explicit training or practice. 
We replicated this finding here in multiple other groups of musicians 
who play Western music and corresponding groups of non-musician 
students with exposure to Western music (in South Korea, Japan and 
the United States). In each case there was no significant difference 
between priors derived from splits of the data within and across groups, 
as evaluated by bootstrapping the Jensen–Shannon divergence using 
the procedure described in the Methods section ‘Significant distance 
between two groups’ (South Korea: P = 0.17; Cohen’s d = 1.1; mean 
difference between across- and within-group distance, 0.03; 95% CI, 
(−0.01, 0.07); Japan: P = 0.051; Cohen’s d = 1.1; mean difference between 
across- and within-group distance, 0.03; 95% CI, (−0.02, 0.08); United 
States: P = 0.56; Cohen’s d = 0.64; mean difference between across- 
and within-group distance, 0.02; 95% CI, (−0.03, 0.07)). For the sake 
of brevity, here and elsewhere we classify and refer to participants as 
‘musicians’ or ‘non-musicians’ (Methods), cognizant that the Western 
concept of musicianship may not fully apply to other societies and that 
there can be a continuum of levels of participation in musical activities. 
We nonetheless found that years of self-reported musical experience 
differed between groups classified as ‘musicians’ or ‘non-musicians’ 
(Extended Data Fig. 8a); pairwise comparisons between musician and 
non-musician groups in the same country were statistically significant 
in all cases (Extended Data Fig. 8b; P < 0.001 in all cases via one-sided 
Wilcoxon tests; Cohen’s d ranged between 1.65 and 4.27; the difference 
between median years of experience ranged from 6 to 37 years).

We did find multiple cases where musicians and non-musicians in 
the same country exhibited distinct priors, but these all seem explain-
able by differences in musical exposure. Specifically, local musician 
groups in Mali and Uruguay differed from other groups in those coun-
tries (again assessed using bootstrapped Jensen–Shannon divergence, 
comparing across- and within-group distance; MA-LM versus MA-DA: 
P = 0.002; Cohen’s d = 1.8; mean difference in distance, 0.04; 95% CI, 
(0.0006, 0.07); MA-LM versus MA-ST: P = 0.018; Cohen’s d = 2.6; mean 
difference in distance, 0.07; 95% CI, (0.02, 0.1); UY-LM versus UY-ST: 
P = 0.036; Cohen’s d = 2.3; mean difference in distance, 0.06; 95% CI,  
(0.01, 0.1)), presumably because they have internalized different  
types of music in the cultural milieu of the tradition they specialize in 
(Fig. 6b,c,e,f). We thus have no reason to suppose that musicianship 
per se qualitatively alters mental representations of rhythm. The sig-
nature properties of discrete modes at small-integer ratios are clearly 
evident in both musicians and non-musicians.

Musicianship improves tapping precision
Strong effects of musicianship were, by contrast, evident in the vari-
ability of tapped reproductions, standardly used as a measure of tap-
ping precision3 (Fig. 8a). We compared tapping variability (quantified 
as the standard deviation of the asynchrony between stimulus and 
response3) between 21 pairs of musician and non-musician groups in 
the same country. Tapping variability was lower in musicians than in 
non-musicians (Fig. 8b) in 20 of the 21 pairs (P < 0.001 via a binomial 
test). This difference was statistically significant (P < 0.05) in 15 of the 21 
individual pairs via one-sided Wilcoxon tests. For these 15 pairs, Cohen’s 
d ranged between 1.08 and 2.36; the difference in median variability 
ranged between 5.41 ms and 23.69 ms. These results are consistent 
with a large literature in Western musicians showing perceptual and 
production advantages in musical tasks60–63, including tapping to a 
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beat3, but they provide evidence that these musicianship advantages 
are present cross-culturally. The results support a distinction between 
musicians and non-musicians that extends beyond North America and 
Western Europe27,64. Despite these musicianship effects, we saw that 
every participant group exhibited a tendency to tap slightly before the 
beat, quantified as a negative mean stimulus–response asynchrony 
(Fig. 8c)3,65. This negative mean asynchrony has long been noted as a 
feature of tapping in Western participants3; our responses suggest that 
it is present across cultures.

No evidence that language influences rhythm priors
It is natural to wonder whether the prior on rhythm might be influ-
enced by experiential factors outside of music, most obviously spoken 

language. Speech has been argued to influence rhythm perception66–68, 
but most recent evidence indicates segregation of speech and music 
analysis in the brain69. Several findings from our study suggest that 
language does not strongly influence rhythm representations.

First, we observed clear examples of groups who speak the same 
language but whose rhythm priors were quite different. The clearest 
example is the three groups in Mali (local musicians, dancers and  
students). All three groups speak a nearly identical set of languages  
but have obviously distinct rhythm priors (via bootstrapped Jensen–
Shannon divergence; MA-LM and MA-ST: P = 0.012; Cohen’s d = 2.6; 
mean difference between across- and within-group distance, 0.07; 
95% CI, (0.02, 0.1); MA-LM and MA-DA: P = 0.009; Cohen’s d = 1.8; mean 
difference in distance, 0.04; 95% CI, (0.0006, 0.07); MA-ST and MA-DA: 
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Fig. 8 | Tapping variability and musical experience. a, Tapping variability 
(standard deviation of the asynchrony) as a function of musical experience. 
The open circle plots the median, and the top and bottom of the grey bar plot 
the 75th and 25th percentiles. Whiskers (thin lines) are computed using Tukey’s 
method and reflect the range of non-outlier points (see 'Violin plots' for details). 
We plotted significant comparisons with a threshold of P < 0.001 (one-sided 
Wilcoxon test, corrected for multiple comparisons with Bonferroni correction). 
We note that there are only two groups categorized as dancers and that for one 

of the groups (that in Mali), there was a demographic confound compared with 
the musician group in the same country (dancers were predominantly female, 
while musicians were predominantly male). The apparent differences with 
other types of groups should thus be considered provisional given the small 
number of groups. b, Scatter plot of tapping variability for musician and non-
musician groups from the same country. The error bars plot s.e.m., computed via 
bootstrapping. c, Mean asynchrony of tapped responses as a function of musical 
experience. Same conventions as a.
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P < 0.001; Cohen’s d = 4.5; mean difference in distance, 0.1; 95% CI, 
(0.08, 0.2)). Specifically, both the local musicians and dancers in Mali 
had significantly higher weights on the 3:3:2 rhythms than did Malian 
students (via bootstrapped Gaussian mixture model fits as described 
in the Methods section ‘Category weight for the 3:3:2 rhythm’; MA-ST 
and MA-LM: P = 0.003; Cohen’s d = 5.3; mean weight difference, 0.064; 
95% CI, (0.039, 0.087); MA-ST and MA-DA: P < 0.001; Cohen’s d = 6.7; 
mean weight difference, 0.087; 95% CI, (0.061, 0.11); see Extended Data  
Fig. 9a for the category weights). We found a similar result for compari-
sons of students and local musicians in Uruguay (distinct rhythm priors 
as evaluated by bootstrapped Jensen–Shannon divergence; P = 0.013; 
Cohen’s d = 2.2; mean difference in distance, 0.06; 95% CI, (0.01, 0.1); the 
weight on the 3:3:2 rhythm again differed between groups, P < 0.001; 
Cohen’s d = 3.1; mean weight difference, 0.04; 95% CI, (0.014, 0.065); 
see Extended Data Fig. 9b for the category weights). An analogous 
result was evident in Turkey, where local musicians had significantly 
higher weights on the 2:2:3 rhythm, which is associated with Balkan 
and Turkish music, compared with Turkish students (Extended Data 
Fig. 9c; P = 0.001; Cohen’s d = 3; mean weight difference, 0.02; 95% CI, 
(0.0071, 0.033); the priors themselves were also again significantly 
different as evaluated by bootstrapped Jensen–Shannon divergence; 
P = 0.02; Cohen’s d = 1.3; mean difference in distance, 0.02; 95% CI, 
(−0.008, 0.05)).

Second, we observed several examples of similar rhythm priors 
despite distinct spoken language experience. Both university students 
and Western-trained musicians in Japan and South Korea exhibited 
priors that were not obviously different from those of US participants 
(Extended Data Fig. 9d–f; no significant difference in either case as 
evaluated by bootstrapped Jensen–Shannon divergence: Japanese 
students and US students: P = 0.77; Cohen’s d = 0.47; mean difference 
in distance, 0.01; 95% CI, (−0.03, 0.05); Japanese Western musicians 
and US Western musicians: P = 0.11; Cohen’s d = 1.1; mean difference 
in distance, 0.02; 95% CI, (−0.02, 0.06); South Korean students and US 
students: P = 0.25; Cohen’s d = 1.3; mean difference in distance, 0.04; 
95% CI, (−0.01, 0.1); South Korean Western musicians and US musi-
cians: P = 0.44; Cohen’s d = 0.92; mean difference in distance, 0.02; 
95% CI, (−0.02, 0.07)). Although the student groups in these countries 
undoubtedly had some exposure to English, it was not their native 
language. We cannot exclude the possibility that language could in 
some cases have some influence on rhythm representations, but our 
study provides no evidence for such influences.

Discussion
We conducted a large-scale cross-cultural study of music percep-
tion. Our aim was to assess whether discrete mental representations 
of musical rhythm are present across cultures and whether the asso-
ciated mental categories are fixed or dependent on some aspect of  
life experience. We ran the same iterated reproduction experiment on 
39 different groups around the world. We found that all groups imposed 
discrete structure on the continuous space of simple rhythms. Mental 
‘categories’ (modes) tended to be small-integer-ratio rhythms, but  
the categories varied across groups and could often be linked to  
specific rhythms prominent in the local musical culture. Our study 
provides unambiguous evidence for properties of music cognition 
that are present across cultures, but it also demonstrates substantial 
cultural variation linked to culture-specific musical experience.

Universality and cultural specificity
Given that music is present in all known societies but also varies consid-
erably across cultures14–16,70, it must result from interactions between 
biological constraints and culture-specific experience. What do our 
results reveal about these constraints and experiential influences? 
The most salient feature of our results is the cross-cultural presence 
of relatively discrete modes within the mental prior over rhythms. We 
refer to these modes as ‘categories’ because they yield characteristics 

of categorical perception, biasing the perception of nearby rhythms 
towards the mode centre26,71 and predicting the boundaries between 
perceptual rhythm categories (Extended Data Fig. 7). These discrete 
categories were present in every group we tested. Discrete mental 
representations probably help stabilize musical systems. If a repro-
duction of a heard piece of music is attracted to discrete categories in 
the listener’s mind72,73, inaccuracies in musical reproduction are less 
likely to be perceived and thus less likely to be transmitted as a song is 
passed along between individuals6,74,75.

The prevalence of discrete categories across such diverse groups 
suggests that the conception of music as combinations of discrete  
elements is not merely an invention of the Western academic and 
music traditions but is instead fundamental to the human experience 
of music around the world. The quantization of a continuous space  
into discrete categories allows signals to be represented and stored 
more efficiently76,77. This efficiency gain probably makes patterns 
composed of the rhythm categories easier to learn and share, which 
may further aid cultural transmission.

The particular categories we observed were also non-arbitrary. 
Categories were present at small-integer-ratio rhythms in every group 
tested and thus appear to be widespread features of human mental  
representations15. This result could in principle reflect innate biases 
favouring integer-ratio rhythms. However, it is also clear that any 
such biases at best only partially constrain adult perceptual systems, 
because the specific integer ratios that were present as categories 
varied substantially across groups. We also cannot exclude the pos-
sibility that mental representations simply mirror the musical systems 
to which listeners are exposed (akin to how phonetic categories are 
thought to be consequences of linguistic exposure), which might 
feature integer ratios for other reasons (for example, production  
constraints78 from the periodic nature of motor behaviours).

We found evidence that much of the variation in categories is 
linked to the local musical systems the participants had grown up 
with27,79 (Fig. 7). Moreover, the relevant experience appears to pri-
marily be consumption rather than production of music—musician-
ship appears to influence priors primarily insofar as it alters musical  
experience. For instance, musicians who play classical Western 
music and Western non-musicians exhibited similar priors, presum-
ably because both groups are exposed to similar distributions of 
music, whereas traditional musicians in some other countries were  
substantially different from students in cities (for example, Mali,  
Uruguay and Turkey). Rhythm categories thus appear to be some-
what flexible and culturally dependent (similar to other domains of 
perception in which categorical perception has been documented 
cross-culturally, such as colour80, speech81 and smell82). One difference 
relative to other examples of cross-cultural categorical perception is 
that the rhythm categories are typically non-verbal, consistent with 
the idea that discrete representations do not necessarily depend on 
linguistic labels.

How might other aspects of culture influence rhythm priors?  
We found evidence that rhythm priors could be dissociated from  
language, in that we observed several sets of groups that spoke the 
same language but exhibited distinct priors. The question of whether 
language influences rhythm priors at all remains open; our groups 
were not selected to definitively address this issue, in that language 
covaried along with music across most groups. It remains possible that 
groups specifically selected to dissociate language from music might 
show such an influence.

Small-integer ratios
Small-integer ratios are often proposed to be perceptually favoured 
in various ways as a consequence of their mathematical simplicity58,83. 
We found that the perceptual categories that were common across  
all groups were indeed the simplest possible in mathematical terms  
(1:1:1 and 1:1:2). We also found systematic biases, present cross-culturally, 
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in which more complicated rhythms were shifted to be closer to isoch-
rony (Fig. 4b). However, we also found instances of categories at rela-
tively complex ratios (for example, 7:2:3). We note that although 7:2:3 
is a complex rhythm from the perspective of ratios, it can be generated 
from a fixed train of 12 pulses grouped hierarchically into groups of 2 
and 3 (7:2:3 = [2 + 2 + 3] + 2 + 3). The associated five-interval pattern of 
2:2:3:2:3 is also common in West African music54,55. This observation 
raises the possibility that small-integer ratios tend to arise due to pres-
sures favouring rhythms that can be generated from isochrony (that is, 
by dividing an isochronous pulse sequence into groups of small num-
bers of pulses), rather than simplicity per se. Moreover, the prevalence 
of the very simplest rhythms (1:1:1 and 1:1:2) across all groups studied 
could reflect the fact that they can be generated from isochrony in many 
different ways, and are thus consistent with many different metres. For 
instance, 1:1:2 can be formed in groups of 4 (1:1:2), 8 (2:2:4), 12 (3:3:6) 
and 16 (4:4:8) pulses.

Lack of diversity evident in university students and online 
participants
Our results illustrate that perceptual phenomena seen in residents of 
Western Europe and North America (here, the specific prior found in 
Westerners) may not always generalize to other populations, consist-
ent with the growing awareness of the underrepresentation of human 
cultural diversity in psychology and cognitive neuroscience37,41. Our 
results also suggest that cross-cultural studies involving convenient 
participant samples from university communities or online cohorts 
are similarly likely to underrepresent cultural diversity. University 
students and online participants in the non-Western countries in our 
study were substantially more similar to US participants than corre-
sponding non-student groups recruited in person, underscoring the 
problematic reliance on student and online participants in cognitive 
science. A wide range of participant groups extending from small-scale 
societies to villagers to small-town dwellers to urbanites, as well as 
multiple groups per society with different backgrounds, was critical 
to providing a strong test of universality and to revealing the extent of 
diversity in human perception41,84,85.

Limitations
Due to the practical constraints of our experimental paradigm, our 
experiments were limited to periodic three-interval rhythms, two  
seconds in duration (though see Extended Data Fig. 2 and Supplemen-
tary Fig. 1 for results at a faster tempo in a subset of groups), presented 
cyclically. We think it plausible that such simple rhythms can serve as 
building blocks for more complicated rhythms86, but they are nonethe-
less small in scale relative to many natural musical rhythmic motifs, and 
they do not capture some phenomena that are evident in such longer 
patterns (for example, metre). It is likely that additional principles gov-
ern more extended musical pieces, such as memory constraints, that 
could be revealed with experiments using longer patterns74. We note 
also that the cyclic stimulus presentation limits our ability to examine 
phenomena involving the beginning of a rhythm, such as anacrusis 
(though see Extended Data Fig. 3).

