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Color composition (or color theme) is a key factor to determine how well a piece of art work or graphical design is perceived
by humans. Despite a few color harmony models have been proposed, their results are often less satisfactory since they
mostly neglect the variations of aesthetic cognition among individuals and treat the influence of all ratings equally as if they
were all rated by the same anonymous user. To overcome this issue, in this paper we propose a new color theme evaluation
model by combining a back propagation neural network and a kernel probabilistic model to infer both the color theme rating
and the user aesthetic preference. Our experiment results show that our model can predict more accurate and personalized
color theme ratings than state of the art methods. Our work is also the first-of-its-kind effort to quantitatively evaluate the
correlation between user aesthetic preferences and color harmonies of five-color themes, and study such a relation for users
with different aesthetic cognition.

CCS Concepts: • Computing methodologies→ Image manipulation; Machine learning.
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1 INTRODUCTION
Selecting appropriate color composition is crucial to make art work and graphical design visually appealing, such
as painting, images, posters, clothing, and interior home design. Designers or professionals usually make such a
choice based on their expertise and/or experience, which may be supported by color harmony theory through
the application of specific rules and models to achieve aesthetically pleasing color combinations. However, in
reality most people lack the artist’s expertise or experience; it becomes non-trivial or even challenging for them
to properly evaluate color themes.

Some existing websites, such as Adobe Color [1] (formerly known as Adobe Kuler) and COLOURLovers
[2], allow users to share color themes with community members and indicate the favor of a color theme by
clicking a “Love” or an “Appreciate” button. These services leverage the color wheel’s geometric relationships
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for theme creation, proving especially useful for novices who can either choose from visually compelling color
combinations or derive inspiration from existing color themes created by other users to match their aesthetic
perception. However, the popularity of these color themes tends to emphasize the spatial relationships between
colors, neglecting the complex personal preferences influenced by factors such as users’ individual personality
traits in their color selections.

O’Donovan et al. [40] collected 10,743 different color themes through Amazon Mechanical Turk (MTurk) and
trained a prediction model through LASSO regression to rate color themes with a 1-5 point scale. Yang et al. [68]
trained a model to extract color-pair ratings and then predict color theme preference scores. Despite numerical
models’ ability to predict the general acceptability of color combinations based on extensive data analysis, these
models treat all instances of color theme ratings as if conducted by the same anonymous user, failing to capture
the unique emotional responses and personalized preferences individuals may have towards certain colors or
combinations. The collaborative filtering based method by O’Donovan et al. [41] could infer user variations
through matrix factorization. However, they do not work well if color theme ratings in the dataset did not follow
a Normal distribution.

Given that previous color theme computation models have overlooked the big literature on human color
preferences, we consider the variations in aesthetic cognition among different users and propose a novel color
theme evaluation model. To take into account the impact of individual personality traits on individual aesthetic
preferences, we created a dataset containing color-themed comments based on the COLOURLovers [2], aimed at
gaining deeper insight into users’ subjective experiences with colors. We transform comments into user-specific
color theme ratings by classifying comments into 1-7 point scales of user preference levels, according to the
enclosed affective keywords. We adopt a 7-point scale instead of a 5-point one for the sake of reliability as the
former offers a wider range of stimuli [12].

We then introduce a kernel probabilistic model based on the output of a trained back propagation neural
network (BPNN) that can simultaneously infer each user’s aesthetics cognition [46] and predict an individual-
specific rating for each color theme. Remarkably, our new approach enables us to quantitatively study the
correlation between the user preferences and the color harmonies of five-color themes. Our findings can offer
fresh insights to designers or relevant professionals for them to decide how to produce artifacts that fit users
with different aesthetic preferences. Through various experiments, we demonstrate our method can predict more
accurate and more personalized color theme ratings than state-of-the-art methods.

The main contributions of this work include:
• an aesthetic-aware color theme evaluation method;
• a probabilistic model to infer user aesthetic preference; and
• the first-of-its-kind of quantitative evaluation of the correlation between the user aesthetic preferences

and the color harmonies of five-color themes.
The remainder of this paper is organized as follows. Section 2 presents the recent related work on color modeling

and color theme evaluation. Section 3 gives an overview of our proposed framework. Section 4 and Section 5
elaborate the technical details of our method, including dataset construction, user aesthetic preference modeling,
and color theme evaluation. Section 6 shows a set of experimental results, including comparing our method
with state-of-the-art methods through two perspectives of generic evaluation and personalized evaluation, and
studying the relationship between user aesthetic preference and color harmony. Finally, we provide concluding
remarks and discuss the future work in Section 7.

