
 

1 
 

Effect of time pressure on informal advice relations across organizational units: 
Evidence from a study of collaboration within a Formula One racing team  

 

 

Andrew Parker 

Durham University Business School, UK 

 

Alessandro Lomi 

Università della Svizzera italiana, Switzerland 

 

Paola Zappa 

University College London, UK 

 

 

 

 

 

Accepted for Publication at Organizational Studies (May 2024) 

 

 

 

 

 

 

Note: The authors contributed equally to this paper.   



 

2 
 

Effect of time pressure on informal advice relations across organizational units: 
Evidence from a study of collaboration within a Formula One racing team  

Abstract 

Informal advice relations across units in an organization are beneficial for knowledge 

sharing and problem-solving. Prior research suggests that despite their benefits, there are 

costs to informal advice relations across units. However, the mechanisms by which these 

costs are mitigated remain unclear. We theorize that this lack of clarity is because work 

factors have not been sufficiently considered. We examine one such work factor, time 

pressure, and develop a cost-based explanation for how time pressure influences cross-unit 

advice relationships. We investigate two time-pressure levels. In the first, work is conducted 

under lower time pressure, and there is less likelihood of a negative outcome. In the second, 

work is conducted under higher time-pressure conditions, and there is a greater likelihood of 

a negative outcome. We theorize that under lower time-pressure conditions, the costs of 

advice relations across units are mitigated by reciprocal advice relationships. However, 

under higher time pressure, the cost of informal advice relations across units is higher owing 

to the need for quick coordination of advice, and these costs are mitigated by reciprocal 

advice relationships in conjunction with cross-unit formal workflow relationships. To test 

our hypotheses, we examine the informal advice network and formal workflow network in 

lower and higher time-pressure conditions among 118 members of the Information 

Technology and Systems division of a Formula One racing team. Our results indicate that 

under lower time-pressure conditions, reciprocal advice ties are sufficient to overcome costs. 

However, under higher time-pressure conditions, cross-unit advice ties are facilitated by 

reciprocal advice ties embedded in the workflow ties between units. Thus, our findings have 

implications for how knowledge is managed and how problems are solved in organizations. 
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Introduction 

Informal advice relations across units in an organization help incorporate knowledge that can 

assist individuals in solving problems (Cross & Sproull, 2004; Hansen, 1999; Tsai, 2002). 

Advice relations and the exchange of knowledge that they entail have been linked to enhanced 

productivity and effectiveness of units, teams, and individuals (Argote, McEvily, & Reagans, 

2003; Hansen, 1999; Reagans & Zuckerman, 2001; Tortoriello & Krackhardt, 2010), and can 

create competitive advantage (Eisenhardt & Martin, 2000; Grant, 1996). Despite their 

benefits, research suggests that informal advice relationships across units are difficult to build 

and maintain (Lomi, Lusher, Pattison, & Robins, 2014).  

 Individuals incur costs, such as time and energy, in building and maintaining advice 

relationships (Hansen, 1999; Nebus, 2006; Tsai 2002). However, there is limited 

agreement on how these costs can be overcome, especially for advice relations across units 

within an organization. The numerous relational explanations include lower search costs 

for individuals who seek knowledge content related to their own knowledge (Hansen, 

2002); reciprocal ties that reduce information asymmetry and decrease uncertainty of the 

value of the advice (Caimo & Lomi, 2015); strong ties such as those among individuals 

that interact frequently or are emotionally close, increasing the time and energy committed 

to advice sharing (Tortoriello, Reagans, & McEvily, 2012); and entrainment, where formal 

relationships between teams or units increase the likelihood of informal individual-level 

advice relations (Brennecke & Rank, 2017). We suggest that multiple explanations for 

informal advice relationships across units may be the result of previous studies not 

accounting for differences in work factors.  

In this study, we examine how one type of work factor, specifically time pressure 

(Ordonez & Benson III, 1997), that is, the need to complete tasks by a deadline, affects the 

occurrence of informal advice relations across units. Time pressure is an important 
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consideration because it can change the costs of cross-unit advice relations and, hence, the 

underlying explanation of why they occur. The importance of time pressure (Bronner, 

1982) aligns with numerous examples in the organizational literature on how time pressure 

changes individuals’ work-related actions; however, this research is fairly fragmented. For 

example, Weick (1993) compares the actions of firefighters after they initially parachuted 

into the Mann Gulch region (a high time-pressure situation) with the extreme time pressure 

during the forest fire. The extreme time-pressure situation led to the abandonment of 

routines that had been developed in training (low time pressure), and the team members 

stopped working as a team and instead became a group of individuals whose interpersonal 

work-related actions differed greatly from those taken when they initially parachuted into 

the Mann Gulch region (high but not extreme time pressure). Other studies have examined 

high time-pressure situations including management team processes where planning, 

monitoring progress, and conflict management increased as a deadline approached (Larson, 

McLarnon, & O’Neill, 2020), covert improvisation processes of firefighters in time-limited 

situations (Macpherson, Breslin, & Akinci, 2022), and novel events in fast-response 

medical trauma centers, resulting in the breaking of protocols and the need for coordination 

practices such as joint sensemaking and cross-boundary intervention (Faraj & Xiao, 2006). 

These examples highlight the effects of time pressure on work practices and raise the 

question of whether advice relations across units are also contingent on time pressure.  

In our explanation of advice relations across units under different levels of time 

pressure, we argue that under lower time pressure, the costs can be mitigated through ties that 

reduce search costs and the uncertain value of advice, notably reciprocal advice ties (Gulati, 

Dialdin, & Wang, 2002; Tortoriello & Krackhardt, 2010). However, under higher time 

pressure, the cost includes the need for immediate coordination of advice, and reciprocal ties 

in conjunction with the formal task structure, specifically the way in which workflow is 
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organized across units in an organization, enables advice relations across units (Ben-

Menahem, Von Krogh, Erden, & Schneider, 2016; Koçak, Levinthal, & Puranam, 2023; 

McEvily, Soda, & Tortoriello, 2014; Puranam, 2018; Soda & Zaheer, 2012). Workflow 

relationships help limit the coordination costs of diverse advice from different organizational 

units. In summary, we suggest that under higher time pressure, the additional costs 

necessitated by the need for fast coordination are mitigated by reciprocal advice ties 

embedded in cross-unit formal workflow relationships.  

To substantiate our arguments, we examine how network configurations of informal 

advice ties and formal workflow ties between organizational units vary across two different 

time-pressure conditions among members of the Information Technology and Systems (ITS) 

division of a prominent Formula One (F1) racing team. Specifically, we examine time 

pressure on non-race days and race weekends. On non-race days, the time pressure is 

considerably lower, as is the risk of failure. Race weekends entail higher time-pressure 

conditions as work is done rapidly given the limited time to make decisions, and there is a 

high likelihood of a negative outcome. Importantly, given our research design, the tasks of the 

ITS division of the F1 team are comparable across time-pressure conditions, and the formal 

task structure does not change. We observe workflow relations among the 25 organizational 

units that comprise the ITS division and informal advice relations among the 118 employees 

within the division. We use a multilevel exponential random graph model (MERGM) to test 

our theory as it allows us to control for alternate network configurations within and between 

levels, that is, configurations that incorporate the individual level advice network, the 

affiliation network of people to units, and the unit level workflow network (Lomi, Robins, & 

Tranmer, 2016; Wang, Robins, Pattison, & Lazega, 2013). We believe that our study makes a 

novel and significant contribution to the literature on the relationship among time pressure, 

formal organizational structure, and informal social networks in organizations. 
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Theoretical Background 

Advice relations within organizations provide a clear example of a social relation that is 

“influential in explaining knowledge creation, transfer, and adoption” (Phelps, Heidl, & 

Wadhwa, 2012, p. 1155). Networks of advice relations are generally considered the main 

social infrastructure through which knowledge flows within organizations (Caimo & Lomi, 

2015; Podolny & Baron, 1997). Networks of advice relations are important because they 

relate directly to fundamental and recurrent activities of organizational knowledge sharing 

(Cross, Borgatti, & Parker, 2001). We focus on advice relationships under different levels of 

time pressure. Time pressure is important because it affects the actions that individuals take as 

well as work processes and outcomes (e.g., Faraj & Xiao, 2006; Khedhaouria, Montani, & 

Thurik, 2017; Larson et al., 2020; Macpherson et al., 2022; Weick, 1993). However, time 

pressure has rarely been examined with respect to advice relationships, although research has 

examined time pressure and communication networks (Brown & Miller, 2000).  