Our paradigm is also constrained by the choice of stimuli. The 
repeating rhythms we used are limited by the absence of melody. 
The method could be naturally extended to incorporate melody—for 
instance, by having participants sing back a note sequence defined 
by both time and pitch intervals28. Such experiments could address 
whether priors for pitch and time are independent and whether rhythm 
and melody processing are interdependent87. More generally, it seems 
plausible that humans learn multiple distinct priors for the temporal 
patterns in different types of sound and that different contexts could 
invoke distinct priors. For instance, we found in previous work that 
using spoken phrases as stimuli in an iterated reproduction experi-
ment yielded a completely different prior compared with click pat-
terns26. Stimuli based on environmental sounds (for example, based on 

footstep sounds) could similarly evoke a different prior. There could 
also be multiple priors on musical rhythm (for instance, for different 
genres) that could be evoked in different settings (for example, based 
on instrument sounds that are associated with particular genres) and 
that might yield distinct experimental results if participants are primed 
to rely on one prior or another.

Could the results reflect production-related influences in addition 
to the perceptual biases traditionally associated with priors? Several 
existing sources of evidence support a perceptual origin for the experi-
mental result. First, the distribution for US participants is similar irre-
spective of whether responses are tapped or vocalized (as a repeated 
syllable), but is markedly different if participants vocally reproduce a 
spoken sentence26. The results are thus not tightly linked to a particular 
reproduction modality, while also being domain-specific, as would be 
expected for a prior over musical rhythms. Second, the modes of the 
prior in US participants confer one characteristic of categorical percep-
tion: discrimination of rhythms is worse for rhythms near a mode than 
for rhythms distant from modes26, as would be expected from Bayesian 
inference71. More generally, biases in tapped reproductions36,88 are also 
evident in perceptual discrimination biases8,89. Third, the results of 
our iterated tapping experiment in US participants can be predicted 
from a Bayesian model with a prior estimated from Western musical 
scores90. This latter result indicates that a prior based on statistics of 
actual music is sufficient to explain tapping biases, without the need 
to appeal to any influences specific to motor production.

The present paper provides two additional lines of support for 
the perceptual interpretation of reproduction biases. The first is that 
the measured priors predict perceptual category boundaries in a 
culture-specific way (Extended Data Fig. 7), as would be expected if 
they function as priors for purely perceptual judgements in addition 
to production tasks. The second is that priors in musicians were often 
similar to those in non-musician groups from the same country, despite 
the greater precision of musician tapping (Fig. 8), providing additional 
evidence that motor noise does not have much effect on the result.

Despite these various pieces of evidence, we do not think it pos-
sible to completely rule out some contribution from motor factors. 
Given that the estimated priors are similar for tapping and spoken 
syllables, any motor influences are likely to be central, and in particular 
also evident even for a production modality (vocalizing) that is not 
normally dominated by periodic motor rhythms. It may be that com-
pletely separating perception and central motor processes is futile 
for music—listening to music may inevitably invoke motor processes 
for entrainment91, for instance. We note that our conclusions do not 
depend critically on this point, and that regardless of the perceptual–
motor basis, the experiment is measuring something that matters for 
musical behaviour: the ‘prior’ that we measure provides a description 
of how what we hear is translated into a reproduction. This process of 
hearing and reproducing is the essence of musical practice and culture. 
Our measurement thus has as much legitimacy as anything we might 
measure with a purely perceptual experiment.

One could also take issue with our selection of participant groups, 
which were chosen using prior knowledge of local musical cultures to 
provide a strong test of universality subject to practical constraints. 
With unlimited resources, one could envision sampling groups uni-
formly (for example, across geography or linguistic clades) to have 
the sampling be independent of any particular hypothesis. However, 
because of the process of cultural globalization, selecting groups in this 
way would probably produce a prevalence of relatively Western-like 
participants and would require a much larger number of participant 
groups to reveal the sort of diversity evident in our results. And given 
the recent drastic rise of globalization84, it is not obvious that uni-
form sampling would reveal anything fundamental about the diversity  
of music. Nonetheless, our sampling of groups is clearly not exhaus-
tive, and additional groups might reveal additional constraints on 
rhythm priors.
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Another limitation is that our tests of the influence of local musi-
cal idioms were not exhaustive. We related the measured priors to the 
rhythmic structure of local musical traditions using modes at relatively 
complex ratios that were known to be prevalent in some cultures and 
not others (Fig. 7). An alternative approach would be to measure rhyth-
mic structures in corpora of local music and to systematically investi-
gate their relation to each group’s prior. This is not possible at present 
due to limitations in automated rhythm analysis from recorded music92, 
but it should be possible in the future. We were similarly opportunistic 
in testing a role for language, and a more comprehensive comparison 
across a more diverse sample of languages could reveal influences that 
were too small to detect here.

Finally, previous literature suggests that tempo is an important 
factor in rhythmic representation93. To explore the role of tempo, we 
ran the experiment with a faster tempo in 13 of the 39 groups (in 6 of 
the 15 countries). We found that the results for the fast tempo were 
qualitatively similar to those for the slower tempo used in the main 
experiment, but there were some instances where category weights 
changed with tempo (Extended Data Fig. 2 and Supplementary Fig. 1). 
This finding is consistent with previous work on tempo dependence 
in rhythm perception but suggests that our main conclusions are not 
specific to the particular tempo we studied27,94,95.

Relation to prior work
Experimental efforts to compare aspects of music perception across 
cultures have revealed striking differences along with commonali-
ties18–30 but have in all previous cases been limited to comparisons of 
small numbers of societies. As a result, the existence of universal per-
ceptual phenomena that might constrain music, as well as the extent of  
cross-cultural variation in perception, has remained unclear. For 
instance, across a series of studies, one Indigenous society (Tsimane’) 
was shown to exhibit notable differences in music perception compared 
with US residents, along with some similarities25,26,28,29. These studies 
have left open the extent to which the particular group studied was 
unusual relative to other world cultures. Our present results show that 
at least for the rhythm priors studied here, Tsimane’ listeners are not 
alone in differing from US listeners—other groups in the study were 
equally distinct (Fig. 5a). This result suggests that substantial differ-
ences with Westerners are unlikely to be limited to a small number of 
unusual groups.

Our study provides an example of how cross-cultural experi-
ments can be conducted at a relatively large scale. Our method is well 
suited to cross-cultural experiments in that it is largely non-verbal 
and simple for participants to understand. It also has the advantage 
relative to some other methods of making no prior assumption about 
the structures that might be perceptually important. For instance, 
small-integer ratios in music have been widely discussed by Western 
scholars and musicians for centuries96–99, and it is natural to wonder 
whether this emphasis reflects intellectual biases rather than the 
nature of perception100. However, we found small-integer ratios to 
emerge from the data in each participant group. Small-integer ratios 
thus indeed appear to be a prominent feature of the way most humans 
perceive music.

Previous attempts to characterize universality in music have 
relied on corpus studies that analyse collections of recorded music 
from different societies14–16. Our approach is complementary to such 
efforts, in that we infer mental representations (from an experiment) 
rather than directly measure cultural artefacts (music performances). 
Our method also avoids a weakness of current corpus studies, in 
that we do not require a Western-trained musical expert to annotate 
the results, which probably introduces biases that are difficult to 
quantify or control for. Advances in machine perception are likely 
to enable corpus studies that automate the transcription process101, 
but biases from the training of such algorithms will probably remain 
a challenge102.

Future directions
The cross-cultural differences we observed in rhythm priors raise 
the question of their developmental trajectory. The simplicity of our 
method should enable cross-cultural experiments in children that 
could address this. Previous results have suggested that infants initially 
possess undifferentiated sensitivity to rhythms that then narrow over 
development dependent on the musical system one is exposed to53. 
Accordingly, priors measured in young children of different societies 
might be more similar than those in adults. One key question is whether 
priors are initially uniform or whether small-integer-ratio modes are 
evident early on. Such experiments could help reveal the origins of the 
small-integer ratio sensitivity that we found in all groups we tested.

The large-scale, cross-cultural nature of our study illustrates the 
value of collaboration between science and the humanities, as well 
as of international cooperation between research groups47. To inter-
pret our results, it was essential to consult the ethnomusicological 
literature and to collaborate closely with ethnomusicologists with 
a deep understanding of specific musical cultures. Moreover, the 
clarity provided by a relatively large number of participant groups 
around the world is most readily attained by large international teams.  
The results here suggest that large-scale multi-culture studies with 
other tasks could clarify similar issues of universality and diversity in 
other aspects of cognition.

Methods
Procedure
Informed consent. All participants provided informed consent in 
accordance with the Ethics Council of the Max Planck Society (pro-
tocols 2017_12 and 2020_11), the Columbia University Institutional 
Review Board (protocol IRB-AAAR3726), the University of Western 
Ontario Health Science Research Ethics Board (protocol 108477), the 
KAIST Institutional Review Board (protocol IRB-KH2017-15), Durham 
University (Music Department Ethics Committee, February 2018), 
the Bogazici University Social Sciences Human Research Ethics Com-
mittee (protocol SBB-EAK 2017/1) and the Massachusetts Institute of 
Technology Committee on the Use of Humans as Experimental Subjects 
(protocol 1209005242R006). All participants received compensation 
for their involvement, the amount of which was consistent with the 
minimum wage regulations of their respective countries. We obtained 
verbal consent to publish images of participants and musicians.

Overview of procedure. The experiment measured iterated reproduc-
tion (sometimes referred to as serial reproduction or iterated learn-
ing38,39) of rhythms. The participants were instructed to synchronize 
their finger tapping to a repeating auditory stimulus presented over 
headphones. In previous work26 we found that synchronization to 
an ongoing rhythm produced similar results to an alternative task in 
which participants heard a pattern and then tapped a reproduction 
from memory. However, we found empirically that synchronization 
was easier to explain to participants and for this reason opted to use 
it for this cross-cultural study. They first completed a short training 
session (about 10 minutes long) familiarizing them with the apparatus 
and task (described below). The main experiment consisted of a series 
of trials, each of which contained five iterations.

On each trial we sampled a random seed uniformly from the  
triangular rhythm space, corresponding to a three-interval rhythm  
(s1, s2, s3). We then generated a sequence of clicks from the seed by 
repeating the three-interval seed pattern ten times. After a few clicks 
(typically a bit more than one cycle), participants began to syn-
chronize to the click sequence (‘paced’ tapping). A MATLAB script  
(MATLAB 2018a) extracted response onsets from an audio recording 
of the participant’s taps (see ‘Onset extraction’ below). We averaged 
the inter-response intervals across the ten repetitions, obtaining an 
average three-interval response (r1, r2, r3). Taps were not always detected  
at every stimulus onset, both because participants sometimes failed 
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to produce a tap in response to a stimulus click, and because produced 
taps were not detected with 100% reliability. We thus allowed some 
missing taps within each repeated three-interval pattern but required 
there to be ‘enough’ taps to estimate an average response. Specifically, 
we required that each of the three stimulus onsets within the pattern 
be associated with a tap onset in at least three of the ten repetitions. 
To obtain the average response, we replaced missing taps with the 
corresponding average onset time for the taps that were detected. We 
further required that the response (r1, r2, r3) was not situated far beyond 
the region we defined for human-producible rhythms (defined as not 
containing an interval shorter than 285 ms).

If the iteration satisfied these two criteria, we set the seed pattern 
for the subsequent iteration to the response pattern: (s1, s2, s3) ← (r1, r2, 
r3). If the iteration was invalid, the data from that iteration were omit-
ted from analysis and the seed remained unchanged. We repeated this 
process five times. If there were three invalid iterations within a trial, 
the trial was stopped, and a new trial with a new seed was started (such 
failed trials typically were due to a rhythm being too difficult for a par-
ticipant to reproduce, and this procedure was intended to minimize  
a participant’s frustration). For trials with two or fewer invalid itera-
tions, the nth iteration was analysed as the nth iteration even if the 
iteration that preceded it was invalid. There was a fixed interval of 
approximately 4 s between iterations within a trial and a fixed inter-
val of approximately 9 s between trials (both varied by up to 200 ms  
in either direction due to slight variation in computer systems  
across sites).

The number of trials that could be run in an experimental session 
varied depending on the location and is reported in Supplementary 
Table 2. In 13 locations we also performed an additional experiment 
with a faster tempo (a pattern duration of 1,000 ms). This additional 
experiment was always performed after the main experiment (with a 
pattern duration of 2,000 ms). The demographic information for this 
experiment is provided in Supplementary Tables 1 and 3.

Apparatus. Data were collected with between one and four com-
puterized stations for each testing location. Each station included a  
computer, a Focusrite Scarlett 2i2 USB sound card, two sets of  
Sennheiser HD 280 Pro headphones and a tapping sensor (Fig. 2). 
This design is identical to that reported in the paper by Jacoby and 
McDermott that introduced the experiment paradigm26. Each sen-
sor contained a microphone embedded in sound isolation materials 
and covered with a soft cloth to muffle impact sounds as much as 
possible. Instructions for constructing the sensor are provided in the  
supplementary Open Science Framework (OSF) repository. The micro-
phone in each sensor was highly sensitive, and light touches generated 
bursts of noise that were recorded by the microphone. The sound card 
simultaneously recorded the microphone output and the audio stimu-
lus played out by the participant’s headphones, so that the latency of 
the response recording relative to the stimulus was nearly eliminated 
(less than 1 ms). The specification of the hardware and instructions for 
building the sensor are provided in the OSF repository associated with 
this paper (see ‘Data availability’).

Stimuli. The stimulus on each trial was a rhythmic pattern composed 
of short percussive sounds (bursts of white noise) 65 ms long with 
an attack time of 5 ms (linear ramp) and decaying gradually over the 
remaining 60 ms, with the envelope hand-designed to mimic com-
mon percussion instruments (the decay amplitude decreased expo-
nentially to 10% of the maximum over the first 55 ms, then decayed 
exponentially at a faster rate in the next 5 ms and was then truncated). 
These patterns contained ten repetitions of a particular three-interval 
rhythm. The stimuli were identical to those used in Jacoby and  
McDermott26. Software to replicate the experiment and sound mate-
rial can be found in the OSF repository associated with this paper (see 
‘Data availability’).

Three-interval rhythms. Each stimulus was defined by a pattern of 
three intervals (s1, s2, s3) constrained such that the overall pattern  
duration was 2,000 ms: s = s1 + s2 + s3 = 2,000. In addition, to avoid 
rhythms that were too fast for humans to reproduce, we constrained 
the initial seeds so that the smallest interval was larger than 300 ms 
(s1, s2, s3 > 300). We then repeated the interval pattern ten times, thereby 
forming a sequence of 30 intervals {S}1≤i≤30 = (s1, s2, s3, s1, s2, s3, s1, …, s3). 
From this sequence, we created a sequence of 31 onsets ({O}0≤t≤30) with  
intervals corresponding to S. The 31 onsets (‘clicks’) were defined  
with respect to the initial onset O0,Ot = O0 +∑1≤i≤tsi for 1 ≤ t ≤ 30.

Projection to the rhythm triangle. We mapped a three-interval rhythm 
with inter-onset intervals (s1, s2, s3) to a point in a triangular rhythm 
space spanning all linear combinations of three extremal rhythms: 
s1
s
P⃗1 +

s2
s
P⃗2 +

s3
s
P⃗3, where s = s1 + s2 + s3, and where P⃗i are the vertices of 

the triangle (a simplex) (Fig. 1b; see also refs. 9,26). For visualization, 

we used an equilateral triangle, with P⃗1 = (0,0) , P⃗2 = (1,0) , P⃗3 = ( 1
2
, √3
2
). 

Note that since the initial seed intervals satisfied the constraint that 
(s1, s2, s3) > 300 ms, the initial seeds were located within an inner trian-

gular region with vertices ( 3
2
f, √3

2
f ) , (1 − 3

2
f, √3

2
f ) , ( 1

2
, √3
2
(1 − 2f) ), where 

f = 300/2,000 = 0.15 (Fig. 1b, inner region).