2 RELATED WORK

2.1 Color Wheels and Palettes
Representing the basic element of visual and graphical communication, colors play an important role in the
perception of visual design [65]. The origin of color harmony can be traced back to the Newton’s color theory,
ACM Trans. Appl. Percept.
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which emphasizes that multiple colors in adjacent areas can produce visually pleasing effects. Color harmony
models are divided into geometric, numerical, and contingent models, with the color wheel being a quintessential
representation of the geometric models [8, 36]. Through different positions of colors in the color wheel, a
harmonious color scheme can be generated, such as complementary, analogous, and triadic. Itten [20] designed
a 12-color wheel, namely the base color wheel, assuming the colors uniformly distributed on the color wheel
are harmonious. Based on this concept, Matsuda [33] derived a set of 8 hue templates according to fashion
questionnaires and color themes used in fashion industry, which have been widely used for many applications,
including custom color themes [1, 2, 16, 56], aesthetics assessment [30, 31, 39, 40], and image optimization
[13, 25, 47, 62]. Readers may refer to [66] for a comprehensive review on different color harmony models.

A color palette comprises a number of different solid color swatches, being commonly used in design applica-
tions. Online coloring websites including Adobe Color [1] and COLOURLovers [2] allow users to quickly pick
favorite colors and create new palettes. Color wheels are used to visualize arbitrary color palettes in a more
contextual way, in order to infer meaningful relationships between colors. By contrast, a given color palette
can be shown in an order that obfuscates any harmonic relationship, making it less intuitive. As a result, color
palettes have attracted a lot of attentions in research communities, such as extracting quantitative palettes from
images [9, 27, 29], color transfer [18], and color palette based recoloring [9, 10, 27, 61, 70]. Cao et al. [6] presented a
probabilistic model to learn color palettes from a collection of artworks by summarizing their color uses. Shugrina
et al. [57] designed a novel interactive interface for generating color palettes that are more consistent with the
color theory, which can intuitively relate multiple color design tasks.

2.2 Color Preference
Color preference refers to an individual’s degree of liking specific colors, and it is considered as a subarea of color
psychology [34]. Color preference is influenced by various factors such as age [63], mood [59], education [55],
personal preferences [45], season [53], and culture [69]. For example, researchers found that western individuals
typically prefer cool colors over warm colors [19, 28]. Saito suggested that white is the favorite color among
East Asian individuals, associated with concepts of cleanliness, purity, harmony, freshness, beauty, happiness,
gentleness, and nature[50]. Palmer and Schloss studied aesthetic preferences in cognitive science, introducing
the Ecological Valence Theory (EVT) for color preference[45, 46]. EVT posits that an individual’s preference
for a given color at a particular time depends on (a) the concepts associated with that color (differential object-
association hypothesis), (b) the relative preference for concepts associated with that color (differential valence
hypothesis), and (c) the degree to which different concepts are activated in an individual’s mind (differential
activation hypothesis).

Building upon the EVT, researchers have ventured into modeling color preferences. Schloss et al. [52] developed
a color inference framework that interconnects color-related concepts to determine preferences for specific
colors. Additionally, researchers have explored various metrics of the color space to construct models that predict
preferences for colors that users have not previously assessed [19, 51]. However, these methods are limited to
predicting preferences for individual colors. In real world scenarios, colors often appear in combinations of
multiple colors, and the combination of colors usually involves color harmony, which is a key factor influencing
colour preferences. Different hues, areas, and arrangements of colors are linked to diverse physiological and
psychological perceptions [43, 46]. Palettes serve as intuitive visual representations of these elements. Interactive
color recommendation systems based on community-generated palettes have been developed, facilitating users
in instantaneously selecting harmonious colors [3, 58]. Colorgorical [16], a palette generation tool designed
for information visualization, takes into account pairing preferences between color pairs and is employed for
predicting higher-order color combinations.

ACM Trans. Appl. Percept.
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2.3 Color Theme Evaluation Models
Two primary research streams address the evaluation of color themes. In the field of psychology, various models
have been proposed to predict harmonious color combinations. These models were designed to explore the factors
that satisfy the harmony of color combinations through psychological experiment data [42, 43, 62]. On the other
hand, researchers construct computational models to evaluate color themes based on existing color rating datasets.
For instance, O’Donovan et al. [40] conducted experiments to study color ratings from large online datasets for
predicting color theme ratings, which overcomes the robustness and generalization problems of previous studies
due to insufficient data. Kita and Miyata [22] proposed a model to add a color to any position of a known color
theme while maintaining the harmony of a newly created color theme. Compared to previous methods, their
model could rate any number of color palettes, although their results are less accurate than [40]. Based on the
key observation that color pairs play an influential role to a color theme, Yang et al. [68] proposed a two-layer,
color-pairs based model to first predict the scores of color pairs in a color theme, and then statistically combine
the scores of the enclosed color pairs to generate the final rating of the color theme. These existing models
however simply treat all instances of color theme ratings as if they were done by a single anonymous user, without
considering the aesthetic cognition differences among individuals. O’Donovan et al. [41] randomly extracted
13,343 color themes evaluated by 1,137 participants from the Adobe Kuler website, and proposed a collaborative
filtering based approach to capture the user preferences of color combinations. However, this method overlooks
the impact of personality traits on color preferences, which are considered crucial for distinguishing between
color harmony and individual aesthetic preferences [44].