While informal networks have been shown to facilitate the transfer of advice and 

knowledge (e.g., Currie & White, 2012; Hansen, 1999; Tasselli, 2015), it is usually the formal 

structure of an organization that impacts coordination (Thompson, 1967; Lawrence & Lorsch, 

1967). Formal structures include systems designed to ensure and enforce coordinated 

behavior among differentiated elements of an organization and to provide organizational 

control (Thompson, 1967). Organizational activities are divided into smaller components that 

induce and sustain a system of differentiated roles, departments, and organizational units that 

must be coordinated to perform work activities efficiently and effectively (cf., Lawrence & 

Lorsch, 1967). Coordination is accomplished through the design and implementation of 

interdependent task structures (Ben-Menahem et al., 2016; Clement & Puranam, 2018; Koçak 

et al., 2023; March & Simon, 1958; Puranam, 2018; Thompson, 1967). It is important to note 

that organizational structure incorporates both interdependence and influence. 
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Interdependence is the division of labor between components of the organization, while 

influence is based on the power or authority of one component over another (Puranam, 2018). 

We only examine the interdependence of formal structures. In our theorization, influence is 

accounted for by advice relations, which are part of the organization’s informal structure. 

In the next section, we illustrate the role of informal networks in facilitating advice 

relations across units under two different time-pressure conditions. We theorize that under 

lower time pressure, reciprocal ties within the informal network facilitate cross-unit advice 

relationships. Under higher time pressure, we theorize that reciprocal ties within the informal 

network combine with workflow relationships within the formal task structure to facilitate 

cross-unit advice relationships. Figure 1 details the theoretical conceptual framework. 

<Insert Figure 1 about here> 

Lower time pressure and cross-unit ties 

Individuals in organizations are often tasked with developing novel solutions to problems 

(Decreton, Tippmann, Nell, & Parker, 2023). Because individuals do not necessarily have all 

the necessary expertise to solve problems, they often draw on advice from others (Eisenhardt, 

1989). Individuals in organizations tend to have relationships with people in the same unit or 

department (Caimo & Lomi, 2015). However, the most valuable advice, that is, advice that 

can promote the development of novel solutions is frequently found in different units (Hansen 

1999; 2002; Parker, Tippmann, & Kratochvil, 2019). Accessing advice in different units 

entails additional costs (Nebus, 2006) due to search time, greater uncertainty in the value of 

the advice (Borgatti & Cross, 2003), and time taken to coordinate the advice with existing 

knowledge and processes (Carlile, 2004). In situations of lower time pressure, we theorize 

that cross-unit advice relationships occur because the benefits of the advice outweigh the 

search, value uncertainty, and coordination costs.  

Under lower time-pressure conditions, search, value uncertainty, and coordination 
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costs are not negligible, because time is still limited. Therefore, organizational members are 

selective in whom they reach out to for advice outside of their own units. Building on Uzzi 

(1997), Caimo & Lomi (2015) highlight the role of cross-unit reciprocal ties, that is, 

colleagues in different units giving and taking advice. The reciprocal exchange of advice 

implies that the advice given by one individual will result in an obligation for the other 

individual to give advice in return (Blau, 1964). This expectation decreases advice search 

costs because an individual knows in advance that there is a high likelihood of a response to 

an advice request. However, this results in a future obligation that entails a time cost.  

Reciprocal ties across units initially occur because an individual seeks out advice from 

a colleague they give advice to, or because the focal individual gives advice to someone from 

whom they seek advice. Whichever way the tie becomes reciprocal, its costs are lower for 

each individual because giving and taking advice creates a trust-based understanding between 

individuals over time (Blau, 1964; Molm, 2010). Trust results in low levels of uncertainty 

regarding advice quality and timeliness. In addition, reciprocal relationships have been shown 

to improve the likelihood of solving complex problems (Tortoriello & Krackhardt, 2010), 

facilitate access to critical advice (Gulati et al., 2002), and alleviate problems associated with 

information asymmetry (Fehr & Gächter, 2000). Knowledge embedded in advice ties has 

been shown to be sticky (Szulanski, 1996) especially across units (Caimo & Lomi, 2015; 

Hansen, 1999) and reciprocal informal relationships can help overcome this stickiness. 

Furthermore, because reciprocal ties incorporate a level of trust between individuals, they are 

likely to have greater permanency than unreciprocated ties, given that both individuals have a 

greater incentive to maintain the tie. This suggests that alongside the strategic cost 

explanation for why cross-unit ties are more likely to be reciprocal ties, there is an ecological 

explanation (Doehne, McFarland, & Moody, 2024). 

In summary, under lower time-pressure conditions, there is a benefit in accessing 
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diverse advice from individuals in other units, but there is a cost. Reciprocal ties between 

individuals are sufficient to mitigate the associated costs of advice relations across units. This 

leads to our first hypothesis, which specifies the tie configuration that enables cross-unit 

advice ties under lower time pressure conditions (Figure 2a). 

Hypothesis 1: Under lower levels of time pressure, informal advice relations across 

units are more likely to be observed when informal relationships are reciprocal. 

<Insert Figure 2a and 2b about here> 

Higher time pressure and cross-unit ties  

For the same reasons leading to Hypothesis 1, we expect that under conditions of 

higher time pressure, reciprocal ties would affect cross-unit advice relations. However, under 

higher time-pressure conditions, individuals face a dilemma when they address complex 

problems. Not only do people need diverse advice, but they also need it quickly. In addition, 

under higher time pressure, diverse advice from many different sources is not necessarily 

useful, as it can take time to integrate it into existing work practices; therefore, there is a need 

for advice that can be easily coordinated (Faraj & Xiao, 2006; Gittell, 2000). Formal 

structures have been shown to be beneficial for coordination when combined with informal 

ones (Ben-Menahem et al., 2016; Clement & Puranam, 2018; Koçak et al., 2023; Puranam, 

2018). Therefore, we argue that under higher time pressure, reciprocal advice ties are not 

sufficient to offset search, uncertainty, and coordination costs, rather, support from the formal 

structure is also important.  

We theorize that under higher time pressure, when there are benefits to acquiring 

diverse advice, but the costs of coordinating the diverse advice are high, people will perform a 

limited search outside of their unit. Thus, individuals limit their cross-unit advice search to 

colleagues in units with existing workflow relationships. Existing research indicates that 

cross-unit formal workflow relationships tend to facilitate advice flow across connected 
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organizational units (Lomi et al., 2014; Soda & Zaheer, 2012). Activities in complex 

organizations are characterized by sequential and reciprocal workflow interdependence 

(Thompson, 1967). In sequential interdependence, one unit passes the work to another, 

whereas in reciprocal interdependence the output of one unit is the input of another and vice 

versa (Soda & Zaheer, 2012). Reciprocal interdependencies require mutual adjustments and 

joint decision-making for tasks to be successfully executed (Soda & Zaheer, 2012), thus 

demanding extra attention. Moreover, reciprocal interdependencies ensure enhanced 

coordination and collaboration across units, and an intense exchange of information, which is 

unlikely to call for informal ties. Indeed, the presence of reciprocal workflow ties at the unit 

level may reduce the need for advice relations at the interpersonal level because they would 

provide redundant information (Gulati & Puranam, 2009).1 By contrast, sequential 

interdependencies create task asymmetries among units and their members, whereby the 

members of one unit depend on members of another unit for work-related information 

(Raveendran, Silvestri, & Gulati, 2020). Sequential interdependence is deemed suitable for 

stable work contexts, but under higher time pressure, organizations are confronted with a 

dilemma between the need for tight structuring and hierarchical decision-making that 

promotes timely action and the need for flexible structuring and on-the-spot decisions for 

rapid action (Mathieu, Hollenbeck, van Knippenberg, & Ilgen, 2017). This suggests the 

importance of unit-level sequential interdependence to supplement advice ties at the 

individual level (Brennecke, Sofka, Wang, & Rank, 2021; Caimo & Lomi, 2015).  