Onset extraction. We processed the microphone recording from each 
trial in non-overlapping windows of 15 s, detecting all samples exceed-
ing a relative threshold of 1.45% of the maximal power of the recorded 
waveform in the window. This threshold was slightly more sensitive 
than the 2.25% threshold used in Jacoby and McDermott26; this change 
was made to accommodate a small number of participants (less than 
3%) who tended to produce very light taps. In most cases, onsets were 
detected with minimal errors (as evaluated by comparing the detected 
onsets to what was audible from listening to example trials). We nev-
ertheless took several steps to ensure that the detected onsets corre-
sponded to actual taps. First, we discarded onsets that were too close 
to one another (less than 80 ms apart), as humans generally cannot 
produce two taps in such close proximity (see Repp3 for a justification of 
this threshold). Second, we discarded responses that were too far from 
any stimulus click, regarding them as errors. Here we took into account 
an important characteristic of human tapping known as ‘negative mean 
asynchrony’—namely, that tapping in time to a beat tends to be biased 
compared with the beat onset (typically occurring before the beat)3. 
We first matched each onset to its closest stimulus click and computed 
the mean asynchrony m as the average difference between a response 
and its corresponding stimulus click. We then excluded all events such  
that |(OR − m) − OS| > 150 ms where OS and OR are the stimulus and 
response onsets, respectively (namely, a window of 300 ms centred 
around the perceptual centre defined by the mean asynchrony) from 
further analysis. In addition, for the analysis, we included only points 
inside the triangle (see below). This resulted in 99,189 of 2,418,284 
tapped responses being excluded from the main experiment (4.1%).

Apart from the change in the detection threshold mentioned  
above, this procedure was identical to the one reported by Jacoby 
and McDermott26. The code for the procedure is provided in the  
OSF repository associated with this project.

Procedure for the experimental session. The participants were asked 
to position the sensor in a comfortable way (see the OSF repository  
for the full instructions). In most cases, participants preferred to sit  
on a chair, positioning the sensor on their lap and using their entire 
hand or one finger for tapping. However, we allowed for different 
postures in different groups. For example, some participants in Mali 
preferred to sit on the floor with their legs stretched out in front of 
them. In all cases, the participants were encouraged to change posture 
or switch hands if they were fatigued; however, they were not permitted 
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to tap with two hands simultaneously or to tap with two alternating 
fingers. In cases where participants nevertheless tried to do so, the 
experimenter would stop the experiment and repeat the instructions. 
The experiment was conducted using a fixed set of steps:

 (1) The first step of the experiment was to ask the participant to 
tap ‘a steady beat’ at any tempo that they liked. The idea of this 
task was to familiarize the participant with the sensor, as well 
as to characterize the spontaneous motor tempo of the partici-
pants103. This task was generally easy for participants, but the 
concept of ‘steady beat’ varied slightly across participant groups. 
For some participants in Mali and Uruguay, a ‘steady beat’ was a 
non-isochronous rhythmic pattern rather than an isochronous 
beat. In cases where participants continued to tap a rhythmic 
pattern rather than an isochronous beat, the experimenter 
repeated the instruction. In some cases, participants did not 
change their behaviour according to the repeated instructions 
and continued to tap a non-isochronous pattern; in these cases, 
we did not stop the experiment again and instead proceeded to 
the next step and recorded their performance as is.

 (2) The participants were then asked to ‘tap faster’.
 (3) Next, the participants were instructed to tap ‘as fast as they 

can’ for a couple of seconds. This step aimed to test that the 
participant did not have any severe motor constraint that would 
limit them in performing the task. After the participant tapped 
for about 3–6 s, the experimenter thanked the participant and 
stopped their tapping to avoid fatigue.

 (4) The next step was to familiarize the participant with the stimu-
lus. The experimenter played a few isochronous clicks with an 
inter-stimulus interval (ISI) of 800 ms over the headphones and 
asked the participant to report if the sound was too loud or too 
soft. The level of the sound was then adjusted until the partici-
pant felt that the sound was at a comfortable level.

 (5) The participants were then instructed to tap along to an isoch-
ronous beat (with an ISI of 800 ms). This step could be repeated 
multiple times until the experimenter felt that the participant 
understood the task and was able to provide a synchronized 
response. Note that this was not easy for all participants—for 
example, some participants naturally tapped in antiphase 
(‘off-beat’; halfway in between the beat). In case of difficulties, 
the experimenter would first check that this was not caused by 
the participant’s posture, in which case the experimenter would 
suggest that the participant change their position to enable 
easier tapping. In other cases, the experimenter would demon-
strate synchronous tapping to the participant. These additional 
steps allowed nearly all participants to successfully perform 
isochronous synchronous tapping. The rare participants who 
could not successfully perform isochronous tapping in this  
setting did not continue to the main experiment.

 (6) We then performed an isochronous tapping task at the same 
rate as in the familiarization phase (ISI = 800 ms) in which the 
participants tapped to a sequence of 56 clicks lasting 44 s.

 (7) We next performed an additional isochronous tapping task at a 
faster rate (ISI = 600 ms) with 75 clicks lasting 45 s.

 (8) Finally, we performed a tempo-changing tapping task in which 
the ISI alternated between 546 and 654 ms every 8–13 clicks 
(chosen pseudorandomly), with a total of 74 clicks lasting 45 s 
(the exact tapping sequence, identical for all participants, can 
be found in the OSF repository).

 (9) In the next step of the experiment, the participants were told 
that they would now tap a rhythm. The experimenter empha-
sized that, as before, the participant needed to ‘tap once for 
every click that they hear’. The participants were given five trials 
of random three-interval rhythms (each with five iterations) to 
get them familiarized with the task. The experimenter provided 

feedback to the participant only if they were performing the 
task in a qualitatively incorrect way, such as tapping on the 
off-beats or omitting a beat.

 (10) The participants performed 10–30 trials (mean, 22.0; s.d., 
6.6) of the tapping experiment (each containing five itera-
tions, where each iteration contained ten repetitions of the 
three-interval pattern, as described above). Due to the long 
duration, the participants were informed that they could ask 
for a short break at any time, and the experimenter included 
additional breaks at various times during the experiment.

 (11) The participants answered a set of demographic questions  
(see the OSF repository for the full list) during one of the breaks 
and/or at the beginning or end of the experiment.

 (12) In some locations, we performed an additional experiment after 
the completion of the main experiment, in which we repeated the 
main experiment with an overall pattern duration of 1,000 ms.

Procedures for replicability across sites. Testing stations were cre-
ated by local research team members according to a set of specifi-
cations (see the OSF repository) or created according to the same 
specifications by N.J. and sent to teams in different locations. A written 
procedure describing the process of hardware preparation, software 
installation, task instruction and participant training was delivered to 
each group (see the OSF repository for the details). The task instruc-
tions were translated into local languages. The experimenters were 
either highly fluent in the local language or accompanied by a transla-
tor who was a native speaker. In most locations, the data collection 
team included an anthropologist or an ethnomusicologist with an 
expert understanding of the local culture, social groups and music. 
To ensure that the same procedures were used across sites, all teams 
were walked through the procedures by N.J., either directly or via video 
conferencing. Pilot data were collected and analysed at each site, and 
N.J. inspected the quality of the data before the collection of additional 
data. To assist this process, the MATLAB script generated images with 
a small file size (about 150 KB) that summarized the main statistics 
of data collection (the validity of the trial, the mean and standard 
deviation of tapping asynchrony (indicative of tapping accuracy) and 
plots showing the microphone recording levels). The same script also 
generated small binary files (about 4 KB) with summaries of the data 
(onset times for stimuli and responses). These files were sent to N.J. 
via low-bandwidth internet from remote data collection sites, which 
assisted in troubleshooting technical and data collection errors.

Testing conditions. Experiments in the United States (Boston and New 
York City) were run in sound-attenuating booths. Elsewhere, where 
possible, the experiments were run indoors in rooms without other 
activities (Brazil, Uruguay, the United Kingdom, Sweden, Bulgaria, 
Turkey, the Bamako site in Mali, India, South Korea and Japan). When 
run outdoors, the experimenter chose a location away from community 
activities that was relatively free of distractions and noise (Bolivia, the 
Sagele site in Mali, Botswana, Namibia and China).

Demographic questionnaires. We employed a demographic question-
naire to characterize musical experience, dance experience and basic 
demographic information (age, gender, education and spoken lan-
guages). We used a baseline demographic questionnaire (see the OSF 
repository) that was translated and adapted to different languages and 
participant groups by the researchers. There was some customization 
of the questions based on their relevance to the local culture. In each 
location, we consulted with ethnographers and translators regarding 
the relevance and translations of each demographic item.

Online measurement of tapped responses. To run the experiment 
online, we used REPP104, a software package for measuring sensori-
motor synchronization in online experiments that works efficiently 
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using hardware and software available to most online participants. To 
achieve temporal accuracy superior to that obtained by a web browser 
(which would have been inadequate for our experiment105,106), the soft-
ware plays the audio stimulus through the participant’s laptop speakers 
and records the original signal simultaneously with the participant’s 
responses (which they supply by tapping on the laptop case) using the 
built-in laptop microphone. The resulting recording is then analysed 
to extract the participant’s taps. The method has been validated in a 
series of calibration and behavioural experiments104, and it achieves 
high temporal accuracy (latency and jitter within 2 ms on average). 
In addition, the method has been shown to provide results that are 
consistent with those obtained in a laboratory set-up (for example, for 
isochronous tapping, the lab–online correlation for the tapping preci-
sion of individual participants was measured to be r19 = 0.94; P < 0.001; 
95% CI, (0.85, 0.98); see Experiment 2 in ref. 104).

To measure stimulus-coordinated tapping by online participants, 
we made some modifications to the original paradigm. One set of 
differences involved the stimulus. First, because the recorded audio 
contains both the stimulus and the response, we filtered the stimulus 
with a high-pass filter (cut-off frequency of 1,000 Hz) to avoid overlap 
with the frequency range typically occupied by tapping responses 
(80–500 Hz). Next, we added three custom audio ‘markers’ with known 
temporal locations at the beginning and end of each stimulus (six 
in total). These markers enabled us to unambiguously identify the 
positions of the stimulus onsets in the recorded audio and facilitated 
precise measurement of participants’ asynchronies. The markers were 
designed to be robustly detected across a variety of hardware and soft-
ware set-ups, including cases of noise-cancellation technologies and 
ambient room noise. The marker sounds were generated from 15 ms 
bursts of bandpass-filtered white noise in the range of 200–340 Hz, 
to which we applied linear ramps at the onset and offset (2 ms long). 
We chose very short intervals between the markers (280 ms for the 
first interval and 230 ms for the second) to avoid participants confus-
ing the markers with the repeated rhythm (the rhythm pulses and 
the markers also differed substantially in timbre due to the different 
frequency ranges).

A second set of differences involved the response recording. 
The online experiments used free-field recording whereby the audio 
stimulus is played through the laptop speakers and simultaneously 
recorded along with the participant’s tapping response using the 
built-in laptop microphone. This returns an audio file where both 
the audio stimulus and participant tapping are superimposed. To 
separate this recording into the different components of the stimulus 
and response, we used bandpass filters. Since most of the energy in 
the tapping signal occurs at low frequencies, filtering the record-
ing around the tapping range (80–500 Hz) isolated the tapping 
response with a high degree of efficacy. We were also able to isolate 
the markers by filtering in their frequency range (200–340 Hz). In 
addition, we applied a filter in the 100–170 Hz range, the output of 
which was used for calibration. Because the markers had no energy 
in this range, this helped determine the noise level in the recording, 
which we used to adaptively set the marker detection thresholds. 
This allowed us to reliably estimate the marker locations even with 
very noisy or low-quality recordings, as characterize some laptop 
models and brands.

The detected stimulus markers were used to estimate and com-
pensate for the latency of the recording and to estimate the jitter in 
the recording. This enabled us to monitor the timing accuracy of each 
individual trial, crucial to ensuring that timing accuracy remained high 
in all trials. See Experiment 1 in Anglada-Tort et al.104 for the full details 
of the calibration experiments and their validation.

After the online-specific pre-processing to isolate the tapped 
response and compensate for the recording latency, we used the same 
pipeline as in the main experiment to align the tap onsets and perform 
the tapping analysis.

Online iterated reproduction procedure. To meet the challenges of 
online data collection, such as poor control over participants’ hardware 
and software and a higher risk of fraudulent responders, we made two 
minor changes to the iterated reproduction procedure.

 (1) In the online version of the experiment, the analysis of the 
recording could take a few seconds to complete (for example, 
from uploading the audio recording, performing the signal 
processing and synthesizing the new stimulus). To avoid unnec-
essary wait times, we did not run consecutive iterated repro-
ductions of the same rhythm seed, as in the laboratory. Instead, 
we ran six ‘chains’ of iterated reproductions in parallel. On each 
trial of the online experiment, the participants performed a sin-
gle iteration of a chain (that is, tapping to a single ten-repetition 
rhythm—either a seed rhythm or the result of the reproduction 
from the preceding iteration of the chain). Each trial was ran-
domly assigned to one of the chains that was not used for the 
previous trial. Each participant completed all six chains during 
an experimental block. In Jacoby and McDermott (Experiment 
4)26, we showed that the results of this parallel chain procedure 
do not differ substantially from those of the original paradigm, 
where the iterations from different chains are not intermixed.

 (2) The change in trial order also necessitated a change in the fail-
ing criteria: if participants failed a trial, they repeated the trial 
with a maximum of ten possible additional attempts, but these 
repeated trials were randomly drawn from the six chains (the 
ten allowed failed trials were tallied globally within the block). 
In those cases where this limit was exceeded, the experiment 
was terminated.

In addition, the following seven modifications were made to 
the overall procedure to ensure that the online participants met the 
technical requirements for the online experiment and were able to 
provide good tapping data consistently throughout the experiment. 
The different steps in this procedure have been extensively piloted and 
optimized to ensure high data quality when collecting tapping data in 
online settings104.

 (1) First, the participants were instructed that the experiment 
could only be performed using the laptop speakers and that 
they should unplug any headphones/earphones or disconnect 
any wireless devices. They were also instructed to remain in a 
quiet environment.

 (2) The participants were then asked to set the volume of their 
speakers to a level that was sufficiently high to be detected by 
the microphone. A sound meter was used to visually indicate 
when the level was appropriate.

 (3) After the volume test, the participants completed a short 
recording test to detect hardware and software that did not 
meet the technical requirements of the experiment, such as 
malfunctioning speakers or microphones. The recording test 
played a test stimulus with six marker sounds. The markers 
were recorded with the laptop’s microphone and analysed using 
our signal processing pipeline. During the playback, the parti-
cipants were supposed to remain silent. There were a total of 
three such test recording trials, and we provided feedback after 
the first trial based on the recording quality: if the markers were 
not recorded (for example, this could occur if the participant 
forgot to unplug their headphones), we reminded the partici-
pants that they needed to unplug any headphones. If, despite 
these reminders, marker sounds could not be detected in two of 
the three trials, the participant was excluded from the experi-
ment. Note that this process also serves as a basic test of task 
compliance, as the participants must follow the instructions 
(for example, accept the enabling of the microphone in the 
browser, unplug any headphones or wireless devices and adjust 
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the volume of the computer) to pass the test. Participants who 
did not satisfy the technical conditions or who abandoned the 
experiment at this stage were excluded (747 of 1,303). This rela-
tively high percentage of participants that did not satisfy the 
technical inclusion criteria is consistent with previous online 
tapping experiments104.

 (4) Participants who passed the recording test were then directed 
to a tapping calibration test. Here, the participants were asked 
to tap on the surface of their laptops with their index finger to 
test whether the microphone could detect their taps, using a 
sound meter to visually provide feedback. In cases where  
the signal was too low, the participants were asked to tap on  
different locations of the laptop or to try to tap harder.

 (5) Next, the participants performed a practice phase to acquaint 
themselves with the main tapping task. The practice phase 
consisted of four trials using the stimulus sampling procedure 
of the main experiment (for example, three-interval rhythms 
randomly sampled from the triangular simplex with a fixed 
duration of 2,000 ms and repeated ten times). In the first 
two trials, we provided feedback to the participants based on 
their recording quality and tapping performance. We used 
the remaining two trials to exclude participants who were still 
unable to provide good tapping data, as assessed by failing in 
one or more of these two trials. A trial was considered a failure 
if we could not detect all marker sounds, or if the detected 
markers were displaced relative to each other by more than 
15 ms, or if the percentage of detected taps (that is, the number 
of detected tapping onsets out of the total number of stimulus 
onsets) was less than 50% or more than 200%. Note that none 
of these criteria involve participants’ accuracy in replicating 
the target rhythm; they only reflect whether the signal could be 
correctly recorded and processed, and whether the participants 
produced a minimally/maximally acceptable number of tap-
ping responses. An additional 358 participants were excluded 
on this basis.

 (6) Participants who passed the practice phase were then able to 
start the main tapping task, which used the same procedure 
described for the in-person experiments except for the modifi-
cations mentioned above.

