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Musicis present in every known society but varies from place to place. What,
ifanything, is universal to music cognition? We measured a signature of
mental representations of rhythmin 39 participant groups in15 countries,
spanning urban societies and Indigenous populations. Listeners reproduced
random ‘seed’ rhythms; their reproductions were fed back as the stimulus
(asinthe game of ‘telephone’), such that their biases (the prior) could be
estimated from the distribution of reproductions. Every tested group
showed a sparse prior with peaks at integer-ratio rhythms. However, the
importance of different integer ratios varied across groups, often reflecting
local musical practices. Our results suggest acommon feature of music
cognition: discrete rhythm ‘categories’ at small-integer ratios. These
discrete representations plausibly stabilize musical systems in the face of
cultural transmission but interact with culture-specific traditions to yield
the diversity thatis evident when mental representations are probed across
many cultures.

Music, like language, is conceived by Western scholars to consist of combi-
nations of discrete elements'. Musical notes are groupedinto phrases and
describedin terms of discreteintervalsin frequency and time. In Western
music, these intervals are non-arbitrary, often defined by integer ratios
between frequencies or durations. Although musicis notated interms of
these intervals, actual musical performances can deviate considerably

fromnotatedintervalsin frequencyand time?°. Discrete symbolic mental
representations of music are thought tobe aided by categorical percep-
tion”"—the perceptual mapping of continuous spaces of signals onto
discrete elements™. Yet most studies of music perception have been
conducted on listeners in Western Europe or North America, leaving
the cross-cultural generality of such discrete representations unclear.
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Attempts to characterize music from around the world have sup-
ported theideathat thereare universal properties of music, including
areliance on discrete elements defined by simple-integer ratios> ™.
However, such analyses of musical corpora have largely relied on
Western-trained researchers to annotate what they hear whenlistening
torecordings fromother cultures, with the unavoidable possibility that
researchers’ perceptual biases influence the results. Experiments to
assess mental representations across cultures could more definitively
address commonalities and variation in music cognition but have thus
far been limited to small numbers of societies' ™ or to participants on
theinternet**}, who plausibly have extensive exposure to adistribution
of music similar to that consumed by typical participants in Western
Europe and North America. Inaddition, experiments in non-musicians
in the United States have in some cases failed to find evidence
for discrete musical features such as pitch intervals and chords***.
The universality of psychological mechanisms supporting discrete
representations of music has thus remained unclear, as hasthe extent to
whichsuchrepresentations are biologically constrained to exhibit char-
acteristics found in Western European and North American listeners.

Here we present a large-scale study of cross-cultural variation
in music cognition, measuring signatures of discrete mental repre-
sentations of rhythm in a large number of diverse participant groups
around the world. We used a paradigm developed in an earlier study®
to characterize Bayesian priors on simple periodic rhythms, whichin
US participants exhibit discrete peaks (modes) at rhythms composed
of time intervals related by ratios of small integers (‘simple” integer
ratiossuchas1:2or 2:3as opposed to4:7 or 7:12)*, These modes bias the
internal representation of presented rhythms by shifting them towards
the rhythm represented by a mode, causing rhythms to be perceived
categorically. We sought to assess the prevalence of this phenomenon
in Western and non-Western listeners, as well as the relation of rhythm
categories to culture-specific musical traditions. Throughout this
paper, we at times use the term ‘Western’ as a summary term to refer
to people from Western Europe or North America and ‘non-Western’to
refer to people from other geographical regions. We note that societies
may differ on other dimensions as well (in particular, the Western socie-
tieswe discuss arerelatively educated, industrialized, richand demo-
cratic’’) and that there is a large degree of variability across Western
societies and particularly within the residual category of non-Western
societies. Our choice to contrast Western and non-Western listeners
reflectsthelegacy of scholarship in this domain, which has often taken
Western music as areference point and has predominantly documented
perceptionin Western listeners. Our use of this dichotomy should not
be taken as an endorsement.

In the experiment, individuals are initially presented with a
random ‘seed’ rhythm: a repeating cycle of three clicks, separated by
three successive time intervals, which we constrained to sum to two
seconds. Participants reproduce the pattern by tapping along to it
(Fig.1a). Empirically, the reproduction is biased away from the actual
stimulus rhythm, as might be expected if the internal representation
of the rhythm were influenced by a prior via Bayesian inference. The
reproduction is then substituted as the stimulus, and the process is
iterated?***, If the stimulus representation is determined by Bayesian
inference with afixed prior, the reproductionshould be further biased
ateachiteration by the prior, such thatit is eventually indistinguishable
fromasample fromthe prior. The prior can then be estimated by run-
ning the procedure multiple times with different random seed rhythms.
Here we used akernel density estimate from the lastiteration of alarge
set of random seeds to approximate the prior (Methods).

The results of the experiment are plotted in a triangular ‘rhythm
space’ of three-interval rhythms (Fig. 1b). Each of the three axes of the
rhythm space represents one of the three intervals. Because the total
duration of the three-element rhythm is constrained to 2,000 ms,
two of the intervals are sufficient to uniquely specify the rhythm. The
brief and simple rhythms defined by this space are elements that can

be composed (in accordance with other musical constraints) to form
longer and more complex rhythms®**°, Small-integer-ratio rhythms
are particular points in this space (Fig. 1b; the red crosses demarcate
small-integer-ratio rhythms whose duration ratios are defined by inte-
gerslessthan4), withisochrony (1:1:1) lying in the middle.
We previously found that iterated rhythm reproductions of
US participants converged to stationary distributions, consistent
with Bayesian inference under a prior. Moreover, the distributions
for both musician and non-musician participants contained modes
at small-integer-ratio rhythms®. Figure 1b shows example trajecto-
ries from an experiment in one group, which can be seen to gravitate
towards small-integer ratios. The distribution of the reproductions can
beestimated and visualized as kernel density estimates in the rhythm
space (cross sections of the densities show that the densities have
peaks near small-integer ratios; Fig. 1c; see also Extended Data Fig. 1).
Although the experiment results should in principle beinfluenced
by motor noise, we found in practice that such noise is small enough
to not substantially influence the results. In particular, the distribu-
tions for US musicians and non-musicians are similar despite much
higher tapping precision for musicians®. Several additional strands of
evidence supporttheideathat the distribution measured by the experi-
ment reflects a perceptual prior” despite being dependent on motor
responses (‘Discussion’). We also note that the goals of the present
paper do not hinge on whether the mental representation measured by
the experimentis purely perceptualin origin. The experiment measures
the biases in how a heard rhythm s translated into a reproduction, as
would shape musical practice and its cultural transmission irrespec-
tive of whether these biases reside entirely in the realm of perception.
We refer to the result of the experiment as a ‘prior’, cognizant that it
couldin principle be partly distinct from a classical perceptual prior.
Theiterated reproduction paradigm is well suited to cross-cultural
experiments. The task is intuitive for participants, with minimal reli-
anceonverbalinstructions, andis easy toruninthefield, allowing usto
run the same experiment across many different groups speaking
different languages and with varying levels of education (Fig. 2). The
paradigm also has the attractive feature of being independent of any
specific hypothesis about the structure of rhythm representation. In
particular, the experimentis not limited to testing whether phenomena
prominentin Western listeners (discrete modes at small-integer ratios)
are present in other cultures. A group of people could in principle
exhibit a uniform prior (without discrete modes), or one with a com-
pletely different modal structure from that observed in Westerners.
We previously observed a prior with small-integer-ratio modes
in one Indigenous Amazonian society”®. However, the integer ratios at
which the modes occurred were different than in US participants. To
test whether discrete modes at small-integer ratios are present across
groups and to assess the nature and extent of cross-cultural variation,
weranthe experimentinalarge number of participant groups around
the world.

Results

We tested 39 participant groups, spanning five continents and 15
countries (Fig. 3a; see Extended Data Table 1 for a summary of each
group’sdemographics). The groups were chosen primarily to provide
astrong test of (1) potential universality by comparing groups with
diverse musical experiences and (2) the role of musical experiencein
shaping mental representations. We thus included groups ranging
fromindustrialized to small-scale societies, as well as groups of musi-
cians and dancers from some non-Western societies. We also selected
groups whose musical traditions were known to have distinct rhythmic
characteristics to test whether any cross-cultural variability in mental
representations could be explained by exposure to local musical styles.
Where possible, we tested multiple groups from the same country
that differed in the nature of their presumptive musical exposure.
We also tested both university students and online participantsin a
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Fig.1|Iterated reproduction experiment paradigm and analysis. a, Schematic
ofthe experiment. Participants are presented with initially random seed rhythms
(arepeating cycle of three clicks, defined by three inter-click time intervals)
and reproduce them by tapping. The reproduction becomes the stimulus on
the following iteration. This procedure is iterated five times (one ‘trial’). Credit:
Felix Bernoully. b, The triangular rhythm space in which the results are plotted
(shown here for candombe musicians in Uruguay, for illustration purposes).
Each axis (side) of the triangle represents one of the three intervals in a rhythm.
We constrained eachinterval to be at least 300 ms in duration, and the total
patternduration to be 2,000 ms, resulting in the space within theinner triangle.
Small-integer-ratio rhythms, in which the time intervals are related by ratios with
integers less than 4 (Methods), occupy a subset of pointsin the triangular rhythm
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space. Two example small-integer-ratio rhythms (1:1:2 and 1:1:1) are shown to the
left. For these examples, the three intervals are marked with white lines, the solid
rectangles mark the three clicks of a cycle, and the outlined rectangle marks the
click that starts the subsequent repeated cycle. The coloured dots connected by
lines show trajectories from example experimental trials. The inset shows the
dynamics of one example trial in more detail, converging in this case to the 1:1:2
rhythm. The distribution of reproductions is summarized with a kernel density
estimate, plotted in greyscale over the rhythm triangle. ¢, Cross-sections through
example modesin the prior showninb, showing peaks at small-integer ratios; see
also Extended Data Fig. 1. See Extended Data Fig. 2 and Supplementary Fig.1for
theresults of asecond experiment conducted at a faster tempo by using a pattern
duration of1,000 ms.

number of countries. Compared with the other participant groups
in the same countries, university students and online participants
had musical experience that was more like that of typical Western
participants; these participant groups were intended to assess the
potential effects of exposure to Western/globalized music on mental
representations of rhythm, and thus the consequences of reliance
on student and online participants in cross-cultural research®”*', We
chose participant groups on the basis of these criteriain conjunction
with practical constraints (we tested more groups in some countries
thaninothers primarily due to constraints of testing time and access
to particular populations).

Thekey questions we sought to answer were (1) whether all groups
would exhibit discrete rhythm categories; (2) whether any discrete
categories would consistently occur at small-integer-ratio rhythms;
(3) how rhythm categories would vary across groups, if at all; and
(4) whether any cross-cultural variation would be related to musical
or other demographic characteristics of the group.

All groups exhibit priors with discrete modes

The measured priors are shown in Fig. 3b. Their most obvious feature
is that they are non-uniform, being dominated in all cases by a set of
relatively discrete modes that form local maxima in two dimensions.
This need not have been the case—some or all priors could have been
uniform or could have exhibited one-dimensional ridges rather than
discrete two-dimensional modes. We substantiated this observation
quantitatively in two ways. First, we found that in all 39 groups, 33%
of the bins in the triangular rhythm space contained at least 61% of
the rhythm reproductions in the fifth iteration (mean, 70.1%; range,
61.8-81.7%), suggesting that most of the probability mass is concen-
trated in a small portion of the space. The odds of this happening by
chance are very low (P < 0.001 for points randomly positioned in the
rhythmtriangle, viabootstrapping). Second, the peak of the distribu-
tioninall 39 groups was at least five times larger than the uniform den-
sity (theratio of the peak to the uniformranged from5.3t013.1, witha
mean of 8.8; this ratio was significantly greater than would be expected
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Fig.2|Example testingsites. a, Yaranda, Bolivia. b, Montevideo, Uruguay. ¢, Sagele, Mali. d, Spitzkoppe, Namibia. e, Pleven, Bulgaria. f, Bamako, Mali. g, D’Kar,
Botswana. h, Stockholm, Sweden. i, Guizhou, China.j, Mumbai, India. Verbal informed consent was obtained from the individuals in each photo.

by chance; P < 0.001 for all groups, via bootstrapping), suggesting
thatall distributions were far from uniformand very ‘peaky’. Although
some groups have modes that are elongated more in one direction
than another, all modes had clear peaks (evident in cross-sectional
plots of the densities shown in Extended Data Fig. 1).

All groups exhibit modes at small-integer-ratio rhythms

Visual inspection of the modes suggests that they fall on small-
integer-ratio rhythms (the red crosses superimposed on Fig. 3b).
To quantify the extent to which this was the case, we computed the
average distance between each fifth-iteration reproduction by all
participants in a given group and the closest small-integer-ratio
rhythm. This measure should be small for priors with modes that are
perfectly centred on small-integer ratios. We compared this measure
toanull distribution obtained by computing the average minimum
distance fromarandom set of points. All groups produced priors that
were closer to small-integer ratios than would be expected by chance
(P<0.001in all cases, via bootstrapping, Bonferroni-corrected;
Fig. 4a). Given the diversity of the participant groups, this result
suggests that small-integer-ratio rhythm categories are awidespread
feature of human mental representations. This conclusion is fur-
ther supported by two other measures of the overlap of the priors
with small-integer ratios (including one where the null distribution
was derived from random points constrained to be spaced simi-
larly to the integer ratios; Methods). We obtained similar results in
13 groups who performed the same experiment at a faster tempo
(pattern duration of 1,000 ms compared with 2,000 ms in the main
experiment; Extended Data Fig. 2 and Supplementary Fig. 1). In all
13 cases, the priors were again closer to small-integer ratios than
would be expected by chance (P < 0.001inall groups, viabootstrap-
ping; Extended Data Fig. 2b).

We also found that some of the rhythm categories were system-
atically biased away from the closest small-integer ratio. Of the 22
analysed small-integer ratios, 9 had corresponding modes (estimated
with a Gaussian mixture model) that were slightly but significantly
biased away from the integer ratio (Fig. 4b). These biases were pre-
sent cross-culturally and were similar to those previously observedin

US participants. Specifically, the shortintervalsin the categories 1:2:3
and 2:1:3 (and their cyclic permutations) were consistently lengthened
relative to the medium intervals, causing the rhythms to shift slightly
towards the centre of the rhythm space (isochrony). This lengthening
of the short element is characteristic of rhythm performance studied
in European musicians*. A similar bias was present for 2:2:3 (and its
cyclic permutations). This result suggests that some specific devia-
tions fromsmall-integer ratios are also awidespread feature of mental
representations of rhythm.

Another feature of the data thatis common across culturesis the
tendency for the response distributions to be symmetric across cyclic
permutations (Fig. 3). For example, themodesat1:1:2,1:2:1and 2:1:1are
aboutequally prominent for agiven participant group. However, there
was reason to think that the most frequently occurring permutations
would be those where the long interval occurs at the end**, because
if this configuration is played cyclically, the long interval provides a
gap that helps the pattern to group according to Gestalt principles*.
When we compared the frequency of each cyclic permutationin each
participant group, weinfact found a consistent trend in this direction:
the permutation with the long interval at the end occurred more fre-
quently in 31 0f 39 groups (Extended Data Fig. 3). Similarly, in 33 of 39
groups, participants placed their first tap immediately after the long
interval, suggesting that most participants in most groups tended
to hear this onset as the ‘beginning’ of the pattern. See Extended
Data Fig. 3 (and ‘Cyclic permutations and an analysis of symmetry’in
Methods) for further analysis.

Rhythm priors vary cross-culturally
Despite the consistent presence of discrete modes that tend to overlap
small-integer ratios, the measured priors varied across groups. To
examine the dominant dimensions of variation, we performed mul-
tidimensional scaling*® on the measured priors. Two dimensions of
variation captured considerable variance (85.9% of the variancein the
intergroup distances measured by Jensen-Shannon divergence) and
are shown here to facilitate visualization.

Figure 5a shows the measured priors for each group arranged
according to their positionsin this space. The four groups lying at the
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Fig.3|Summary results of iterated rhythm reproduction in 15 countries.

a, Map of test sites. Credit: Felix Bernoully. b, Rhythm priors from all 39 groups
tested. Musicians are labelled as ‘Western’ if they predominantly play Western
music and ‘local’ if they predominantly play any other style. See Methods for the

criteria used to classify participants as ‘musicians’ or ‘non-musicians’. The red
crosses demarcate small-integer-ratio rhythms whose duration ratios are defined
by integers less than or equal to 3. NM, non-musicians; WM, musicians (Western);
LM, musicians (local); DA, dancers; ST, students (non-musicians); OL, online.

‘corners’ of the multidimensional scaling space provide a snapshot
of the variation across groups, along with features that consistently
appear (Fig. 5a, insets). Allgroups show modes atisochrony (1:1:1) and
1:1:2. However, the presence of other small-integer rhythms varies. We
quantified the prominence of different integer-ratio rhythms as the

weights onindividual components of a Gaussian mixture model fitted
to the data (with each component constrained to be unambiguously
associated with a different integer ratio; see Extended Data Fig. 4 for
the weights of components for all groups). The presence or absence of
amode at the 3:3:2 rhythm is a major source of variation, accounting

Nature Human Behaviour | Volume 8 | May 2024 | 846-877

850


http://www.nature.com/nathumbehav

Article

https://doi.org/10.1038/s41562-023-01800-9

@ N\M, non-musicians
@ WM, musicians (Western)

@ LM, musicians (local)

S,
IN]
o

IS}
IS}

®
o
*

[
o
*kk

IS
o

Average distance to
N
o

integer-ratio categories (ms)

NS

SOSSEST A AN S S T
\o“\o@ *0\\5 DD AN IF S S \;z» *¥ < @ &
S @ \ LA » ,;2 3 O\A&'D RS ) &Q

L S KoY Ss et Y s @
°\> SP R @
PN
A
%@o

@ 120 -

E
E$100’//\’/\/\—/\——\_
8% %

% o) 80 - * g : * x
% L ¥ ox ¥ X
2% 6o * % i -
[ie]

g% 40r

e ¢

5 0

2

c 0o-

- AT AN S o S Sy ©

\-Q‘*ie’*/\/ &;\\' ‘D\\§‘§\Q @“\x\”’\ b\'y-@(b’y b\i}rz’b\o «03$® ,%'$‘b -o’bé
S ¥ FE S o *‘OQ +© ‘Q’Q S
& & I @
&
F
VoS

Fig. 4 | Relationship of priors to integer-ratios. a, Average distance from the
nearest small-integer-ratio rhythm, for each participant group (splitinto two
rows to make the figure more compact). This measure is small for a prior with
all its mass at small-integer-ratio rhythms. The lines and shaded regions at the
top plot the mean and 95% Cl of a null distribution of the average distance from
randomly selected points (this varies somewhat across groups as it depends
oneach group’s datadistribution). The asterisks denote statistical significance
relative to this null distribution, one-tailed (***P < 0.001). Here and elsewhere,
Pvalues are Bonferroni-corrected for multiple comparisons. Allgroups have

@
)
%
N
<
[}
3/20 <,
o P
S )
Q@ 74 %
S
€ /3
h 2
k)
213 "2 123 2
1/2 + [ N
2 . "
& 223 g P = 0.0
)
S " . 112
N 212% 122
- Z5- 233 :
E S :
1/3 B . e et
J ! 322 . A"
& Y 32,
1/4 8 o a 9/
J an 221, 131 (WX
5 e IR o %
8§ . s
. 320 o ’ z
J
&
S
Interval | 1/2 113 1/4 3/20

1,000 ms «666ms <500ms  <300ms

aprobability mass concentrated closer to integer-ratio rhythms than would

be expected by chance. b, Categories exhibit small but systematic biases away
from integer ratios. The grey dots plot the component means of the Gaussian
mixture model computed for each of the 39 groups. The large black dots plot
the average location over the 39 groups. The red crosses plot integer ratios. The
asterisks denote biases that are statistically significantly different from integer
ratios across groups (***P < 0.001; **P < 0.01). The results show that 9 of the 22
categories exhibit consistent biases.

for the horizontal dimension of the multidimensional scaling space
(position along this dimension was highly correlated with the weight
on the 3:3:2 category; r;; = 0.90; P< 0.001; 95% confidence interval
(CI), (0.81,0.94); Fig. 5b). Thefirst dimension was also correlated with
areduction in the weight of the ‘simpler’ categories, including isoch-
rony (1:1:1: r;; = -0.46; P= 0.028;95% Cl, (-0.67,-0.16); 1:1:2: r;, = -0.64;
P<0.001; 95% CI, (-0.8, —0.41); 2:2:1: r;, =-0.61; P< 0.001; 95% ClI,
(-0.77,-0.36)). The second multidimensional scaling dimension is
less obviously interpretable but also correlated significantly with two
of the small-integer-ratio rhythms (1:2:3: r;, = 0.56; P=0.001; 95% Cl,

(0.3,0.75); 1:3:2: r;;= 0.62; P< 0.0001; 95% Cl, (0.38, 0.78); Extended
DataFig.5),and it thus can be seen as partially embodying the strength
of 6/8 rhythms. The groups at the corners also exhibit variationin the
presence of 2:2:1, such that all possible combinations of modes at 2:2:1
and 3:3:2 occur: the Tsimane’ non-musicians from Bolivia show neither
of these two modes, the San musicians from Botswana show both,
the dancers from Mali show 3:3:2 but not 2:2:1 and the non-musicians
from China show 2:2:1 but not 3:3:2. We also analysed the data using
principal component analysis; the first two components captured
variation along the same modes highlighted by the multidimensional
scaling analysis (Extended Data Fig. 6).