Under higher time pressure, task asymmetry between members of sequentially 

interdependent units may prompt members of dependent units to invest time and energy into 

developing advice relations for access to additional knowledge (Giebels, De Dreu, & Van De 

 
1 We recognize the importance of reciprocal interdependence, and we test to see how it affects our 

models in the supplementary analysis (see Appendix). 
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Vliert, 2000). More importantly, when two units are connected by a sequential task 

interdependence relationship, the overall cost of the individual-level advice relationship 

decreases. First, search costs are lower because individuals are more likely to know each other 

and have greater awareness of the type of knowledge held by colleagues in interdependent 

units. In addition, costs are reduced because of the lower uncertainty in the quality, 

accessibility, and usability of advice from task-interdependent units (Borgatti & Cross, 2003). 

Furthermore, advice from individual relationships aligned with sequential interdependence is 

more easily coordinated, which can be critical under higher time pressure, where the loss of 

time can make the difference between success and failure. Overall, the sequential task 

interdependence relationship facilitates cross-unit informal advice relations because it 

mitigates the costs of cross-unit ties. 

 In summary, under higher time pressure, reciprocal advice ties are not sufficient to 

counter search, value uncertainty, and coordination costs; however, when they occur in 

conjunction with sequential interdependence between two units, they increase the likelihood 

of cross-unit advice ties. This leads to our second hypothesis, detailing the tie configuration 

that enables cross-unit advice ties under higher time-pressure conditions (Figure 2b). 

Hypothesis 2: Under higher levels of time pressure, informal advice relations 

across units are more likely to be observed when informal relationships are 

reciprocal and units are linked by sequential interdependence. 

Methods 

Research setting 

We tested our hypotheses by investigating informal advice relationships across units within 

the ITS division of a F1 racing team. The ITS division manages the information systems, 

electronic components, and circuitry of F1 cars; therefore, it is integral to the success of the 

F1 team. Overall, in F1 racing, there is emphasis on high tech, high speed, high pressure, 
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design, and innovation. However, this emphasis varies throughout the year. Design and 

innovation, including that of the car’s electronic components and circuitry which is overseen 

by the ITS division, takes place mostly in the off-season or toward the latter half of the racing 

season. There are stringent rules regarding changes that can be made to cars during the race 

season (Pretorius, 2023). During the race season, particularly in the first half, the focus is on 

fine-tuning and maximizing the performance of the F1 car. The F1 season typically runs from 

March to November, consisting of approximately 20 race weekends (Friday-Sunday) per year. 

A race weekend consists of testing the car on the track, qualifying laps that determine the 

car’s starting position on the race grid, and the race itself. During race weekends, 

approximately 35% of the members of the ITS division are on the track, whereas the other 

65% remain at the headquarters and coordinate remotely with on-track staff. There are 

typically 4–11 days between races, which includes the time taken to move cars from one race 

circuit to another, which, in some cases, requires transportation between continents. 

Members of the ITS division record, process, and analyze real-time data generated by 

the cars (George, Haas, & Pentland, 2014). These data are included in simulation models to 

ensure that cars perform at their maximum capacity and that all electronic systems operate 

effectively. As track layouts differ from race-to-race, simulation models are used to develop 

race strategy (Aversa, Cabantous, & Haefliger, 2018). In addition, the ITS division fine-tunes 

the ITS system to address various issues raised by drivers and both ITS and non-ITS 

engineers. Overall, the tasks of the ITS division are comparable between race weekends and 

non-race days. 

To further understand the tasks of the ITS division throughout the race season and the 

relevance of time pressure, we administered an anonymous online survey to 45 ITS software 

and electronic engineers employed in various F1 teams. Participants were selected and 



 

13 
 

contacted using LinkedIn2. Those who responded (15.6%)3 had an average experience of 4.3 

years in F1 teams and were associated with four major teams, including the one that we 

examined. The online survey consisted of open-ended questions asking respondents to 1) 

describe the activities performed during race weekends and on non-race days, and 2) illustrate 

which work characteristics (e.g., time pressure) were similar or different between race 

weekends and non-race days.  

Our survey respondents confirmed that for the ITS division, innovation is mostly 

concentrated in the off-season. “Off-season is when we do all the big changes, build new 

tools, collect feedback, and start long-term projects” (software engineer). During the racing 

season examined in this study, the activities of the ITS division are punctuated by and 

culminate in weekend racing events. As noted by our respondents, during both race weekends 

and on non-race days, work mostly involves implementing incremental changes upon user 

request. Specifically, one respondent stated, “During the entire event we get a lot of queries 

from the engineers to check if anything is not working properly or they would like to change 

any tool’s behavior.” Regarding non-race days the software engineer stated, “[We] do small 

changes (usually requests from the users) and fix issues.” Furthermore, other respondents 

outlined the emphasis on data handling and analysis on both race days (“Engineers constantly 

enquire if they can have any available data,” software engineer) and non-race days (“On non-

race days, [we] analyze data,” software reliability team leader). Another respondent who 

works remotely during the race weekends observed that even the time schedules are aligned; 

“We operate on the same time schedule as the track operations, regardless of where the race 

 
2 We selected individuals whose job title or job description included the words “software engineer” or “electronic 

engineer,” and were directly employed by a F1 team and had at least a one-year tenure in their current F1 team, to 
ensure that they would have a clear understanding of the team dynamics. We excluded individuals who had past 
experience in F1 racing but were not currently employed by any F1 teams. 

3 We acknowledge that the response rate is relatively low, but not unexpected given the sensitivity and secrecy 
of F1 teams’ activities as well as the period when the survey was administered (during the race season). 

Nonetheless, the responses were consistent. 
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is, meaning we typically start shifting our working hours in the week leading to the event” 

(software reliability team leader). Overall, the online survey responses suggested that the ITS 

division members conducted comparable tasks on race weekends as they did on non-race 

days. It is worth acknowledging that the comparability of activities between race weekends 

and non-race days is not constant throughout the race season. F1 teams, in general, and 

software engineers, specifically, are mostly focused on fine-tuning the current car systems 

during the initial and mid parts of the season; therefore, the activities performed during the 

racing weekends and on non-race days are largely comparable. Comparability decreases 

toward the end of the season, when the F1 teams intensify preparation for the following 

season and progressively allocate more time and resources during non-race days to design, 

develop, and assemble the new car (Cleeren & Chinchero, 2023)4. 

Survey respondents also confirmed that the level of time pressure is the work 

condition that differs the most between race weekends and non-race days. One respondent 

stated, “Definitely time is of the essence when working on a race weekend” (software 

engineering manager). Another respondent noted, “I believe work under pressure is quite 

usual for us. Usually race weekends and the race related events on [the] software side are 

intense” (system engineer). During weekend racing events, testing, adjusting, fine-tuning, and 

improvement activities are performed at a faster pace by ITS engineers than on non-race days 

because of the strict timeline with which teams are required to comply, increased competitive 

intensity, and absence of any margin for error or delay (Aversa et al., 2018). One respondent 

noted, “Non-race days have deadlines obviously, but race event deadlines are far more 

structured and rigid. No option to be late!” (senior simulation engineer). Another respondent 

further clarified: “During an F1 session, decisions need to be made fast. (...). In non-race 

 
4 Given the complexity of an F1 car, the production cycle of various components follows a different design, 

development, testing and fine-tuning time frame and pace. Hence, F1 teams start developing some components 
earlier than others (Mercedes-AMG PETRONAS F1, 2023).  
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events, there is usually more time to consider other things and test hypotheses” (software 

reliability team leader). Finally, one senior simulation engineer observed “If time does not 

allow [to fix an issue] then we put it off to a post event day to include in a future race event.” 