 (7) As mentioned above, a main difference between the in-person 
and online experiments was that the latter consisted of shorter 
and more flexible experimental sessions. Namely, the experi-
ment was divided in different blocks of six chains per block. 
After completing one block, the participants could decide 
whether to continue with the next block or to instead end the 
experiment. There was a maximum of three blocks per session 
(18 chains). The motivation behind this design choice was to 
keep online experimental sessions engaging and short, always 
allowing the participants to decide whether to complete more 
trials or not.

After completing the first block, the participants answered  
the same set of demographic questions used in the in-person experi-
ments. We excluded participants who abandoned the experiment 
prior to its completion or who did not complete the full demographic 
questionnaire that we administered at the end of the experiment 
(67 additional participants were excluded on this basis). In total,  
131 online participants completed the full experiment and were 
analysed.

Participants
We tested 39 participant groups spanning five continents and  
15 countries (Extended Data Table 1). Overall, we recruited 923  
participants (792 were run face-to-face and 131 online) who completed 
a total of 20,287 trials (seeds) and 2,319,095 individual taps.

Criteria for group selection. Participant groups were chosen to pro-
vide a strong test of any potentially universal features of the results. 
We included groups from both industrialized and non-industrialized 
societies, as well as groups of local musicians from some non-Western 
societies (who performed different types of non-Western music). We 
also tested groups of musicians and dancers where possible, as these 
populations would be expected to have substantial exposure to particu-
lar musical styles. In addition, we tested university students in a number 
of countries to assess potential effects of exposure to Western culture, 
which we presumed would be correlated with university attendance. 
The groups tested were also determined in part by practical constraints 
(testing time and access to particular populations). Age and gender 
could not be fully equalized across groups. For example, Malian pro-
fessional jembe drummers and Uruguayan candombe drummers (the 
populations recruited for MA-LM and UY-LM) are both relatively small 
groups—less than 50 individuals—composed of highly skilled profes-
sionals, and were predominantly male. In both cases, only one partici-
pant in each group was female. The substantial experience required for 
membership in these groups also resulted in these participants being 
older (Mali: mean age, 40.5 years; s.d., 11.9; Uruguay: mean age, 45.5 
years; s.d., 12.8). At the other extreme, dancers in the Sagele village in 
Mali (MA-DA) were predominantly female.

Sample sizes. We conducted a power analysis using data from US 
participants collected for a previous publication26. The approach was 
to try to collect enough trials that the test–retest reliability of the 
estimated prior for a group was likely to be relatively high (with the 
goal of having enough data that the results of the experiment would 
be similar in a hypothetical future replication). The test–retest reli-
ability was estimated using the split-half reliability of our previously 
collected data following Spearman–Brown correction107. We simulated 
different amounts of data by subsampling the number of trials used 
to estimate the prior (resampling without replacement). We found 
that 250 trials produced a test–retest reliability greater than 0.8, and 
we thus targeted this number for the sample size of each group. In 
practice, we often ran more trials if circumstances permitted (between 
261 and 948 trials and therefore up to 3.8× the target number of trials; 
Supplementary Table 2). The only exceptions were the two groups in 
Botswana, for whom we did not reach this recruitment target because 
of practical constraints on testing time (170 and 127 trials for the  
San and Etsha groups, respectively; abbreviated as BO.SA and BO.EA). 
However, the post hoc reliability of the data collected for these groups 
was not far below our target value (0.75 and 0.67 for BO.SA and BO.EA, 
respectively). The post hoc reliabilities of all other groups were high, 
meeting or exceeding the predicted value of 0.8 (ranging from 0.8 to 
0.96; mean, 0.9; s.d., 0.03).

Definition of group types
Students (ST). We defined students as members of local universities 
in either undergraduate or graduate programmes.

Musicians (WM and LM). For brevity, we used the term ‘musicians’ to 
describe participants with relatively extensive musical experience, 
acknowledging that musicianship is a concept that changes from place 
to place47. On the basis of previous work, we defined recruiting criteria 
that generalize more broadly for different cultural contexts27: (1) pro-
fessionalism—‘Do you make most or part of your living from music, or 
did you in the past?’, (2) training—‘Did you undergo music training (such 
as an apprenticeship or formal study)?’ and (3) public playing—‘Do you 
perform in public?’ In some locations (the United States, Uruguay, the 
United Kingdom, Bulgaria, Turkey, Mali and Namibia), all musicians 
satisfied all criteria, while in other locations (Brazil, Sweden, Botswana, 
India, Korea and Japan), we also included people who satisfied the 
last two criteria but not the first one. For all participants, we recorded 
self-reported years of regularly playing an instrument or singing, as is 
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common in music cognition literature (Supplementary Table 2). We 
recruited both musicians who play Western classical music (WM) and 
musicians who play a local musical style that is not Western classical 
music (LM). We note that for the local musician groups, the nature of 
the local musical style varied somewhat from group to group; in some 
cases (most notably for the US.NY-LM group, who played jazz) the 
musical style was one that had spread globally.

Dancers (DA). In Bulgaria, we recruited dancers who were members  
of the same professional ensembles from which we recruited the  
musician groups. In Mali, we recruited group members of a local recrea-
tional dance association that promotes events featuring traditional 
dance and music.

Non-musicians (NM). Non-musicians were people who did not satisfy 
any of the inclusion criteria for the other groups. Their self-reported 
years of musical experience were substantially less than those of the 
musician groups in all cases (Supplementary Table 2).

Online (OL). Online participants were recruited from Amazon  
Mechanical Turk. Their geographical location was determined by 
the Amazon qualification system and verified with IP geo-location. 
We tested participants from the 3 countries of the 15 from which the 
other participant groups were drawn with substantial Mechanical Turk 
worker pools (the United States, Brazil and India)108.

Recruiting locations
Basic demographic information for each participant group is provided 
in Extended Data Table 1. Supplementary Table 2 provides additional 
information about each group including the number of languages 
spoken, the languages spoken, years of self-reported musical experi-
ence, instruments played and favourite artists or musical genres. We 
report demographic variables that we were able to reliably measure, 
and we note that these are not the only variables that varied across 
groups and that might influence the results. These factors were all 
based on self-report questionnaires, except the literacy level within 
the group, which was estimated by the experimenters. Here we provide 
additional information about each group, ordered according to their 
geographical location.

United States: Boston—students and Western classical musicians 
(US.BO-ST and US.BO-WM). The Boston student participants were 
students from local universities, recruited using the MIT Brain and 
Cognitive Sciences Department participant mailing list and through 
additional online advertisement. All participants were residents of 
the Boston area, a metropolitan region of New England with over 
eight million inhabitants. The musician group was recruited from the  
same departmental mailing list as well as via a social media ad  
targeting conservatory students from the Boston area. All participants 
in this musician group had formal training in music. Some of them were 
professional musicians. Most participants in the musician group played 
Western classical music, though some also played other styles such  
as pop and jazz. There was some overlap between these groups and  
the US participant group in a previous publication26; the groups were 
not identical due to different exclusion criteria in the two studies.

United States: New York City—non-musicians, Western classical  
musicians and jazz musicians (US.NY-NM, US.NY-WM and 
US.NY-LM). New York participants were recruited by word of mouth, 
campus advertisements at Columbia University and online advertise-
ments. The participants were residents of the New York City metro-
politan area, a densely populated region in the United States with 
over 18.8 million people. We recruited three groups: non-musicians, 
musicians specializing in Western classical music (the WM group) and 
jazz musicians (the LM group). Both musician groups were a mix of 

music students and professional musicians. All musicians had formal 
education and training in music.

Bolivia: Tsimane’—non-musicians (BO.TS-NM). Tsimane’ are an Indig-
enous people of lowland Bolivia, comprising about 19,000 individuals 
who live in about 130 small villages mostly along river basins (including 
the Maniqui River), located in the department of Beni (a subdivision of 
Bolivia). They subsist mostly on farming, fishing and hunting. Tsimane’ 
have traditional music, familiarity with which varies across individu-
als. As reported by Riester109, their traditional songs have character-
istic rhythmic patterns. The most common such pattern reported by 
Riester can be written in ratios as 1:1:2. Traditional Tsimane’ musical 
culture also once included shamanic practices with drum playing, but 
these practices are no longer in use110. The region containing Tsimane’ 
communities is undergoing rapid modernization due to a push by the 
Bolivian government and non-government organizations to provide 
services to the Indigenous peoples. Radio usage is now fairly common, 
and villages near the local town of San Borja tend to have electricity. 
During the mid-1950s, Protestant missionaries from the United States 
settled permanently along the river Maniqui to proselytize Tsimane’, 
setting up the first rural schools for them and teaching them church 
hymns111. More recently, evangelism has spread Christianity within and 
across many villages. Thus, in addition to their knowledge of traditional 
music, nowadays most Tsimane’ villagers are somewhat familiar with 
religious Christian hymns. These hymns are monophonic and sung 
in Tsimane’. They are similar to traditional Tsimane’ music in rely-
ing on small intervals and a narrow vocal range and are sometimes 
accompanied by other instruments played by community members. 
Group singing appears to be rare, irrespective of whether the mate-
rial is traditional songs or hymns. For the present study, we recruited 
participants in three Tsimane’ villages. Upon arriving at each village, 
we used a horn or a bell to initiate a community meeting where we 
introduced the researchers and registered participants for experiment 
sessions. Two of the villages (Mara and Moseruna) were a two-day walk 
or a three-hour car ride from San Borja, along a road that was accessible 
only to high-clearance vehicles and motorcycles if recent weather had 
been dry. The other village (Yaranda) was located along the Maniqui 
River and accessible only by a one-day trip on a motorized canoe. All 
three villages have relatively little communal church singing. The 
participants had varied musical experience, but none regarded music 
as a profession. None of the participants had formal training in music. 
Two participants reported regularly playing an instrument, and 34 
participants reported playing an instrument at least once.

Bolivia: San Borja—non-musicians (BO.SB-NM). San Borja is a small 
town in the Bolivian department of Beni in the Amazon basin with over 
20,000 residents. At the time of data collection, San Borja could be 
reached by car during dry months of the year but was accessible only 
by small planes during much of the rainy season. Participants were 
recruited by word of mouth and had resided for most of their life in  
San Borja. The participants had not received formal education in music.

Bolivia: Santa Cruz de la Sierra—non-musicians (BO.SC-NM). 
Santa Cruz de la Sierra is the largest city in Bolivia, with a population of  
over 1.8 million people. Participants were recruited using an online 
advertisement and word of mouth. All participants had been born and 
raised in the Bolivian department of Santa Cruz, and they resided in the 
city at the time of the experiment. The participants had not received 
formal education in music.

Bolivia: La Paz—students and non-musicians (BO.LP-ST and 
BO.LP-NM). La Paz is the third-largest city in Bolivia, with a popula-
tion of over 0.9 million people, located in the Andes. We recruited 
the student group from local universities. Most student participants 
were recruited by a student who was a research assistant. For the 
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non-musician group, we recruited blue-collar workers employed by 
a hotel and their relatives. These participants were mostly from El 
Alto, a city adjacent to La Paz (with a population of about one million  
people), and many of them were Indigenous (Aymara or Quechua). 
Many participants reported experience with traditional music and 
dance in childhood or as adults. The participants had not received 
formal education in music.

Brazil—local musicians (BR-LM). We recruited percussionists in the 
Recife metropolitan area, a city in Pernambuco, part of Northeast  
Brazil. The population of the Recife metropolitan area is over four 
million people. The percussionists practice a local style of music that 
is part of the Maracatu-nação (translation from Portuguese: ‘nation 
maracatu’) cultural tradition. This region-specific tradition, usually 
perceived as Afro-Brazilian, involves religion, music, song, dance and 
elaborate costumes. Its history is disputed but is most often linked to 
the colonial coronations of queens and kings among enslaved Africans 
in Brazil (in the sixteenth to nineteenth centuries). However, the earliest 
descriptions date only from the beginning of the twentieth century112,113. 
The music is performed by community-based groups in the slums of the 
metropolitan area of Recife termed maracatus-nação, approximately 
30 of which are currently active. These groups include a costumed 
dance group and a large percussion ensemble. The groups perform in 
parades that take place primarily during Carnival. The percussionists 
we recruited either grew up within one of these community groups or 
had participated in one for at least several years. The participants had 
not received formal education in music in a university or conservatory 
but received substantial training as described above.

Uruguay—students and local musicians (UY-ST and UY-LM). Parti-
cipants in Uruguay were all recruited in Montevideo, the capital of 
Uruguay, with a population of over 1.3 million people. The musicians 
were performers of Uruguayan candombe drumming59,114. All partici-
pants were born and raised in neighbourhoods with a strong tradition 
of candombe drumming and were ‘native players’, having acquired 
their competence in the style by direct transmission. The majority of 
the participants were outstanding players, regarded as master drum-
mers by the community. As a rule, the participants did not have formal 
musical training in a conservatory or university, although a few of them 
had some basic knowledge of music theory and could play instruments 
other than the drum (such as keyboards and bass). However, they had 
all had substantial practical training in drumming since childhood. The 
participants were recruited by L.J. and M.R., who are local experts in this 
musical style and are familiar with the local musicians. The students 
were members of the local university with no formal musical training but 
with passive exposure to music, including Uruguayan candombe drum-
ming. They were recruited by two research assistants by word of mouth.

United Kingdom—students and jazz musicians (UK-ST and UK-LM). 
Two groups of participants were recruited in North East England and 
Scotland, an area of the United Kingdom with over eight million people. 
Most participants were recruited from Durham, a county in England 
with over 500,000 people. The first group consisted of students from 
Durham University. The second group consisted of instrumental jazz 
musicians, comprising a mix of professional musicians and students 
currently studying music at university (the students were recruited from 
Durham University and the University of Edinburgh). All participants in 
this group reported that they perform jazz in public and earn money from 
performing, and all had formal training in music in a university and/or 
conservatory. These participants played a range of instruments (includ-
ing piano, saxophone, guitar, trumpet, drums and double bass), and most 
reported performing in a range of different sub-genres and groups, most 
commonly big bands and smaller ensembles (such as trios) playing jazz 
standards. Some participants reported liking or performing musical tra-
ditions from other cultures, including Latin and Balkan-influenced music.

Sweden—local musicians (SE-LM). The recruitment of musicians 
in Stockholm (the largest metropolitan area in Sweden, with over 
2.4 million people) focused on students and teachers of folk music 
performance at the Royal College of Music, and on dance students 
at the School of Dance and Circus at the Stockholm University of the 
Arts, as the latter also had extensive experience playing music. Among 
the latter group, we required the participants’ focus to be Swedish 
folk dance. Of the 22 recruited participants from the Stockholm area, 
9 considered themselves mainly as dancers and 13 mainly as musi-
cians, and 1 participant identified as a dancer and musician to the same 
degree. In addition, 72% of the participants reported making money 
from performing music or dance, and all but 4 reported performing 
in public. Independent of this self-categorization, all participants 
asserted that they dance and have experience with either instrumental 
or vocal music making.

Bulgaria—local musicians and dancers (BG-LM and BG-DA). The 
recruitment of musicians and dancers in Bulgaria focused on mem-
bers of a type of professional folk ensemble that developed once the 
country adopted a communist system of government after the Second 
World War115,116. These ensembles typically consist of an orchestra of 
folk instruments, a women’s choir and a dance troupe, and they give 
stage performances of arranged and newly composed Bulgarian folk 
music and elaborately choreographed folk dances. Most performers 
in these ensembles have studied folk music performance or choreo-
graphy in the Bulgarian conservatory system. Some of the dancers who 
participated in the study belonged to professional or semi-professional 
dance troupes that perform Bulgarian folk dances with recorded rather 
than live music. We recruited participants in three Bulgarian cities: 
Pleven (a city with approximately 90,000 people), Plovdiv (a city with 
approximately 343,000 people) and Sofia (the capital of Bulgaria 
and the largest metropolitan area, with over 1.2 million people). The 
participants were members of the ensembles in these cities and were 
contacted with permission from the ensemble directors.

Turkey—students and local musicians (TR-ST and TR-LM). The group 
of Turkish student participants was recruited from Istanbul Technical 
University Turkish Music State Conservatory and Bogazici University. 
The Istanbul metropolitan area has over 15.8 million people. The musi-
cian participant group was recruited from the cities of Izmir and Istan-
bul and included professional musicians who had studied at institutes 
or conservatories for traditional Turkish music, such as Istanbul Techni-
cal University Turkish Music State Conservatory. These musicians were 
experienced in Turkish folk music or dance through formal training 
or extensive practice in groups or ensembles. They had experience 
in various sub-genres of Turkish music, ranging from Aegean to Black 
Sea regions, also including Sufi music. The musicians were involved  
in ensembles performing traditional, religious, classical or modern 
Turkish music, as well as Western music with Eastern influences.