Inspired by the findings of Schloss et al. [54], which demonstrated a high correlation between user preferences
and color harmonies of color pairs (the Pearson correlation coefficient A = +0.79), we acknowledge a crucial
observation: individuals exhibit different aesthetic cognition and preferences when evaluating the same color
theme. This allows us to develop a more accurate and personalized model for predicting color theme ratings. It
also enables us to quantitatively evaluate the correlation between user preferences and color harmonies of color
themes under different user aesthetic cognition.

Fig. 1. The pipeline of our color theme evaluation framework consists of the following major steps. Step 1: Extend color
themes such that each user< has a corresponding color theme �<= associated with the rating /<= for color theme =. Step
2: Extract features from the color themes, and generate the average ratings V= through a trained BPNN model. Step 3:
Predict the aesthetic preference U< corresponding to each user through a probabilistic density model. Step 4: Generate final
individual-specific ratings .<= on color themes based on the aesthetic preference of each user.

3 OUR APPROACH
We now give an overview of our framework, describing the major steps involved. First, based on the data from
COLOURLovers, we construct a dataset by collecting the color themes �= , user identifications<, user-specific
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color theme ratings /<= , and the set of color themes �<= annotated by each user. Second, using the collected
dataset as input, we train our BPNN model using a set of features extracted from color themes to infer the average
rating V= . After that, we feed the output into a probabilistic density estimation model to predict color-theme-
independent user aesthetic preferences U< . Finally, our framework can produce user-specific color theme rating
.<= . In addition, we can apply majority voting to generate a single rating for each color theme by counting the
ratings on each distinct color theme. Figure 1 illustrates how the major components of our framework work
together.

We define the following three terms for the sake of clarity.

• True Ratings of a color theme: They refer to the ground-truth annotator-specific preference ratings on
a color theme. In this work, they are directly obtained from the COLOURLover dataset, as described in
Section 4.

• Average Rating of a color theme: It refers to the generally accepted rating of a color theme by different
annotators. The “average” denotes that the rating of a color theme remains uninfluenced by individual
annotators’ preferences. Unlike true ratings, each color theme has only one average rating.

• Predicted Rating of a color theme: It refers to an output or predicted rating by our computational model or
other algorithms, given an input color theme.

4 DATASET CONSTRUCTION
To the best of our knowledge, datasets for studying user preference in color theme are limited.Themost prominent
datasets [40] were derived from Adoble Kuler [1], COLOURLovers [2], and Amazon Mechanical Turk. The one
derived from COLOURLovers plays a dominant role in some studies [40] due to its large data size. These datasets
were intrinsically biased due to the anonymous single user rating issue. Remarkably, our proposed dataset
comprises user-specific color theme ratings. As our method also utilizes the dataset from COLOURLovers,
experimental comparisons between our method and existing methods should be sufficiently fair.

Different from existing works, our model takes user-specific color theme ratings (or called true ratings, as
defined above) as input. Specifically, our dataset was collected from the COLOURLovers, a website maintaining
over one million different 2-5 color themes defined by users. The website also contained over 4,670,225 user
accounts as of January 1st, 2020. The website did not support users to directly rate color themes, but allowed
users to indicate color preference by clicking the “heartening” button. Unfortunately, no quantified user-specific
ratings or preferences can be retrieved. To solve this problem, we alternatively collected users’ online comments
on different color themes, as shown in Figure 2. We have collected 256,624 comments (mostly commented by
36,293 different users) together with user information for 26,470 different five-color themes.