Another respondent, a software engineering manager, provided a similar answer, thus 

underlining the difference in time pressure, as well as continuity in terms of activities, 

between race weekend and on non-race days. 

The different levels of time pressure experienced by ITS division members 

unambiguously highlight that the operating conditions for ITS divisions differ considerably 

between race weekends and non-race days (Marino, Aversa, Mesquita, & Anand, 2015; 

Piezunka, Lee, Haynes, & Bothner, 2018). Race weekends and non-race days represent two 

clearly discrete and qualitatively distinct situations characterized by different time pressures 

(Walker, 2019). We qualify these as lower and higher time pressures, respectively. This 

allows us to replicate the design proposed by Brown & Miller (2000) to measure time 

pressure by treating it as a “situational variable” (p. 132) and allowing us to examine lower 

and higher levels—hence, the non-race days and the race weekends.  

Network data 

We collected detailed data on advice relationships among the ITS division members of 

the F1 team. Data were collected in the first half of the racing season (i.e., May-June). The 

ITS division consists of 126 project managers, software engineers, and technicians involved 

in the F1 championship. The ITS division is a multi-unit organization, which is a standard 

practice within F1 teams. Only 11% of the members were affiliated with the corporate entity 

that owned the team. The other members of the ITS division were distributed across 24 

partner companies and functioned as full-time consultants, mostly based at the company’s 

corporate headquarters, and were highly integrated and interdependent. In the remainder of 

this paper, when we discuss the ITS division, we refer to the corporate entity and 24 external 
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companies as “organizational units.”  

We used an online roster questionnaire (McCulloch, Armstrong, & Johnson, 2013) to 

collect advice relationships on non-race days and on race weekends. We surveyed all 126 

members of the ITS division (response rate: 93.7%, number of respondents: 118). To test for 

non-response bias, we examined the differences between the respondents and non-

respondents. A t-test showed no significant differences (p > .05) between the two groups 

based on a variety of personal and work-related characteristics.  

First, we collected data on advice relations in the two time-pressure conditions. Each 

member of the ITS division was presented with a list of colleagues working in the ITS 

division and asked to name who they typically went to for advice on non-race days, our lower 

time-pressure condition. The same approach was adopted for the higher time-pressure 

condition. We converted the answers to both questions into a network format, assuming that a 

tie exists between member i and j when i turns to j for advice. The resulting networks, A1 and 

A2, had dimensions (118×118).  

We then collected data on the mandated workflow interdependencies connecting the 

units through their members. Workflow interdependencies are elements of the formal 

organizational structure. They relate to tasks and technology assigned to the ITS division from 

an organizational design perspective and capture the extent to which employees in one unit 

depend on employees in another unit for information, instructions, and resources to perform 

their work. Workflow interdependencies are centered on the technology within the car, which 

is the same on non-race and race days. Therefore, workflow interdependencies are expected to 

remain unchanged across time-pressure conditions. This was confirmed by the ITS managers 

who supervised the data collection. Following previous studies (Brennecke et al., 2021; 

Hansen, 1999), we specified workflow as a directed relationship between a unit that provides 

and another that receives information, instructions, and resources. Examples of workflow 
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interdependencies include procedures that are performed in phases by two or more units. For 

instance, the simulated data were collected by one unit and transferred to another unit for 

analysis. To perform its task (i.e., analyze the simulated data), the second unit depends on the 

information (i.e., the simulated data) provided by the first unit. This relationship is directed 

because the second unit depends on the first unit, but the opposite does not hold true. This is a 

case of sequential interdependence. People affiliated with the same unit are likely to have 

access to similar information and can be perceived as interchangeable by colleagues in other 

units. However, it is important that individual members are able to identify the presence of 

this relationship. Hence, to collect data on the workflow interdependencies between pairs of 

units we presented each member with a list of colleagues and asked them to indicate which 

individuals “conducted tasks upon which their own work typically depended” (Hansen, 2002) 

regardless of the time pressure experienced. Network B, sized 25×25 and representing units 

and ties, has bhk = 1 if at least one member in unit h depends on one colleague in unit k to 

perform their tasks, and 0 otherwise (Kim & Anand, 2018). See the Appendix for a robustness 

check of the alternative calculations of bhk. 

We used archival data to collect the affiliations to the units. In the member-by-unit 

network X, size 118×25, xil = 1 if member i belongs to unit l, and 0 otherwise. We 

complemented the survey data with secondary data sources, such as the LinkedIn public 

profiles of our respondents. 

Measures 

The methodological approach we use to test our hypotheses requires examining the extent to 

which the structure of the advice network that we observe is characterized by the tie 

configurations implied by Hypotheses 1 and 2, and by other tie configurations and 

characteristics of respondents and units that we control for5. In this methodological 

 
5 From a modeling perspective, this implies that advice ties are present on both sides of the ERGM equation 

(Zappa & Lomi, 2015). 
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framework, the variables were defined as follows: 

Advice tie variable. This is the probability of observing an advice tie (Aij) from ITS division 

member i to j. Aij = 1 if i seeks advice from j and Aij = 0 otherwise. Advice ties under 

conditions of lower versus higher work-specific time pressures are represented as A1ij and A2ij, 

respectively, and are entered into two distinct models.  

Hypothesized variables. Hypothesis 1 was tested using cross-unit reciprocal ties, that is, a 

network configuration consisting of a reciprocal advice tie between individuals in two units 

(Figure 2a). Hypothesis 2 was specified as unit level sequential interdependence coupled with 

cross-unit reciprocal ties, consisting of a directed workflow tie between two units and a 

reciprocal advice tie between individuals in the two units (Figure 2b).  

Control variables. We include covariates testing for alternative explanations of advice 

relations within and across units (Lomi et al., 2014; Sosa, Gargiulo, & Rowles, 2015). These 

covariates are arranged into three subgroups: 1) variables that capture advice ties; 2) variables 

that capture unit affiliation with regard to advice ties; and 3) variables that capture the 

interactions between cross-unit workflow interdependencies and cross-unit advice ties.  

For the variables classified into subgroup 1, we first controlled for the tendency of 

advice ties between similar colleagues (McPherson, Smith-Lovin, & Cook, 2001) in relevant 

work-related characteristics (Gulati & Puranam, 2009; He, von Krogh & Sirén, 2022). 

Educational background had three levels ranging from secondary school (38%) to 

postgraduate education (15.2%). Expertise records the organizational processes in which team 

members are involved. It had three values: software development (70%), project management 

(13%), and support activities (17%). Organizational role differentiates team members in 

higher hierarchical positions, that is, unit heads and senior managers (20.4%). Tenure has four 

levels, ranging from less than one year (17.8%) to more than ten years in the organization 

(14.4%). For all these variables, we specified the same covariate effect, which takes the value 
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of 1 if the respondent and their colleague have the same value for a salient characteristic, and 

0 otherwise. In total, 35.6% of the ITS division members, evenly distributed across units, 

were on track during racing events, whereas the others were based at headquarters. The entire 

ITS division participates in race activities; however, members on track are likely to 

experience a higher level of time pressure and greater need for coordination than those 

working remotely. Race location was coded as 1 if a team member is on the racing track 

during racing weekends, and 0 otherwise. Likewise, day-to-day location was codified as 1 if a 

team member was based at the corporate headquarters during non-race days (85%), and 0 

otherwise. For both location variables we specified the same covariate effect and for race 

location we specified a sender effect. Because previous contact may influence social 

interaction, we combined information on tenure with the publicly available CVs of ITS 

division members to reconstruct career paths. Same previous membership takes a value of 1 if 

two respondents were previously members of the same organization at the same time, and 0 

otherwise. Given that organizations are of moderate size, individuals who were members of 

an organization at the same time have a high probability of having known each other. 

Next, we included variables that capture the structure of the advice networks. 