Mali—students, local musicians and dancers (MA-ST, MA-LM and 
MA-DA). The group of Malian university students was recruited in the 
capital city of Bamako and comprised both BA- and MA-level students 
as well as recent graduates of the University of Bamako. Bamako is the 
capital of Mali and the largest metropolitan area in the country, with a 
population of over two million people. Students were recruited by N.D. 
by word of mouth. The musician group was also recruited in Bamako. 
Their main performance work occurred at local music and dance events, 
primarily wedding celebrations, but they also worked in the national and 
international scenes of staged folk dance and percussion music117. Most 
musicians did not have training in music from a university or conserva-
tory but instead had substantial training via traditional, practice-based 
apprenticeships. By contrast, Malian dancers were not active as special-
ized musicians (and did not have formal education in music or dance) 
but regularly danced at wedding celebrations in which professional 
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musicians performed, and thus were highly familiar with local styles 
of music. Only one of the participants reported receiving money from 
playing or dancing. R.P. (who has more than 30 years of experience 
working with Malian musicians) recruited the musicians with the help 
of a research assistant. The dancer participants were recruited on the 
basis of their membership in a local dance organization in the peasant 
village of Sagele, approximately 75 km southwest of Bamako. Sagele 
has a population of approximately 5,000 people.

Botswana: San—local musicians (BW.SA-LM). The San musician 
group was recruited in D’Kar, a village ~640 km northwest of Gabarone 
(the capital of Botswana), with a population of about 1,700 people. 
The participants were either members of a local organization that 
performed traditional songs and dances of the San culture (primarily 
for nearby events or for tourists) or local residents with substantial 
musical experience (at least ten years of self-reported musical experi-
ence) but no formal musical training in a university or conservatory.

Botswana: Etsha—local musicians (BW.EA-LM). The second Botswa-
nan group was recruited in Etsha, a group of villages ~320 km north 
of D’kar, with a population of about 10,000 people. The participants 
were members of two groups who performed traditional songs, or 
local residents with substantial musical experience (more than seven 
self-reported years of musical experience). The participants came from 
two closely related Okavango Delta region subcultures: Hambukushu 
and Bayei. Although the Hambukushu and Bayei are culturally distinct, 
their geographic proximity means they are each exposed to each other’s 
music, with far less exposure to the music of the San. The participants 
had no formal musical training from a university or conservatory.

Namibia—non-musicians and local musicians (NM-NM and NM-LM). 
Participants in Namibia were recruited from a small local Damara com-
munity (population ~500) in the Spitzkoppe region via word of mouth 
during the week prior to the start of the study. Recruitment and data 
collection occurred with help from two local research assistants, who 
also acted as translators. The musician group was drawn from two active 
musical groups, both of whom had extensive experience with tradi-
tional music of the region: a ‘cultural singing group’ (who frequently 
practice and perform |ais (old traditional folk songs and dances), in 
addition to other styles of performance) and a ‘youth choir’ (who typi-
cally rehearse and perform elob mis, a form of gospel music, sung in 
Khoekhoegowab (the local language), English and Afrikaans). Both 
groups perform at local and regional community events (such as wed-
dings, funerals and an annual Damara traditional festival). The singing 
group intermittently performs for visiting tourists, and the youth choir 
also performs weekly in church. The first group typically earns money in 
exchange for these performances, though most members would not be 
construed as professional performers and did not have formal training 
from a university or a conservatory. The non-musician participants were 
members of the local community who were not part of either group. 
Although almost all participants reported engaging in some form of 
singing (for example, joining in at weddings or other community events, 
or simply while listening to the radio), these non-musician participants 
did not regularly practice or perform with any group, and many had 
limited or no knowledge of old traditional song lyrics and dances.

India—non-musicians and local musicians (IN-NM and IN-LM). 
In India, the experiment was conducted at I.I.T. Bombay in the city 
of Mumbai (a city with over 20.9 million people). The non-musicians 
all worked or studied at I.I.T. Bombay and had not had any musical 
training or substantial exposure to Indian classical music. We classi-
fied the group as non-musicians rather than students because only 
a minority (6 of 15) were students. Most of the musician participants 
were professional musicians living in the city, but a few were students at  
I.I.T. Bombay. Most of them were trained in the North Indian 

(Hindustani) form of art music. Formal training typically involves taking 
one-on-one lessons from a teacher (the appointed guru) and perform-
ing in public concerts. Some of the musician participants were primarily 
vocalists but also played an instrument, and about half of them were 
tabla (percussion) players who accompanied vocalists in concerts. 
All but three musicians reported currently playing in public concerts, 
and 64% reported at least sometimes receiving money from playing.

South Korea—students, Western classical musicians and local 
musicians (KR-ST, KR-WM and KR-LM). The Korean student  
participant group was recruited from Chungnam National University 
in Daejeon, a metropolitan area containing over 1.4 million people. The 
Western musician group consisted of students from the Department 
of Music at Chungnam National University. These participants had 
been exposed to both Western music and K-pop music via mass media. 
The local musician group comprised students studying traditional 
Korean instruments in the Department of Korean Music at Jeonbuk 
National University located in Jeonju, a metropolitan area containing 
over 651,000 people. These participants had trained on Korean tra-
ditional instruments for many years but also had extensive exposure  
to both Western and K-pop music.

Japan—students, Western classical musicians and local musi-
cians (JP-ST, JP-WM and JP-LM). In Japan, the student and Western 
musician groups were recruited from Keio University Shonan Fujisawa 
Campus in Fujisawa, Kanagawa, near Tokyo. Tokyo is the capital of  
Japan and the metropolitan area with the largest population (over  
37.2 million people). Participants in the student group had no formal 
musical training. The Western musician group had formal music train-
ing in Western instruments. The local musician group was recruited 
from Tokyo University of the Arts ( Japan’s leading music conserva-
tory). They all played at public events, and 73% received money for 
playing music. We recruited students studying traditional Japanese 
instruments (shamisen, koto, shakuhachi or hayashi instruments from 
the noh ensemble) in the Department of Traditional Japanese Music. 
These students had to train on these instruments for many years to 
qualify for acceptance into the department and can be considered 
‘bi-musical’118 in that they had extensive exposure to both popular 
Western and traditional Japanese musical systems. All Japanese par-
ticipants had extensive passive exposure to both Western music and 
Western-influenced Japanese popular music via radio, TV and other 
media. All Japanese participants were recruited from Tokyo and its 
surrounding cities.

China—non-musicians (CN-NM). Participants in China were recruited 
from a cluster of Dong minority villages in the Guizhou Province in 
southwestern China. The Guizhou Province contains approximately 
38.5 million people, and the Dong villages each have approximately 
500 to 2,000 people. Singing features prominently in many village 
activities, but the most famous and distinctive tradition of Dong song 
is Dage, or Big Song, recognized by UNESCO in 2009 on their list of 
humanity’s Intangible Cultural Heritage. There is wide participation 
throughout the villages in learning and performing Dage, a genre of 
two-part group polyphonic singing, occasionally metred, where words 
are central and pitch height and contour carefully follow the lyrics119. 
Dage is performed informally within people’s homes and more formally 
within the drum-towers found in many villages119. The participants  
had no formal musical training from a university or conservatory.

Online participants from the United States, Brazil and India (US-OL, 
BR-OL and IN-OL). All online participants were recruited using  
Amazon Mechanical Turk. In the online advertisement, we required 
the participants to meet the following five criteria: they had to (1) be at  
least 18 years old, (2) speak English, (3) use a laptop to complete the 
experiment (no desktop computers allowed), (4) use an up-to-date 
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Google Chrome browser (due to compatibility with the technology) 
and (5) sit in a quiet environment, to ensure that their tapping could be 
recorded precisely. To test participants from the United States, India 
and Brazil, we used Amazon Mechanical Turk’s qualification system, 
which allows researchers to recruit participants registered in each 
location. To ensure that the participants were undertaking the experi-
ment from the registered location, we only included participants whose 
registered location matched their IP-based geo-location, which we veri-
fied using the service ipinfo.io. We estimate that the Mechanical Turk 
participant pool in the United States has a few thousand unique active 
participants per week. In India and Brazil, we estimate that the number 
of unique active participants is about 500 and 200, respectively.

Analysis
Small-integer ratios. Following Jacoby and McDermott26, we consid-
ered ‘small-integer-ratio rhythms’ to be those with ratios composed of 
the integers 1, 2 and 3 that fell within the rhythm triangle. This results 
in the following 22 unique ratios: Ω22 = {1:1:1, 1:1:2, 1:2:1, 2:1:1, 1:2:2, 2:1:2, 
2:2:1, 1:1:3, 1:3:1, 3:1:1, 1:2:3, 2:3:1, 3:1:2, 1:3:2, 2:1:3, 3:2:1, 2:2:3, 2:3:2, 
3:2:2, 2:3:3, 3:2:3, 3:3:2}. We also grouped together categories that are 
equivalent under cyclic permutation, resulting in eight categories: 
Ω8 = {111, 112, 122, 113, 123, 223, 233, 132}.

Kernel density estimates of the prior. The experiment consisted of 
a number of trials, each of which consisted of iterated reproduction of 
a random seed rhythm. We estimated a participant’s prior using the 
data from the fifth and final iteration of each trial, having demonstrated 
in Jacoby and McDermott26 that five iterations are sufficient for the 
iterative procedure to converge to the prior (Supplementary Figs. 1, 2 
and 7 in Jacoby and McDermott; see Supplementary Fig. 2 of this paper 
for analyses of convergence in each group)26. Before this analysis, we 
excluded points outside the inner triangular region defined earlier that 
was intended to correspond to the region of human-producible  

rhythms (with vertices ( 3
2
f, √3

2
f ) , (1 − 3

2
f, √3

2
f ) , ( 1

2
, √3
2
(1 − 2f) ) , where 

f = 300/2,000). The prior was then estimated by adding together  
Gaussian kernels, with mean μi and covariance Σi empirically com-
puted from the repetitions of the rhythm within the fifth iteration 
(there were up to ten repetitions depending on the number that the 
participant correctly produced during the fifth iteration; for repeti-
tions that had missing taps, the missing tap(s) was replaced by the mean 
onset of the successfully produced taps at that stimulus position). Since 
this covariance matrix is estimated on the basis of small numbers of 
samples, we added a regularization term: Σ′

i = Σi + γI , where I is  
the identity matrix, and γ = 15 ms (we slightly increased this value 
compared with the γ = 10 ms of Jacoby and McDermott26 since  
some participant groups had lower numbers of correctly reproduced 
repetitions). We averaged these kernels (Gi (x) ∼ N(μi,Σ′

i ), one per trial) 
across all completed trials within a participant group, obtaining a 

distribution P(x) = 1
N
∑N
i=1Gi (x) over the triangle. For statistical analyses,  

we represented these distributions in bins spanning 0.006 in each 
dimension of the triangle (that is, 12 ms given the 2,000 ms pattern 
duration). To generate high-resolution images for the paper figures, 
we used bins of size 0.003 in each dimension. Supplementary Figs. 3–9 
show high-resolution kernel density estimates for all groups.

Normalizing density compared with uniform distribution. As described  
above, the random seeds were constrained to have the smallest  
interval exceed 15% of the pattern duration (300 ms), corresponding  
to a smaller triangular region within the full rhythm triangle. We  
defined the uniform distribution over this smaller region as U. To avoid 
working with small numbers, we pointwise-normalized the kernel  
density estimate P with respect to U—namely, P′(x) = P(x)/U(x). We note 
that in all images depicting kernel density estimates, the density was 
clipped at a value of 5 (relative to uniform) to preserve the dynamic 

range for details at low density values. In the OSF repository associ-
ated with this project, we included images with less clipping (relative 
density of 10).

Jensen–Shannon divergence. To compare distances between distri-
butions, we used the Jensen–Shannon divergence. The Jensen–Shannon 
divergence of two distributions P and Q is defined as

JSD(P,Q) = 1
2DKL (P,M ) + 1

2DKL (Q,M )

where M = 1
2
(P +Q) and DKL (P,Q) = ∫

x
P(x) log2 (

P(x)
Q(x) ) dx.

Gaussian mixture model fits. To measure the relative weight of each 
category in a group’s prior, we used a Gaussian mixture model in which 
the mean of each mixture component was constrained to be close to 
a small-integer-ratio rhythm. This constraint aided interpretability 
by removing the degeneracy in the correspondence between mixture 
components and the modes of the data distribution, guaranteeing 
that each mode was associated with the same category across groups, 
while allowing the mixture components to deviate from exact integer 
ratios as dictated by the data. We imposed additional constraints on 
the standard Gaussian mixture model fitting procedure of the model to 
ensure that the mapping of mixture components to integer ratios was 
fixed across groups, to avoid artefacts associated with small sample 
size and to avoid uninterpretable overlap between the modes.

We define a Gaussian mixture model with category centres {μi}i=1…K, 
covariance matrices {Ci}i=1…K and weights {wi}i=1…K as follows:

Q(x) = ∑
i

wi
2π√|Ck|

exp (− 12 (x − μi)
TC−1k (x − μi))

To fit the model, we used a modified expectation–maximization 
algorithm120. We initialized the algorithm by assigning the mixture 
components to the small-integer-ratio rhythms within Ω22. We then 
proceeded by alternating between the expectation and maximiza-
tion steps. After each maximization step, we applied the following 
additional constraints:

 (1) Mode identity: to guarantee that each mode was associated 
with the same category across groups, we required that 
‖μi − μ0i ‖2 <

1
2
d
min

, where μ0i  is the ith category in Ω22 and where 

dmin is the minimal distance between categories in Ω22. This 
constraint permits the modes to deviate substantially from 
integer ratios to faithfully represent bias in the data, but not so 
much that the correspondence with integer ratios is lost.

 (2) Overlap: to avoid overlap between the modes, we required that 
the eigenvalues of the covariance matrix λ1 and λ2 satisfy the 
constraint that ||λi|| < dmin.

 (3) Additional constraints on the overlap between the modes: we 
also required that λ1 and λ2 be limited by A < λi

λ1+λ2
< 1 − A, where 

A is a constant. We fixed A = 1/5, which intuitively corresponds to 
a constraint on the aspect ratio of the ellipsoid defined by the 
covariance matrix.

We applied these constraints after the maximization step. We 
applied constraint 1 by projecting the μi resulting from maximization 
step to the closest point in Euclidean distance that satisfied constraint 1. 
Similarly, we applied constraints 2 and 3 on the eigenvalues of the covar-
iance matrix by truncating them so they satisfied both constraints:

λ′ i = min (λi,
1
2dmin

)

λ′′ i = min (max (λ′ i,A(λ′1 + λ′2)) , (1 − A)(λ′1 + λ′2))
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We then iterated these steps until convergence (using a conver-
gence threshold of 1 × 10−6). The result was an estimate of {μi}i=1…K, 
{Ci}i=1…K and {wi}i=1…K. We emphasize that these constraints do not place  
strong limits on the locations of the modes, which are free to exhibit 
biases, or on the category boundaries, which need not be located sym-
metrically between modes. The constraints merely serve to enable us 
to label the modes in a consistent way. A Gaussian mixture model fit 
in this way to each group’s data explained most of the kernel density 
variability (91% on average, ranging from 80.6% to 97.5% depending 
on the group).

This procedure is different from the one reported in Jacoby and 
McDermott26, where we performed a numeric constraint optimization 
with the MATLAB fmincon function on the Kullback–Leibler diver-
gence of the kernel density estimate defined by the model and the 
kernel density estimate of the data. Other than this difference, we 
had similar constraints on the optimization. The 2017 procedure pro-
vided comparable results but was slower than the method used here. 
Considering the large amount of data in this project, we considered 
the efficient expectation–maximization method to be preferable to 
direct optimization.

Gaussian mixture model with 7:2:3 category. In the case of 
Malian drummers and dancers, we added additional rhythm  
categories at 2:3:7, 7:2:3 and 3:7:2 (Figs. 5 and 7g–i). We denote  
this by Ω25 = Ω22∪{2:3:7,7:2:3,3:7:2} and used it instead of Ω22 for the 
Gaussian mixture model estimate. In all other respects, the analysis  
was identical to that in the previous section (Gaussian mixture  
model fit with Ω22).