The US and UK participant groups were all positioned close to
the centre of the multidimensional scaling space. One speculative
possibility is that this position reflects the widespread influence of
Western music around the world, with different cultures having incor-
porated itsinfluence in different ways.

Cross-cultural variationis less evident in university students
The positioning of the groups in the multidimensional scaling space
(Fig. 5a) also suggests that the priorsin university students and online
participants from countries around the world are relatively similar to
each otherandto the priors of US participants. To quantify this effect
in students, we first measured the distance (Jensen-Shannon diver-
gence) between the estimated priors for pairs of student groups in
different countries and compared it to that for pairs of non-student
groups (from the same countries from which the student groups were
drawn). This comparison revealed that the distance between student
groups was significantly smaller than that between non-student groups
(P=0.004, permutationtest; Cohen’s d = 1.06; difference of mean dis-
tances, 0.039; 95% Cl, (0.03, 0.05); Fig. 6a). This result indicates that
student participants underrepresent cross-cultural diversity. This
conclusionis supported by the self-reported music listening habits of
the participants, which are notably more similar between the student
groupsthanbetween the corresponding non-student groups fromthe
same countries (Fig. 6b,c and Supplementary Table 2).

Cross-cultural variation s less evident in online participants

We conducted ananalogous analysisin online participants and obtained
a similar result (smaller intergroup distances than for non-online
groups; P=0.03, permutation test; Cohen’s d = 1.46; difference of mean
distances, 0.047;95% Cl, (0.02, 0.07); Fig. 6d). This resultindicates that
online participants also underrepresent cross-cultural diversity. As with
the student groups, this conclusionis supported by self-reported music
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Fig. 5| Sources of cross-cultural variation in mental representations

of rhythm. a, Participant groups positioned in two dimensions via
multidimensional scaling of their estimated rhythm priors. Group names are
coloured toindicate musicians, dancers, non-musicians and university students.
Theinsets show rhythm priors for the four participant groups lying at the corners
of the multidimensional scaling space. These groups represent the extremes
of'the variation we observed. Note that for all analyses of specific rhythms, we
averaged across the cyclic permutations of that rhythm (for example, 1:1:2,1:2:1

and 2:1:1), as the differences between permutations were typically modest. See
Extended Data Fig. 3 for an analysis of differences between cyclic permutations.
b, Strength of the 3:3:2 rhythm (the average weight of the components at
3:3:2,2:3:3and 3:2:3 in the fitted Gaussian mixture model) for all participant
groups, ordered according to their positions on the horizontal dimension of
the multidimensional scaling space. This rhythm characterizes one dominant
dimension of variation across groups. The error bars plot s.e.m., derived from
1,000 bootstrap samples.

listening habits, which are more similar between the online groups
than between non-online groups from the same countries (Fig. 6e,f
and Supplementary Table 2).

Students and online participants resemble US participants
To quantify the similarity of student and online groups to US partici-
pants, we measured the average distance (again using Jensen-Shannon
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divergence as the distance measure) between priors of either student
oronlinegroups to the prior ofthe US student group (taken as arepre-
sentative group of US participants). We then compared these two
average distances to those between the US group and random sets of
groups of the same size (who were not students or online participants).
Student and online groups were significantly closer to US participants
than were the other groups (students: P<0.001; Cohen’s d=2.7;
difference of mean distances, 0.027; 95% ClI, (0.009, 0.05); online:
P=0.014; Cohen’s d =1.86; difference of mean distances, 0.032; 95%
Cl, (0.002, 0.07); viabootstrapped Jensen-Shannon divergence, as
described in ‘Analysis of student and online groups’ in Methods).
Whilethe online participants spanned awide range of ages, student
participants tended to be younger than other groups (Extended Data
Tablel). To controlfor possible effects of age, we repeated both analyses,
restricting participants to the age range of 20-40 (Methods). The
pairwise distance between student and online groups was still signifi-
cantly smaller than that between non-student and non-online groups
(students: P<0.001; Cohen’s d =1.66; difference in means, 0.069;
95% Cl, (0.05, 0.08); online: P < 0.001; Cohen’s d = 2.78; difference
in means, 0.081; 95% ClI, (0.05, 0.1); via bootstrapping). So was the
distance between the US student group and other student and online
groups when compared with that between the US student group and
non-student/non-online groups (students: P < 0.001; Cohen’sd = 3.33;
mean difference, 0.058;95% Cl, (0.03,0.09); online: P< 0.001; Cohen’s
d=1.88; meandifference, 0.055;95% Cl, (0.02, 0.1); viabootstrapping).

Inaddition, we compared priors of younger (under35) and older (over 35)
online participants and found no significant differences in each of
the three tested locations (via bootstrapped Jensen-Shannon diver-
gence; US online group: P=0.09; Cohen’s d = 0.66; mean difference
in distance, 0.02; 95% Cl, (-0.03, 0.06); India online group: P=0.11;
Cohen’s d = 1.4; mean difference in distance, -0.007; 95% ClI, (-0.07,
0.05); Brazil online group: P=0.4; Cohen’s d = 0.32; mean difference
indistance, -0.002; 95% Cl, (-0.09, 0.1)).

These findings suggest that certain lifestyle factors associated
with student and online participants (plausibly including socio-
economic status or access to global media andinternet) involve expo-
sure to globalized culture that is sufficient to produce mental repre-
sentations of rhythm that are similar to those of US residents. As a
consequence, student and online participants (the populations typi-
cally studied in psychology, neuroscience and music cognition®"*+/45)
underrepresent global variability in music perception®.

Culture-specific variation can be linked to the musicinagroup
What underlies the observed variation across groups? In princi-
ple, variation could be due to any of the many factors that varied
across groups, including non-musical factors such as the rhythms
prominent in spoken language or in environmental sounds. But in
several cases, variationin rhythm priors had obvious links to rhythms
prominentinlocal musical systems. For instance, the mode at the 2:2:3
rhythm was pronounced in groups that have this rhythm in their
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a, Dancers and musicians from Ensemble Trakiya in Plovdiv, Bulgaria. Here and
inother panels, verbal informed consent was obtained from the groups ineach
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percentiles. Whiskers (thin lines) are computed using Tukey’s method and reflect
the range of non-outlier points (see 'Violin plots' for details). The violin plots are
kernel density estimates of the data distribution. Here and in f i, the asterisks
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mark statistical significance via one-sided Wilcoxon rank-sum tests (***P < 0.001;
**P<0.01;*P<0.05). The 2:2:3 rhythm is strongly represented in the priors of
traditional musiciansin Bulgaria, Turkey and Botswana, when compared with

all other groups. d, Members of acandombe group in Montevideo, Uruguay.

e, Dancers and musicians from the Sagele village in Mali. f, The strength of the
3:3:2rhythm for all tested groups, separated into those in whose music the
rhythm s prominent (that is, the music of African and Afro-diasporic traditions),
and all other groups. g, Rhythm prior for drummers from Bamako, Mali, showing
modesat 3:3:2and 7:2:3. h, A performance of the Maraka dance (featuring the
7:2:3rhythm) at a traditional wedding in Bamako, Mali. i, Strength of the 7:2:3
rhythm for all tested groups.

local musical tradition*~"; traditional musicians in Turkey, Botswana
and Bulgaria (Fig. 7a,b). As shown in Fig. 7c, the weights assigned
to the 2:2:3 rhythm in a Gaussian mixture model fit to the prior of
each group were substantially higher in these groups than in most
other groups (P=0.003, via a one-sided Wilcoxon rank-sum test;
Cohen’s d =2.17; mean difference in weight, 0.011; 95% ClI, (0.003,
0.02)). This result is consistent with previous developmental work
showing differencesin sensitivity to the 2:2:3 rhythmin US and Turkish
adults®, but not infants®®, suggesting that sensitivity to the rhythm
may be lost without exposure.

The 3:3:2rhythm can also be related to specific musical systems—
in this case, those of African and Afro-diasporic music. In particular,

it features prominently in many sub-Saharan musical styles®*, is
popular in Afro-Cuban and Latin music (where it is referred to as
‘tresillo’), and is characteristic of many Afro-diasporic traditions
from Cuba, Brazil, Uruguay and North America®*~’, among others
(Fig.7d,e). Inthe priors estimated from the experiment, the 3:3:2 mode
was strongest in dancers from the Sagele village in Mali (Figs. 5b and
7e). We recorded a representative corpus of their musical repertoire
and found that 46% of the excerpts recorded in the corpus featured
a prominent 3:3:2 pattern (see Methods for additional details). We
similarly found strong 3:3:2 weights in all other groups of musicians
and dancers from African and Afro-diaspora traditions (musicians
from Botswana, Mali, Uruguay and Brazil, and both US and UK jazz
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musicians; Fig. 7f; significantly higher weights for this mode when
compared with the other participant groups, P < 0.001, viaaone-sided
Wilcoxon rank-sum test; Cohen’s d = 2.60; mean difference in weight,
0.043; 95% Cl, (0.035, 0.051)).

Perceptual modes can occur at moderately complex
integer-ratiorhythms

Another example of an idiosyncratic feature that can be linked to
a musical system is the mode at 7:2:3 evident in drummers in Mali
(Fig. 7g). This rhythm is noteworthy because it is defined by a rela-
tively complex integer ratio. We took several steps to establish that
this rhythm is prominent in the local musical tradition (see ‘Analysis
of specific modes’ in Methods). First, we observed that some partici-
pants recognized the rhythm during the experiment session. They
identified it as ‘Maraka’, which is a popular local piece of dance music
that uses a 7:2:3 rhythmic pattern (Fig. 7h). To validate this recogni-
tion of the rhythm in the musician groups we tested, we conducted
post-experiment interviews after the end of the main experimental
session with the help of an ethnographer team member (R.P.). We esti-
mated the empirical modes of the distribution, synthesized stimuli
corresponding to the mode near 7:2:3 and asked participants toidentify
it. The Malian drummer participants repeatedly identified the pattern
as ‘Maraka’.

AsshowninFig.7i,the 7:2:3 mode was stronger in the three groups
from Malithanin all other groups (P=0.005, viaa one-sided Wilcoxon
rank-sum test; d.f. =37; Cohen’s d = 2.33; mean difference in weight,
0.0082;95%Cl,(0.007,0.01)). This result suggests that even relatively
complex rhythms can form perceptual categories but that they are
strongly dependent on musical experience within cultural environ-
ments where the corresponding rhythm prevails.

Culture-specific rhythm priors predict categorical perception
To test whether the rhythm ‘categories’ (modes) in the measured
priors could predict perceptual categorization, we simulated cat-
egorization judgements with a Bayesian model based on a Gaussian
mixture model fit to the estimated priors from each group (in which
each mixture component corresponds to arhythm category). We then
compared the results to previously published categorization judge-
ments by Western musicians of rhythms at different points within
the rhythm triangle’. Because the category choices were defined
by musical notation, this experiment was possible only in Western
musicians. The results of the experiment can be expressed as a set
of regions that are associated with each musically notated rhythm
(Extended DataFig.7a). The categories predicted by priors measured
in US participant groups generally provided good matches to the
experimentally obtained category boundaries of Western musicians
(Extended Data Fig. 7b, left). By contrast, the category boundaries for
the non-Western groups we tested provided worse matches (Extended
DataFig. 7b, right). We quantitatively assessed the match between the
categories predicted by agroup’s prior and those measured in Western
musicians viathe average of the distances over all pointsin the triangle
between the categories assigned by the model and the majority cat-
egoryinthe Desain and Honing experiment (see ‘Category predictions
from rhythm priors’in Methods). As shown in Extended Data Fig. 7c,
when evaluated in this way, both the non-Western non-musician
groups and the non-Western musician and dancer groups that we
tested produced significantly worse matches than the Western
groups (here defined as student, Western musician and US groups)
via Wilcoxon rank-sum tests (non-Western non-musicians: P= 0.021;
Cohen’s d =1.2; difference of mean distances, 0.01; 95% CI, (0.0035,
0.015); non-Western musician and dancer groups: P= 0.003; Cohen’s
d=1.2; difference of mean distances, 0.015;95% Cl, (0.0062, 0.023)).
Thisresultis consistent with the idea that the prior measured by our
iterated tapping experiment reflects a perceptual representation
and so can predict purely perceptual judgements. The result also

shows that the cross-cultural variation in the measured priors has
the expected consequences for perceptual category predictions
(in this case, worse predictions of Western musicians’ categories
for groups whose musical experience presumptively deviates sub-
stantially from that of Western musicians).

Musicianship does not obviously alter rhythm priors

We previously found that rhythm priors were similar for musicians and
non-musicians in Boston, USA%, suggesting that priors are driven by
‘passive’ exposure to music rather than explicit training or practice.
We replicated this finding here in multiple other groups of musicians
who play Western music and corresponding groups of non-musician
students with exposure to Western music (in South Korea, Japan and
the United States). In each case there was no significant difference
between priors derived fromsplits of the datawithinand across groups,
asevaluated by bootstrapping the Jensen-Shannon divergence using
the procedure described in the Methods section ‘Significant distance
between two groups’ (South Korea: P=0.17; Cohen’s d =1.1; mean
difference between across- and within-group distance, 0.03; 95% CI,
(-0.01,0.07);Japan: P= 0.051; Cohen’sd = 1.1; mean difference between
across-and within-group distance, 0.03; 95% Cl, (-0.02, 0.08); United
States: P=0.56; Cohen’s d = 0.64; mean difference between across-
and within-group distance, 0.02; 95% Cl, (-0.03, 0.07)). For the sake
of brevity, here and elsewhere we classify and refer to participants as
‘musicians’ or ‘non-musicians’ (Methods), cognizant that the Western
concept of musicianship may not fully apply to other societies and that
there canbe a continuum of levels of participation in musical activities.
We nonetheless found that years of self-reported musical experience
differed between groups classified as ‘musicians’ or ‘non-musicians’
(Extended Data Fig. 8a); pairwise comparisons between musician and
non-musician groupsin the same country were statistically significant
inall cases (Extended Data Fig. 8b; P< 0.001in all cases via one-sided
Wilcoxontests; Cohen’sdranged between1.65 and 4.27; the difference
between median years of experience ranged from 6 to 37 years).

We did find multiple cases where musicians and non-musiciansin
the same country exhibited distinct priors, but these all seem explain-
able by differences in musical exposure. Specifically, local musician
groupsinMaliand Uruguay differed from other groupsin those coun-
tries (again assessed using bootstrapped Jensen-Shannon divergence,
comparing across- and within-group distance; MA-LM versus MA-DA:
P=0.002; Cohen’s d=1.8; mean difference in distance, 0.04; 95% CI,
(0.0006,0.07); MA-LM versus MA-ST: P= 0.018; Cohen’sd = 2.6; mean
difference in distance, 0.07; 95% Cl, (0.02, 0.1); UY-LM versus UY-ST:
P=0.036; Cohen’s d =2.3; mean difference in distance, 0.06; 95% ClI,
(0.01, 0.1)), presumably because they have internalized different
types of music in the cultural milieu of the tradition they specialize in
(Fig. 6b,c,e,f). We thus have no reason to suppose that musicianship
per se qualitatively alters mental representations of rhythm. The sig-
nature properties of discrete modes at small-integer ratios are clearly
evident in both musicians and non-musicians.

Musicianship improves tapping precision

Strong effects of musicianship were, by contrast, evident in the vari-
ability of tapped reproductions, standardly used as a measure of tap-
ping precision® (Fig. 8a). We compared tapping variability (quantified
as the standard deviation of the asynchrony between stimulus and
response’®) between 21 pairs of musician and non-musician groups in
the same country. Tapping variability was lower in musicians thanin
non-musicians (Fig. 8b) in 20 of the 21 pairs (P < 0.001 via a binomial
test). This difference was statistically significant (P < 0.05) in15 of the 21
individual pairs viaone-sided Wilcoxon tests. For these 15 pairs, Cohen’s
dranged between 1.08 and 2.36; the difference in median variability
ranged between 5.41 ms and 23.69 ms. These results are consistent
with a large literature in Western musicians showing perceptual and
production advantages in musical tasks®®®*, including tapping to a
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Fig. 8| Tapping variability and musical experience. a, Tapping variability
(standard deviation of the asynchrony) as a function of musical experience.

The opencircle plots the median, and the top and bottom of the grey bar plot
the 75th and 25th percentiles. Whiskers (thin lines) are computed using Tukey’s
method and reflect the range of non-outlier points (see 'Violin plots' for details).
We plotted significant comparisons with a threshold of P < 0.001 (one-sided
Wilcoxon test, corrected for multiple comparisons with Bonferroni correction).
We note that there are only two groups categorized as dancers and that for one

of the groups (thatin Mali), there was a demographic confound compared with
the musician group in the same country (dancers were predominantly female,
while musicians were predominantly male). The apparent differences with

other types of groups should thus be considered provisional given the small
number of groups. b, Scatter plot of tapping variability for musician and non-
musician groups from the same country. The error bars plot s.e.m., computed via
bootstrapping. ¢, Mean asynchrony of tapped responses as a function of musical
experience. Same conventionsasa.

beat®, but they provide evidence that these musicianship advantages
are present cross-culturally. The results support adistinction between
musicians and non-musicians that extends beyond North Americaand
Western Europe®®*, Despite these musicianship effects, we saw that
every participantgroup exhibited atendency totap slightly before the
beat, quantified as a negative mean stimulus-response asynchrony
(Fig. 8¢)*®. This negative mean asynchrony has long been noted asa
feature of tapping in Western participants®; our responses suggest that
itis present across cultures.

No evidence that language influences rhythm priors
Itis natural to wonder whether the prior on rhythm might be influ-
enced by experiential factors outside of music, most obviously spoken

language. Speech hasbeen argued to influence rhythm perception® %,

but most recent evidence indicates segregation of speech and music
analysis in the brain®. Several findings from our study suggest that
language does not strongly influence rhythm representations.

First, we observed clear examples of groups who speak the same
language but whose rhythm priors were quite different. The clearest
example is the three groups in Mali (local musicians, dancers and
students). All three groups speak a nearly identical set of languages
but have obviously distinct rhythm priors (via bootstrapped Jensen-
Shannon divergence; MA-LM and MA-ST: P=0.012; Cohen’s d = 2.6;
mean difference between across- and within-group distance, 0.07;
95%Cl,(0.02,0.1); MA-LMand MA-DA: P= 0.009; Cohen’sd =1.8; mean
differenceindistance, 0.04;95% Cl, (0.0006,0.07); MA-ST and MA-DA:
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P<0.001; Cohen’s d = 4.5; mean difference in distance, 0.1; 95% CI,
(0.08,0.2)). Specifically, both the local musicians and dancers in Mali
had significantly higher weights on the 3:3:2 rhythms than did Malian
students (viabootstrapped Gaussian mixture model fits as described
inthe Methods section ‘Category weight for the 3:3:2 rhythm’; MA-ST
and MA-LM: P=0.003; Cohen’sd = 5.3; mean weight difference, 0.064;
95% Cl, (0.039, 0.087); MA-ST and MA-DA: P<0.001; Cohen’sd=6.7;
mean weight difference, 0.087;95% Cl, (0.061, 0.11); see Extended Data
Fig.9afor the category weights). We found a similar result for compari-
sons of students and local musiciansin Uruguay (distinct rhythm priors
asevaluated by bootstrapped Jensen-Shannon divergence; P = 0.013;
Cohen’sd =2.2; meandifferenceindistance, 0.06;95% Cl, (0.01, 0.1); the
weight on the 3:3:2 rhythm again differed between groups, P < 0.001;
Cohen’s d = 3.1; mean weight difference, 0.04; 95% ClI, (0.014, 0.065);
see Extended Data Fig. 9b for the category weights). An analogous
result was evident in Turkey, where local musicians had significantly
higher weights on the 2:2:3 rhythm, which is associated with Balkan
and Turkish music, compared with Turkish students (Extended Data
Fig.9c; P=0.001; Cohen’s d = 3; mean weight difference, 0.02;95% Cl,
(0.0071, 0.033); the priors themselves were also again significantly
different as evaluated by bootstrapped Jensen-Shannon divergence;
P=0.02; Cohen’s d =1.3; mean difference in distance, 0.02; 95% ClI,
(-0.008, 0.05)).