Reciprocity captures the tendency to reciprocate in social relations (Blau, 1964), regardless of 

unit membership. Isolates captures the presence of team members who are not connected 

through advice ties. Tendencies toward centralization are captured by popularity, the presence 

of individuals who receive advice from many colleagues, and activity, the presence of 

individuals who seek advice from many colleagues (Barabási & Albert, 1999). Transitive 

closure captures the tendency of individuals connected to colleagues to be directly connected 

(Coleman, 1988), whereas cyclic closure is the tendency toward generalized exchange 

(Bearman, 1997). Multiconnectivity captures the absence of densely connected subgroups, 

with team members linked to one another indirectly by several others (Robins, Pattison, & 
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Wang, 2009).  

For the control variables classified in subgroup 2, cross-unit ties captured the baseline 

tendency toward building cross-unit ties. It equals one if two individuals connected by an 

advice tie are members of different units, and zero if they are members of the same unit. 

Moreover, this variable is a prerequisite for cross-unit reciprocal ties (Hypothesis 1). Unit 

size difference controls for the likelihood of advice ties between members of units which 

differ in size (Alexiev, Volberda, Jansen, & Van Den Bosch, 2020). Unit size difference was 

defined as the absolute difference between the unit size of the sender and that of the receiver 

in each dyad of individuals who were members of different units. This variable accounts for 

the likelihood that the superior managerial and financial resources of larger units enable the 

unit to develop new knowledge (Tsai, 2002), and therefore, make the unit’s members more 

sought after for advice from members of other units (Sosa et al., 2015). Unit task difference 

controls for the likelihood of advice ties between members of units that differ in the number 

of activities they perform; hence, it is a measure of internal work complexity (Sosa et al., 

2015). We operationalized unit task difference as the absolute difference between the number 

of tasks of the sender and receiver units for each dyad of individuals who were members of 

different units.  

For the control variables classified in subgroup 3, unit level sequential 

interdependence coupled with cross-unit aligned ties accounts for the tendency to form ties 

when there is a workflow tie between two units and an advice tie between individuals in the 

two units (Brennecke et al., 2021). Both cross-unit sequential interdependence and cross-unit 

advice ties are directed and in the same direction. Unit level sequential interdependence 

coupled with cross-unit aligned ties provides a direct control for Hypothesis 2. Finally, 

multilevel popularity captures the possibility that being sought for advice by many others is 

the result of membership in units that many others depend on, that is, units with high 
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knowledge provision (Podolny, 2001). Multilevel activity captures the possibility that seeking 

many others for advice is the result of membership in units that depend on many others for 

provision of knowledge (Zappa & Lomi, 2016). All the variables are summarized in Table 1. 

<Insert Table 1 about here> 

Models 

We tested our hypotheses using exponential random graph models (ERGMs). This framework 

is being increasingly used in studies on inter- and intra-organizational relations (Lomi et al., 

2014; Sosa et al., 2015), where observations are not independent. Indeed, ERGMs are the 

only modeling framework that specifies the types of interactions between interpersonal and 

interunit ties that test our hypotheses. ERGMs may be understood as logit models for network 

data (Amati, Lomi, & Mira, 2018; Paruchuri, Goossen, & Phelps, 2019). The dependent 

variable is the probability of observing a binary tie between two individuals i and j—as the 

smallest component of the observed network—which is modeled as a linear function of the 

covariates computed for i and j. These covariates may include the attributes of i and j and the 

network variables, including i and j. The network variables are the local configurations of ties, 

such as those listed above, as independent and control variables. We tested our hypotheses 

using a specific class of ERGMs, namely multilevel exponential random graph models 

(MERGMs) (Wang et al., 2013). Formally: 

𝑃𝑟(𝐴 = 𝑎│𝑋 = 𝑥 , 𝐵 = 𝑏, 𝑌 = 𝑦 )  = (
1

𝜅
) 𝑒𝑥𝑝 (∑ 𝜃𝑄 𝑧𝑄(𝑎, 𝑥, 𝑏, 𝑦)

𝑄

 )              (1) 

A is the set of all possible informal advice networks (118×118) and a is the observed advice 

network. The generic element of A is Aij, with Aij = 1 if i has an advice relation with j, and Aij 

= 0 otherwise. Following the same logic, X is the set of all possible networks of affiliation ties 

of team members to units and B is the set of all possible networks of workflow ties between 

units. Y is a set of vectors of individual and unit attribute variables, and y is the observed set. 
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The advice ties Aij are a function of the statistics 𝑧𝑄, each corresponding to a configuration of 

ties of types A, X and B and of unit and member attributes Y. The statistics count, for each 

individual i, the number of configurations of each type in which i is involved. 𝜃𝑄 is the 

parameter corresponding to configuration Q. Finally, κ is a normalizing constant included to 

ensure that (1) is a probability distribution. 

Parameter estimates may be interpreted similarly to the log odds of the presence of a 

tie (Amati et al., 2018). A parameter is equal to zero if the number of corresponding 

configurations in the observed network is equal to the number that would be expected by 

chance; that is, the configuration does not affect the probability of i having an advice relation 

with j. A positive (negative) and statistically significant parameter estimate indicates a greater 

(smaller) number of configurations in the observed network than expected by chance alone. 

The configuration positively (negatively) affects the probability that i has an advice relation 

with j. Following this logic, each hypothesis is supported if the corresponding configuration is 

positive and significant in the relevant advice network (i.e., the time-pressure condition). 

We estimated the ERGM parameters using Monte Carlo Markov chain maximum 

likelihood estimation, a simulation-based technique implemented in MPNET (Wang, Robins, 

& Pattison, 2009). This was used to minimize multicollinearity among the variables included 

in our models. ERGMs identify the specified configuration of ties and count their instances; 

hence, if i and j are linked by a reciprocal tie, this tie enters the count of the reciprocity 

configuration but is not included in the count of the directed ties from i to j and from j to i. 

Results 

Descriptive statistics 

The descriptive network statistics in Table 2 indicate that the workflow structure is highly 

connected (mean in/out degree of 6.40 ties per unit). Team members relied on fewer 

colleagues for advice during race weekends (M = 2.13) than on non-race days (M = 4.48). 
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Table 3 presents the descriptive statistics and Pearson’s correlations for the variables included 

in the models. 

<Insert Tables 2 and 3 about here> 

Hypotheses testing 

In Tables 4 and 5, we present the results of lower time-pressure and higher time-pressure 

conditions, respectively. We estimate the same models for both conditions and include the 

effects in increasing order of complexity. We use the ERGM-specific goodness-of-fit 

procedure to fine-tune the variable specifications and verify that our final model (Model 5 in 

Tables 4 and 5) reproduces the features of the observed networks better than any alternate 

model (Hunter, Goodreau, & Handcock, 2008). The Appendix details the goodness-of-fit 

procedure and outcomes. The fit of our model ensured that we could comment on the ERGM 

results. The discussion of results in Tables 4 and 5 are restricted to Model 5, which is our full 

model.  

<Insert Tables 4 and 5 about here> 

We begin by analyzing the advice network under conditions of lower time pressure 

and detail the results in Table 4. In Table 4 (Model 5), the parameter estimate of cross-unit 

reciprocal ties is positive and significant (3.225, p ˂ 0.05). Therefore, the odds of observing 

reciprocal ties between members of different units are exp[3.225] = 25.154. This is much 

greater than predicted by chance, thus supporting Hypothesis 1 that organizational members 

display a significant propensity to reciprocal advice relationships across units under 

conditions of lower time pressure.  

As explained in the Methodology section, the rationale for ERGMs implies that the 

configurations of interest in the observed network are compared with what we would expect 

by chance alone. However, it is beneficial to confirm these results (Gelman & Stern, 2006) by 

comparing the configuration testing Hypothesis 1 with configurations suggesting alternative, 
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yet similar, ways of spanning units. The first configuration was cross-unit ties (non-reciprocal 

ties across units). This is a prerequisite for Hypothesis 1 as it captures the baseline propensity 

to build cross-unit advice relations. In Table 4 (Model 5), we find that the parameter estimate 

for cross-unit ties is negative and significant (-1.523, p ˂ 0.05). This result indicates that the 

likelihood of observing non-reciprocal ties between units is lower than would be predicted by 

chance, and in line with the assumption that individuals are unlikely to build cross-unit advice 

ties because of cost implications (Reagans & McEvily, 2003). The coefficients for cross-unit 

ties and cross-unit reciprocal ties can be directly compared by computing the Wald statistic, 

which confirms that they are significantly different (z-score = -21.10, p < .001). The second 

configuration is unit level sequential interdependence coupled with cross-unit aligned ties 

which controls for the likelihood of observing cross-unit directed ties, not reciprocal ones, 

supported by workflow ties across units. In Table 4 (Model 5), this configuration is not 

significant (0.283, p = 0.61); hence, the corresponding behavior is unlikely to be observed. 