Average category weights. In all cases, we fitted the Gaussian mix-
ture to the categories (Ω22, except for Fig. 7g–i, where we used Ω25). 
In some cases, we wanted to display or analyse the results ignor-
ing cyclic permutations of the same category (for example, 2:2:3, 
2:3:2 and 3:2:2 would be mapped to the same category 223). We 
then computed the Gaussian mixture model fit to Ω22 and averaged 
the weight across the three permutations. The one exception was 
the isochronous rhythm 1:1:1, which has no variants; in this case we 
used the original fit of 1:1:1 in Ω22. This resulted in eight weights per 
group corresponding to the eight categories in Ω8 (defined above 
in ‘Small-integer ratios’). These category weights are reported in 
Extended Data Fig. 4 and are provided as part of the OSF repository 
associated with this publication.

Significant distance between two groups. In this analysis, we evalu-
ated whether two distributions P1 and P2 associated with two groups 
had significantly different kernel density estimates. Since the Jensen–
Shannon divergence is always positive, it deviates from zero when the 
kernel density estimates being compared are computed from a finite 
sample. We used bootstrapping to estimate whether the distance 
between P1 and P2 was greater than what is expected from this 
finite-sampling effect. We created 1,000 simulated split halves of the 
trials from each participant group. From these bootstrap samples, we 
estimated the 1,000 kernel density estimates associated with the two 
splits of each group (we denote them by P j,11  and P j,21 , where j indexes 

the 1,000 split halves, and P j,12  and P j,22 ). We then computed JSD (P j,11 ,P j,12 ) 
(the distance between split halves across groups) and compared it with 

JSD (P j,11 ,P j,21 ) and JSD (P j,12 ,P j,22 ). We assessed statistical significance via 

a P value from the minimum of the rank order of JSD (P j,11 ,P j,12 ) within 

the two null distributions for JSD (P j,11 ,P j,11 ) and JSD (P j,12 ,P j,12 ). Namely, 

to declare that two groups are significantly different, their mean 
Jensen–Shannon divergence had to be significant with respect to both 
within-group Jensen–Shannon divergences. We also computed the 
difference in Jensen–Shannon divergence:

D = [(JSD (P j,11 ,P j,12 ) − JSD (P j,11 ,P j,11 )) + (JSD (P j,11 ,P j,12 )

− JSD (P j,12 ,P j,12 ))] /2.

We report the mean of the difference (mean(D)) as well as the  
95% CIs of D.

Discrete mode (‘peakiness’) analysis. We performed three analyses 
to substantiate the presence of discrete modes in the measured priors. 
In analysis 1, to show that the mass of the estimated density was centred 
in a small part of the space, we computed for each group the 33% of the 
bins with the highest kernel density and then computed the sum of the 
density in these bins relative to the sum over all bins. This resulted in 
numbers ranging between 61.8% and 81.7% (mean 70.1%) over the 39 
groups. To obtain a null distribution for this quantity, for each group 
we sampled points (equal in number to the total number of trials for 
that participant group) randomly on the triangle and estimated the 
empirical kernel density estimate for this random distribution. We 
then repeated the selection process described above, picking the 
33% of the bins with the highest kernel density and computing the 
proportion of the summed density in these bins. This analysis showed 
that the percentage obtained in this way from the empirical data was 
significantly larger than would be expected from the null distribution 
computed from uniform sampling.

In analysis 2, we estimated the peak density with respect to a uni-
form distribution. We identified the bin in the kernel density estimate 
with the highest density and found that in all 39 groups this bin had 
a density that was over five times larger than the density of the same 
bin under a uniform distribution (range, 5.3–13.1; mean, 8.8). We esti-
mated the statistical significance of this ratio using a null distribution 
obtained by sampling points from a uniform distribution (using the 
same number of points per group) and measuring the peak density 
from the resulting kernel density estimate. We found that the empirical 
peak ratios were significantly larger than would be expected by chance 
for all 39 groups (P < 0.001 in each case).

In analysis 3, we fit a Gaussian mixture model with mixture compo-
nents constrained to be near small-integer ratios (see ‘Gaussian mixture 
model fits’ for the details). This model explained most of the variance 
in the kernel density (91% on average, ranging from 80.6% to 97.5% 
depending on the group). Explained variance was measured here by 
treating the kernel density estimates of both the empirical data and the 
models as vectors and squaring the correlation between the vectors.

Overlap with small-integer ratios. We evaluated overlap with 
small-integer ratios using three different analyses (Fig. 4a). First, we 
computed the average minimal distance between each fifth-iteration 
reproduction (for all participants in a given group) and the closest 
small-integer-ratio rhythm: L2(Ω22, pi), where pi are the fifth-iteration 
reproductions represented on the rhythm triangle, Ω22 is the set of 
small-integer ratios involving the numbers 1–3 defined above and L2 
is the minimum of the Euclidean distances between the point pi and 
each of the 22 points in Ω22. To show that these distances are signifi-
cantly smaller than would be obtained by chance, we generated a null 
distribution by randomly sampling sets of 22 points uniformly from 
the triangle and computing the same mean minimal distance between 
the points pi and these randomized sets. We then compared the empiri-
cal distance to the null distribution. We used this first analysis for the 
results reported in Fig. 4a on the grounds that it is simple to describe.

Second, we performed an additional control analysis where 
instead of sampling the sets of 22 points uniformly, we constrained 
them so that each point fell within a circle of radius d around the integer 
points, where d is 1/2 of the minimal distance between two points in 
Ω22. This guaranteed that the null sets were spaced similarly to Ω22. The 
results of this alternative analysis were similar to those of the simpler 
analysis described above, and in all 39 cases the empirical distance was 
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significantly smaller (P < 0.001) than would be expected from the null 
distribution, even when Bonferroni correction was applied.

Third, we applied the integerness score reported in Jacoby and 
McDermott26. In this analysis, we compared the Jensen–Shannon diver-
gence distance between the empirical kernel density estimate of the 
fifth iteration (P) and the normalized indicating function IΩ22 (x) 
= 1

22
∑ω∈Ω22

δ (x − ω), where δ is the Dirac delta function on the triangle. 
This Jensen–Shannon divergence is maximal if all probability mass is 
located at the small-integer ratios. We initially fitted an unconstrained 
Gaussian mixture model with 22 components. We then randomized 
the means of the components of this mixture. This simulates a response 
distribution that is similar in statistical characteristics to the data, but 
that is not centred around integer ratios. We obtained a null distribution 
by generating 1,000 such randomized distributions, each time comput-
ing the Jensen–Shannon divergence with IΩ22 (x). We then compared 
the distance of IΩ22 (x) and P to this null distribution. We found that in 
all cases the distance between IΩ22 (x) and P was significantly smaller 
(P < 0.01) than would be expected by chance.

Bias analysis. Figure 4b displays an analysis testing whether percep-
tual category centres are systematically biased away from the corre-
sponding small-integer ratio. The small grey dots plot the component 
means of the fitted Gaussian mixture models for each category and 
participant group. We then calculated the empirical means (indicated 
with larger black dots) of each category across all groups. We applied a 
non-parametric test analogous to an analysis of variance to test whether 
each category was biased. The test statistic was the ratio of (1) the 
average squared Mahalanobis distance between all points and the 
empirical mean and (2) the average squared Mahalanobis distance 
between all points and the corresponding small-integer ratio. We com-
pared this test statistic to its null distribution computed from 10,000 
bootstrapped samples where the data were randomly sampled from a 
Gaussian distribution with the same empirical covariance matrix as the 
experimental data but with the mean set to the integer ratio category 
(that is, with zero bias).

Nine categories showed small but significant deviations from 
unbiased integer ratio categories after Bonferroni correction 
(P < 0.0012 for all cases; see the blue significance symbols in Fig. 
4b: ***P < 0.001; **P < 0.01). The biased categories consisted of the 
three cyclic permutations of each of 1:2:3, 2:1:3 and 2:2:3 (123/231/312, 
213/321/132 and 223/232/322). The bias of the ‘6/8’ categories 1:2:3 
and 2:1:3 is consistent with lengthening of short elements in rhythm 
performance studied in European musicians42. It is also evident in the 
experimental literature on rhythm perception on Western European 
and North American listeners. Fraisse121 showed that non-musicians 
have a small bias when judging three-interval rhythms, tending to 
judge the two shorter intervals as being closer to equal. Repp et al.122 
argue that this bias originates from categories near 1:2:3 and 2:1:3 
that are slightly shifted away from those integer-ratio rhythms, in 
a direction that lengthens the shortest interval (a phenomenon we 
also observed, cross-culturally). The results are also consistent with 
the observation that the shortest interval of a two-interval rhythm is 
heard as elongated, making the rhythm more similar to isochrony123. 
It may also be related to the phenomenon of non-isochronous beat 
subdivision in African and African-American music genres (for exam-
ple, jembe music from Mali and ‘swing’ jazz from the United States), 
in which the short interval in short-long rhythms is often markedly 
elongated relative to a 1:2 ratio124.

Multidimensional scaling analysis. To visualize the similarity rela-
tions between the rhythm priors for each participant group, we first 
estimated the priors as the kernel density estimate Pi from the fifth  
iteration of the experiment (aggregated for all participants in each 
group; see above; Fig. 5a). We then computed the Jensen–Shannon 
divergence between all pairs of groups Mij = JSD (Pi, Pj). We used 

MATLAB’s mdscale function with the default parameters to obtain a 
two-dimensional space in which the rhythm prior for each group was 
positioned so as to best match the measured distances. Note that we 
used the distances between the full distributions (that is, the kernel den-
sity estimates) for the multidimensional scaling analysis (as opposed 
to the Gaussian mixture models used in other analyses).

Category weight for the 3:3:2 rhythm. To compute the weight of 
the 3:3:2 rhythm for each group, we computed the Gaussian mixture 
model weights as explained above for the 22 rhythm categories and 
then averaged the weights over the three cyclic permutations of 3:3:2 
(3:3:2, 3:2:3 and 2:3:3; Fig. 5b). We obtained error bars via bootstrap-
ping, sampling 1,000 datasets with replacement for each group and 
computing the weights of the Gaussian mixture model for each of these 
datasets. The error bars plot one standard deviation of the resulting 
distribution above and below the mean (that is, the standard error of 
the mean). The order of the groups in the bar graph of Fig. 5b is drawn 
from the first dimension of the multidimensional scaling analysis, and 
it is obvious that this dimension is correlated with the 3:3:2 category 
weight (which increases nearly monotonically across the first multidi-
mensional scaling dimension).

Analysis of student and online groups. In the first analysis, we com-
puted the average distance ( Jensen–Shannon divergence) between 
the estimated priors of all pairs of student or online groups in differ-
ent countries and compared it to that of pairs of non-musician and 
local musician groups (from the same countries as the student/online 
groups; Fig. 6a,d). The pairs we considered were within the following 
sets of groups:

•	 Figure 6a: for students, US (Boston)-ST, Bolivia (La Paz)-ST, 
Uruguay-ST, UK-ST, Turkey-ST, Mali-ST, S. Korea-ST and Japan-ST; 
for non-online groups, US(NYC)-NM, US(NYC)-LM, Bolivia  
(La Paz)-NM, Bolivia (San Borja)-NM, Bolivia (Santa Cruz)-NM, 
Bolivia (Tsimane)-NM, Uruguay-LM, UK-LM, Turkey-LM, 
Mali-LM, S. Korea-LM and Japan-LM.

•	 Figure 6d: for online groups, US-OL, Brazil-OL and India-OL; for 
non-students, US (NYC)-NM, US (NYC)-LM, Brazil-LM, India-NM 
and India-LM.

To evaluate the statistical significance of the difference in  
distances, we created shuffled datasets where two sets of groups  
(one the same size as the student/online set and one the same size as the 
non-student/non-online set) were sampled without replacement from 
the union of the student/online and non-student/non-online sets. We 
then computed the difference between the average Jensen–Shannon 
divergences of these shuffled groups for each resampling and evaluated 
the probability of the actual difference under this null distribution.

In the second analysis, we computed the average distance ( Jensen–
Shannon divergence) between the US student group (US(Boston)-ST) 
and the priors of all other student/online groups (student: Bolivia(La 
Paz)-ST, Uruguay-ST, UK-ST, Turkey-ST, Mali-ST, S.Korea-ST and 
Japan-ST; online: US-OL, Brazil-OL and India-OL). We compared this 
average distance to a null distribution obtained by sampling sets 
of non-student/non-online groups of the same size (student: seven 
groups; online: three groups) and measuring the average distance of 
each set of groups and the US student group.

To control for the fact that student groups tended to be younger 
than other groups, we repeated the above two analyses restricted to 
participants younger than 40. The group differences in mean age were 
not eliminated by this restriction, but they were significantly reduced 
(with this restriction, all groups had mean ages between 21 and 33.7 
years and could all be considered ‘young’). The statistics reported in 
‘Students and online participants resemble US participants’ in ‘Results’ 
use pairwise bootstrapped Jensen–Shannon divergence (see ‘Signifi-
cant distance between two groups’).
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We also performed a control analysis testing for effects of age 
by comparing the differences in the kernel densities between young 
and old subsets of the online groups. Given that over a third—specifi-
cally, 46%, 34% and 39% in the US, Indian and Brazilian groups, respec-
tively— of participants in the online groups were older than 35, we 
divided all groups into younger and older subsets using the age of 35 as 
a threshold. We found that kernel density estimates for the US, Indian 
and Brazilian groups were not significantly different (see ‘Students 
and online participants resemble US participants’ in ‘Results’). These 
results suggest that age does not explain the increased similarity of 
student populations.

Word clouds of favourite music. In the demographic questionnaire, 
we asked participants to list their three favourite bands or musical art-
ists and to indicate the genre for each (Fig. 6b,c,e,f). The level of detail 
varied somewhat between individuals and groups (for example, some 
individuals specified sub-genres such as ‘indie-rock’, whereas others 
indicated ‘rock’). Due to site-specific limitations on the experiment ses-
sion duration, this question was asked of only 31 of the 39 groups. Text 
entries were verified by searching each entry in the Google Knowledge 
Graph Search API (https://developers.google.com/knowledge-graph). 
In case of items with incomplete matches, spelling errors were man-
ually corrected. We then analysed the results using single-word  
histograms. Some of these histograms are presented as word clouds in 
Fig. 6, with the font size proportional to the frequency of occurrence. 
In addition, the most common words for each group are presented in 
Supplementary Table 2. This analysis is qualitative but nonetheless 
provides concrete evidence for the differences in musical listening 
habits between student/online and non-student/non-online groups.

Analysis of specific modes. Figure 7 analyses the prominence of 
particular rhythm modes in different participant groups. For each 
group, we computed the Gaussian mixture model weights as explained 
above for the 22 rhythm categories and then averaged the weights 
over the three cyclic permutations of the rhythm in question. We then 
examined these weights for participant groups whose local musical 
tradition was known to feature the rhythm. We asked whether the 
weights were higher than in the remaining participant groups using a 
Wilcoxon rank-sum test.

The 2:2:3 and 3:3:2 rhythms had been previously associated with 
specific musical traditions. 2:2:3 has been documented in Balkan, Turk-
ish and Botswanan music49–51, which often employ metres with a signa-
ture of 7/8. Balkan and Turkish listeners have also been shown to better 
discriminate this pattern than US and Canadian participants without 
such familiarity53,125. The 3:3:2 rhythm is similarly ubiquitous across 
sub-Saharan Africa54,55 and the African diasporas56–59 in the Americas. 
We confirmed its presence in the musical culture of our Malian dancer 
participants (Mali-DA, recruited among farmers from Sagele village in 
Southern Mali) by recording and analysing a representative corpus of 
their musical repertoire. The pieces chosen were ones to which they 
frequently danced in the context of wedding celebrations and other 
local events. We found that 46% of the recorded excerpts prominently 
featured a 3:3:2 pattern, making it one of the most characteristic rhyth-
mic patterns in this repertoire.

The 7:2:3 rhythm evident in the priors measured from drummers in 
Mali (Fig. 7g–i) is popular in West Africa; a slightly denser, five-interval 
variant (2:2:3:2:3) constitutes a signature rhythm that is emblematic of 
the musical culture area54,55. Drumming in Mali is multi-part ensemble 
music composed of three basic parts: an improvising lead drum, a 
simple invariant accompaniment and a ‘timeline’ part, whose specific 
rhythm patterns identify each piece of repertoire126. The ‘Maraka’ is the 
most frequently performed piece in their repertoire127. One character-
istic timeline pattern for the Maraka consists of three accented events 
that are distributed according to a 7:2:3 pattern across a periodicity 
composed of 12 metric units (7 + 2 + 3). This pattern is often performed 

by the timeline player, who alternates during the piece between this 
pattern and other variants with similar accents. Additionally, we sub-
stantiated its presence in Malian music as described in ‘Results’. We 
used the same procedure to validate participant responses in Bulgaria 
(2:2:3 rhythm).