Second, we observed several examples of similar rhythm priors
despite distinct spoken language experience. Both university students
and Western-trained musicians in Japan and South Korea exhibited
priors that were not obviously different from those of US participants
(Extended Data Fig. 9d-f; no significant difference in either case as
evaluated by bootstrapped Jensen-Shannon divergence: Japanese
students and US students: P=0.77; Cohen’s d = 0.47; mean difference
in distance, 0.01; 95% Cl, (-0.03, 0.05); Japanese Western musicians
and US Western musicians: P=0.11; Cohen’s d =1.1; mean difference
indistance, 0.02;95%Cl, (—0.02, 0.06); South Korean students and US
students: P=0.25; Cohen’s d =1.3; mean difference in distance, 0.04;
95% Cl, (-=0.01, 0.1); South Korean Western musicians and US musi-
cians: P=0.44; Cohen’s d = 0.92; mean difference in distance, 0.02;
95% Cl, (-0.02,0.07)). Although the student groups in these countries
undoubtedly had some exposure to English, it was not their native
language. We cannot exclude the possibility that language could in
some cases have some influence on rhythm representations, but our
study provides no evidence for such influences.

Discussion

We conducted a large-scale cross-cultural study of music percep-
tion. Our aim was to assess whether discrete mental representations
of musical rhythm are present across cultures and whether the asso-
ciated mental categories are fixed or dependent on some aspect of
life experience. We ran the same iterated reproduction experiment on
39 different groups around the world. We found that all groups imposed
discrete structure on the continuous space of simple rhythms. Mental
‘categories’ (modes) tended to be small-integer-ratio rhythms, but
the categories varied across groups and could often be linked to
specific rhythms prominentin the local musical culture. Our study
provides unambiguous evidence for properties of music cognition
that are present across cultures, but it also demonstrates substantial
cultural variation linked to culture-specific musical experience.

Universality and cultural specificity

Given that musicis present in all known societies but also varies consid-
erably across cultures™ %", it must result from interactions between
biological constraints and culture-specific experience. What do our
results reveal about these constraints and experiential influences?
The most salient feature of our results is the cross-cultural presence
ofrelatively discrete modes within the mental prior over rhythms. We
refer to these modes as ‘categories’ because they yield characteristics

of categorical perception, biasing the perception of nearby rhythms
towards the mode centre’®” and predicting the boundaries between
perceptual rhythm categories (Extended Data Fig. 7). These discrete
categories were present in every group we tested. Discrete mental
representations probably help stabilize musical systems. If a repro-
duction of aheard piece of music is attracted to discrete categories in
the listener’s mind’>”?, inaccuracies in musical reproduction are less
likely to be perceived and thus less likely to be transmitted asasongis
passed along between individuals®”*”,

The prevalence of discrete categories across such diverse groups
suggests that the conception of music as combinations of discrete
elements is not merely an invention of the Western academic and
music traditions but is instead fundamental to the human experience
of music around the world. The quantization of a continuous space
into discrete categories allows signals to be represented and stored
more efficiently’®””. This efficiency gain probably makes patterns
composed of the rhythm categories easier to learn and share, which
may further aid cultural transmission.

The particular categories we observed were also non-arbitrary.
Categories were present at small-integer-ratio rhythmsinevery group
tested and thus appear to be widespread features of human mental
representations®. This result could in principle reflect innate biases
favouring integer-ratio rhythms. However, it is also clear that any
such biases at best only partially constrain adult perceptual systems,
because the specific integer ratios that were present as categories
varied substantially across groups. We also cannot exclude the pos-
sibility that mental representations simply mirror the musical systems
to which listeners are exposed (akin to how phonetic categories are
thought to be consequences of linguistic exposure), which might
feature integer ratios for other reasons (for example, production
constraints’” from the periodic nature of motor behaviours).

We found evidence that much of the variation in categories is
linked to the local musical systems the participants had grown up
with?”® (Fig. 7). Moreover, the relevant experience appears to pri-
marily be consumption rather than production of music—musician-
ship appears to influence priors primarily insofar as it alters musical
experience. For instance, musicians who play classical Western
music and Western non-musicians exhibited similar priors, presum-
ably because both groups are exposed to similar distributions of
music, whereas traditional musicians in some other countries were
substantially different from students in cities (for example, Mali,
Uruguay and Turkey). Rhythm categories thus appear to be some-
what flexible and culturally dependent (similar to other domains of
perception in which categorical perception has been documented
cross-culturally, such as colour®, speech® and smell®?). One difference
relative to other examples of cross-cultural categorical perception is
that the rhythm categories are typically non-verbal, consistent with
the idea that discrete representations do not necessarily depend on
linguistic labels.

How might other aspects of culture influence rhythm priors?
We found evidence that rhythm priors could be dissociated from
language, in that we observed several sets of groups that spoke the
same language but exhibited distinct priors. The question of whether
language influences rhythm priors at all remains open; our groups
were not selected to definitively address this issue, in that language
covaried along withmusic across most groups. It remains possible that
groups specifically selected to dissociate language from music might
showsuch aninfluence.

Small-integer ratios

Small-integer ratios are often proposed to be perceptually favoured
in various ways as a consequence of their mathematical simplicity™*.
We found that the perceptual categories that were common across
all groups were indeed the simplest possible in mathematical terms
(1:1:1and 1:1:2). We also found systematic biases, present cross-culturally,
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inwhich more complicated rhythms were shifted to be closer toisoch-
rony (Fig. 4b). However, we also found instances of categories at rela-
tively complex ratios (forexample, 7:2:3). We note that although 7:2:3
isacomplexrhythm fromthe perspective of ratios, it can be generated
from a fixed train of 12 pulses grouped hierarchically into groups of 2
and3(7:2:3=[2+2+3]+2+3).Theassociated five-interval pattern of
2:2:3:2:3 is also common in West African music’**. This observation
raises the possibility that small-integer ratios tend to arise due to pres-
sures favouring rhythms that can be generated fromisochrony (that s,
by dividing anisochronous pulse sequence into groups of small num-
bersof pulses), rather thansimplicity per se. Moreover, the prevalence
of the very simplest rhythms (1:1:1 and 1:1:2) across all groups studied
couldreflectthe fact that they can be generated fromisochrony inmany
different ways, and are thus consistent with many different metres. For
instance, 1:1:2 can be formed in groups of 4 (1:1:2), 8 (2:2:4), 12 (3:3:6)
and 16 (4:4:8) pulses.

Lack of diversity evident in university students and online
participants

Our resultsillustrate that perceptual phenomenaseenin residents of
Western Europe and North America (here, the specific prior found in
Westerners) may not always generalize to other populations, consist-
entwith the growing awareness of the underrepresentation of human
cultural diversity in psychology and cognitive neuroscience®*'. Our
results also suggest that cross-cultural studies involving convenient
participant samples from university communities or online cohorts
are similarly likely to underrepresent cultural diversity. University
students and online participants in the non-Western countries in our
study were substantially more similar to US participants than corre-
sponding non-student groups recruited in person, underscoring the
problematic reliance on student and online participants in cognitive
science. Awiderange of participant groups extending from small-scale
societies to villagers to small-town dwellers to urbanites, as well as
multiple groups per society with different backgrounds, was critical
to providing astrong test of universality and to revealing the extent of
diversity in human perception*-$*%,

Limitations

Due to the practical constraints of our experimental paradigm, our
experiments were limited to periodic three-interval rhythms, two
secondsinduration (though see Extended Data Fig. 2 and Supplemen-
tary Fig.1forresults atafaster tempoinasubset of groups), presented
cyclically. We think it plausible that such simple rhythms can serve as
building blocks for more complicated rhythms®®, but they are nonethe-
less smallinscale relative to many natural musical rhythmic motifs, and
they do not capture some phenomena that are evident in such longer
patterns (for example, metre). Itis likely that additional principles gov-
ern more extended musical pieces, such as memory constraints, that
could be revealed with experiments using longer patterns’™. We note
alsothat the cyclic stimulus presentation limits our ability to examine
phenomena involving the beginning of a rhythm, such as anacrusis
(though see Extended Data Fig. 3).

Our paradigm is also constrained by the choice of stimuli. The
repeating rhythms we used are limited by the absence of melody.
The method could be naturally extended to incorporate melody—for
instance, by having participants sing back a note sequence defined
by both time and pitch intervals®®. Such experiments could address
whether priors for pitch and time areindependent and whether rhythm
and melody processing are interdependent®. More generally, it seems
plausible that humans learn multiple distinct priors for the temporal
patternsin different types of sound and that different contexts could
invoke distinct priors. For instance, we found in previous work that
using spoken phrases as stimuli in an iterated reproduction experi-
ment yielded a completely different prior compared with click pat-
terns?. Stimulibased on environmental sounds (for example, based on

footstep sounds) could similarly evoke a different prior. There could
also be multiple priors on musical rhythm (for instance, for different
genres) that could be evoked in different settings (for example, based
oninstrument sounds that are associated with particular genres) and
that mightyield distinct experimental results if participants are primed
torely onone prior or another.

Couldtheresults reflect production-related influences inaddition
to the perceptual biases traditionally associated with priors? Several
existing sources of evidence support aperceptual origin for the experi-
mental result. First, the distribution for US participants is similarirre-
spective of whether responses are tapped or vocalized (as arepeated
syllable), but is markedly different if participants vocally reproduce a
spoken sentence®. Theresults are thus not tightly linked to a particular
reproduction modality, while also being domain-specific, as would be
expected for a prior over musical rhythms. Second, the modes of the
priorinUS participants confer one characteristic of categorical percep-
tion: discrimination of rhythms is worse for rhythms near amode than
for rhythms distant from modes®, as would be expected from Bayesian
inference’’. More generally, biases in tapped reproductions*** are also
evident in perceptual discrimination biases®*®. Third, the results of
our iterated tapping experiment in US participants can be predicted
from a Bayesian model with a prior estimated from Western musical
scores’®. This latter result indicates that a prior based on statistics of
actual music is sufficient to explain tapping biases, without the need
to appeal to any influences specific to motor production.

The present paper provides two additional lines of support for
the perceptual interpretation of reproduction biases. The first is that
the measured priors predict perceptual category boundaries in a
culture-specific way (Extended Data Fig. 7), as would be expected if
they function as priors for purely perceptual judgements in addition
to productiontasks. The second is that priors in musicians were often
similar to thosein non-musician groups from the same country, despite
the greater precision of musician tapping (Fig. 8), providing additional
evidence that motor noise does not have much effect on the result.

Despite these various pieces of evidence, we do not think it pos-
sible to completely rule out some contribution from motor factors.
Given that the estimated priors are similar for tapping and spoken
syllables, any motor influences are likely to be central, and in particular
also evident even for a production modality (vocalizing) that is not
normally dominated by periodic motor rhythms. It may be that com-
pletely separating perception and central motor processes is futile
for music—listening to music may inevitably invoke motor processes
for entrainment®, for instance. We note that our conclusions do not
depend critically on this point, and that regardless of the perceptual-
motor basis, the experimentis measuring something that matters for
musical behaviour: the ‘prior’ that we measure provides adescription
of how what we hear is translated into areproduction. This process of
hearing and reproducingis the essence of musical practice and culture.
Our measurement thus has as much legitimacy as anything we might
measure with a purely perceptual experiment.

One could also take issue with our selection of participant groups,
whichwere chosen using prior knowledge of local musical cultures to
provide a strong test of universality subject to practical constraints.
With unlimited resources, one could envision sampling groups uni-
formly (for example, across geography or linguistic clades) to have
the sampling be independent of any particular hypothesis. However,
because of the process of cultural globalization, selecting groupsin this
way would probably produce a prevalence of relatively Western-like
participants and would require a much larger number of participant
groups to reveal the sort of diversity evident in our results. And given
the recent drastic rise of globalization®, it is not obvious that uni-
formsampling would reveal anything fundamental about the diversity
of music. Nonetheless, our sampling of groups is clearly not exhaus-
tive, and additional groups might reveal additional constraints on
rhythm priors.
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Another limitation is that our tests of the influence of local musi-
calidioms were not exhaustive. We related the measured priors to the
rhythmicstructure of local musical traditions using modes at relatively
complex ratios that were known to be prevalent in some cultures and
notothers (Fig. 7). An alternative approach would be to measure rhyth-
mic structuresin corpora of local music and to systematically investi-
gatetheir relationto each group’s prior. Thisis not possible at present
duetolimitationsinautomated rhythm analysis from recorded music*,
butitshould be possibleinthe future. We were similarly opportunistic
intesting arole for language, and amore comprehensive comparison
across amore diverse sample of languages could reveal influences that
were too smallto detect here.

Finally, previous literature suggests that tempo is an important
factor in rhythmic representation®. To explore the role of tempo, we
ran the experiment with a faster tempo in 13 of the 39 groups (in 6 of
the 15 countries). We found that the results for the fast tempo were
qualitatively similar to those for the slower tempo used in the main
experiment, but there were some instances where category weights
changed with tempo (Extended DataFig.2 and Supplementary Fig.1).
This finding is consistent with previous work on tempo dependence
inrhythm perception but suggests that our main conclusions are not
specific to the particular tempo we studied®”***,

Relation to prior work

Experimental efforts to compare aspects of music perception across
cultures have revealed striking differences along with commonali-
ties’*° but have in all previous cases been limited to comparisons of
small numbers of societies. As aresult, the existence of universal per-
ceptual phenomenathat might constrain music, as well as the extent of
cross-cultural variation in perception, has remained unclear. For
instance, across aseries of studies, one Indigenous society (Tsimane’)
was shown to exhibit notable differences in music perception compared
with US residents, along with some similarities®**?**, These studies
have left open the extent to which the particular group studied was
unusual relative to other world cultures. Our present results show that
at least for the rhythm priors studied here, Tsimane’ listeners are not
alone in differing from US listeners—other groups in the study were
equally distinct (Fig. 5a). This result suggests that substantial differ-
ences with Westerners are unlikely to be limited to a small number of
unusual groups.

Our study provides an example of how cross-cultural experi-
ments canbe conducted at arelatively large scale. Our method is well
suited to cross-cultural experiments in that it is largely non-verbal
and simple for participants to understand. It also has the advantage
relative to some other methods of making no prior assumption about
the structures that might be perceptually important. For instance,
small-integer ratios in music have been widely discussed by Western
scholars and musicians for centuries® *°, and it is natural to wonder
whether this emphasis reflects intellectual biases rather than the
nature of perception'®’. However, we found small-integer ratios to
emerge fromthe dataineach participant group. Small-integer ratios
thusindeed appear tobe a prominent feature of the way most humans
perceive music.

Previous attempts to characterize universality in music have
relied on corpus studies that analyse collections of recorded music
fromdifferent societies'*°. Our approachis complementary to such
efforts, inthat we infer mental representations (from an experiment)
rather thandirectly measure cultural artefacts (music performances).
Our method also avoids a weakness of current corpus studies, in
that we donotrequire a Western-trained musical expert to annotate
the results, which probably introduces biases that are difficult to
quantify or control for. Advances in machine perception are likely
to enable corpus studies that automate the transcription process'”’,
butbiases from the training of such algorithms will probably remain
achallenge'®.

Future directions
The cross-cultural differences we observed in rhythm priors raise
the question of their developmental trajectory. The simplicity of our
method should enable cross-cultural experiments in children that
could address this. Previous results have suggested that infants initially
possess undifferentiated sensitivity to rhythms that then narrow over
development dependent on the musical system one is exposed to*.
Accordingly, priors measured in young children of different societies
mightbe more similar thanthosein adults. Onekey question is whether
priors are initially uniform or whether small-integer-ratio modes are
evidentearly on. Such experiments could help reveal the origins of the
small-integer ratio sensitivity that we found in all groups we tested.
The large-scale, cross-cultural nature of our study illustrates the
value of collaboration between science and the humanities, as well
as of international cooperation between research groups”. To inter-
pret our results, it was essential to consult the ethnomusicological
literature and to collaborate closely with ethnomusicologists with
a deep understanding of specific musical cultures. Moreover, the
clarity provided by arelatively large number of participant groups
around the worldis most readily attained by large international teams.
The results here suggest that large-scale multi-culture studies with
other tasks could clarify similar issues of universality and diversity in
other aspects of cognition.

Methods

Procedure

Informed consent. All participants provided informed consent in
accordance with the Ethics Council of the Max Planck Society (pro-
tocols 2017_12 and 2020_11), the Columbia University Institutional
Review Board (protocol IRB-AAAR3726), the University of Western
Ontario Health Science Research Ethics Board (protocol 108477), the
KAIST Institutional Review Board (protocol IRB-KH2017-15), Durham
University (Music Department Ethics Committee, February 2018),
the Bogazici University Social Sciences Human Research Ethics Com-
mittee (protocol SBB-EAK 2017/1) and the Massachusetts Institute of
Technology Committee onthe Use of Humans as Experimental Subjects
(protocol1209005242R006). All participants received compensation
for their involvement, the amount of which was consistent with the
minimum wage regulations of their respective countries. We obtained
verbal consent to publish images of participants and musicians.

Overview of procedure. The experiment measured iterated reproduc-
tion (sometimes referred to as serial reproduction or iterated learn-
ing®®*?) of rhythms. The participants were instructed to synchronize
their finger tapping to a repeating auditory stimulus presented over
headphones. In previous work?® we found that synchronization to
an ongoing rhythm produced similar results to an alternative task in
which participants heard a pattern and then tapped a reproduction
from memory. However, we found empirically that synchronization
was easier to explain to participants and for this reason opted to use
it for this cross-cultural study. They first completed a short training
session (about 10 minutes long) familiarizing them with the apparatus
and task (described below). The main experiment consisted of aseries
of trials, each of which contained five iterations.

On each trial we sampled a random seed uniformly from the
triangular rhythm space, corresponding to a three-interval rhythm
(s1, S5, S3). We then generated a sequence of clicks from the seed by
repeating the three-interval seed pattern ten times. After a few clicks
(typically a bit more than one cycle), participants began to syn-
chronize to the click sequence (‘paced’ tapping). A MATLAB script
(MATLAB 2018a) extracted response onsets from an audio recording
of the participant’s taps (see ‘Onset extraction’ below). We averaged
the inter-response intervals across the ten repetitions, obtaining an
averagethree-interval response (r,, r,, ;). Taps were not always detected
at every stimulus onset, both because participants sometimes failed
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to produceatapinresponse toastimulus click,and because produced
taps were not detected with 100% reliability. We thus allowed some
missing taps within each repeated three-interval pattern but required
theretobe ‘enough’taps to estimate an average response. Specifically,
we required that each of the three stimulus onsets within the pattern
be associated with a tap onset in at least three of the ten repetitions.
To obtain the average response, we replaced missing taps with the
corresponding average onset time for the taps that were detected. We
furtherrequired that the response (r, r,, r;) was not situated far beyond
theregion we defined for human-producible rhythms (defined as not
containing aninterval shorter than 285 ms).

Iftheiteration satisfied these two criteria, we set the seed pattern
for the subsequentiterationtothe response pattern: (s, s,, ;) < (r,, 15,
r;). If theiteration was invalid, the data from that iteration were omit-
ted fromanalysis and the seed remained unchanged. We repeated this
process five times. If there were three invalid iterations within a trial,
thetrial was stopped, and anew trial with anew seed was started (such
failed trials typically were due to arhythmbeing too difficult for a par-
ticipant to reproduce, and this procedure was intended to minimize
a participant’s frustration). For trials with two or fewer invalid itera-
tions, the nth iteration was analysed as the nth iteration even if the
iteration that preceded it was invalid. There was a fixed interval of
approximately 4 s between iterations within a trial and a fixed inter-
val of approximately 9 s between trials (both varied by up to 200 ms
in either direction due to slight variation in computer systems
across sites).

The number of trials that could be runin an experimental session
varied depending on the location and is reported in Supplementary
Table 2. In 13 locations we also performed an additional experiment
with a faster tempo (a pattern duration of 1,000 ms). This additional
experiment was always performed after the main experiment (with a
patternduration of 2,000 ms). The demographicinformation for this
experimentis provided in Supplementary Tables 1and 3.

Apparatus. Data were collected with between one and four com-
puterized stations for each testing location. Each station included a
computer, a Focusrite Scarlett 2i2 USB sound card, two sets of
Sennheiser HD 280 Pro headphones and a tapping sensor (Fig. 2).
This design is identical to that reported in the paper by Jacoby and
McDermott that introduced the experiment paradigm®. Each sen-
sor contained a microphone embedded in sound isolation materials
and covered with a soft cloth to muffle impact sounds as much as
possible. Instructions for constructing the sensor are provided in the
supplementary Open Science Framework (OSF) repository. The micro-
phoneineach sensor was highly sensitive, and light touches generated
bursts of noise that were recorded by the microphone. The sound card
simultaneously recorded the microphone output and the audio stimu-
lus played out by the participant’s headphones, so that the latency of
theresponse recording relative to the stimulus was nearly eliminated
(lessthan1ms). The specification of the hardware and instructions for
building the sensor are provided in the OSF repository associated with
this paper (see ‘Data availability’).