Finally, the parameter estimate for unit level sequential interdependence coupled with cross-

unit reciprocal ties is negative, but not significant (-0.249, p = 0.60). Hence, individuals do 

not display a significant tendency toward reciprocal advice ties when affiliated with units 

connected by directed workflow ties, thus confirming our prediction that cross-unit advice 

relations under lower time pressure are enabled by a different tie configuration from the one 

we predict for higher time pressure.  

We then analyzed the advice network under conditions of higher time pressure, the 

results of which are detailed in Table 5. In Table 5 (Model 5), the parameter estimate for unit 

level sequential interdependence coupled with cross-unit reciprocal ties is positive and 

significant (0.949, p ˂ .05). The odds of observing reciprocal ties between members of 

connected units were exp[0.949] = 2.583. In line with Hypothesis 2, under higher time-

pressure conditions, ITS division members display a significant propensity toward reciprocal 
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advice relationships across units when they are affiliated with units connected by directed 

workflow ties. To further confirm this result, we performed the same analyses as those for the 

network under lower time-pressure conditions. As mentioned above, the prerequisite for our 

hypotheses is that individuals are unlikely to build cross-unit advice ties because of their cost 

implications. In Table 5 (Model 5), we find that the parameter estimate for cross-unit ties 

(non-reciprocal ties across units) is negative and significant (-1.588, p ˂ 0.05). This result 

indicates that the likelihood of observing non-reciprocal ties between units in the higher time-

pressure condition is less likely than would be predicted by chance. In Table 5 (Model 5), the 

parameter estimate for unit level sequential interdependence coupled with cross-unit aligned 

ties is non-significant, albeit positive (0.311, p = 0.62). Again, these coefficients can be 

compared by computing the Wald test statistic, which shows that there is a significant 

difference between this coefficient and unit level sequential interdependence coupled with 

cross-unit reciprocal ties (z-score = -1.82, p < .10). This confirms that in higher time-pressure 

conditions workflow ties across units support reciprocal but not directed advice ties. Finally, 

the parameter estimate for cross-unit reciprocal ties is positive, but not significant (0.355, p = 

0.64), indicating that reciprocity between individuals is not sufficient to create cross-unit ties 

under higher time pressure. This further supports our prediction that cross-unit advice 

relations under higher time pressure are enabled by a different tie configuration from the one 

we observed for lower time pressure (mirroring the evidence we reported above for 

Hypothesis 1).  

The behavior of the other control variables in Tables 4 and 5 (Model 5) is in line with 

expectations. Physical proximity and similar areas of expertise promoted advice relations 

under both conditions. For lower time pressure, Table 4 (Model 5), long-lasting relationships 

owing to shared past affiliations promoted advice relations. In addition, the results in Tables 4 

and 5 (Model 5), indicate that advice relations were embedded in local transitive subgroups (a 
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combination of significantly positive transitive closure and significantly negative cyclic 

closure). For higher time pressure, Table 5 (Model 5), working on the track makes team 

members more likely to have advice relationships with colleagues during race events (i.e., a 

positive and significant sender race location). In Tables 4 and 5 (Model 5) cross-unit ties are 

more likely to occur between members of units that differ in the number of tasks performed 

under both time-pressure conditions (i.e., a positive and significant unit task difference), an 

effect that warrants further attention in a replication study. Finally, for higher time-pressure 

conditions, Table 5 (Model 5), multilevel activity and multilevel popularity are positive and 

significant, indicating that sending advice ties to many colleagues is linked to membership in 

units that depend on many others for the provision of knowledge, and receiving advice ties by 

many colleagues is linked to membership in units on which many others depend. These 

effects were not significant under lower time-pressure conditions in Table 4 (Model 5). 

Discussion and Conclusions 

We designed our study to address the specific question: How does time pressure affect advice 

relationships across units? Due to the costs of advice ties in organizations, informal advice 

relations tend to occur within units (Caimo & Lomi, 2015; Lomi et al., 2014). Our study 

builds on existing research on advice relations across boundaries, such as units, in 

organizations (Caimo & Lomi, 2015; Hansen, 1999; Lomi et al., 2014; Parker et al., 2019). 

We developed a cost-based explanation for advice relations (Nebus, 2006) and examined it 

under two different time-pressure conditions. We show that in situations of lower time 

pressure, reciprocal advice ties are sufficient to overcome search and value uncertainty costs 

across units. However, under higher time-pressure conditions, which require faster search and 

coordination, cross-unit advice ties are facilitated by reciprocal advice ties embedded in the 

workflow ties between units. We contribute to the literature by showing that when work 

oscillates between different time-pressure conditions, employees’ underlying network choices 
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change because of the underlying costs. This has implications for how knowledge is managed 

and how problems are solved in organizations (Carlile 2002; 2004; Parker et al., 2019).  

In addition, we add to the literature on the relationship between formal and informal 

structures within organizations (McEvily et al., 2014), specifically, the role that formal 

structures play in supporting informal structures when there is need for coordination (Ben-

Menahem et al., 2016; Clement & Puranam, 2018; Puranam, 2018; Koçak et al., 2023). 

Furthermore, we add to the literature on multilevel networks by jointly examining formal and 

informal organizational networks (Brennecke & Rank, 2017; Brennecke et al., 2021; 

Dagnino, Levanti, & Mocciaro, 2016; Zappa & Lomi, 2016). Our empirical analysis of the 

ITS division of a F1 team supports the argument that under higher time pressure, both the 

organizational structure of workflow relations and the social structure of advice relations are 

required to facilitate intra-organizational advice sharing (Zappa & Lomi, 2016). By contrast, 

under lower time pressure, reciprocal ties between individuals are sufficient to support the 

sharing of advice across units.  

Finally, we contribute to the literature on time pressure within work (Day, Gordon, & 

Fink, 2012; Faraj & Xiao, 2006; Weick, 1993) and how this relates to social networks in 

organizations. Our findings indicate that employees’ network choices vary across different 

levels of time pressure. In doing so, we extend the explanation of coordination and advice 

relationships under time pressure. Our study highlights that when work oscillates between 

different time-pressure conditions, the structure of advice relations across units and their 

relationship with the formal structure are different in each condition.  

The limitations of the study indicate clear opportunities for future research. One 

opportunity arises from the inherent drawbacks of our single-organization design. A detailed 

analysis of one specific, and to some extent idiosyncratic, case study is insufficient to fully 

generalize our theory. A growing body of research uses the sports industry as an empirical 
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setting for organizational and management studies (Day et al., 2012; Jenkins & Floyd, 2001). 

F1 shares similarities with other technology-based industries—intense competition and an 

emphasis on change—which might facilitate extending the results of our study to teams 

operating in those industries (Marino et al., 2015). The empirical setting we examined may 

seem idiosyncratic, however, the “performative” aspects of our setting make the empirical 

scope of our study broader than it might seem at first. Fire fighters (Macpherson et al., 2022; 

Weick, 1993), medical teams (Benn, Healey, & Hollnagel, 2008; Faraj & Xiao, 2006), and 

management teams (Larson et al, 2020; Weick, 2007) represent adjacent empirical settings to 

which our results extend naturally. In all these cases, similar work was performed by the same 

people under widely varying time-pressure conditions.  