Violin plots. To generate violin plots (used in Figs. 7 and 8 and Extended 
Data Fig. 8), we used Bastian Bechtold’s Violin Plots for MATLAB pack-
age (https://github.com/bastibe/Violinplot-Matlab, https://doi.
org/10.5281/zenodo.4559847). The open circle plots the median, and 
the top and bottom of the grey bar plot the 75th and 25th percentiles. 
The violin plots are kernel density estimates of the data distribution. 
Whiskers (thin lines) are computed using Tukey’s method128 and reflect 
the range of non-outlier points.

Tapping precision and asynchrony in musicians and non-musicians. 
To compare objective precision in our task between musicians and 
students/non-musicians, we used Wilcoxon tests (one-sided), again 
Bonferroni-corrected (Fig. 8). For the musician groups, we included 
both those playing Western music and those playing local musical 
styles. The measure used to assess tapping precision was the standard 
deviation of the tapping asynchrony (the time difference between a 
stimulus click and the corresponding tapped response)3, computed 
over all valid tapped responses in the main experiment. We also com-
pared the mean of the tapping asynchrony, again computed over all 
valid tapped responses in the main experiment. The negative mean 
asynchrony reflects the tendency of taps to occur before the stimulus 
(in anticipation of the upcoming stimulus).

Cross sections of priors. To see the structure of the modes of the 
priors, we used an alternative visualization. Extended Data Fig. 1 dis-
plays 1D plots of estimated priors from four groups: three that show 
elongated modes (BO.TS, IN.OL and UY-ST) and, as a comparison, one 
group with more symmetric modes (UY-LM). We also show 2D and 3D 
plots of the priors for comparison. The 3D plots were generated with 
MATLAB’s surf function.

Cyclic permutations and an analysis of symmetry. Across the groups 
we tested, the response distributions were typically fairly symmetric 
across cyclic permutations (Fig. 3 and Extended Data Fig. 3). For exam-
ple, the modes at 1:1:2, 1:2:1 and 2:1:1 have about the same weight for a 
given participant group. To quantify this symmetry, we compared the 
percentage of responses in the final iterations that are in each of the 
three possible cyclic permutations, which can be identified by whether 
the longest interval is in the first, second or third position, defined rela-
tive to the beginning of the stimulus (Extended Data Fig. 3a).

As is evident in Extended Data Fig. 3b, the deviations from per-
fect symmetry were relatively modest (perfect symmetry would yield 
33.3% of tapped responses in each third of the space; actual propor-
tions ranged from 24.3% to 43.6%; the standard deviation of the dif-
ference from 33.3% was 3.2%). However, these deviations appeared 
to be non-random, with a tendency for more weight on permutations 
in which the third interval is the longest (red region). Previous litera-
ture43–45 in fact predicts that the most frequently occurring permuta-
tions would be those where the long interval occurs at the end, because 
if this configuration is played cyclically, the long interval provides a gap 
that helps the pattern group according to Gestalt principles43. This was 
the case in 31 of 39 groups (those for which the green area in Extended 
Data Fig. 3b extends beyond the horizontal line; this number is much 
greater than would be expected by chance, P < 0.001 via a binomial test; 
the mean percentage of long-interval-at-the-end patterns was 36%; 
Cohen’s d = 0.73; 95% CI, (34.7%, 36.5%)). We also found that in 33 of the 
39 groups (again much greater than expected by chance, P < 0.001 via 
a binomial test), the majority of the first taps within a block occur right 
after the long interval (the mean percentage across groups of tapping 
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after the long interval was 47%; 95% CI, (43.6%, 50.7%); Cohen’s d = 1.2). 
This suggests that most participants in most groups tend to perceive 
the onset after the long interval as the ‘beginning’ of the pattern and 
align their first response to it.

What can explain the overall tendency towards symmetry? In 
principle, the symmetry could reflect the fact that the beginning of a 
repeating cycle is ambiguous if participants ignore or forget the initial 
interval. In an earlier paper26, we tested whether this ambiguity under-
lies the symmetry evident in the response distributions. Specifically, 
we performed an experiment in which the first click of the repeating 
stimulus was given a 7 dB level increment to render the permutations 
distinct. The results (Supplementary Fig. 5 in that paper) indicated that 
the symmetry of the response distribution was largely maintained, 
suggesting that perceptual ambiguity is not the only reason for sym-
metry in the prior.

Another possibility is that the perception of simple periodic 
rhythms is influenced by grouping multi-stability, whereby the same 
stimulus rhythm can be perceived in different sequential arrangements 
given that starting points are subjective and may be interchangeable to 
some degree129,130. For instance, a listener might hear the first element 
of a stimulus as an ‘upbeat’ (anacrusis) preparing the second element 
to represent the perceptual beginning67,95. Under this interpretation, 
cyclic permutations of an interval pattern have different beginnings 
but would otherwise be perceptually similar.

Category weights. Categorization weights were computed for each 
group for the seven category types (Extended Data Fig. 4). As part of 
the OSF repository, we have provided the raw data for these category 
estimates.

Multidimensional scaling and category weights. We computed 
the correlation between projections of the priors onto the multi-
dimensional scaling dimensions and each of the category weights for 
each group, averaged across cyclic permutations (Extended Data Fig. 
5). The multidimensional scaling projections and Gaussian mixture 
model weights were computed as described above. The correlation 
was computed across the 39 groups. The CIs were obtained using the 
RIN method131.

Principal component analysis. In Fig. 3, we used multidimensional 
scaling to perform dimensionality reduction, computing the Jensen–
Shannon divergences between the kernel density estimates of all pairs 
of groups. As an alternative, we performed an analogous analysis using 
principal component analysis (Extended Data Fig. 6). We treated the 
triangle images generated from the kernel density estimates as large 
feature vectors, where each pixel is a feature (using kernels with a 
resolution of 12 ms—that is, 0.006× the pattern duration of 2,000 ms). 
We computed the principal components of these vectors across 39 
groups. The projections of the 39 groups’ priors onto the first two 
principal components showed a structure very similar to what we 
obtained with multidimensional scaling (Extended Data Fig. 6a). For 
example, it is apparent that student groups were again centred in 
the middle. As with multidimensional scaling, the projection of each 
group’s estimated prior onto the first principal component was posi-
tively correlated with the 2:3:3 category (r37 = 0.94; P < 0.0001; 95% CI, 
(0.89, 0.97)) and negatively correlated with the simpler categories (1:1:1: 
r37 = −0.44; P = 0.04; 95% CI, (−0.66, −0.14); 1:1:2: r37 = −0.59; P < 0.001; 
95% CI, (−0.76, −0.33), 1:2:2: r37 = −0.70; P < 0.001; 95% CI, (−0.83, −0.49); 
Extended Data Fig. 6c). The projection onto the second principal com-
ponent was correlated with 6/8 rhythms (1:3:2: r37 = 0.66; P < 0.001; 95% 
CI, (0.44, 0.81); 1:2:3: r37 = 0.74; P < 0.001; 95% CI, (0.56, 0.86)) as well 
as the 1:1:2 rhythm (r37 = −0.63; P < 0.001; 95% CI, (−0.79, −0.4)). The 
CIs were obtained using the RIN method131. The components can also 
be visualized (Extended Data Fig. 6b), revealing that their minima and 
maxima overlap with small-integer-ratio categories. The consistency 

between the different dimensionality reduction methods indicates 
the robustness of the results. The raw data for the category fitting and 
category weight for each group are also provided in the OSF repository 
associated with this publication.

Category predictions from rhythm priors. In this analysis (Extended 
Data Fig. 7), we used human psychophysical data previously obtained 
and published by Desain and Honing9 (the data were available on a 
website: https://www.mcg.uva.nl/index.html). In their experiment, 29 
Western musicians heard one of 66 rhythms (an equally spaced array of 
points on the rhythm triangle) and used notation software to specify 
the rhythm that they heard. Because this experiment used Western 
musical notation, it was possible only in Western musicians. The 29 
participants were highly trained professional musicians and advanced 
conservatory students from Dutch conservatories and from the Kyoto 
City University of the Arts in Japan. They had received between 7 and 17 
years of musical training and were paid for their participation.

When the data were pooled across participants, there were 133 dif-
ferent responses in total. Each response can be expressed in ratio form. 
For instance, the most common response was 1:1:1, and the second 
most common response was 1:2:1. The results of the experiment were 
summarized as a set of regions associated with each musically notated 
rhythm as the most frequent category choice (Extended Data Fig. 7a, 
which was our reproduction of Fig. 11 from the Desain and Honing paper 
using the data we downloaded). To obtain this figure, we followed the 
two steps below:

 (1) For each of the 133 responses, we created a kernel density plot 
representing the interpolated probability of this response at each 
point on the rhythm triangle. We used a kernel width of 0.03.

 (2) We found the response with the largest interpolated weight at 
each point on the triangle.

The resulting figure contains 17 distinct rhythm categories spread 
over the rhythm triangle.

We generated analogous regions for the model’s categorization 
judgements using each group’s prior (Extended Data Fig. 7b). We used 
the Gaussian mixture model that we previously fitted to the tapping 
data (see ‘Gaussian mixture model fits’). This model is defined by three 
parameters: category centres {μi}i=1…22, covariance matrices {Ci}i=1…22 and 
weights {wi}i=1…22, which approximate the priors from the tapping data:

Q(x) =
22
∑
i=1

wi
2π√|Ck|

exp (− 12 (x − μi)
TC−1k (x − μi))

The model selected the category whose corresponding mixture 
component had the highest value at each point in the triangle. But on 
the basis of empirical findings that human categorical judgements are 
best predicted by a nonlinear transform of the underlying probability 
distribution132,133, we used mixture weights that depended exponen-
tially on the prior weights:

Ui(x) =
wγi

2π√|Ck|
exp (− 12 (x − μi)

TC−1k (x − μi))

where γ > 1 is a parameter that prioritizes high-probability catego-
ries. We selected the value of γ as that which maximized the match 
between the human category judgements and those predicted by the  
prior estimated from the New York Western musician group (US.
NY-WM), yielding γ = 7. We then omitted the US.NY-WM group from 
the subsequent analysis to avoid non-independence. Additionally, 
we found empirically that the category 1:1:1 was overrepresented in 
the human categorization judgements relative to those of the model. 
We note that this category is unique in that all three cyclic permuta-
tions correspond to the same point on the rhythm triangle, which 
might cause participants to choose it more than other categories. 
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To accommodate this effect, we increased the weight wi on the 1:1:1 
category by a factor of three. However, the cross-cultural differences 
shown in Extended Data Fig. 7 were not dependent on this choice (we 
observed significant differences in the match of Western groups com-
pared with the two non-Western groups in both cases—the matches 
were just overall worse without the overweighting).

We quantitatively assessed the match between the categories 
predicted by a group’s prior and those measured in Western musicians 
as the average distance between the two predicted categories. Specifi-
cally, for every sampled point on the rhythm triangle, we compared 
the model prediction with the top category selected by participants in 
the Desain and Honing experiment, and we measured the L2 distance 
in the three-dimensional space of the three intervals in the rhythm, 
expressed as ratios (proportions of the total pattern duration). For 
instance, if the participants selected the category [0.5, 0.25, 0.25] and 
the model predicted [0.5, 0.2, 0.3], then the distance was ||(0, −0.05, 
0.05)||. We then averaged this distance for each rhythm in the experi-
ment (that is, every sampled point on the rhythm triangle) to yield an 
overall measure of the match between the model’s predictions and 
Western musician category judgements (plotted in Extended Data  
Fig. 7c). To compare the accuracy of this match across sets of groups, we 
used a Wilcoxon rank-sum test. We used three sets of groups, defined 
as follows: Western participants (US.BO-ST, US.BO-WM, US.NY-NM, 
US.NY-WM, BO.LP-ST, UY-ST, UK-ST, TK-ST, MA-ST, KR-ST, KR-WM, 
JP-ST, JP-WM and US-OL), non-Western non-musicians (BO.LP-NM, 
BO.SB-NM, BO.SC-NM, BO.TS-NM, NA-NM, IN-NM, CN-NM, BR-OL and 
IN-OL) and non-Western musician and dancers (BR-LM, UY-LM, SE-LM, 
BG-LM, BG-DA, TK-LM, MA-LM, MA-DA, BW.SA-LM, BW.EA-LM, NA-LM, 
IN-LM, KR-LM and JP-LM). We excluded jazz musicians in the United 
States and the United Kingdom as there was not a natural hypothesis 
regarding how their priors would predict the categories of Western 
classical musicians.

Validation of musicianship. To compare self-reported years of musi-
cal experience between musician and non-musician groups (Extended 
Data Fig. 8), we used Wilcoxon tests (one-sided), applying Bonferroni 
correction for multiple comparisons.

Influence of language and musicianship. In this analysis, we evalu-
ated whether two groups that spoke the same or different languages  
(or that differed in musicianship) had significantly different kernel  
density estimates (Extended Data Fig. 9). We used the procedure 
described in ‘Significant distance between two groups’ (bootstrapped 
Jensen–Shannon divergence).

Transmission error. Transmission error is the magnitude of the  
difference between the stimulus and response seeds in each iteration. 
It is used in the serial reproduction literature to monitor convergence 
dynamics134,135. As an error measure, we computed the average  

across trials of e = √(s1 − r1)
2 + (s2 − r2)

2 + (s3 − r3)
2, where (s1, s2, s3) and 

(r1, r2, r3) are the stimulus intervals and average response intervals of 
each iteration, respectively (that is, the response is averaged across 
the ten repetitions within each iteration). In our previous work, we 
showed that convergence occurred after about five iterations for both 
Tsimane’ and US participants. Here we show similar dynamics for all 
groups (Supplementary Fig. 2).

High-resolution prior visualizations. In Supplementary Figs. 3–9, we 
provide higher-resolution images for the measured priors presented 
in Fig. 3b and Extended Data Fig. 2.

Fast-tempo experiment
Procedure. When experimental conditions allowed for longer sessions, 
we ran an additional experiment to explore whether the results would 

be similar at other tempos. The experiment was always run last, and was 
identical to the main experiment except that the pattern duration was 
1,000 ms. The other experimental constants (for example, the fastest 
allowed interval) were scaled accordingly (the experiment was identical 
to the fast-tempo experiment in Jacoby and McDermott26, experiment 
S2, shown in Supplementary Fig. 3 of that paper).

Participants. A total of 293 participants from 13 groups (6 countries) 
participated in the fast-tempo experiment. These participants per-
formed 7,587 trials (seeds) with 911,564 taps. The demographic infor-
mation for these participants is summarized in Supplementary Table 1.

Analysis of results. The kernel density estimates of the 13 groups are 
provided in Extended Data Fig. 2. We provide the raw data of the experi-
ment in the OSF repository associated with this publication.

Overall, the results at the faster tempo were similar to those at the 
slower tempo. All 13 groups who performed the fast-tempo experi-
ment produced priors that were closer to integer ratios than would 
be obtained by chance (P < 0.001 in all cases), even with Bonferroni 
correction.

Supplementary Fig. 1 shows an analysis of the weights of the modes 
in the 13 groups. The weights of the 22 categories were correlated across 
the two tempos (r = 0.35–0.72 for each of the 13 groups; P = 0.0001–
0.05; mean r = 0.57; s.d. = 0.1). As expected from previous literature, 
there were also some subtle differences between the category weights 
for the two tempos (Supplementary Fig. 1). Three of the four largest 
effect sizes were found in dancers (Bulgarian dancers: effect size of 
5.5—more weight on category 2:2:3 in the fast tempo; Malian dancers: 
effect size of 5.6—more weight on 1:2:3 in the fast tempo; Malian danc-
ers: effect size of 4.9—decreased weight on 3:3:2 in the fast tempo). 
These tempo-dependent effects in dancers are consistent with the idea 
that dancers have an increased sensitivity to tempo and to embodied 
aspects of music136,137. For instance, Bulgarian dancers showed much 
more weight on 2:2:3 at the faster tempo. Bulgarian folklorists have 
long recognized tempo as an important factor in metrical patterns that 
feature a 2:2:3 ratio, such that the metric durations are considered fun-
damentally unequal only when performed at fast tempos138,139. This idea 
was also reflected in one of the interviews we conducted with the musi-
cians after the experiment. When we asked one participant whether she 
recognized the 2:2:3 pattern with a period of 2,000 ms, she identified 
it as the rhythm of a Bulgarian dance type called rŭchenitsa, but slower 
than usual. The effect of tempo in Malian dancers’ 1:2:3 category is 
similarly consistent with the findings of Polak et al.27, who showed that 
reproductions of short–long patterns in two-interval rhythms (the 
first part of the 1:2:3 pattern) strongly vary with tempo. This pattern is 
characteristic of the three most common Malian jembe musical pieces: 
Maraka, Suku and Manjanin, which are typically performed at a very 
fast tempo (100–200 beats per minute)126.