Stimuli. The stimulus on each trial was a rhythmic pattern composed
of short percussive sounds (bursts of white noise) 65 ms long with
an attack time of 5 ms (linear ramp) and decaying gradually over the
remaining 60 ms, with the envelope hand-designed to mimic com-
mon percussion instruments (the decay amplitude decreased expo-
nentially to 10% of the maximum over the first 55 ms, then decayed
exponentially at afaster rate in the next 5 ms and was then truncated).
These patterns contained ten repetitions of a particular three-interval
rhythm. The stimuli were identical to those used in Jacoby and
McDermott*. Software to replicate the experiment and sound mate-
rial can be foundinthe OSF repository associated with this paper (see
‘Data availability’).

Three-interval rhythms. Each stimulus was defined by a pattern of
three intervals (s,, s,, 5;) constrained such that the overall pattern
duration was 2,000 ms: s =s; +s, + 5, =2,000. In addition, to avoid
rhythms that were too fast for humans to reproduce, we constrained
the initial seeds so that the smallest interval was larger than 300 ms
(81, 55, $3>300). We thenrepeated the interval pattern ten times, thereby
formingasequenceof 30 intervals {S},.;.;0 = (S1, S5, S3, S1, S2, 3, Sy, -+, S3)-
Fromthis sequence, we created a sequence of 31 onsets ({0} ..<;0) With
intervals corresponding to S. The 31 onsets (‘clicks’) were defined
withrespect to theinitial onset 0y, 0, = 0g + Y}, ,,sifor1 < £ <30.

Projection to the rhythm triangle. We mapped athree-interval rhythm
with inter-onset intervals (s,, S,, S;) to a point in a triangular rhythm
space spanning all linear combinations of three extremal rhythms:
2 P+ sff’z + %‘fg, where s=s, +s,+s,, and where P; are the vertices of
the triangle (a simplex) (Fig. 1b; see also refs. 9,26). For visualization,

we used an equilateral triangle, with B, = (0,0),P, = (1,0),P; = (é ‘/73)
Note that since the initial seed intervals satisfied the constraint that
(51,55, 83) >300 ms, theinitial seeds were located within aninner trian-

. . . 3,43 3,43 1 V3
gular region with vemces( Ef 7f> , (1 - ;f 7f) , (E’ Sa- 2f) ) where
f=300/2,000 = 0.15 (Fig. 1b, inner region).

Onset extraction. We processed the microphone recording fromeach
trialin non-overlapping windows of 15 s, detecting all samples exceed-
ing arelative threshold of 1.45% of the maximal power of the recorded
waveform in the window. This threshold was slightly more sensitive
than the 2.25% threshold used inJacoby and McDermott*; this change
was made to accommodate a small number of participants (less than
3%) who tended to produce very light taps. In most cases, onsets were
detected withminimal errors (as evaluated by comparing the detected
onsets to what was audible from listening to example trials). We nev-
ertheless took several steps to ensure that the detected onsets corre-
sponded to actual taps. First, we discarded onsets that were too close
to one another (less than 80 ms apart), as humans generally cannot
produce two tapsinsuch close proximity (see Repp®for ajustification of
this threshold). Second, we discarded responses that were too far from
any stimulus click, regarding them as errors. Here we took into account
animportant characteristic of human tapping known as ‘negative mean
asynchrony’—namely, that tappingin time to abeat tends to be biased
compared with the beat onset (typically occurring before the beat)’.
Wefirst matched each onset toits closest stimulus clickand computed
the mean asynchrony m as the average difference between aresponse
andits corresponding stimulus click. We then excluded all events such
that [(Of = m) - 0% > 150 ms where O° and OR are the stimulus and
response onsets, respectively (namely, a window of 300 ms centred
around the perceptual centre defined by the mean asynchrony) from
further analysis. In addition, for the analysis, we included only points
inside the triangle (see below). This resulted in 99,189 of 2,418,284
tapped responses being excluded from the main experiment (4.1%).

Apart from the change in the detection threshold mentioned
above, this procedure was identical to the one reported by Jacoby
and McDermott*. The code for the procedure is provided in the
OSF repository associated with this project.

Procedure for the experimental session. The participants were asked
to position the sensor in a comfortable way (see the OSF repository
for the full instructions). In most cases, participants preferred to sit
on a chair, positioning the sensor on their lap and using their entire
hand or one finger for tapping. However, we allowed for different
postures in different groups. For example, some participants in Mali
preferred to sit on the floor with their legs stretched out in front of
them. Inall cases, the participants were encouraged to change posture
orswitchhandsifthey were fatigued; however, they were not permitted
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to tap with two hands simultaneously or to tap with two alternating
fingers. In cases where participants nevertheless tried to do so, the
experimenter would stop the experiment and repeat the instructions.
The experiment was conducted using a fixed set of steps:

(1) Thefirst step of the experiment was to ask the participant to
tap ‘asteady beat’ at any tempo that they liked. The idea of this
task was to familiarize the participant with the sensor, as well
as to characterize the spontaneous motor tempo of the partici-
pants'®, This task was generally easy for participants, but the
concept of ‘steady beat’ varied slightly across participant groups.
For some participants in Mali and Uruguay, a ‘steady beat’ was a
non-isochronous rhythmic pattern rather than anisochronous
beat. In cases where participants continued to tap a rhythmic
pattern rather than anisochronous beat, the experimenter
repeated the instruction. In some cases, participants did not
change their behaviour according to the repeated instructions
and continued to tap a non-isochronous pattern; in these cases,
we did not stop the experiment again and instead proceeded to
the next step and recorded their performance as is.

(2) The participants were then asked to ‘tap faster’.

(3) Next, the participants were instructed to tap ‘as fast as they
can’ for a couple of seconds. This step aimed to test that the
participant did not have any severe motor constraint that would
limit them in performing the task. After the participant tapped
for about 3-6 s, the experimenter thanked the participant and
stopped their tapping to avoid fatigue.

(4) The next step was to familiarize the participant with the stimu-
lus. The experimenter played a few isochronous clicks with an
inter-stimulus interval (ISI) of 800 ms over the headphones and
asked the participant to report if the sound was too loud or too
soft. The level of the sound was then adjusted until the partici-
pant felt that the sound was at a comfortable level.

(5) The participants were then instructed to tap along to anisoch-
ronous beat (with an ISI of 800 ms). This step could be repeated
multiple times until the experimenter felt that the participant
understood the task and was able to provide a synchronized
response. Note that this was not easy for all participants—for
example, some participants naturally tapped in antiphase
(‘off-beat’; halfway in between the beat). In case of difficulties,
the experimenter would first check that this was not caused by
the participant’s posture, in which case the experimenter would
suggest that the participant change their position to enable
easier tapping. In other cases, the experimenter would demon-
strate synchronous tapping to the participant. These additional
steps allowed nearly all participants to successfully perform
isochronous synchronous tapping. The rare participants who
could not successfully performisochronous tapping in this
setting did not continue to the main experiment.

(6) Wethen performed anisochronous tapping task at the same
rate as in the familiarization phase (ISI =800 ms) in which the
participants tapped to a sequence of 56 clicks lasting 44 s.

(7) We next performed an additional isochronous tapping task at a
faster rate (ISI = 600 ms) with 75 clicks lasting 45 s.

(8) Finally, we performed a tempo-changing tapping task in which
the ISl alternated between 546 and 654 ms every 8-13 clicks
(chosen pseudorandomly), with a total of 74 clicks lasting 45 s
(the exact tapping sequence, identical for all participants, can
be found in the OSF repository).

(9) Inthe next step of the experiment, the participants were told
that they would now tap arhythm. The experimenter empha-
sized that, as before, the participant needed to ‘tap once for
every click that they hear’. The participants were given five trials
of random three-interval rhythms (each with five iterations) to
get them familiarized with the task. The experimenter provided

feedback to the participant only if they were performing the
task in a qualitatively incorrect way, such as tapping on the
off-beats or omitting a beat.

(10) The participants performed 10-30 trials (mean, 22.0; s.d.,
6.6) of the tapping experiment (each containing five itera-
tions, where each iteration contained ten repetitions of the
three-interval pattern, as described above). Due to the long
duration, the participants were informed that they could ask
for ashort break at any time, and the experimenter included
additional breaks at various times during the experiment.

(11) The participants answered a set of demographic questions
(see the OSF repository for the full list) during one of the breaks
and/or at the beginning or end of the experiment.

(12) Insome locations, we performed an additional experiment after
the completion of the main experiment, in which we repeated the
main experiment with an overall pattern duration of 1,000 ms.

Procedures for replicability across sites. Testing stations were cre-
ated by local research team members according to a set of specifi-
cations (see the OSF repository) or created according to the same
specifications by N.J. and sent to teams in different locations. A written
procedure describing the process of hardware preparation, software
installation, task instruction and participant training was delivered to
each group (see the OSF repository for the details). The task instruc-
tions were translated into local languages. The experimenters were
either highly fluentin the local language or accompanied by atransla-
tor who was a native speaker. In most locations, the data collection
team included an anthropologist or an ethnomusicologist with an
expert understanding of the local culture, social groups and music.
To ensure that the same procedures were used across sites, all teams
werewalked through the procedures by N.J., either directly or viavideo
conferencing. Pilot data were collected and analysed at each site, and
N.J.inspected the quality of the databefore the collection of additional
data. Toassist this process, the MATLAB script generated images with
asmall file size (about 150 KB) that summarized the main statistics
of data collection (the validity of the trial, the mean and standard
deviation of tapping asynchrony (indicative of tapping accuracy) and
plots showing the microphonerecordinglevels). The same scriptalso
generated small binary files (about 4 KB) with summaries of the data
(onset times for stimuli and responses). These files were sent to N.J.
via low-bandwidth internet from remote data collection sites, which
assisted in troubleshooting technical and data collection errors.

Testing conditions. Experimentsinthe United States (Boston and New
York City) were run in sound-attenuating booths. Elsewhere, where
possible, the experiments were run indoors in rooms without other
activities (Brazil, Uruguay, the United Kingdom, Sweden, Bulgaria,
Turkey, the Bamako site in Mali, India, South Korea and Japan). When
runoutdoors, the experimenter chose alocation away from community
activities that was relatively free of distractions and noise (Bolivia, the
Sagele site in Mali, Botswana, Namibia and China).

Demographic questionnaires. We employed a demographic question-
naireto characterize musical experience, dance experience and basic
demographic information (age, gender, education and spoken lan-
guages). We used a baseline demographic questionnaire (see the OSF
repository) that was translated and adapted to different languages and
participant groups by the researchers. There was some customization
of the questions based on their relevance to the local culture. In each
location, we consulted with ethnographers and translators regarding
the relevance and translations of each demographicitem.

Online measurement of tapped responses. To run the experiment
online, we used REPP'*, a software package for measuring sensori-
motor synchronization in online experiments that works efficiently
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using hardware and software available to most online participants. To
achieve temporal accuracy superior to that obtained by aweb browser
(whichwould have been inadequate for our experiment'®'%), the soft-
ware plays the audio stimulus through the participant’s laptop speakers
and records the original signal simultaneously with the participant’s
responses (which they supply by tapping on the laptop case) using the
built-in laptop microphone. The resulting recording is then analysed
to extract the participant’s taps. The method has been validated in a
series of calibration and behavioural experiments'®*, and it achieves
high temporal accuracy (latency and jitter within 2 ms on average).
In addition, the method has been shown to provide results that are
consistent withthose obtainedinalaboratory set-up (for example, for
isochronous tapping, the lab-online correlation for the tapping preci-
sion of individual participants was measured tober,, = 0.94; P< 0.001;
95% Cl, (0.85,0.98); see Experiment 2 inref. 104).

Tomeasure stimulus-coordinated tapping by online participants,
we made some modifications to the original paradigm. One set of
differences involved the stimulus. First, because the recorded audio
contains both the stimulus and the response, we filtered the stimulus
with ahigh-passfilter (cut-off frequency of 1,000 Hz) to avoid overlap
with the frequency range typically occupied by tapping responses
(80-500 Hz). Next, we added three custom audio ‘markers’ with known
temporal locations at the beginning and end of each stimulus (six
in total). These markers enabled us to unambiguously identify the
positions of the stimulus onsets in the recorded audio and facilitated
precise measurement of participants’ asynchronies. The markers were
designed toberobustly detected across a variety of hardware and soft-
ware set-ups, including cases of noise-cancellation technologies and
ambient room noise. The marker sounds were generated from 15 ms
bursts of bandpass-filtered white noise in the range of 200-340 Hz,
to which we applied linear ramps at the onset and offset (2 ms long).
We chose very short intervals between the markers (280 ms for the
firstintervaland 230 ms for the second) to avoid participants confus-
ing the markers with the repeated rhythm (the rhythm pulses and
the markers also differed substantially in timbre due to the different
frequency ranges).

A second set of differences involved the response recording.
The online experiments used free-field recording whereby the audio
stimulus is played through the laptop speakers and simultaneously
recorded along with the participant’s tapping response using the
built-in laptop microphone. This returns an audio file where both
the audio stimulus and participant tapping are superimposed. To
separate this recordinginto the different components of the stimulus
and response, we used bandpass filters. Since most of the energy in
the tapping signal occurs at low frequencies, filtering the record-
ing around the tapping range (80-500 Hz) isolated the tapping
response with a high degree of efficacy. We were also able to isolate
the markers by filtering in their frequency range (200-340 Hz). In
addition, we applied afilter in the 100-170 Hz range, the output of
which was used for calibration. Because the markers had no energy
inthisrange, this helped determine the noise level in the recording,
which we used to adaptively set the marker detection thresholds.
This allowed us to reliably estimate the marker locations even with
very noisy or low-quality recordings, as characterize some laptop
models and brands.

The detected stimulus markers were used to estimate and com-
pensate for the latency of the recording and to estimate the jitter in
therecording. This enabled us to monitor the timing accuracy of each
individualtrial, crucial to ensuring that timing accuracy remained high
inalltrials. See Experiment1in Anglada-Tort et al.'** for the full details
of the calibration experiments and their validation.

After the online-specific pre-processing to isolate the tapped
response and compensate for the recording latency, we used the same
pipeline asin the main experiment to align the tap onsets and perform
the tapping analysis.

Online iterated reproduction procedure. To meet the challenges of
online datacollection, such as poor control over participants” hardware
and software and a higher risk of fraudulent responders, we made two
minor changes to theiterated reproduction procedure.

(1) Inthe online version of the experiment, the analysis of the
recording could take a few seconds to complete (for example,
from uploading the audio recording, performing the signal
processing and synthesizing the new stimulus). To avoid unnec-
essary wait times, we did not run consecutive iterated repro-
ductions of the same rhythm seed, as in the laboratory. Instead,
we ran six ‘chains’ of iterated reproductions in parallel. On each
trial of the online experiment, the participants performed a sin-
gle iteration of a chain (that is, tapping to a single ten-repetition
rhythm—either a seed rhythm or the result of the reproduction
from the preceding iteration of the chain). Each trial was ran-
domly assigned to one of the chains that was not used for the
previous trial. Each participant completed all six chains during
an experimental block. In Jacoby and McDermott (Experiment
4)%, we showed that the results of this parallel chain procedure
do not differ substantially from those of the original paradigm,
where the iterations from different chains are not intermixed.

(2) Thechangeintrial order also necessitated a change in the fail-
ing criteria: if participants failed a trial, they repeated the trial
with a maximum of ten possible additional attempts, but these
repeated trials were randomly drawn from the six chains (the
ten allowed failed trials were tallied globally within the block).
In those cases where this limit was exceeded, the experiment
was terminated.

In addition, the following seven modifications were made to
the overall procedure to ensure that the online participants met the
technical requirements for the online experiment and were able to
provide good tapping data consistently throughout the experiment.
The different stepsin this procedure have been extensively piloted and
optimized to ensure high data quality when collecting tapping datain

online settings'**.

(1) First, the participants were instructed that the experiment
could only be performed using the laptop speakers and that
they should unplug any headphones/earphones or disconnect
any wireless devices. They were also instructed to remainin a
quiet environment.

(2) The participants were then asked to set the volume of their
speakers to alevel that was sufficiently high to be detected by
the microphone. A sound meter was used to visually indicate
when the level was appropriate.

(3) After the volume test, the participants completed a short
recording test to detect hardware and software that did not
meet the technical requirements of the experiment, such as
malfunctioning speakers or microphones. The recording test
played a test stimulus with six marker sounds. The markers
were recorded with the laptop’s microphone and analysed using
our signal processing pipeline. During the playback, the parti-
cipants were supposed to remain silent. There were a total of
three such test recording trials, and we provided feedback after
the first trial based on the recording quality: if the markers were
notrecorded (for example, this could occur if the participant
forgot to unplug their headphones), we reminded the partici-
pants that they needed to unplug any headphones. If, despite
these reminders, marker sounds could not be detected in two of
the three trials, the participant was excluded from the experi-
ment. Note that this process also serves as a basic test of task
compliance, as the participants must follow the instructions
(for example, accept the enabling of the microphone in the
browser, unplug any headphones or wireless devices and adjust
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the volume of the computer) to pass the test. Participants who
did not satisfy the technical conditions or who abandoned the
experiment at this stage were excluded (747 of 1,303). This rela-
tively high percentage of participants that did not satisfy the
technical inclusion criteria is consistent with previous online
tapping experiments'**.

(4) Participants who passed the recording test were then directed
to atapping calibration test. Here, the participants were asked
to tap on the surface of their laptops with their index finger to
test whether the microphone could detect their taps, using a
sound meter to visually provide feedback. In cases where
the signal was too low, the participants were asked to tap on
different locations of the laptop or to try to tap harder.

(5) Next, the participants performed a practice phase to acquaint
themselves with the main tapping task. The practice phase
consisted of four trials using the stimulus sampling procedure
of the main experiment (for example, three-interval rhythms
randomly sampled from the triangular simplex with a fixed
duration of 2,000 ms and repeated ten times). In the first
two trials, we provided feedback to the participants based on
their recording quality and tapping performance. We used
the remaining two trials to exclude participants who were still
unable to provide good tapping data, as assessed by failing in
one or more of these two trials. A trial was considered a failure
if we could not detect all marker sounds, or if the detected
markers were displaced relative to each other by more than
15 ms, or if the percentage of detected taps (that is, the number
of detected tapping onsets out of the total number of stimulus
onsets) was less than 50% or more than 200%. Note that none
of these criteria involve participants’ accuracy in replicating
the target rhythm; they only reflect whether the signal could be
correctly recorded and processed, and whether the participants
produced a minimally/maximally acceptable number of tap-
ping responses. An additional 358 participants were excluded
on this basis.

(6) Participants who passed the practice phase were then able to
start the main tapping task, which used the same procedure
described for the in-person experiments except for the modifi-
cations mentioned above.

(7) As mentioned above, a main difference between the in-person
and online experiments was that the latter consisted of shorter
and more flexible experimental sessions. Namely, the experi-
ment was divided in different blocks of six chains per block.
After completing one block, the participants could decide
whether to continue with the next block or to instead end the
experiment. There was a maximum of three blocks per session
(18 chains). The motivation behind this design choice was to
keep online experimental sessions engaging and short, always
allowing the participants to decide whether to complete more
trials or not.

After completing the first block, the participants answered
the same set of demographic questions used in the in-person experi-
ments. We excluded participants who abandoned the experiment
priortoitscompletion or who did not complete the full demographic
questionnaire that we administered at the end of the experiment
(67 additional participants were excluded on this basis). In total,
131 online participants completed the full experiment and were
analysed.

Participants

We tested 39 participant groups spanning five continents and
15 countries (Extended Data Table 1). Overall, we recruited 923
participants (792 were run face-to-face and 131 online) who completed
atotal of 20,287 trials (seeds) and 2,319,095 individual taps.

Criteria for group selection. Participant groups were chosen to pro-
vide a strong test of any potentially universal features of the results.
We included groups from both industrialized and non-industrialized
societies, as well as groups of local musicians from some non-Western
societies (who performed different types of non-Western music). We
also tested groups of musicians and dancers where possible, as these
populations would be expected to have substantial exposure to particu-
lar musical styles. In addition, we tested university studentsinanumber
of countries to assess potential effects of exposure to Western culture,
which we presumed would be correlated with university attendance.
Thegroupstested were also determined in part by practical constraints
(testing time and access to particular populations). Age and gender
could not be fully equalized across groups. For example, Malian pro-
fessional jembe drummers and Uruguayan candombe drummers (the
populations recruited for MA-LM and UY-LM) are both relatively small
groups—less than 50 individuals—composed of highly skilled profes-
sionals, and were predominantly male. In both cases, only one partici-
pantineach group was female. The substantial experience required for
membership inthese groups also resulted in these participants being
older (Mali: mean age, 40.5 years; s.d., 11.9; Uruguay: mean age, 45.5
years;s.d., 12.8). At the other extreme, dancers in the Sagele village in
Mali (MA-DA) were predominantly female.