In conclusion, we believe that our study makes a novel and significant contribution to 

the literature on the relationship among time pressure, formal organizational structure, and 

informal social networks in organizations. We propose a cost-based explanation of advice 

relations across units and show that when there are high costs related to advice relations, that 

is, in higher time-pressure situations, a combination of formal task structure and informal 

reciprocal ties mitigates the costs, but when costs are primarily related to search and value 

uncertainty, that is, in lower time-pressure situations, informal reciprocal ties are sufficient to 

mitigate the costs.   
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Table 1. Advice and workflow network variables: Qualitative representations a  
Configuration Pattern Qualitative interpretation 

Cross-unit reciprocal ties [H1]  Reciprocal advice relations occur between colleagues affiliated to different units  

Unit level sequential interdependence coupled with cross-unit 
reciprocal ties [H2]  

Reciprocal advice relations occur between colleagues in sequentially interdependent units  

Characteristics of advice ties 
Sender covariate (Sender)  Advice relations occur when the sender has a specific value of a covariate 
Same covariate (Similarity)  Advice relations occur between colleagues with the same value of a covariate 

Same previous membership (Similarity, dyadic)  Advice relations occur between colleagues previously affiliated to the same organization  

Reciprocity (Mutuality)  Advice relations occur when they are reciprocal 
Isolates (No ties)  Members neither receive nor send advice relations 

Popularity (Centralization incoming ties) 
 

Variation in the extent members receive multiple advice relations  

Activity (Centralization outgoing ties)  Variation in the extent members send multiple advice relations  

Transitive closure (Transitivity)  Advice relations occur between colleagues of colleagues 

Cyclic closure (Generalized exchange)  Advice relations occur between colleagues in small informal groups  

Multiconnectivity (Brokerage) 
 
Advice relations occur through brokers, connecting colleagues that would be otherwise disconnected 

Advice ties within and across units 

Cross-unit ties   Advice relations occur between colleagues affiliated to different units 

Unit covariate difference   
Advice relations occur between colleagues affiliated to another unit and with a different value of a 
covariate 

Advice ties and interunit ties  

Multilevel popularity  
Popular members in the advice relations network are affiliated to popular units in the interunit 
network 

Multilevel activity  Active members in the advice relations network are affiliated to active units in the interunit network 
Unit level sequential interdependence coupled with cross-unit 
aligned ties   

Advice relations occur between colleagues in sequentially interdependent units. Same direction 
(aligned) for both levels 

a The explanation of the configurations is based on the assumption that the estimates of the corresponding parameters are positive and significant. Black indicates members 
with a relevant value of a binary or categorical covariate.  is a dyadic covariate (for a categorical attribute, such as previous membership, the variable captures similarity). 
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Table 2. Descriptive statistics of the advice and workflow networks 
 

Statistics 
Advice network 

lower time pressure 
Advice network 

higher time pressure Workflow 
Density 0.04 0.02 0.27 
Number of ties 528 251 160 
Mean in/out-degree 4.48 2.13 6.40 
Standard deviation (in) 4.92 4.30 4.22 
Standard deviation (out) 4.26 3.67 5.11 
Reciprocity 0.17 0.16 0.60 
Reciprocity across unitsb 0.68 0.35  
Reciprocity across units 
coupled with workflow tiesc 0.10 0.51  

Clustering 0.20 0.26 0.47 
b Computed as the ratio of reciprocal ties across units to the total number of reciprocal ties in the advice network.  
c Computed as the ratio of reciprocally aligned tie configurations to the total number of aligned tie configurations 
in a multilevel network. 
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Table 3. Descriptive statistics and correlations d 

 Mean SD (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

(1) Advice ties under lower time pressure  0.04 0.192             

(2) Advice ties under higher time pressure  0.02 0.133 0.35            

(3) Same educational background 0.28 0.448 0.01 0.003           

(4) Same expertise 0.54 0.499 0.03   0.06      0.03          

(5) Same organizational role 0.57 0.495 0.01  -0.01      0.10 -0.08         

(6) Same tenure 0.25 0.436 0.03   0.04      0.01 -0.02   0.01        

(7) Same day-to-day location 0.75 0.432 0.05   0.03      0.03 -0.09   0.08  -0.03       

(8) Sender race location 0.36 0.479 0.03   0.16      0.03   0.11 -0.03     0.02   0.002      

(9) Same race location 0.54 0.499 0.06   0.09   -0.001 -0.04   0.02  -0.003     -0.01 -0.28     

(10) Same previous membership 0.03 0.166 0.18   0.12      0.04  0.03  -0.01   0.05      0.03 0.04   0.02    

(11) Cross-unit ties 0.90 0.297 -0.15  -0.07     -0.04 -0.09  -0.09  -0.05      0.03 0.02  -0.03   -0.35   

(12) Unit size difference 9.86 7.428 -0.09  -0.05     -0.05  -0.41   0.09    0.01    -0.04 -0.03   0.02   -0.12   0.44  

(13) Unit task difference 1.91 1.792 0.01   0.01   -0.002  -0.23  -0.60  -0.03      0.09 0.07 -0.04   -0.14   0.35 0.32 
d 

Correlations > = ǀ0.02ǀ are significant at p<.05. 
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Table 4. MERGM ML estimates of advice relations under conditions of lower time pressure 

 Model 1 
Coeff  (S.E.) 

 Model 2 
Coeff  (S.E.) 

 Model 3 
Coeff  (S.E.) 

 Model 4 
Coeff  (S.E.) 

 Model 5 
Coeff  (S.E.) 

 

Characteristics of advice ties           
Same educational background -0.134 (0.094)  -0.116 (0.099)  -0.086 (0.083)  -0.049 (0.097)  -0.038 (0.084)  
Same expertise 0.528 (0.057) * 0.462 (0.050) * 0.684 (0.070) * 0.589 (0.063) * 0.557 (0.060) * 
Same organizational role 0.132 (0.069)  0.012 (0.065)  -0.006 (0.088)  0.050 (0.075)  0.061 (0.074)  
Same tenure 0.131 (0.086)  0.059 (0.093)  0.034 (0.092)  0.106 (0.085)  0.082 (0.081)  
Same day-to-day location 0.220 (0.061) * 0.211 (0.065) * 0.268 (0.067) * 0.268 (0.062) * 0.290 (0.062) * 
Sender race location -0.175 (0.093)  -0.199 (0.094) * -0.171 (0.106)  -0.116 (0.097)  -0.140 (0.095)  

Same race location 0.275 (0.086) * 0.300 (0.085) * 0.331 (0.098) * 0.287 (0.084) * 0.298 (0.082) * 
Same previous membership 0.754 (0.073) * 0.690 (0.077) * 0.821 (0.110) * 0.678 (0.095) * 0.681 (0.092) * 
Reciprocity 1.241 (0.269) * -0.009 (0.325)    0.098 (0.345)  0.105 (0.336)    0.022 (0.340)  
Isolates 0.092 (0.797)  -0.076 (0.801)  0.093 (0.811)  -0.495 (0.712)  -0.030 (0.789)  
Popularity   0.098 (0.127)  0.122 (0.127)  0.079 (0.134)  0.037 (0.129)  0.028 (0.138)  
Activity  -0.236 (0.131)  -0.241 (0.146)  -0.368 (0.153) * -0.452 (0.149) * -0.396 (0.157) * 
Transitive closure  1.403 (0.076) * 1.413 (0.076) * 1.360 (0.082) * 1.344 (0.074) * 1.368 (0.079) * 
Cyclic closure  -0.270 (0.059) * -0.263 (0.055) * -0.290 (0.054) * -0.257 (0.050) * -0.246 (0.052) * 
Multiconnectivity -0.081 (0.013) * -0.078 (0.013) * -0.082 (0.013) * -0.088 (0.013) * -0.088 (0.013) * 
           

Advice ties within and across units           
Cross-unit ties (nonreciprocal ties across units)   -0.659 (0.090) * -0.343 (0.120) * -2.577 (0.377) * -1.523 (0.216) * 
Cross-unit reciprocal ties (reciprocal ties across units) [H1]  1.809 (0.314) * 1.759 (0.324) * 1.573 (0.343) * 3.225 (0.063) * 
Unit size difference     -0.009 (0.021)  -0.002 (0.024)  0.003 (0.023)  

Unit task difference      0.273 (0.076) *   0.344 (0.082) *  0.348 (0.081) * 
           

Advice ties and cross-unit ties           
Multilevel popularity     0.012 (0.003) * 0.002 (0.003)  -0.001 (0.004)  
Multilevel activity     0.018 (0.003) * 0.009 (0.003) * 0.005 (0.004)  
Unit level sequential interdependence coupled with cross-unit aligned ties    2.262 (0.353) * 0.283 (0.190)  

Unit level sequential interdependence coupled with cross-unit reciprocal ties      -0.249 (0.148)  

Coefficients with * are significant at p<.05. The usual set of p values cannot be used in the ERGM framework. Statistical significance of coefficients can only be assessed at p<.05 level.  
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Table 5. MERGM ML estimates of advice relations under conditions of higher time pressure  
 Model 1 

Coeff  (S.E.) 
 Model 2 

Coeff  (S.E.) 
 Model 3 

Coeff  (S.E.) 
 Model 4 

Coeff  (S.E.) 
 Model 5 

Coeff  (S.E.) 
 