As the tempo increases, one might expect to see effects related to 
whether the temporal intervals in a rhythm are readily producible by 
humans93. We did not see clear evidence for this at the 1,000 ms tempo 
(specifically, the rhythms with the shortest intervals—123 and 132—did 
not have significantly lower category weights for 1,000 ms than for 
2,000 ms, as evaluated with a binomial test), though there were some 
trends in this direction. It seems likely that for sufficiently fast tempos, 
and with enough data, such effects would be detectable.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The raw data for all groups, the instructions for running the paradigm 
and the data plotted in each figure are provided in the OSF repository 
associated with the paper: https://osf.io/6zd4v/ (ref. 140).
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Code availability
The code for running the experiment and for performing all analyses, 
including those to generate all results graphs, is provided in the OSF 
repository associated with the paper: https://osf.io/6zd4v/ (ref. 140).
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Extended Data Fig. 1 | Alternative prior visualizations. Although some groups 
exhibited modes that were elongated more in some directions than others, all 
had clear peaks. The figure displays 2D and 3D plots of estimated priors from 
three groups that showed elongated modes (BO.TS, IN.OL, UY-ST), and as a 
comparison, one group with less elongated modes (UY-LM). For each group we 
draw two cross sections of an example mode from each group (shown in green 
and blue). a, Tsimane’ Non-Musicians. b, Uruguay-Students. c, India-Online.  
d, Brazil-Local Musicians. The cross sections show that the modes can be wider in 
one direction than the other, and also that the peaks fall on small-integer ratios. 

In the case of the Tsimane’ group, the mode elongation may be related to musical 
phrase elongation described in an early ethnographic study of Tsimane’ music. 
According to Riester (1975), free ‘fermata’ breaks usually occur near the end of 
phrases in Tsimane’ music. Example 104 in Riester’s 1975 treatise shows a break 
occurring after a long note preceded by a 1:1:2 pattern. This break produces a 
pattern in the direction of 1:1:3 (elongation of the longest tone), consistent with 
the elongation of 1:1:2 mode in this direction. This example provides additional 
evidence that the details of the priors revealed by our experiments relate to local 
music traditions (see also Fig. 7).
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Extended Data Fig. 2 | Results of the fast tempo experiment. a, Estimated 
priors for the 13 groups that performed an additional version of the experiment 
with a faster stimulus tempo (overall pattern duration of 1000 ms compared 
with 2000 ms in the main experiment). b, Average distance from nearest integer 
ratio rhythm, for each participant group. This measure is small for a prior 
with all its mass at integer ratio rhythms. Shaded region at top plots mean and 

95% confidence intervals of a null distribution of the average distance from 
randomly selected points. Asterisks mark statistical significance after Bonferroni 
correction for multiple comparisons (***: p<0.001). All groups have more 
probability mass concentrated closer to integer ratio rhythms than would be 
expected by chance.
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Extended Data Fig. 3 | Analysis of symmetry. a, A partition of the triangular 
rhythm space into rhythms where the first, second, or third interval is the longest 
(green, purple, and red, respectively). The prior shown here for illustration 

purposes is that from Indian musicians (from the fast tempo experiment).  
b, Relative frequency of tapped responses in the final iteration that fell into  
each of the sections.
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Extended Data Fig. 4 | Category weights for all 39 groups. Category weights were obtained from fitting a constrained Gaussian mixture model to the data; error bars 
reflect standard deviation of the weight estimate derived from 1000 bootstrap samples (see methods).
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Extended Data Fig. 5 | Correlations between multidimensional scaling 
dimensions and rhythm category weights. a, The correlation between the 
weights given to each of a subset of small-integer-ratio rhythms in a Gaussian 
mixture model fitted to the prior, and the position along the first (horizontal) 
multidimensional scaling dimension (from the analysis of Fig. 5a). Dimension 1 is 

highly correlated with the strength of category 3:3:2. Asterisks denote statistical 
significance of the correlations, after Bonferroni correction for multiple 
comparisons (***: p < 0.001; **: p < 0.01; *: p < 0.05). Error bars plot one standard 
deviation. b, Same as b. but for the second (vertical) multidimensional scaling 
dimension, which is significantly correlated with categories 1:2:3 and 1:3:2.
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Extended Data Fig. 6 | Principal component analysis alternative to the 
Multidimensional Scaling analysis of Fig. 4. a, Projection of each group’s prior 
onto the first two principal components of the measured priors. b, The first two 
principal components capture variation in the strength of particular integer ratio 

categories. c, Correlation of the PCA projections and GMM category weights 
(analogous to Extended Data Fig. 5 but for PCA). Asterisks mark statistical 
significance after Bonferroni correction for multiple comparisons (***: p < 0.001; 
**: p < 0.01; *: p < 0.05). Error bars plot one standard deviation.
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Extended Data Fig. 7 | Rhythm categorization. We simulated categorization 
judgments with a Bayesian model using the estimated priors from each group, 
and compared the results to categorization judgments of rhythms at different 
points within the rhythm triangle by Western musicians, previously obtained by 
Desain and Honing9. In the original experiment, the musician participants heard 
a rhythm and chose one of 17 category choices, each defined by musical notation. 
a, The results of the experiment are summarized as a set of regions that are 
associated with each musically notated rhythm (as the most frequent category 
choice). Human results are replotted from the data of Desain and Honing.  
b, Analogous regions for the model categorization judgments using each group’s 
prior. c, Average distance between the categories predicted by a group’s prior 
and those measured in Western musicians. For every sampled point on the 
rhythm triangle, we compared the model prediction with the category most 
frequently selected by human participants in the Desain and Honing experiment, 
and measured the distance measured in the three-dimensional space of the three 

intervals in the rhythm, expressed as ratios (proportions of the total pattern 
duration). We then averaged this distance for each rhythm in the experiment 
(that is, every sampled point on the rhythm triangle) to yield an overall measure 
of the match between the model’s predictions and Western musician category 
judgments. We pooled participants into three sets of groups, defined as follows: 
Western participants (US.BO-ST, US.BO-WM, US.NY-NM, US.NY-WM, BO.LP-
ST,UY-ST,UK-ST, TK-ST, MA-ST, KR-ST, KR-WM, JP-ST, JP-WM, US-OL), non-Western 
non-musicians (BO.LP-NM,BO.SB-NM,BO.SC-NM,BO.TS-NM, NA-NM, IN-NM, 
CN-NM, BR-OL, IN-OL) and non-Western musician and dancers (BR-LM,UY-LM, 
SE-LM, BG-LM, BG-DA, TK-LM, MA-LM, MA-DA, BW.SA-LM, BW.EA-LM, NA-LM, 
IN-LM, KR-LM, JP-LM). We excluded jazz musicians in the US and UK as there was 
not a natural hypothesis regarding how their priors would predict the categories 
of Western classical musicians. Asterisks denote significance of a one-sided 
Wilcoxon rank-sum test (**: p<0.01; *: p<0.05).
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Extended Data Fig. 8 | Musical experience in musicians and non-musicians. 
a, Average self-reported years of musical experience for each participant group. 
Both traditional and Western musicians self-reported significantly more years 
of experience than other participant groups. In the violin plots, the open circle 
plots the median, and the top and bottom of the gray bar plot the 75th and 25th 

percentiles. We plotted significant comparisons with a threshold of p<0.001 
(one-sided Wilcoxon test, corrected for multiple comparisons with Bonferroni 
correction). b, Scatter plot of self-reported years of musical experience for 
musician and non-musician groups from the same country. Each point represents 
a pair of non-musicians (x-axis) and musicians (y-axis) groups.
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Extended Data Fig. 9 | Comparison of rhythm priors in groups speaking 
different languages or with differing degrees of musical expertise.  
a–c, Groups speaking the same language that exhibit different priors. Graphs 
plot weights of different rhythm categories in a Gaussian mixture model fit to the 
data of each group (see section on Gaussian mixture model fits in the Methods). 
Error bars plot standard deviation of the estimates derived from 1000 bootstrap 

samples (see methods). d–f, Groups speaking different languages that exhibit 
similar priors. The comparison of these groups also provides an example where 
priors can be similar between musicians and non-musicians if the music they 
consume is plausibly similar (compare the student non-musicians to the  
Western musicians). Same plotting conventions as in a-c.

http://www.nature.com/nathumbehav
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Extended Data Table 1 | Demographic information

Participant Group Types: ST = student; NM = non-musician; WM = Musicians who play Western classical music; LM = musicians who play a local musical style that is not Western classical 
music; DA = dancer; OL = Online participants. Additional demographic information is provided in Supplementary Table 2.

http://www.nature.com/nathumbehav
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Matlab2018a; Code and instructions for running the paradigm is provided in the OSF repository associated with the project (https://
osf.io/6zd4v/)

Data analysis Matlab2022a; Code for reproducing all analyses and results graphs is also provided in the OSF repository associated with the project (https://
osf.io/6zd4v/)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Raw data for all groups is provided in the OSF repository associated with the project (https://osf.io/6zd4v/).
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We measured a signature of mental representations of rhythm in groups around the world. The study is based on quantitative 
methods and data analysis. 

Research sample We tested 39 participant groups spanning five continents and 15 countries . Overall, we recruited 923 participants (792 were run 
face to face and 131 online). The rationale for the chosen study sample was based on testing groups that provide a strong test of 
commonalities across cultures. We included groups from both industrialized and non-industrialized societies, as well as groups of 
local musicians who do not play Western music. We also tested groups of musicians and dancers where possible, as these 
populations would be expected to have substantial exposure to particular musical styles. In addition, we tested university students 
and online participants in a number of countries in order to assess potential effects of exposure to Western music and culture, which 
we expected would tend to be correlated with university attendance and internet access. The groups tested were also determined in 
part by practical constraints (testing time and access to particular populations). Additional information about the groups  is provided 
in the section "Criteria for group selection" in the Methods. See Table 1 for detailed demography of all 39 groups. Additional 
demographic information is provided in Table E1.

Sampling strategy Participants were recruited based on criteria that depended on the group type (Students, Musicians, Dancers, Non-musicians and 
Online participants). The criteria for each group type are described in section "Definition of group types" in the Methods. We used 
convenience sampling subject to the constraints of the group definition. Sample size was determined by power analysis based on 
test-retest reliability test of the kernel density estimate, using data collected for a previous publication (Jacoby and McDermott 
2017).

Data collection In-person experiments typically involved the participant, the experimenter and a translator (if the experimenter was not a native 
speaker of a language spoken fluently by the participant). The experimenter could hear the stimulus and the participant's responses; 
we found this facilitated high quality data collection as otherwise it was difficult to assess whether the participant was following 
instructions. Data were collected by a large set of experimenters. Some of the experimenters were not fully blind to the main 
hypotheses of the study, but many were.  
In the online sessions, there was no experimenter present (the participant completed the experiment using their browser).

Timing Data was collected between 2015-2021: Botswana (9/2016-10/2016), South Korea (1/2017-9/2017), Bolivia (6/2015-8/2019), Brazil 
(9/2017-10/2017), Mali (12/2017-1/2018), Bulgaria (3/2018-7/2018), China (5/2018), Uruguay (4/2018-5/2018), Japan (6/2018), UK 
(5/2018-8/2018), Sweden (10/2018), Turkey (4/2018-1/2019), India (9/2018-5/2019), Namibia (4/2019), Boston (5/2015-12/2015) 
and in NYC (6/2017-9/2019). 

Data exclusions We pre-determined (in a previous publication - Jacoby and McDermott, 2017) accuracy criteria for the participant's tapped response 
to be counted as a valid tap, iteration or trial. We defined a valid tap as occurring within a +/-150ms window of the stimulus after 
correcting for the mean asynchrony of the iteration. We defined a valid iteration as one which had a three-tap response for 7 or 
more of the 10 repetitions and whose average response (r_1,r_2,r_3) was not situated far beyond the region we defined for human-
producible rhythms (i.e., did not contain an interval shorter than 285 ms of the overall duration of 2000 ms). Trials with 3 or more 
invalid iterations were excluded from the analysis. In addition, for the analysis we included only points inside the inner triangular 
region with vertices (f,f),(1-2f,f),(1/2,√3/2-f), where f=300/2000. In total this resulted in 99,189 out of 2,418,284 tapped responses 
being excluded from the main experiment (4.1 %). 
 
For online experiments, before starting the experiment, participants completed a short recording test to detect hardware and 
software that did not meet the technical requirements of the experiment, such as malfunctioning speakers or microphones. The 
recording test contained three trials. If the first trial failed (for example, this could occur if the participant forgot to unplug their 
headphones) we reminded participants that they needed to unplug any headphones. If, despite this reminder, the test recording 
failed in one of the two subsequent trials, the participant was excluded from the experiment (see Methods for further details).  Some 
participants also abandoned the task during the recording test (for example because their internet connection stopped working). In 
total 747 out of 1303 participants were excluded from the remainder of the experiment for one of these two reasons.  
 
Next, participants performed a practice phase to acquaint themselves with the main tapping task and to further test technical 
compatibility of their browser and computer. Following the practice phase, we provided feedback to participants based on their 
recording quality and tapping performance. Prior to the main experiment, we asked participants to adjust their tapping based on our 
feedback. During the analysis of the experiment, we used two criteria to exclude trials. First, we excluded all trials for which the 
recording of the stimuli (recorded in the online experiment along with the responses) was determined to be inaccurate (see Methods 
for details). Second, we excluded all trials where the percentage of detected taps (i.e., the number of detected tapping onsets out of 
the total number of stimulus onsets) was less than 50% or more than 200%. Note that none of these criteria excluded trials based on 
actual accuracy in replicating the target rhythm, but only based on whether the signal could be correctly recorded and processed, 
and whether participants produced a minimally and maximally acceptable number of tapping responses. An additional 358 
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participants were excluded on this basis. Finally, we excluded participants who abandoned the experiment prior to its completion or 
who did not complete the full demographic questionnaire that we administered at the end of the experiment (67 additional 
participants were excluded on this basis). In total 131 participants completed the full experiment and were analyzed. 
 
More details of the online experiment are reported in the "Online measurement of tapped responses" section of the methods. 
Validation of the online method (comparing the performance of online experiments and in-lab experiments), including justification of 
the exclusion criteria, is provided in the cited paper Anglada-Tort et al. (2021).

Non-participation With in-person experiments, very few participants (typically 1-2 per group) had their experimental session terminated based on an 
inability to tap, presumably resulting from some motor dysfunction or inability to follow instructions. 

Randomization N/A. Participants were not allocated into groups. Participants were analyzed in groups determined by their location and musical 
experience (described in the section "Criteria for group selection" in the Methods). All participants completed the same experiment.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics See above.

Recruitment Recruitment strategies varied depending on the location; see Methods for details in each case. We typically tried to test 
every potential participant available at a testing site. However, because participation was voluntary, participants who were 
less confident in their tapping skills may have been less likely to participate.

Ethics oversight Informed consent was obtained using the following approved protocols:  Ethics Council of the Max Planck Society (2017_12, 
2020_05, 2020_11), Columbia University IRB-AAAR3726, University of Western Ontario Health Science Research Ethics Board 
108477, Korea Advanced Institute of Science and Technology (KAIST IRB -KH2017-15), Chinese University of Hong Kong 
SBRE-19-695, BCPHS-12301 (Brandeis), Durham University Music Department Ethics Committee (February 2018), Boğaziçi 
University Ethical Board for Human Research SBB-EAK 2017/1, Committee on the Use of Humans as Experimental Subjects at 
MIT (COUHES) Protocol Number 1209005242R004. Consent to publish images was obtained from participants or music 
ensembles.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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