Sample sizes. We conducted a power analysis using data from US
participants collected for a previous publication®. The approach was
to try to collect enough trials that the test-retest reliability of the
estimated prior for a group was likely to be relatively high (with the
goal of having enough data that the results of the experiment would
be similar in a hypothetical future replication). The test-retest reli-
ability was estimated using the split-half reliability of our previously
collected data following Spearman-Brown correction'”. We simulated
different amounts of data by subsampling the number of trials used
to estimate the prior (resampling without replacement). We found
that 250 trials produced a test-retest reliability greater than 0.8, and
we thus targeted this number for the sample size of each group. In
practice, we often ranmore trials if circumstances permitted (between
261and 948 trials and therefore up to 3.8x the target number of trials;
Supplementary Table 2). The only exceptions were the two groups in
Botswana, for whom we did not reach this recruitment target because
of practical constraints on testing time (170 and 127 trials for the
Sanand Etshagroups, respectively; abbreviated asBO.SAand BO.EA).
However, the post hoc reliability of the data collected for these groups
was not far below our target value (0.75 and 0.67 for BO.SA and BO.EA,
respectively). The post hoc reliabilities of all other groups were high,
meeting or exceeding the predicted value of 0.8 (ranging from 0.8 to
0.96; mean, 0.9;s.d.,0.03).

Definition of group types
Students (ST). We defined students as members of local universities
in either undergraduate or graduate programmes.

Musicians (WM and LM). For brevity, we used the term ‘musicians’ to
describe participants with relatively extensive musical experience,
acknowledging that musicianship is a concept that changes from place
toplace*. Onthe basis of previous work, we defined recruiting criteria
that generalize more broadly for different cultural contexts”: (1) pro-
fessionalism—‘Do you make most or part of your living from music, or
didyouinthepast?’,(2) training—'Did you undergo music training (such
asanapprenticeship or formal study)?’ and (3) public playing—Do you
performinpublic?’ Insomelocations (the United States, Uruguay, the
United Kingdom, Bulgaria, Turkey, Mali and Namibia), all musicians
satisfied all criteria, whilein other locations (Brazil, Sweden, Botswana,
India, Korea and Japan), we also included people who satisfied the
last two criteriabut not the first one. For all participants, we recorded
self-reported years of regularly playing aninstrument or singing, asis
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common in music cognition literature (Supplementary Table 2). We
recruited both musicians who play Western classical music (WM) and
musicians who play a local musical style that is not Western classical
music (LM). We note that for the local musician groups, the nature of
thelocal musical style varied somewhat from group to group; insome
cases (most notably for the US.NY-LM group, who played jazz) the
musical style was one that had spread globally.

Dancers (DA). In Bulgaria, we recruited dancers who were members
of the same professional ensembles from which we recruited the
musician groups. InMali, we recruited group members of alocal recrea-
tional dance association that promotes events featuring traditional
dance and music.

Non-musicians (NM). Non-musicians were people who did not satisfy
any of the inclusion criteria for the other groups. Their self-reported
years of musical experience were substantially less than those of the
musician groupsinall cases (Supplementary Table 2).

Online (OL). Online participants were recruited from Amazon
Mechanical Turk. Their geographical location was determined by
the Amazon qualification system and verified with IP geo-location.
We tested participants from the 3 countries of the 15 from which the
other participant groups were drawn with substantial Mechanical Turk
worker pools (the United States, Brazil and India)'°®.

Recruiting locations

Basic demographicinformation for each participant groupis provided
in Extended Data Table 1. Supplementary Table 2 provides additional
information about each group including the number of languages
spoken, the languages spoken, years of self-reported musical experi-
ence, instruments played and favourite artists or musical genres. We
report demographic variables that we were able to reliably measure,
and we note that these are not the only variables that varied across
groups and that might influence the results. These factors were all
based on self-report questionnaires, except the literacy level within
the group, which was estimated by the experimenters. Here we provide
additional information about each group, ordered according to their
geographical location.

United States: Boston—students and Western classical musicians
(US.BO-ST and US.BO-WM). The Boston student participants were
students from local universities, recruited using the MIT Brain and
Cognitive Sciences Department participant mailing list and through
additional online advertisement. All participants were residents of
the Boston area, a metropolitan region of New England with over
eight millioninhabitants. The musician group was recruited from the
same departmental mailing list as well as via a social media ad
targeting conservatory students from the Boston area. All participants
inthis musician group had formal training in music. Some of them were
professional musicians. Most participants in the musiciangroup played
Western classical music, though some also played other styles such
as pop and jazz. There was some overlap between these groups and
the US participant group in a previous publication®; the groups were
notidentical due to different exclusion criteria in the two studies.

United States: New York City—non-musicians, Western classical
musicians and jazz musicians (US.NY-NM, US.NY-WM and
US.NY-LM). New York participants were recruited by word of mouth,
campus advertisements at Columbia University and online advertise-
ments. The participants were residents of the New York City metro-
politan area, a densely populated region in the United States with
over 18.8 million people. We recruited three groups: non-musicians,
musicians specializing in Western classical music (the WM group) and
jazz musicians (the LM group). Both musician groups were a mix of

music students and professional musicians. All musicians had formal
education and training in music.

Bolivia: Tsimane’—non-musicians (BO.TS-NM). Tsimane’ are an Indig-
enous people of lowland Bolivia, comprising about 19,000 individuals
wholiveinabout130 small villages mostly along river basins (including
the ManiquiRiver), located in the department of Beni (a subdivision of
Bolivia). They subsist mostly on farming, fishing and hunting. Tsimane’
have traditional music, familiarity with which varies across individu-
als. As reported by Riester'”, their traditional songs have character-
istic rhythmic patterns. The most common such pattern reported by
Riester can be written in ratios as 1:1:2. Traditional Tsimane’ musical
culturealso onceincluded shamanic practices with drum playing, but
these practices are nolonger in use'’. The region containing Tsimane’
communities isundergoing rapid modernization due to a push by the
Bolivian government and non-government organizations to provide
servicesto the Indigenous peoples. Radio usage is now fairly common,
and villages near the local town of San Borja tend to have electricity.
During the mid-1950s, Protestant missionaries from the United States
settled permanently along the river Maniqui to proselytize Tsimane’,
setting up the first rural schools for them and teaching them church
hymns™. More recently, evangelism has spread Christianity within and
across many villages. Thus, inaddition to their knowledge of traditional
music, nowadays most Tsimane’ villagers are somewhat familiar with
religious Christian hymns. These hymns are monophonic and sung
in Tsimane’. They are similar to traditional Tsimane” music in rely-
ing on small intervals and a narrow vocal range and are sometimes
accompanied by other instruments played by community members.
Group singing appears to be rare, irrespective of whether the mate-
rial is traditional songs or hymns. For the present study, we recruited
participants in three Tsimane’ villages. Upon arriving at each village,
we used a horn or a bell to initiate a community meeting where we
introduced theresearchers and registered participants for experiment
sessions. Two of the villages (Mara and Moseruna) were a two-day walk
orathree-hour carride fromSanBorja, along aroad that was accessible
only to high-clearance vehicles and motorcycles if recent weather had
been dry. The other village (Yaranda) was located along the Maniqui
River and accessible only by a one-day trip on a motorized canoe. All
three villages have relatively little communal church singing. The
participants had varied musical experience, but none regarded music
asaprofession. None of the participants had formal training in music.
Two participants reported regularly playing an instrument, and 34
participants reported playing an instrument at least once.

Bolivia: San Borja—non-musicians (BO.SB-NM). San Borjais asmall
towninthe Bolivian department of Beniin the Amazon basin with over
20,000 residents. At the time of data collection, San Borja could be
reached by car during dry months of the year but was accessible only
by small planes during much of the rainy season. Participants were
recruited by word of mouth and had resided for most of their life in
SanBorja. The participants had not received formal educationin music.

Bolivia: Santa Cruz de la Sierra—non-musicians (BO.SC-NM).
SantaCruzdelaSierrais the largest city in Bolivia, witha population of
over 1.8 million people. Participants were recruited using an online
advertisement and word of mouth. All participants had beenbornand
raised inthe Boliviandepartment of Santa Cruz, and they resided in the
city at the time of the experiment. The participants had not received
formal educationin music.

Bolivia: La Paz—students and non-musicians (BO.LP-ST and
BO.LP-NM). La Paz is the third-largest city in Bolivia, with a popula-
tion of over 0.9 million people, located in the Andes. We recruited
the student group from local universities. Most student participants
were recruited by a student who was a research assistant. For the
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non-musician group, we recruited blue-collar workers employed by
a hotel and their relatives. These participants were mostly from El
Alto, a city adjacent to La Paz (with a population of about one million
people), and many of them were Indigenous (Aymara or Quechua).
Many participants reported experience with traditional music and
dance in childhood or as adults. The participants had not received
formal education in music.

Brazil—local musicians (BR-LM). We recruited percussionists in the
Recife metropolitan area, a city in Pernambuco, part of Northeast
Brazil. The population of the Recife metropolitan area is over four
million people. The percussionists practice a local style of music that
is part of the Maracatu-nacdo (translation from Portuguese: ‘nation
maracatu’) cultural tradition. This region-specific tradition, usually
perceived as Afro-Brazilian, involves religion, music, song, dance and
elaborate costumes. Its history is disputed but is most often linked to
the colonial coronations of queens and kings among enslaved Africans
inBrazil (inthe sixteenth to nineteenth centuries). However, the earliest
descriptions date only from the beginning of the twentieth century”>',
Themusicis performed by community-based groupsinthe slumsofthe
metropolitan area of Recife termed maracatus-nagdo, approximately
30 of which are currently active. These groups include a costumed
dancegroup and alarge percussionensemble. The groups performin
parades that take place primarily during Carnival. The percussionists
werecruited either grew up within one of these community groups or
had participated in one for at least several years. The participants had
not received formal educationin musicin auniversity or conservatory
butreceived substantial training as described above.

Uruguay—students and local musicians (UY-ST and UY-LM). Parti-
cipants in Uruguay were all recruited in Montevideo, the capital of
Uruguay, with a population of over 1.3 million people. The musicians
were performers of Uruguayan candombe drumming®™, All partici-
pants were born and raised in neighbourhoods with a strong tradition
of candombe drumming and were ‘native players’, having acquired
their competence in the style by direct transmission. The majority of
the participants were outstanding players, regarded as master drum-
mers by the community. Asarule, the participants did not have formal
musical trainingina conservatory or university, although a few of them
had some basic knowledge of music theory and could play instruments
other than the drum (such as keyboards and bass). However, they had
allhad substantial practical training in drumming since childhood. The
participantswererecruited by L.J.and M.R., who arelocal expertsin this
musical style and are familiar with the local musicians. The students
were members of the local university with no formal musical training but
with passive exposure to music, including Uruguayan candombe drum-
ming. They were recruited by two research assistants by word of mouth.

United Kingdom—students and jazz musicians (UK-ST and UK-LM).
Two groups of participants were recruited in North East England and
Scotland, anareaof'the United Kingdom with over eight million people.
Most participants were recruited from Durham, a county in England
with over 500,000 people. The first group consisted of students from
Durham University. The second group consisted of instrumental jazz
musicians, comprising a mix of professional musicians and students
currently studying music at university (the students were recruited from
Durham University and the University of Edinburgh). All participantsin
thisgroup reported that they performjazzin publicand earn money from
performing, and all had formal training in music in a university and/or
conservatory. These participants played arange of instruments (includ-
ing piano, saxophone, guitar, trumpet, drums and double bass), and most
reported performinginarange of different sub-genres and groups, most
commonly bigbands and smaller ensembles (such as trios) playingjazz
standards. Some participantsreported liking or performing musical tra-
ditionsfromother cultures, including Latinand Balkan-influenced music.

Sweden—local musicians (SE-LM). The recruitment of musicians
in Stockholm (the largest metropolitan area in Sweden, with over
2.4 million people) focused on students and teachers of folk music
performance at the Royal College of Music, and on dance students
at the School of Dance and Circus at the Stockholm University of the
Arts, asthelatter also had extensive experience playing music. Among
the latter group, we required the participants’ focus to be Swedish
folk dance. Of the 22 recruited participants from the Stockholm area,
9 considered themselves mainly as dancers and 13 mainly as musi-
cians, and1participantidentified as adancer and musicianto the same
degree. In addition, 72% of the participants reported making money
from performing music or dance, and all but 4 reported performing
in public. Independent of this self-categorization, all participants
asserted that they dance and have experience with either instrumental
or vocal music making.

Bulgaria—local musicians and dancers (BG-LM and BG-DA). The
recruitment of musicians and dancers in Bulgaria focused on mem-
bers of a type of professional folk ensemble that developed once the
country adopted acommunist system of government after the Second
World War™>"¢, These ensembles typically consist of an orchestra of
folk instruments, a women'’s choir and a dance troupe, and they give
stage performances of arranged and newly composed Bulgarian folk
music and elaborately choreographed folk dances. Most performers
in these ensembles have studied folk music performance or choreo-
graphy inthe Bulgarian conservatory system. Some of the dancers who
participatedinthe study belonged to professional or semi-professional
dance troupes that perform Bulgarian folk dances with recorded rather
than live music. We recruited participants in three Bulgarian cities:
Pleven (acity with approximately 90,000 people), Plovdiv (acity with
approximately 343,000 people) and Sofia (the capital of Bulgaria
and the largest metropolitan area, with over 1.2 million people). The
participants were members of the ensembles in these cities and were
contacted with permission from the ensemble directors.

Turkey—students and local musicians (TR-ST and TR-LM). The group
of Turkish student participants was recruited from Istanbul Technical
University Turkish Music State Conservatory and Bogazici University.
Thelstanbulmetropolitan area has over 15.8 million people. The musi-
cian participant group was recruited from the cities of Izmir and Istan-
bulandincluded professional musicians who had studied atinstitutes
or conservatories for traditional Turkish music, such as Istanbul Techni-
cal University Turkish Music State Conservatory. These musicians were
experienced in Turkish folk music or dance through formal training
or extensive practice in groups or ensembles. They had experience
invarious sub-genres of Turkish music, ranging from Aegean to Black
Sea regions, also including Sufi music. The musicians were involved
in ensembles performing traditional, religious, classical or modern
Turkish music, as well as Western music with Eastern influences.

Mali—students, local musicians and dancers (MA-ST, MA-LM and
MA-DA). The group of Malian university students was recruited in the
capital city of Bamako and comprised both BA- and MA-level students
aswellasrecent graduates of the University of Bamako. Bamako is the
capital of Mali and the largest metropolitan area in the country, witha
population of over two million people. Students were recruited by N.D.
by word of mouth. The musician group was also recruited in Bamako.
Theirmain performance work occurred atlocal music and dance events,
primarily wedding celebrations, but they also worked in the national and
international scenes of staged folk dance and percussion music'’. Most
musicians did not have training in music froma university or conserva-
tory butinstead had substantial training via traditional, practice-based
apprenticeships. By contrast, Malian dancers were not active as special-
ized musicians (and did not have formal education in music or dance)
but regularly danced at wedding celebrations in which professional
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musicians performed, and thus were highly familiar with local styles
of music. Only one of the participants reported receiving money from
playing or dancing. R.P. (who has more than 30 years of experience
working with Malian musicians) recruited the musicians with the help
of aresearch assistant. The dancer participants were recruited on the
basis of their membership in alocal dance organizationin the peasant
village of Sagele, approximately 75 km southwest of Bamako. Sagele
has a population of approximately 5,000 people.

Botswana: San—local musicians (BW.SA-LM). The San musician
group wasrecruited in D’Kar, avillage ~-640 km northwest of Gabarone
(the capital of Botswana), with a population of about 1,700 people.
The participants were either members of a local organization that
performed traditional songs and dances of the San culture (primarily
for nearby events or for tourists) or local residents with substantial
musical experience (at least ten years of self-reported musical experi-
ence) but no formal musical training in a university or conservatory.

Botswana: Etsha—local musicians (BW.EA-LM). The second Botswa-
nan group was recruited in Etsha, a group of villages ~320 km north
of D’kar, with a population of about 10,000 people. The participants
were members of two groups who performed traditional songs, or
local residents with substantial musical experience (more than seven
self-reported years of musical experience). The participants came from
two closely related Okavango Deltaregion subcultures: Hambukushu
and Bayei. Although the Hambukushu and Bayei are culturally distinct,
their geographic proximity meansthey are each exposedtoeach other’s
music, with far less exposure to the music of the San. The participants
had no formal musical training from a university or conservatory.

Namibia—non-musicians and local musicians (NM-NM and NM-LM).
Participantsin Namibia were recruited from asmalllocal Damara com-
munity (population~500) in the Spitzkoppe region viaword of mouth
during the week prior to the start of the study. Recruitment and data
collection occurred with help from two local research assistants, who
alsoacted astranslators. The musician group was drawnfrom two active
musical groups, both of whom had extensive experience with tradi-
tional music of the region: a ‘cultural singing group’ (who frequently
practice and perform |ais (old traditional folk songs and dances), in
additionto other styles of performance) and a ‘youth choir’ (who typi-
cally rehearse and perform elob mis, a form of gospel music, sung in
Khoekhoegowab (the local language), English and Afrikaans). Both
groups performatlocal and regional community events (such as wed-
dings, funerals and an annual Damara traditional festival). The singing
group intermittently performs for visiting tourists, and the youth choir
also performs weekly inchurch. Thefirst group typically earns moneyin
exchange for these performances, though most members would notbe
construed as professional performers and did not have formal training
fromauniversity or aconservatory. The non-musician participants were
members of the local community who were not part of either group.
Although almost all participants reported engaging in some form of
singing (for example, joining in at weddings or other community events,
orsimply while listening to the radio), these non-musician participants
did not regularly practice or perform with any group, and many had
limited or no knowledge of old traditional song lyrics and dances.

India—non-musicians and local musicians (IN-NM and IN-LM).
In India, the experiment was conducted at L.L.T. Bombay in the city
of Mumbai (a city with over 20.9 million people). The non-musicians
all worked or studied at .I.T. Bombay and had not had any musical
training or substantial exposure to Indian classical music. We classi-
fied the group as non-musicians rather than students because only
aminority (6 of 15) were students. Most of the musician participants
were professional musicians living in the city, but afew were students at
LLL.T. Bombay. Most of them were trained in the North Indian

(Hindustani) form of art music. Formal training typically involves taking
one-on-one lessons fromateacher (the appointed guru) and perform-
inginpublic concerts. Some of the musician participants were primarily
vocalists but also played an instrument, and about half of them were
tabla (percussion) players who accompanied vocalists in concerts.
Allbut three musicians reported currently playing in public concerts,
and 64% reported at least sometimes receiving money from playing.

South Korea—students, Western classical musicians and local
musicians (KR-ST, KR-WM and KR-LM). The Korean student
participant group was recruited from Chungnam National University
inDaejeon, ametropolitan area containing over 1.4 million people. The
Western musician group consisted of students from the Department
of Music at Chungnam National University. These participants had
been exposed to both Western music and K-pop music viamass media.
The local musician group comprised students studying traditional
Korean instruments in the Department of Korean Music at Jeonbuk
National University located in Jeonju, a metropolitan area containing
over 651,000 people. These participants had trained on Korean tra-
ditional instruments for many years but also had extensive exposure
to both Western and K-pop music.

Japan—students, Western classical musicians and local musi-
cians (JP-ST, JP-WM and JP-LM). In Japan, the student and Western
musician groups were recruited from Keio University Shonan Fujisawa
Campus in Fujisawa, Kanagawa, near Tokyo. Tokyo is the capital of
Japan and the metropolitan area with the largest population (over
37.2 million people). Participants in the student group had no formal
musical training. The Western musician group had formal music train-
ing in Western instruments. The local musician group was recruited
from Tokyo University of the Arts (Japan’s leading music conserva-
tory). They all played at public events, and 73% received money for
playing music. We recruited students studying traditional Japanese
instruments (shamisen, koto, shakuhachior hayashiinstruments from
the noh ensemble) in the Department of Traditional Japanese Music.
These students had to train on these instruments for many years to
qualify for acceptance into the department and can be considered
‘bi-musical™® in that they had extensive exposure to both popular
Western and traditional Japanese musical systems. All Japanese par-
ticipants had extensive passive exposure to both Western music and
Western-influenced Japanese popular music via radio, TV and other
media. All Japanese participants were recruited from Tokyo and its
surrounding cities.

China—non-musicians (CN-NM). Participantsin Chinawere recruited
from a cluster of Dong minority villages in the Guizhou Province in
southwestern China. The Guizhou Province contains approximately
38.5 million people, and the Dong villages each have approximately
500 to 2,000 people. Singing features prominently in many village
activities, but the most famous and distinctive tradition of Dong song
is Dage, or Big Song, recognized by UNESCO in 2009 on their list of
humanity’s Intangible Cultural Heritage. There is wide participation
throughout the villages in learning and performing Dage, a genre of
two-part group polyphonicsinging, occasionally metred, where words
are central and pitch height and contour carefully follow the lyrics'™.
Dageis performed informally within people’shomes and more formally
within the drum-towers found in many villages™. The participants
had no formal musical training from a university or conservatory.