Characteristics of advice ties           
Same educational background -0.197 (0.131)  -0.152 (0.132)  -0.139 (0.155)  -0.131 (0.133)  -0.130 (0.138)  
Same expertise 0.302 (0.087) * 0.269 (0.076) * 0.548 (0.107) * 0.486 (0.110) * 0.475 (0.104) * 
Same organizational role 0.129 (0.112)  0.028 (0.112)  0.024 (0.127)  0.021 (0.125)  0.019 (0.125)  
Same tenure 0.219 (0.104) * 0.186 (0.097) * 0.236 (0.106) * 0.230 (0.114) * 0.217 (0.115)  
Same day-to-day location 0.167 (0.083) * 0.203 (0.077) * 0.327 (0.092) * 0.346 (0.105) * 0.432 (0.100) * 
Sender race location 0.383 (0.244)  0.409 (0.201) * 0.470 (0.234) * 0.532 (0.259) * 0.527 (0.253) * 

Same race location 0.518 (0.150) * 0.568 (0.158) * 0.758 (0.178) * 0.713 (0.177) * 0.706 (0.167) * 
Same previous membership 0.669 (0.141) * 0.331 (0.190)  0.353 (0.196)  0.327 (0.210)  0.332 (0.194)  
Reciprocity 1.079 (0.371) *    0.367 (0.542)    0.510 (0.537)   0.648 (0.547)      0.727 (0.532)  
Isolates 1.313 (0.442) * 1.248 (0.446) * 1.193 (0.434) * 1.156 (0.434) * 1.108 (0.446) * 
Popularity   0.473 (0.202) * 0.483 (0.203) * 0.454 (0.195) * 0.409 (0.209)  0.402 (0.203)  
Activity  0.257 (0.210)  0.249 (0.215)  0.149 (0.220)  0.080 (0.219)  0.086 (0.225)  
Transitive closure  1.115 (0.125) * 1.118 (0.127) *   0.842 (0.126) * 0.740 (0.132) * 0.651 (0.134) * 
Cyclic closure   -0.465 (0.081) * -0.463 (0.081) * -0.472 (0.081) * -0.291 (0.080) * -0.381 (0.078) * 
Multiconnectivity -0.096 (0.026) * -0.097 (0.026) * -0.101 (0.027) * -0.100 (0.026) * -0.100 (0.027) * 
           

Advice ties within and across units           
Cross-unit ties (nonreciprocal ties across units)   -0.816 (0.199) * -0.375 (0.232)  -1.350 (0.375) * -1.588 (0.524) * 
Cross-unit reciprocal ties (reciprocal ties across units)   0.874 (0.498)  0.881 (0.510)  0.640 (0.266) * 0.355 (0.232)  
Unit size difference     0.015 (0.018)  0.027 (0.020)  0.027 (0.019)  
Unit task difference     0.180 (0.090) * 0.260 (0.088) * 0.264 (0.090) * 
           

Advice ties and cross-unit ties           
Multilevel popularity     0.024 (0.005) * 0.012 (0.006) * 0.012 (0.006) * 
Multilevel activity     0.029 (0.005) * 0.018 (0.006) *** 0.017 (0.006) * 
Unit level sequential interdependence coupled with cross-unit aligned ties    0.602 (0.292) * 0.311 (0.244)   

Unit level sequential interdependence coupled with cross-unit reciprocal ties [H2]      0.949 (0.253) * 
Coefficients with an * are significant at p<.05. 
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Figure 1. Conceptual framework 
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Figure 2. Different forms of cross-unit ties a 
    
 
 

 
a White circles represent individuals. Gray squares indicate organizational units in which individuals are members. Black lines represent reciprocal advice ties between 
individuals. The dashed black lines represent the sequential interdependent ties between organizational units. The gray lines represent the affiliation ties of individuals to units.  
 

 

  (a) 
Lower levels of time pressure. Reciprocal 
advice ties across organizational units 
(Cross-unit reciprocal ties) 

(b) 
Higher levels of time pressure. Reciprocal 
advice ties across organizational units 
coupled with sequential task interdependence 
ties between units 
(Unit level sequential interdependence 
coupled with cross-unit reciprocal ties) 
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Appendix 
 

Goodness of fit. The goodness-of-fit procedure simulates the distribution of graphs implied 

by the model, using parameter estimates as initial values. Then, a number of network features 

(i.e., exponential random graph model (ERGM) effects not included in our model and 

structural properties of the observed graph, such as the number of ties sent/received and 

clustering coefficients) are selected, and t-ratio statistics are computed to compare their 

observed values to the estimated value implied by the model (Hunter et al., 2008; Lusher, 

Koskinen & Robins, 2013). T-ratio absolute values of larger than two suggest that the 

observed graph differs from the distribution implied by the model in the corresponding 

feature. Hence, the model is not capable of capturing these features. Indeed, the closer the t-

ratio values are to zero, the better the fit. The goodness-of-fit procedure is used iteratively to 

fine-tune the model. This consists of finding the value of the weighting parameter λ that 

provides the most accurate representation of the ERGM configurations in the observed 

network. The λ parameter (with λ≥ 1) is included in the formula of each ERGM covariate and 

is specifically relevant for “higher order” configurations—closure and multilevel 

configurations—because they consist of a combination of nested ties where more complex 

combinations are more or less likely to be observed than less complex combinations. By 

default, λ is set to 2 but can typically vary in the range of 0.5 to 6. Our goodness-of-fit tests 

indicate that our complete model (Model 5 in Tables 4 and 5) reproduces more network 

features than any of the intermediate models. The results of the goodness-of-fit tests are 

available from the authors. 

 

Testing alternative thresholds of the interunit network. The workflow network is based on 

the interaction behaviors of the survey respondents. To rule out the risk of a potentially biased 

assessment of formal interdependence, we conduct a sensitivity analysis on the interunit 
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network. We replicate the analysis by setting the threshold for the existence of a tie between 

units equal to at least (i) the median value and (ii) the mean value of interpersonal ties per 

unit. The patterns of the results remain unchanged (results are available upon request from the 

authors).  

Testing reciprocal task interdependence. For theoretical reasons, we focus solely on 

sequential interdependence (cf. Soda & Zaheer, 2012; Thompson, 1967). However, because 

the F1 team’s workflow structure included a high percentage of reciprocal interdependencies 

(Table 2), we also controlled for the coexistence of unit-level reciprocal interdependence with 

(i) cross-unit aligned ties and (ii) cross-unit reciprocal ties. For the lower time-pressure 

condition, the effects were non-significant (0.170 (S.E. = 0.089) and -1.284 (S.E. = 5.762)), 

nor did they affect the patterns of our results. This confirms that reciprocal workflow 

interdependencies do not support advice ties between formally connected units (Soda & 

Zaheer, 2012). For the higher time-pressure condition, the number of such configurations was 

so small that the model did not converge. This finding indirectly confirms our prediction that 

reciprocal workflow interdependencies are unlikely to support cross-unit advice ties. 
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