Online participants from the United States, Brazil and India (US-OL,
BR-OL and IN-OL). All online participants were recruited using
Amazon Mechanical Turk. In the online advertisement, we required
the participants to meet the following five criteria: they had to (1) be at
least 18 years old, (2) speak English, (3) use a laptop to complete the
experiment (no desktop computers allowed), (4) use an up-to-date
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Google Chrome browser (due to compatibility with the technology)
and (5) sitin aquiet environment, to ensure that their tapping could be
recorded precisely. To test participants from the United States, India
and Brazil, we used Amazon Mechanical Turk’s qualification system,
which allows researchers to recruit participants registered in each
location. To ensure that the participants were undertaking the experi-
ment from theregistered location, we only included participants whose
registered location matched their IP-based geo-location, which we veri-
fied using the service ipinfo.io. We estimate that the Mechanical Turk
participant poolin the United States has afew thousand unique active
participants per week. InIndia and Brazil, we estimate that the number
of unique active participants is about 500 and 200, respectively.

Analysis

Small-integer ratios. FollowingJacoby and McDermott*, we consid-
ered ‘small-integer-ratio rhythms’ to be those with ratios composed of
theintegers 1,2 and 3 that fell within the rhythm triangle. This results
inthefollowing 22 uniqueratios: Q,, = {1:1:1,1:1:2,1:2:1, 2:1:1,1:2:2, 2:1:2,
2:2:1,1:1:3,1:3:1, 3:1:1, 1:2:3, 2:3:1, 3:1:2, 1:3:2, 2:1:3, 3:2:1, 2:2:3, 2:3:2,
3:2:2,2:3:3,3:2:3, 3:3:2}. We also grouped together categories that are
equivalent under cyclic permutation, resulting in eight categories:
0, =1{111,112,122,113,123, 223, 233,132}.

Kernel density estimates of the prior. The experiment consisted of
anumber of'trials, each of which consisted of iterated reproduction of
arandom seed rhythm. We estimated a participant’s prior using the
datafromthefifth andfinaliteration of eachtrial, having demonstrated
inJacoby and McDermott* that five iterations are sufficient for the
iterative procedure to converge to the prior (Supplementary Figs. 1,2
and 7inJacoby and McDermott; see Supplementary Fig. 2 of this paper
for analyses of convergence in each group)®. Before this analysis, we
excluded points outside the inner triangular region defined earlier that
was intended to correspond to the region of human-producible

rhythms (with vertices ( gf, ‘/;f) , (1 - %f, ‘/;f> , (% \/75(1 -2 ) , where

f=300/2,000). The prior was then estimated by adding together
Gaussian kernels, with mean g; and covariance 2; empirically com-
puted from the repetitions of the rhythm within the fifth iteration
(there were up to ten repetitions depending on the number that the
participant correctly produced during the fifth iteration; for repeti-
tions that had missing taps, the missing tap(s) was replaced by the mean
onset of the successfully produced taps at that stimulus position). Since
this covariance matrix is estimated on the basis of small numbers of
samples, we added a regularization term: ¥/ = 5; +y/, where / is
the identity matrix, and y =15 ms (we slightly increased this value
compared with the y =10 ms of Jacoby and McDermott? since
some participantgroups had lower numbers of correctly reproduced
repetitions). We averaged these kernels (G; (x) ~ N(i;, X)), one per trial)
across all completed trials within a participant group, obtaining a

distribution P(x) = AlIZf’:l G; (x)overthetriangle. For statistical analyses,

we represented these distributions in bins spanning 0.006 in each
dimension of the triangle (that is, 12 ms given the 2,000 ms pattern
duration). To generate high-resolution images for the paper figures,
we used bins of size 0.003 in each dimension. Supplementary Figs.3-9
show high-resolution kernel density estimates for all groups.

Normalizing density compared with uniformdistribution. Asdescribed
above, the random seeds were constrained to have the smallest
interval exceed 15% of the pattern duration (300 ms), corresponding
to a smaller triangular region within the full rhythm triangle. We
defined the uniformdistribution over this smaller region as U. To avoid
working with small numbers, we pointwise-normalized the kernel
density estimate Pwith respect to U—namely, P’(x) = P(x)/U(x). We note
that in all images depicting kernel density estimates, the density was
clipped at a value of 5 (relative to uniform) to preserve the dynamic

range for details at low density values. In the OSF repository associ-
ated with this project, we included images with less clipping (relative
density of 10).

Jensen-Shannon divergence. To compare distances between distri-
butions, we used the Jensen-Shannon divergence. The Jensen-Shannon
divergence of two distributions Pand Qis defined as

ISD(P, Q) = 3Di (M) + 3Dyt (M)

LiC)
QW)

Gaussian mixture model fits. To measure the relative weight of each
categoryinagroup’s prior, we used a Gaussian mixture model in which
the mean of each mixture component was constrained to be close to
a small-integer-ratio rhythm. This constraint aided interpretability
byremovingthe degeneracy inthe correspondence between mixture
components and the modes of the data distribution, guaranteeing
thateach mode was associated with the same category across groups,
while allowing the mixture components to deviate from exactinteger
ratios as dictated by the data. We imposed additional constraints on
the standard Gaussian mixture model fitting procedure of the model to
ensure that the mapping of mixture componentstointeger ratios was
fixed across groups, to avoid artefacts associated with small sample
size and to avoid uninterpretable overlap between the modes.

We define a Gaussian mixture model with category centres {1}, «,
covariance matrices {C}., and weights {w}., (asfollows:

where M = § (P+Q)and Dy, (P,Q) = fP(x) log, ( ) dx.

Wi
Q) = Z,: P o

exp (—5 (=) G0 — )

To fit the model, we used a modified expectation-maximization
algorithm'°. We initialized the algorithm by assigning the mixture
components to the small-integer-ratio rhythms within Q,,. We then
proceeded by alternating between the expectation and maximiza-
tion steps. After each maximization step, we applied the following
additional constraints:

(1) Modeidentity: to guarantee that each mode was associated
with the same category across groups, we required that

Il _”?Hz < %dmin, where p? is the ith category in Q,, and where

d.in is the minimal distance between categories in Q,,. This
constraint permits the modes to deviate substantially from
integer ratios to faithfully represent bias in the data, but not so
much that the correspondence with integer ratios is lost.

(2) Overlap: to avoid overlap between the modes, we required that
the eigenvalues of the covariance matrix A, and A, satisfy the
constraint that |;| < dpp.

(3) Additional constraints on the overlap between the modes: we
alsorequired that A, and A, be limited by A < ﬁ <1-A,where

Aisaconstant. We fixed A =1/5, which intuitively corresponds to
aconstraint on the aspect ratio of the ellipsoid defined by the
covariance matrix.

We applied these constraints after the maximization step. We
applied constraint 1by projecting the y; resulting from maximization
steptothe closest pointin Euclidean distance that satisfied constraint 1.
Similarly, we applied constraints 2and 3 onthe eigenvalues of the covar-
iance matrix by truncating them so they satisfied both constraints:

X, = min (/1,~, %dmm)

A7 = min (max (A, Ay +A75)), (1= AYA'; +1'))
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We then iterated these steps until convergence (using a conver-
gence threshold of 1 x107¢). The result was an estimate of {u;},_, .
{C}i_xand {w} ., - Weemphasize that these constraints do not place
strong limits on the locations of the modes, which are free to exhibit
biases, or onthe category boundaries, which need not be located sym-
metrically between modes. The constraints merely serve to enable us
to label the modes in a consistent way. A Gaussian mixture model fit
in this way to each group’s data explained most of the kernel density
variability (91% on average, ranging from 80.6% to 97.5% depending
onthegroup).

This procedure is different from the one reported in Jacoby and
McDermott*, where we performed anumeric constraint optimization
with the MATLAB fmincon function on the Kullback-Leibler diver-
gence of the kernel density estimate defined by the model and the
kernel density estimate of the data. Other than this difference, we
had similar constraints on the optimization. The 2017 procedure pro-
vided comparable results but was slower than the method used here.
Considering the large amount of data in this project, we considered
the efficient expectation-maximization method to be preferable to
direct optimization.

Gaussian mixture model with 7:2:3 category. In the case of
Malian drummers and dancers, we added additional rhythm
categories at 2:3:7, 7:2:3 and 3:7:2 (Figs. 5 and 7g-i). We denote
this by Q,; = 0Q,,u{2:3:7,7:2:3,3:7:2} and used it instead of Q,, for the
Gaussian mixture model estimate. In all other respects, the analysis
was identical to that in the previous section (Gaussian mixture
model fit with Q,,).

Average category weights. In all cases, we fitted the Gaussian mix-
ture to the categories (Q,,, except for Fig. 7g-i, where we used Q,;).
In some cases, we wanted to display or analyse the results ignor-
ing cyclic permutations of the same category (for example, 2:2:3,
2:3:2 and 3:2:2 would be mapped to the same category 223). We
then computed the Gaussian mixture model fit to Q,, and averaged
the weight across the three permutations. The one exception was
the isochronous rhythm 1:1:1, which has no variants; in this case we
used the original fit of 1:1:1in Q,,. This resulted in eight weights per
group corresponding to the eight categories in Qg (defined above
in ‘Small-integer ratios’). These category weights are reported in
Extended DataFig. 4 and are provided as part of the OSF repository
associated with this publication.

Significant distance between two groups. In this analysis, we evalu-
ated whether two distributions P, and P, associated with two groups
had ssignificantly different kernel density estimates. Since the Jensen—
Shannon divergence is always positive, it deviates from zero when the
kernel density estimates being compared are computed from a finite
sample. We used bootstrapping to estimate whether the distance
between P, and P, was greater than what is expected from this
finite-sampling effect. We created 1,000 simulated split halves of the
trials from each participant group. Fromthese bootstrap samples, we
estimated the 1,000 kernel density estimates associated with the two
splits of each group (we denote them by P{‘l and P{’Z, wherejindexes
the1,000splithalves,and P;*and P}?). We then computed JSD (P/", P{")
(the distance between split halves across groups) and compared it with
JSD (P}, P?)and JSD (P;", P;?). We assessed statistical significance via
a Pvalue from the minimum of the rank order of JSD (P{ngl) within
the two null distributions for JSD (P{",P{’l) and JSD (Pf,Pf). Namely,

to declare that two groups are significantly different, their mean
Jensen-Shannon divergence had to be significant withrespect toboth
within-group Jensen-Shannon divergences. We also computed the
difference inJensen-Shannon divergence:

D~ (5D (P P1%) - 3R 1) + (15D (A1)
-J8D (P, PY))] 12

We report the mean of the difference (mean(D)) as well as the
95% Cls of D.

Discrete mode (‘peakiness’) analysis. We performed three analyses
tosubstantiate the presence of discrete modesin the measured priors.
Inanalysis1, to show that the mass of the estimated density was centred
inasmall part of the space, we computed for each group the 33% of the
bins with the highest kernel density and then computed the sum of the
density in these bins relative to the sum over all bins. This resulted in
numbers ranging between 61.8% and 81.7% (mean 70.1%) over the 39
groups. To obtain a null distribution for this quantity, for each group
we sampled points (equal in number to the total number of trials for
that participant group) randomly on the triangle and estimated the
empirical kernel density estimate for this random distribution. We
then repeated the selection process described above, picking the
33% of the bins with the highest kernel density and computing the
proportion of the summed density in these bins. This analysis showed
that the percentage obtained in this way from the empirical data was
significantly larger than would be expected from the null distribution
computed from uniform sampling.

In analysis 2, we estimated the peak density with respect to a uni-
formdistribution. We identified the binin the kernel density estimate
with the highest density and found that in all 39 groups this bin had
a density that was over five times larger than the density of the same
bin under a uniformdistribution (range, 5.3-13.1; mean, 8.8). We esti-
mated the statistical significance of this ratio using a null distribution
obtained by sampling points from a uniform distribution (using the
same number of points per group) and measuring the peak density
fromtheresulting kernel density estimate. We found that the empirical
peak ratios were significantly larger than would be expected by chance
for all 39 groups (P < 0.001in each case).

Inanalysis 3, we fit a Gaussian mixture model with mixture compo-
nents constrained to be near small-integer ratios (see ‘Gaussian mixture
modelfits’ for the details). This model explained most of the variance
in the kernel density (91% on average, ranging from 80.6% to 97.5%
depending on the group). Explained variance was measured here by
treating the kernel density estimates of both the empirical dataand the
models as vectors and squaring the correlation between the vectors.

Overlap with small-integer ratios. We evaluated overlap with
small-integer ratios using three different analyses (Fig. 4a). First, we
computed the average minimal distance between each fifth-iteration
reproduction (for all participants in a given group) and the closest
small-integer-ratio rhythm: L,(Q,,, p,), where p; are the fifth-iteration
reproductions represented on the rhythm triangle, Q,, is the set of
small-integer ratios involving the numbers 1-3 defined above and L,
is the minimum of the Euclidean distances between the point p;and
each of the 22 points in Q2,,. To show that these distances are signifi-
cantly smaller than would be obtained by chance, we generated a null
distribution by randomly sampling sets of 22 points uniformly from
thetriangle and computing the same mean minimal distance between
the points p;and these randomized sets. We then compared the empiri-
cal distance to the null distribution. We used this first analysis for the
results reported in Fig. 4a on the grounds that it is simple to describe.

Second, we performed an additional control analysis where
instead of sampling the sets of 22 points uniformly, we constrained
themso thateach point fell withinacircle of radius d around theinteger
points, where d is 1/2 of the minimal distance between two points in
Q,,. Thisguaranteed that the null sets were spaced similarly to Q,,. The
results of this alternative analysis were similar to those of the simpler
analysis described above, andin all 39 cases the empirical distance was
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significantly smaller (P < 0.001) than would be expected from the null
distribution, even when Bonferroni correction was applied.

Third, we applied the integerness score reported in Jacoby and
McDermott®. In this analysis, we compared the Jensen-Shannon diver-
gence distance between the empirical kernel density estimate of the
fifth iteration (P) and the normalized indicating function /,,(x)
= % Ywen, 60— ), where §is the Dirac deltafunction onthe triangle.
This Jensen-Shannon divergence is maximal if all probability mass is
located at the small-integer ratios. We initially fitted anunconstrained
Gaussian mixture model with 22 components. We then randomized
the means of the components of this mixture. This simulates aresponse
distribution thatis similarin statistical characteristics to the data, but
thatisnot centred aroundinteger ratios. We obtained a null distribution
by generating1,000 such randomized distributions, each time comput-
ing the Jensen-Shannon divergence with /, , (x). We then compared
the distance of /,,(x) and Pto this null distribution. We found that in
all cases the distance between /, , (x) and P was significantly smaller
(P<0.01) than would be expected by chance.

Bias analysis. Figure 4b displays an analysis testing whether percep-
tual category centres are systematically biased away from the corre-
sponding small-integer ratio. The small grey dots plot the component
means of the fitted Gaussian mixture models for each category and
participant group. We then calculated the empirical means (indicated
withlargerblack dots) of each category across all groups. We applied a
non-parametric test analogous to an analysis of variance to test whether
each category was biased. The test statistic was the ratio of (1) the
average squared Mahalanobis distance between all points and the
empirical mean and (2) the average squared Mahalanobis distance
betweenall points and the corresponding small-integer ratio. We com-
pared this test statistic to its null distribution computed from 10,000
bootstrapped samples where the data were randomly sampled froma
Gaussiandistribution with the same empirical covariance matrix as the
experimental data but with the mean set to the integer ratio category
(thatis, with zero bias).

Nine categories showed small but significant deviations from
unbiased integer ratio categories after Bonferroni correction
(P<0.0012 for all cases; see the blue significance symbols in Fig.
4b: ***P<0.001; *P < 0.01). The biased categories consisted of the
three cyclic permutations of each 0f1:2:3,2:1:3 and 2:2:3 (123/231/312,
213/321/132 and 223/232/322). The bias of the ‘6/8’ categories 1:2:3
and 2:1:3 is consistent with lengthening of short elements in rhythm
performance studied in European musicians*. Itisalso evidentinthe
experimental literature on rhythm perception on Western European
and North American listeners. Fraisse” showed that non-musicians
have a small bias when judging three-interval rhythms, tending to
judge the two shorter intervals as being closer to equal. Repp et al.'
argue that this bias originates from categories near 1:2:3 and 2:1:3
that are slightly shifted away from those integer-ratio rhythms, in
adirection that lengthens the shortest interval (a phenomenon we
also observed, cross-culturally). The results are also consistent with
the observation that the shortest interval of atwo-interval rhythmis
heard as elongated, making the rhythm more similar to isochrony'.
It may also be related to the phenomenon of non-isochronous beat
subdivisionin African and African-American music genres (for exam-
ple, jembe music from Mali and ‘swing’ jazz from the United States),
in which the short interval in short-long rhythms is often markedly

elongated relative toal:2 ratio'.

Multidimensional scaling analysis. To visualize the similarity rela-
tions between the rhythm priors for each participant group, we first
estimated the priors as the kernel density estimate P, from the fifth
iteration of the experiment (aggregated for all participants in each
group; see above; Fig. 5a). We then computed the Jensen-Shannon
divergence between all pairs of groups M;=]SD (P;, P;). We used

MATLAB’s mdscale function with the default parameters to obtain a
two-dimensional space in which the rhythm prior for each group was
positioned so as to best match the measured distances. Note that we
used the distances between the full distributions (thatis, the kernel den-
sity estimates) for the multidimensional scaling analysis (as opposed
to the Gaussian mixture models used in other analyses).

Category weight for the 3:3:2 rhythm. To compute the weight of
the 3:3:2 rhythm for each group, we computed the Gaussian mixture
model weights as explained above for the 22 rhythm categories and
then averaged the weights over the three cyclic permutations of 3:3:2
(3:3:2, 3:2:3 and 2:3:3; Fig. 5b). We obtained error bars via bootstrap-
ping, sampling 1,000 datasets with replacement for each group and
computing the weights of the Gaussian mixture model for each of these
datasets. The error bars plot one standard deviation of the resulting
distribution above and below the mean (that is, the standard error of
the mean). The order of the groupsin the bar graph of Fig. 5bis drawn
fromthe first dimension of the multidimensional scaling analysis, and
itis obvious that this dimension is correlated with the 3:3:2 category
weight (whichincreases nearly monotonically across the first multidi-
mensional scaling dimension).

Analysis of student and online groups. In the first analysis, we com-
puted the average distance (Jensen-Shannon divergence) between
the estimated priors of all pairs of student or online groups in differ-
ent countries and compared it to that of pairs of non-musician and
local musiciangroups (from the same countries as the student/online
groups; Fig. 6a,d). The pairs we considered were within the following
sets of groups:

« Figure 6a: for students, US (Boston)-ST, Bolivia (La Paz)-ST,
Uruguay-ST, UK-ST, Turkey-ST, Mali-ST, S. Korea-ST and Japan-ST;
for non-online groups, US(NYC)-NM, US(NYC)-LM, Bolivia
(La Paz)-NM, Bolivia (San Borja)-NM, Bolivia (Santa Cruz)-NM,
Bolivia (Tsimane)-NM, Uruguay-LM, UK-LM, Turkey-LM,
Mali-LM, S. Korea-LM and Japan-LM.

< Figure 6d: for online groups, US-OL, Brazil-OL and India-OL; for
non-students, US (NYC)-NM, US (NYC)-LM, Brazil-LM, India-NM
and India-LM.

To evaluate the statistical significance of the difference in
distances, we created shuffled datasets where two sets of groups
(onethe samesize asthe student/online set and one the same size asthe
non-student/non-online set) were sampled without replacement from
the union of the student/online and non-student/non-online sets. We
then computed the difference between the average Jensen-Shannon
divergences of these shuffled groups for eachresampling and evaluated
the probability of the actual difference under this null distribution.

Inthe second analysis, we computed the average distance (Jensen-
Shannon divergence) between the US student group (US(Boston)-ST)
and the priors of all other student/online groups (student: Bolivia(La
Paz)-ST, Uruguay-ST, UK-ST, Turkey-ST, Mali-ST, S.Korea-ST and
Japan-ST; online: US-OL, Brazil-OL and India-OL). We compared this
average distance to a null distribution obtained by sampling sets
of non-student/non-online groups of the same size (student: seven
groups; online: three groups) and measuring the average distance of
eachset of groups and the US student group.

To control for the fact that student groups tended to be younger
than other groups, we repeated the above two analyses restricted to
participants younger than40. The group differences in mean age were
not eliminated by this restriction, but they were significantly reduced
(with this restriction, all groups had mean ages between 21 and 33.7
years and could all be considered ‘young’). The statistics reported in
‘Students and online participants resemble US participants’in ‘Results’
use pairwise bootstrapped Jensen-Shannon divergence (see ‘Signifi-
cant distance between two groups’).

Nature Human Behaviour | Volume 8 | May 2024 | 846-877

869


http://www.nature.com/nathumbehav

Article

https://doi.org/10.1038/s41562-023-01800-9

We also performed a control analysis testing for effects of age
by comparing the differences in the kernel densities between young
and old subsets of the online groups. Given that over a third—specifi-
cally, 46%,34%and 39%in the US, Indian and Brazilian groups, respec-
tively— of participants in the online groups were older than 35, we
divided allgroupsinto younger and older subsets using the age of 35as
athreshold. We found that kernel density estimates for the US, Indian
and Brazilian groups were not significantly different (see ‘Students
and online participants resemble US participants’ in ‘Results’). These
results suggest that age does not explain the increased similarity of
student populations.

Word clouds of favourite music. In the demographic questionnaire,
we asked participants tolist their three favourite bands or musical art-
istsand toindicate the genre for each (Fig. 6b,c,e,f). The level of detail
varied somewhat between individuals and groups (for example, some
individuals specified sub-genres such as ‘indie-rock’, whereas others
indicated ‘rock’). Due to site-specific limitations on the experiment ses-
sion duration, this question was asked of only 31 of the 39 groups. Text
entries were verified by searching each entry in the Google Knowledge
Graph Search API (https://developers.google.com/knowledge-graph).
In case of items with incomplete matches, spelling errors were man-
ually corrected. We then analysed the results using single-word
histograms. Some of these histograms are presented as word cloudsin
Fig. 6, with the font size proportional to the frequency of occurrence.
In addition, the most common words for each group are presented in
Supplementary Table 2. This analysis is qualitative but nonetheless
provides concrete evidence for the differences in musical listening
habits between student/online and non-student/non-online groups.

Analysis of specific modes. Figure 7 analyses the prominence of
particular rhythm modes in different participant groups. For each
group, we computed the Gaussian mixture model weights as explained
above for the 22 rhythm categories and then averaged the weights
over the three cyclic permutations of the rhythmin question. We then
examined these weights for participant groups whose local musical
tradition was known to feature the rhythm. We asked whether the
weights were higher than in the remaining participant groups using a
Wilcoxon rank-sum test.

The 2:2:3 and 3:3:2 rhythms had been previously associated with
specific musical traditions. 2:2:3 has been documented in Balkan, Turk-
ishand Botswanan music*~', which often employ metres with a signa-
ture of 7/8. Balkan and Turkish listeners have also been shown to better
discriminate this pattern than US and Canadian participants without
such familiarity*>'*, The 3:3:2 rhythm is similarly ubiquitous across
sub-Saharan Africa®*** and the African diasporas®*~’ in the Americas.
We confirmedits presence in the musical culture of our Malian dancer
participants (Mali-DA, recruited among farmers from Sagele village in
Southern Mali) by recording and analysing a representative corpus of
their musical repertoire. The pieces chosen were ones to which they
frequently danced in the context of wedding celebrations and other
local events. We found that 46% of the recorded excerpts prominently
featured a 3:3:2 pattern, making it one of the most characteristic rhyth-
mic patternsin this repertoire.

The 7:2:3rhythmevidentinthe priors measured from drummersin
Mali (Fig. 7g-i) is popular in West Africa; a slightly denser, five-interval
variant (2:2:3:2:3) constitutes a signature rhythm that isemblematic of
the musical culture area®*, Drumming in Mali is multi-part ensemble
music composed of three basic parts: an improvising lead drum, a
simpleinvariantaccompanimentand a ‘timeline’ part, whose specific
rhythm patterns identify each piece of repertoire’*, The ‘Maraka’ is the
most frequently performed piece in their repertoire'”. One character-
istictimeline pattern for the Maraka consists of three accented events
that are distributed according to a 7:2:3 pattern across a periodicity
composed of 12 metric units (7 + 2 + 3). This patternis often performed

by the timeline player, who alternates during the piece between this
pattern and other variants with similar accents. Additionally, we sub-
stantiated its presence in Malian music as described in ‘Results’. We
used thesame procedure to validate participant responsesin Bulgaria
(2:2:3rhythm).

Violin plots. To generate violin plots (used in Figs. 7and 8 and Extended
DataFig. 8), we used Bastian Bechtold’s Violin Plots for MATLAB pack-
age (https://github.com/bastibe/Violinplot-Matlab, https://doi.
org/10.5281/zenodo.4559847). The open circle plots the median, and
the top and bottom of the grey bar plot the 75th and 25th percentiles.
The violin plots are kernel density estimates of the data distribution.
Whiskers (thinlines) are computed using Tukey’s method'?® and reflect
the range of non-outlier points.

Tapping precision and asynchrony in musicians and non-musicians.
To compare objective precision in our task between musicians and
students/non-musicians, we used Wilcoxon tests (one-sided), again
Bonferroni-corrected (Fig. 8). For the musician groups, we included
both those playing Western music and those playing local musical
styles. The measure used to assess tapping precision was the standard
deviation of the tapping asynchrony (the time difference between a
stimulus click and the corresponding tapped response)’, computed
over all valid tapped responses in the main experiment. We also com-
pared the mean of the tapping asynchrony, again computed over all
valid tapped responses in the main experiment. The negative mean
asynchrony reflects the tendency of taps to occur before the stimulus
(in anticipation of the upcoming stimulus).

Cross sections of priors. To see the structure of the modes of the
priors, we used an alternative visualization. Extended Data Fig. 1 dis-
plays 1D plots of estimated priors from four groups: three that show
elongated modes (BO.TS, IN.OL and UY-ST) and, as acomparison, one
group with more symmetric modes (UY-LM). We also show 2D and 3D
plots of the priors for comparison. The 3D plots were generated with
MATLAB’s surffunction.

Cyclic permutations and an analysis of symmetry. Across the groups
we tested, the response distributions were typically fairly symmetric
across cyclic permutations (Fig. 3 and Extended Data Fig. 3). For exam-
ple, the modes at1:1:2,1:2:1and 2:1:1 have about the same weight for a
given participant group. To quantify this symmetry, we compared the
percentage of responses in the final iterations that are in each of the
three possible cyclic permutations, which can be identified by whether
thelongestintervalisin thefirst, second or third position, defined rela-
tive to the beginning of the stimulus (Extended Data Fig. 3a).

As is evident in Extended Data Fig. 3b, the deviations from per-
fect symmetry were relatively modest (perfect symmetry would yield
33.3% of tapped responses in each third of the space; actual propor-
tions ranged from 24.3% to 43.6%; the standard deviation of the dif-
ference from 33.3% was 3.2%). However, these deviations appeared
tobenon-random, with atendency for more weight on permutations
in which the third interval is the longest (red region). Previous litera-
ture® *in fact predicts that the most frequently occurring permuta-
tions would be those where the longinterval occurs atthe end, because
if this configurationis played cyclically, the longinterval provides a gap
that helps the pattern group according to Gestalt principles®. This was
the casein 310f39 groups (those for which the green areain Extended
Data Fig. 3b extends beyond the horizontal line; this number is much
greater thanwould be expected by chance, P< 0.001viaabinomial test;
the mean percentage of long-interval-at-the-end patterns was 36%;
Cohen’sd=0.73;95%Cl, (34.7%,36.5%)). We also found thatin33 of the
39 groups (again much greater than expected by chance, P< 0.001 via
abinomialtest), the majority of the first taps withinablock occur right
after the longinterval (the mean percentage across groups of tapping
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after thelongintervalwas 47%; 95% Cl, (43.6%,50.7%); Cohen’sd =1.2).
This suggests that most participants in most groups tend to perceive
the onset after the long interval as the ‘beginning’ of the pattern and
align their first response to it.

What can explain the overall tendency towards symmetry? In
principle, the symmetry could reflect the fact that the beginning of a
repeating cycleis ambiguousif participantsignore or forget the initial
interval.Inan earlier paper®, we tested whether this ambiguity under-
lies the symmetry evident in the response distributions. Specifically,
we performed an experiment in which the first click of the repeating
stimulus was given a7 dB level increment to render the permutations
distinct. The results (Supplementary Fig. 5in that paper) indicated that
the symmetry of the response distribution was largely maintained,
suggesting that perceptual ambiguity is not the only reason for sym-
metry in the prior.

Another possibility is that the perception of simple periodic
rhythms is influenced by grouping multi-stability, whereby the same
stimulus rhythm canbe perceived in different sequential arrangements
giventhatstarting points are subjective and may be interchangeable to
some degree”°, For instance, a listener might hear the first element
ofastimulus as an ‘upbeat’ (anacrusis) preparing the second element
to represent the perceptual beginning®®. Under this interpretation,
cyclic permutations of an interval pattern have different beginnings
but would otherwise be perceptually similar.

Category weights. Categorization weights were computed for each
group for the seven category types (Extended Data Fig. 4). As part of
the OSF repository, we have provided the raw data for these category
estimates.

Multidimensional scaling and category weights. We computed
the correlation between projections of the priors onto the multi-
dimensional scaling dimensions and each of the category weights for
eachgroup, averaged across cyclic permutations (Extended Data Fig.
5). The multidimensional scaling projections and Gaussian mixture
model weights were computed as described above. The correlation
was computed across the 39 groups. The Cls were obtained using the
RIN method™".

Principal component analysis. In Fig. 3, we used multidimensional
scaling to perform dimensionality reduction, computing the Jensen-
Shannondivergences between the kernel density estimates of all pairs
of groups. Asanalternative, we performed an analogous analysis using
principal component analysis (Extended Data Fig. 6). We treated the
triangle images generated from the kernel density estimates as large
feature vectors, where each pixel is a feature (using kernels with a
resolution of 12 ms—thatis, 0.006x the pattern duration of 2,000 ms).
We computed the principal components of these vectors across 39
groups. The projections of the 39 groups’ priors onto the first two
principal components showed a structure very similar to what we
obtained with multidimensional scaling (Extended Data Fig. 6a). For
example, it is apparent that student groups were again centred in
the middle. As with multidimensional scaling, the projection of each
group’s estimated prior onto the first principal component was posi-
tively correlated with the 2:3:3 category (r;; = 0.94; P< 0.0001; 95%Cl,
(0.89,0.97)) and negatively correlated with the simpler categories (1:1:1:
ry;=—0.44; P=0.04;95%Cl, (-0.66,-0.14);1:1:2: r;, = -0.59; P< 0.001;
95%Cl, (-0.76,-0.33),1:2:2: r;,=-0.70; P< 0.001; 95% Cl, (-0.83,-0.49);
Extended DataFig. 6¢). The projection onto the second principal com-
ponentwas correlated with 6/8 rhythms (1:3:2: r;, = 0.66; P < 0.001; 95%
Cl, (0.44, 0.81); 1:2:3: r;; = 0.74; P< 0.001; 95% ClI, (0.56, 0.86)) as well
as the 1:1:2 rhythm (r5; = -0.63; P< 0.001; 95% CI, (-0.79, -0.4)). The
Cls were obtained using the RIN method™". The components can also
be visualized (Extended Data Fig. 6b), revealing that their minima and
maxima overlap with small-integer-ratio categories. The consistency

between the different dimensionality reduction methods indicates
the robustness of the results. The raw data for the category fitting and
category weight for each group are also provided in the OSF repository
associated with this publication.

Category predictions from rhythm priors. In this analysis (Extended
DataFig.7), weused human psychophysical data previously obtained
and published by Desain and Honing’ (the data were available on a
website: https://www.mcg.uva.nl/index.html). Intheir experiment, 29
Westernmusicians heard one of 66 rhythms (an equally spaced array of
points on the rhythm triangle) and used notation software to specify
the rhythm that they heard. Because this experiment used Western
musical notation, it was possible only in Western musicians. The 29
participants were highly trained professional musicians and advanced
conservatory students from Dutch conservatories and from the Kyoto
City University of the ArtsinJapan. They had received between 7 and 17
years of musical training and were paid for their participation.

When the datawere pooled across participants, there were 133 dif-
ferentresponsesintotal. Eachresponse canbe expressedinratio form.
For instance, the most common response was 1:1:1, and the second
most common response was 1:2:1. The results of the experiment were
summarized asaset of regions associated with each musically notated
rhythm as the most frequent category choice (Extended Data Fig. 7a,
whichwasour reproduction of Fig. 11from the Desain and Honing paper
using the datawe downloaded). To obtain this figure, we followed the
two steps below:

(1) Foreachofthe133responses, we created a kernel density plot
representing the interpolated probability of this response at each
point on the rhythm triangle. We used a kernel width of 0.03.

(2) Wefound the response with the largest interpolated weight at
each point on the triangle.

Theresulting figure contains 17 distinct rhythm categories spread
over therhythm triangle.

We generated analogous regions for the model’s categorization
judgements using each group’s prior (Extended DataFig. 7b). We used
the Gaussian mixture model that we previously fitted to the tapping
data (see ‘Gaussian mixture modelfits’). This model is defined by three
parameters: category centres {i;},.; », covariancematrices {C}., ,,and
weights {w}.., ,,, whichapproximate the priors from the tapping data:

22

Q) =2 _W

exp (—%(x 1) M- ﬂ;))

i=1 2T |Ck|

The model selected the category whose corresponding mixture
component had the highest value at each pointin the triangle. But on
thebasis of empirical findings that human categorical judgements are
best predicted by anonlinear transform of the underlying probability
distribution™*"*, we used mixture weights that depended exponen-
tially on the prior weights:

o
Ui =
2/ |Gl

exp (— 30— ) Gl e - )

where y >1is a parameter that prioritizes high-probability catego-
ries. We selected the value of y as that which maximized the match
between the human category judgements and those predicted by the
prior estimated from the New York Western musician group (US.
NY-WM), yielding y = 7. We then omitted the US.NY-WM group from
the subsequent analysis to avoid non-independence. Additionally,
we found empirically that the category 1:1:1 was overrepresented in
the human categorization judgements relative to those of the model.
We note that this category is unique in that all three cyclic permuta-
tions correspond to the same point on the rhythm triangle, which
might cause participants to choose it more than other categories.
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To accommodate this effect, we increased the weight w; on the 1:1:1
category by a factor of three. However, the cross-cultural differences
shown in Extended Data Fig. 7 were not dependent on this choice (we
observed significant differences in the match of Western groups com-
pared with the two non-Western groups in both cases—the matches
were just overall worse without the overweighting).

We quantitatively assessed the match between the categories
predicted by agroup’s prior and those measured in Western musicians
astheaverage distance between the two predicted categories. Specifi-
cally, for every sampled point on the rhythm triangle, we compared
the model prediction with the top category selected by participantsin
the Desain and Honing experiment, and we measured the L, distance
in the three-dimensional space of the three intervals in the rhythm,
expressed as ratios (proportions of the total pattern duration). For
instance, if the participants selected the category[0.5,0.25,0.25] and
the model predicted [0.5, 0.2, 0.3], then the distance was [|(0, —0.05,
0.05)||. We then averaged this distance for each rhythm in the experi-
ment (that s, every sampled point on the rhythm triangle) to yield an
overall measure of the match between the model’s predictions and
Western musician category judgements (plotted in Extended Data
Fig.7c). To compare the accuracy of this match across sets of groups, we
used a Wilcoxon rank-sum test. We used three sets of groups, defined
as follows: Western participants (US.BO-ST, US.BO-WM, US.NY-NM,
US.NY-WM, BO.LP-ST, UY-ST, UK-ST, TK-ST, MA-ST, KR-ST, KR-WM,
JP-ST, JP-WM and US-OL), non-Western non-musicians (BO.LP-NM,
BO.SB-NM, BO.SC-NM, BO.TS-NM, NA-NM, IN-NM, CN-NM, BR-OL and
IN-OL) and non-Western musician and dancers (BR-LM, UY-LM, SE-LM,
BG-LM, BG-DA, TK-LM, MA-LM, MA-DA, BW.SA-LM, BW.EA-LM, NA-LM,
IN-LM, KR-LM and JP-LM). We excluded jazz musicians in the United
States and the United Kingdom as there was not a natural hypothesis
regarding how their priors would predict the categories of Western
classical musicians.

Validation of musicianship. To compare self-reported years of musi-
calexperience between musician and non-musician groups (Extended
DataFig. 8), we used Wilcoxon tests (one-sided), applying Bonferroni
correction for multiple comparisons.

Influence of language and musicianship. In this analysis, we evalu-
ated whether two groups that spoke the same or different languages
(or that differed in musicianship) had significantly different kernel
density estimates (Extended Data Fig. 9). We used the procedure
describedin ‘Significant distance between two groups’ (bootstrapped
Jensen-Shannon divergence).

Transmission error. Transmission error is the magnitude of the
difference between the stimulus and response seedsineachiteration.
Itisusedinthe serial reproductionliterature to monitor convergence
dynamics™*'*, As an error measure, we computed the average

acrosstrialsof e = \/(s1 —1) +(s, — 1) +(s; —r3)>, where (s, 5,,5;) and
(r,, r,, ;) are the stimulus intervals and average response intervals of
each iteration, respectively (that is, the response is averaged across
the ten repetitions within each iteration). In our previous work, we
showed that convergence occurred after about five iterations for both
Tsimane’ and US participants. Here we show similar dynamics for all
groups (Supplementary Fig. 2).

High-resolution prior visualizations. In Supplementary Figs.3-9, we
provide higher-resolution images for the measured priors presented
inFig.3b and Extended DataFig. 2.

Fast-tempo experiment
Procedure. When experimental conditions allowed for longer sessions,
werananadditional experiment to explore whether the results would

besimilarat other tempos. The experiment was always runlast, and was
identical to the main experiment except that the pattern duration was
1,000 ms. The other experimental constants (for example, the fastest
allowed interval) were scaled accordingly (the experiment wasidentical
to the fast-tempo experiment inJacoby and McDermott*, experiment
S2,shownin Supplementary Fig. 3 of that paper).

Participants. A total of 293 participants from 13 groups (6 countries)
participated in the fast-tempo experiment. These participants per-
formed 7,587 trials (seeds) with 911,564 taps. The demographicinfor-
mation for these participants is summarized in Supplementary Table 1.

Analysis of results. The kernel density estimates of the 13 groups are
providedin Extended Data Fig. 2. We provide the raw data of the experi-
mentin the OSF repository associated with this publication.

Overall, theresults at the faster tempo were similar to those at the
slower tempo. All 13 groups who performed the fast-tempo experi-
ment produced priors that were closer to integer ratios than would
be obtained by chance (P < 0.001in all cases), even with Bonferroni
correction.

Supplementary Fig. 1shows an analysis of the weights of the modes
inthe 13 groups. The weights of the 22 categories were correlated across
the two tempos (r=0.35-0.72 for each of the 13 groups; P=0.0001-
0.05; mean r=0.57; s.d. = 0.1). As expected from previous literature,
there were also some subtle differences between the category weights
for the two tempos (Supplementary Fig. 1). Three of the four largest
effect sizes were found in dancers (Bulgarian dancers: effect size of
5.5—more weight on category 2:2:3 in the fast tempo; Malian dancers:
effectsize of 5.6—more weight on1:2:3 in the fast tempo; Malian danc-
ers: effect size of 4.9—decreased weight on 3:3:2 in the fast tempo).
These tempo-dependent effectsin dancers are consistent withtheidea
that dancers have an increased sensitivity to tempo and to embodied
aspects of music*'”, For instance, Bulgarian dancers showed much
more weight on 2:2:3 at the faster tempo. Bulgarian folklorists have
longrecognized tempo as animportant factor in metrical patterns that
featurea2:2:3ratio, such that the metric durations are considered fun-
damentally unequal only when performed at fast tempos™*'*. Thisidea
wasalsoreflected in one of the interviews we conducted with the musi-
cians after the experiment. When we asked one participant whether she
recognized the 2:2:3 pattern with a period of 2,000 ms, she identified
itastherhythmof a Bulgarian dance type called riichenitsa, but slower
than usual. The effect of tempo in Malian dancers’ 1:2:3 category is
similarly consistent with the findings of Polak et al.”, who showed that
reproductions of short-long patterns in two-interval rhythms (the
first part of the1:2:3 pattern) strongly vary with tempo. This patternis
characteristic of the three most common Malianjembe musical pieces:
Maraka, Suku and Manjanin, which are typically performed at a very
fast tempo (100-200 beats per minute)'*.

Asthetempoincreases, one might expect to see effects related to
whether the temporal intervals in a rhythm are readily producible by
humans’®. We did not see clear evidence for this at the 1,000 ms tempo
(specifically, the rhythms with the shortest intervals—123 and 132—did
not have significantly lower category weights for 1,000 ms than for
2,000 ms, as evaluated with a binomial test), though there were some
trendsinthis direction. It seems likely that for sufficiently fast tempos,
and withenough data, such effects would be detectable.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Therawdataforall groups, the instructions for running the paradigm
and the data plotted in each figure are provided in the OSF repository
associated with the paper: https://osf.io/6zd4v/ (ref.140).
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Code availability

The code for running the experiment and for performing all analyses,
including those to generate all results graphs, is provided in the OSF
repository associated with the paper: https://osf.io/6zd4v/ (ref.140).
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Extended Data Fig. 1| Alternative prior visualizations. Although some groups
exhibited modes that were elongated more in some directions than others, all
had clear peaks. The figure displays 2D and 3D plots of estimated priors from
three groups that showed elongated modes (BO.TS, IN.OL, UY-ST),and asa
comparison, one group with less elongated modes (UY-LM). For each group we
draw two cross sections of an example mode from each group (shownin green
andblue). a, Tsimane’ Non-Musicians. b, Uruguay-Students. ¢, India-Online.

d, Brazil-Local Musicians. The cross sections show that the modes can be wider in
onedirection than the other, and also that the peaks fall on small-integer ratios.
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Inthe case of the Tsimane’ group, the mode elongation may be related to musical
phrase elongation described in an early ethnographic study of Tsimane’ music.
According to Riester (1975), free ‘fermata’ breaks usually occur near the end of
phrases in Tsimane’ music. Example 104 in Riester’s 1975 treatise shows a break
occurring after along note preceded by a1:1:2 pattern. This break produces a
patterninthe direction of 1:1:3 (elongation of the longest tone), consistent with
the elongation of 1:1:2 mode in this direction. This example provides additional
evidence that the details of the priors revealed by our experiments relate to local
music traditions (see also Fig. 7).
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Extended Data Fig. 2| Results of the fast tempo experiment. a, Estimated
priors for the13 groups that performed an additional version of the experiment
with a faster stimulus tempo (overall pattern duration of 1000 ms compared
with 2000 ms in the main experiment). b, Average distance from nearest integer
ratio rhythm, for each participant group. This measure is small for a prior
withallits mass atinteger ratio rhythms. Shaded region at top plots mean and

95% confidence intervals of a null distribution of the average distance from
randomly selected points. Asterisks mark statistical significance after Bonferroni
correction for multiple comparisons (***: p<0.001). All groups have more
probability mass concentrated closer to integer ratio rhythms than would be
expected by chance.
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(green, purple, and red, respectively). The prior shown here for illustration each ofthe sections.
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Extended Data Fig. 4 | Category weights for all 39 groups. Category weights were obtained from fitting a constrained Gaussian mixture model to the data; error bars
reflect standard deviation of the weight estimate derived from 1000 bootstrap samples (see methods).
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Extended Data Fig. 5| Correlations between multidimensional scaling
dimensions and rhythm category weights. a, The correlation between the
weights given to each of a subset of small-integer-ratio rhythms in a Gaussian
mixture model fitted to the prior, and the position along the first (horizontal)
multidimensional scaling dimension (from the analysis of Fig. 5a). Dimension 1is
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highly correlated with the strength of category 3:3:2. Asterisks denote statistical
significance of the correlations, after Bonferroni correction for multiple
comparisons (***: p<0.001; **: p < 0.01; *: p < 0.05). Error bars plot one standard
deviation. b, Same as b. but for the second (vertical) multidimensional scaling
dimension, whichis significantly correlated with categories 1:2:3 and 1:3:2.

Nature Human Behaviour


http://www.nature.com/nathumbehav

Article

https://doi.org/10.1038/s41562-023-01800-9

Correlation (r)

PCA
30 | | | | | | | | |
@ Sweden-LM
20— =
-LM

—~ . O dezw @ Botswana(Etsha)-LM
N L=l @ S.Korea-WM @ US(NYC)-LM
O Japan-ST @ Mali-ST
Q Japan-WM ~ @ UK-ST °

108 @ S .Korea-LM : UK-LM N
c -W
8 @ India-NM . . @ US(NYC)-WM
S Bolivia(Tsimane)-NM @ @ Buigaria-DA  USBOSOVBL vy nm
a 9 (NYC)
IS ® Us(Boston)-W

- US(Boston)-WM
8 o7 Bolivia(La Paz)—ST: B Botswana(San)}-LM @ g ;0 0vi i
= Bolivia(La Paz)-NM e @ Turkey-LM quay
o Bolivia(Santa Cruz-NM® g @ Namibia-NM
2 S.Korea-ST @ India-LM
S 00— Turkey-ST @ @ Namibia-LM ©® Mali-LM N
he]
c
Q
®
@D 20— : i @ Brazil-LM =
) @ Bolivia(San Borja)-NM
c
o
g @ Non-musicians — NM
5 80— @ Musicians (Westemn) — WM -
2 @ Musicians (Local) — LM
Dg_ @ Dancers - DA
® China-NM @ Students (Non-musicians) — ST
40 — .
50 I I I I I I I L g
50 40 -30 20 -10 0 20 30 40 50

Projection onto first principal component (PC1)

PC1

0.65
0.6
0.55
05
0.45
0.4
0.35
03
0.25
0.2

0.15

Correlation with PC1

' ' *kk
(<0.001)

(<0.001)

*HRX oo
*k%k

1 . . . . .
1:1:1 1:1:2 2:2:1 1:1:3 1:2:3 2:2:3 3:3:2 1:3:2

Rhythm Categories

Extended Data Fig. 6 | Principal component analysis alternative to the
Multidimensional Scaling analysis of Fig. 4. a, Projection of each group’s prior
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categories. ¢, Correlation of the PCA projections and GMM category weights
(analogous to Extended Data Fig. 5 but for PCA). Asterisks mark statistical
significance after Bonferroni correction for multiple comparisons (***: p<0.001;
**:p<0.01;* p<0.05). Error bars plot one standard deviation.
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Extended Data Fig. 7| Rhythm categorization. We simulated categorization
judgments with a Bayesian model using the estimated priors from each group,
and compared the results to categorization judgments of rhythms at different
points within the rhythm triangle by Western musicians, previously obtained by
Desain and Honing’. In the original experiment, the musician participants heard
arhythmand chose one of 17 category choices, each defined by musical notation.
a, Theresults of the experiment are summarized as a set of regions that are
associated with each musically notated rhythm (as the most frequent category
choice). Humanresults are replotted from the data of Desain and Honing.

b, Analogous regions for the model categorization judgments using each group’s
prior. ¢, Average distance between the categories predicted by a group’s prior
and those measured in Western musicians. For every sampled pointon the
rhythm triangle, we compared the model prediction with the category most
frequently selected by human participants in the Desain and Honing experiment,
and measured the distance measured in the three-dimensional space of the three

on-western
& Non-musicians (n=9)

MA-DA

intervalsin the rhythm, expressed as ratios (proportions of the total pattern
duration). We then averaged this distance for each rhythm in the experiment
(thatis, every sampled point on the rhythm triangle) to yield an overall measure
ofthe match between the model’s predictions and Western musician category
judgments. We pooled participants into three sets of groups, defined as follows:
Western participants (US.BO-ST, US.BO-WM, US.NY-NM, US.NY-WM, BO.LP-
ST,UY-ST,UK-ST, TK-ST, MA-ST, KR-ST, KR-WM, JP-ST, JP-WM, US-OL), non-Western
non-musicians (BO.LP-NM,BO.SB-NM,BO.SC-NM,BO.TS-NM, NA-NM, IN-NM,
CN-NM, BR-OL, IN-OL) and non-Western musician and dancers (BR-LM,UY-LM,
SE-LM, BG-LM, BG-DA, TK-LM, MA-LM, MA-DA, BW.SA-LM, BW.EA-LM, NA-LM,
IN-LM, KR-LM, JP-LM). We excluded jazz musicians in the US and UK as there was
not a natural hypothesis regarding how their priors would predict the categories
of Western classical musicians. Asterisks denote significance of a one-sided
Wilcoxon rank-sum test (**: p<0.01; *: p<0.05).
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a Musical experience of all groups

b Self-reported experience in musicians and non-musicians
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Extended Data Fig. 8 | Musical experience in musicians and non-musicians.
a, Average self-reported years of musical experience for each participant group.
Both traditional and Western musicians self-reported significantly more years
of experience than other participant groups. In the violin plots, the open circle
plots the median, and the top and bottom of the gray bar plot the 75" and 25™

percentiles. We plotted significant comparisons with a threshold of p<0.001
(one-sided Wilcoxon test, corrected for multiple comparisons with Bonferroni
correction). b, Scatter plot of self-reported years of musical experience for
musician and non-musician groups from the same country. Each point represents
apair of non-musicians (x-axis) and musicians (y-axis) groups.
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Extended Data Fig. 9 | Comparison of rhythm priorsin groups speaking
different languages or with differing degrees of musical expertise.

a-c, Groups speaking the same language that exhibit different priors. Graphs
plot weights of different rhythm categories in a Gaussian mixture model fit to the
data of each group (see section on Gaussian mixture model fits in the Methods).
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samples (see methods). d-f, Groups speaking different languages that exhibit
similar priors. The comparison of these groups also provides an example where
priors can be similar between musicians and non-musicians if the music they
consume is plausibly similar (compare the student non-musicians to the
Western musicians). Same plotting conventions asin a-c.

Error bars plot standard deviation of the estimates derived from 1000 bootstrap
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Extended Data Table 1| Demographic information

Group Name Group Type Continent Country City/Cities N Females Ages
abbreviation

1 US (BOSTON)-ST US.BO ST North America USA Boston 15 8 18-37 (mean = 25.93 std= 6.55)
2 US (BOSTON)-WM US.BO WM North America USA Boston 14 8 19-61 (mean = 29.36 std= 11.28)
3 US (NYC)-NM US.NY NM North America USA NYC 26 15 18-61 (mean = 38.77 std= 13.00)
4 US (NYC)-WM US.NY WM North America USA NYC 27 15 18-64 (mean = 30.70 std= 11.11)
5 US (NYC)-LM US.NY LM North America USA NYC 36 4 18-64 (mean = 36.56 std= 13.40)
6 Brazil BR LM South America Brazil Recife 15 7 16-40 (mean = 28.13 std= 7.85)
7 Bolivia (La Paz)-ST BO.LP ST South America Bolivia La Paz 13 7 21-31 (mean = 25.31 std= 2.78)
8 Bolivia (La Paz) -NM BO.LP NM South America Bolivia La Paz 12 10 18-58 (mean = 34.83 std= 11.50)

Bolivia (San Borja)- NM South America
9 NM BO.SB Bolivia San Borja 17 13 16-51 (mean = 29.53 std=10.12)

Bolivia (Santa Cruz)- BO.SC NM South America Bolivia Santa Cruz 17 7 17-45 (mean = 27.29 std=7.24)
10 NM

Bolivia (Tsimane’) - NM South America
11 NM BO.TS Bolivia Tsimane’ villages 39 8 16-49 (mean = 28.33 std= 9.83)
12 Uruguay-ST )% ST South America Uruguay Montevideo 27 14 21-32 (mean = 24.56 std= 2.64)
13 Uruguay-LM Uy LM South America Uruguay Montevideo 31 1 18-74 (mean = 45.48 std= 12.83)
14 UK-ST UK ST Europe UK Durham 24 19 20-36 (mean = 24.00 std= 3.87)

LM Europe Durham/ Newcastle/

15 UK-LM UK UK Edinburgh 29 2 19-59 (mean = 29.90 std= 13.05)
16 Sweden-LM SE LM Europe Sweden Stockholm 22 11 19-64 (mean = 34.45 std= 14.44)
17 Bulgaria-LM BG LM Europe Bulgaria Pleven/Plovdiv/Sofia 23 3 20-59 (mean = 41.48 std= 10.51)
18 Bulgaria -DA BG DA Europe Bulgaria Pleven/Plovdiv/Sofia 27 12 19-53 (mean = 33.63 std= 9.08)
19 Turkey-ST TR ST Europe Turkey Istanbul 27 18 18-28 (mean = 20.67 std= 2.09)
20 Turkey-LM TR LM Europe Turkey Istanbul/ Izmir 24 7 22-44 (mean = 31.75 std= 6.19)
21 Mali-ST ML ST Africa Mali Bamako 31 15 19-33 (mean = 25.74 std= 3.02)
22 Mali-LM ML LM Africa Mali Bamako 29 1 24-69 (mean = 40.52 std=11.92)
23 Mali-DA ML DA Africa Mali Sagele 34 31 18-62 (mean = 33.24 std=11.94)
24 Botswana (San)-LM BW.SA LM Africa Botswana D’Kar 17 13 22-69 (mean = 44.50 std= 13.32)
25 Botswana (Etsha)-LM BW.ET LM Africa Botswana Etsha 14 7 22-61 (mean = 28.93 std= 10.20)
26 Namibia-NM NA NM Africa Namibia Spitzkoppe 16 9 18-46 (mean = 30.88 std= 8.45)
27 Namibia-LM NA LM Africa Namibia Spitzkoppe 14 10 18-48 (mean = 27.79 std= 8.68)
28 India-NM IN NM Asia India Mumbai 15 3 20-44 (mean = 27.13 std= 7.30)
29 India-LM IN LM Asia India Mumbai 17 6 17-49 (mean = 28.75 std=9.10)
30 S. Korea-ST KR ST Asia S. Korea Daejeon 15 6 20-24 (mean = 22.33 std= 1.45)
31 S. Korea-WM KR WM Asia S. Korea Daejeon 13 11 18-25 (mean = 21.54 std= 1.81)
32 S. Korea-LM KR LM Asia S. Korea Jeonju 13 4 20-25 (mean = 22.69 std= 1.80)
33 Japan-ST JP ST Asia Japan Tokyo / Fujisawa 20 5 18-23 (mean = 20.80 std= 1.47)
34 Japan-WM JP WM Asia Japan Tokyo/ Fujisawa 13 9 18-28 (mean = 21.15 std= 2.51)
35 Japan-LM JP LM Asia Japan Tokyo/ Fujisawa 26 13 18-25 (mean = 20.69 std= 1.59)
36 China-NM CN NM Asia China Guizhou Province 40 36 20-51 (mean = 34.70 std=9.76)
37 US-OL US oL North America Us Online 65 27 18-67 (mean = 35.48 std= 10.77)
38 Brazil-OL BR oL South America Brazil Online 28 11 19-51 (mean = 31.25 std= 8.50)
39 India-OL IN oL Asia India Online 38 7 21-58 (mean = 33.45 std= 8.09)

Participant Group Types: ST = student; NM = non-musician; WM = Musicians who play Western classical music; LM = musicians who play a local musical style that is not Western classical

music; DA = dancer; OL = Online participants. Additional demographic information is provided in Supplementary Table 2.
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Software and code

Policy information about availability of computer code

Data collection  Matlab2018a; Code and instructions for running the paradigm is provided in the OSF repository associated with the project (https://
osf.io/6zd4v/)

Data analysis Matlab2022a; Code for reproducing all analyses and results graphs is also provided in the OSF repository associated with the project (https://
osf.io/6zd4v/)
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy
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Study description

Research sample

Sampling strategy

Data collection

Timing

Data exclusions

We measured a signature of mental representations of rhythm in groups around the world. The study is based on quantitative
methods and data analysis.

We tested 39 participant groups spanning five continents and 15 countries . Overall, we recruited 923 participants (792 were run
face to face and 131 online). The rationale for the chosen study sample was based on testing groups that provide a strong test of
commonalities across cultures. We included groups from both industrialized and non-industrialized societies, as well as groups of
local musicians who do not play Western music. We also tested groups of musicians and dancers where possible, as these
populations would be expected to have substantial exposure to particular musical styles. In addition, we tested university students
and online participants in a number of countries in order to assess potential effects of exposure to Western music and culture, which
we expected would tend to be correlated with university attendance and internet access. The groups tested were also determined in
part by practical constraints (testing time and access to particular populations). Additional information about the groups is provided
in the section "Criteria for group selection" in the Methods. See Table 1 for detailed demography of all 39 groups. Additional
demographic information is provided in Table E1.

Participants were recruited based on criteria that depended on the group type (Students, Musicians, Dancers, Non-musicians and
Online participants). The criteria for each group type are described in section "Definition of group types" in the Methods. We used
convenience sampling subject to the constraints of the group definition. Sample size was determined by power analysis based on
test-retest reliability test of the kernel density estimate, using data collected for a previous publication (Jacoby and McDermott
2017).

In-person experiments typically involved the participant, the experimenter and a translator (if the experimenter was not a native
speaker of a language spoken fluently by the participant). The experimenter could hear the stimulus and the participant's responses;
we found this facilitated high quality data collection as otherwise it was difficult to assess whether the participant was following
instructions. Data were collected by a large set of experimenters. Some of the experimenters were not fully blind to the main
hypotheses of the study, but many were.

In the online sessions, there was no experimenter present (the participant completed the experiment using their browser).

Data was collected between 2015-2021: Botswana (9/2016-10/2016), South Korea (1/2017-9/2017), Bolivia (6/2015-8/2019), Brazil
(9/2017-10/2017), Mali (12/2017-1/2018), Bulgaria (3/2018-7/2018), China (5/2018), Uruguay (4/2018-5/2018), Japan (6/2018), UK
(5/2018-8/2018), Sweden (10/2018), Turkey (4/2018-1/2019), India (9/2018-5/2019), Namibia (4/2019), Boston (5/2015-12/2015)
and in NYC (6/2017-9/2019).

We pre-determined (in a previous publication - Jacoby and McDermott, 2017) accuracy criteria for the participant's tapped response
to be counted as a valid tap, iteration or trial. We defined a valid tap as occurring within a +/-150ms window of the stimulus after
correcting for the mean asynchrony of the iteration. We defined a valid iteration as one which had a three-tap response for 7 or
more of the 10 repetitions and whose average response (r_1,r_2,r_3) was not situated far beyond the region we defined for human-
producible rhythms (i.e., did not contain an interval shorter than 285 ms of the overall duration of 2000 ms). Trials with 3 or more
invalid iterations were excluded from the analysis. In addition, for the analysis we included only points inside the inner triangular
region with vertices (f,f),(1-2f,f),(1/2,v3/2-f), where f=300/2000. In total this resulted in 99,189 out of 2,418,284 tapped responses
being excluded from the main experiment (4.1 %).

For online experiments, before starting the experiment, participants completed a short recording test to detect hardware and
software that did not meet the technical requirements of the experiment, such as malfunctioning speakers or microphones. The
recording test contained three trials. If the first trial failed (for example, this could occur if the participant forgot to unplug their
headphones) we reminded participants that they needed to unplug any headphones. If, despite this reminder, the test recording
failed in one of the two subsequent trials, the participant was excluded from the experiment (see Methods for further details). Some
participants also abandoned the task during the recording test (for example because their internet connection stopped working). In
total 747 out of 1303 participants were excluded from the remainder of the experiment for one of these two reasons.

Next, participants performed a practice phase to acquaint themselves with the main tapping task and to further test technical
compatibility of their browser and computer. Following the practice phase, we provided feedback to participants based on their
recording quality and tapping performance. Prior to the main experiment, we asked participants to adjust their tapping based on our
feedback. During the analysis of the experiment, we used two criteria to exclude trials. First, we excluded all trials for which the
recording of the stimuli (recorded in the online experiment along with the responses) was determined to be inaccurate (see Methods
for details). Second, we excluded all trials where the percentage of detected taps (i.e., the number of detected tapping onsets out of
the total number of stimulus onsets) was less than 50% or more than 200%. Note that none of these criteria excluded trials based on
actual accuracy in replicating the target rhythm, but only based on whether the signal could be correctly recorded and processed,
and whether participants produced a minimally and maximally acceptable number of tapping responses. An additional 358
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participants were excluded on this basis. Finally, we excluded participants who abandoned the experiment prior to its completion or
who did not complete the full demographic questionnaire that we administered at the end of the experiment (67 additional
participants were excluded on this basis). In total 131 participants completed the full experiment and were analyzed.

More details of the online experiment are reported in the "Online measurement of tapped responses" section of the methods.
Validation of the online method (comparing the performance of online experiments and in-lab experiments), including justification of

the exclusion criteria, is provided in the cited paper Anglada-Tort et al. (2021).

Non-participation With in-person experiments, very few participants (typically 1-2 per group) had their experimental session terminated based on an
inability to tap, presumably resulting from some motor dysfunction or inability to follow instructions.

Randomization N/A. Participants were not allocated into groups. Participants were analyzed in groups determined by their location and musical
experience (described in the section "Criteria for group selection" in the Methods). All participants completed the same experiment.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
[ ] Antibodies [] chip-seq
[] Eukaryotic cell lines [ ] Flow cytometry
|:| Palaeontology and archaeology |:| MRI-based neuroimaging

[ ] Animals and other organisms
Human research participants

[] Clinical data

XNXOXXXX s

[ ] Dual use research of concern

Human research participants

Policy information about studies involving human research participants

Population characteristics See above.

Recruitment Recruitment strategies varied depending on the location; see Methods for details in each case. We typically tried to test
every potential participant available at a testing site. However, because participation was voluntary, participants who were
less confident in their tapping skills may have been less likely to participate.

Ethics oversight Informed consent was obtained using the following approved protocols: Ethics Council of the Max Planck Society (2017_12,
2020_05, 2020_11), Columbia University IRB-AAAR3726, University of Western Ontario Health Science Research Ethics Board
108477, Korea Advanced Institute of Science and Technology (KAIST IRB -KH2017-15), Chinese University of Hong Kong
SBRE-19-695, BCPHS-12301 (Brandeis), Durham University Music Department Ethics Committee (February 2018), Bogazigi
University Ethical Board for Human Research SBB-EAK 2017/1, Committee on the Use of Humans as Experimental Subjects at
MIT (COUHES) Protocol Number 1209005242R004. Consent to publish images was obtained from participants or music
ensembles.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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