In the field of sentiment analysis, researchers use specific keywords as a corpus of sentiment intensities, and
further use the corpus to automatically classify sentences into sentiment levels [35, 49]. Inspired by the above
research, in this work, we also treat the collected user comments as an unmarked corpus. We select the scoring
method of Likert scale [14, 21] in the field of psychology and classify user comments into 7 different levels, where
1 represents the least favoured level and 7 represents the most favoured level, based on the Hourglass of Emotions
model [60]. In this model, both positive and negative keywords are classified into three polarity categories. Each
polarity category contains four basic emotional dimensions, and the fusion of these basic emotions can generate
more compound emotions. Figure 3 shows some emotion classification examples. After judging the emotional
polarity of the keywords, we analyze the polarity of the keywords through SenticNet [5] to obtain the final
polarity of each comment. By determining positive or negative vocabulary keywords contained in the comments,
we then quantify the corresponding degree of user preference.

We chose keywords that can indicate user preferences distinctively and explicitly. For comments without any
keywords, we quantified their degree of user preference as 4. To quantify the degree of preference for emojis,
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Fig. 2. Top: A five-color theme created by Miss Anthropy, which is called “Thought Provoking”, on October 1st, 2019. Bottom:
With the comment entries of this color theme, we can retrieve identifiable users and their comments, quantifying user-specific
color theme rating accordingly.

we classified positive ones based on smile faces and negative ones based on crying faces to have the degrees of
preference of 5 and 3, respectively. We removed blank comments and their corresponding users to reduce noise
in our dataset. Each color theme is identified by a unique ID. To obtain the IDs of the users (i.e., annotators),
we followed each color theme, sorting the annotators by their usernames and enumerating them accordingly.
Note that we only build a personalized model from the perspectives of both users’ visual perception and color

ACM Trans. Appl. Percept.
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Fig. 3. Example of emotion classification words by Susanto et al. [60]. The first and second columns are basic emotion words.
The compound sentiment words in columns 3-5 are obtained by fusing different basic emotion words.

theme features. Although some personal user information exists in COLOURLovers for potentially enriching our
dataset, such as age, gender, nationality, occupation, these data lack completeness. For example, among a total of
36,293 users, 36% of users lack age and gender, and only 8% of users disclose all the above personal information.

Color preference analysis: Although the color preferences of participants in the dataset were derived from
assessments of color themes, the specific color attributes associated with individual color differences remain
unclear. To investigate this, we employed Multidimensional Scaling (MDS) [7] to analyze clusters of participants’
preferences. We selected participants who evaluated more than 50 color themes, culminating in a sample size
of 1,220 individuals. For the purpose of correlation analysis, we identified each participant’s preferred color
theme, which was denoted by a top score of 7, and considered this as a reflection of their highest color preference.
Our MDS model incorporated various perceptual color factors, such as the saturation, brightness, hue, color
distance, and color contrast entropy of the color themes. The results are shown in Figure 4, presenting each
participant’s color preference through individual scatter points. We use colors to differentiate scatterplot densities.
Blue represents the dense areas, which are predominantly clustered around the origin, indicating that these
participants have similar color preferences. In contrast, red denotes the sparse areas of the plot, which are more
dispersed and do not form significant clusters, suggesting that these participants have more diverse and scattered
color preferences without clear trends or easily distinguishable groups.

To further analyze the preference differences between these two participant groups, we analyzed the distribution
of color attributes for these two groups separately. As shown in Figure 5, we computed the color distance, contrast,
saturation, and brightness of the color themes favored by diverse participants and normalized these attributes for
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Fig. 4. Color preferences of participants were analyzed using MDS. Blue scatter points indicate dense clusters, representing
similar individual color preferences. Red scatter points indicate sparse clusters, representing unique individual color prefer-
ences.

representation. Figure 5(a) depicts the distribution of color attributes among participants with similar preferences.
We can observe that these color attributes approximately conform to a Gaussian distribution, with each attribute
exhibiting a narrow distribution range. This indicates a collective predilection for color themes within a specific
attribute range among these participants. In contrast, the distribution of color attributes among participants with
unique color preferences, as illustrated in Figure 5(b), although maintaining a similar median, spans a wider range
and exhibits more irregularity. This implies a more varied array of favored colors within this subset. The elongated
tails of the distribution underscore a greater dispersion in color preferences. For example, a segment of these
participants favored color themes with a color distance greater than 0.8, marking a substantial divergence from
the preferences of their counterparts. This analysis further suggests that participants with similar preferences
tend to be attracted to similar color themes, whereas those with unique preferences favor a diversity of color
themes. Although perceptual color attributes are inextricably linked to color preferences, the individual color
preferences exhibit a high degree of complexity, making them challenging to capture with simple statistical
models. This necessitates the crafting of bespoke preference models to prognosticate the color preferences of
participants with greater accuracy.
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Fig. 5. The color distribution of color themes preferred by participants was analyzed from different color attributes. (a) A
group of participants with similar preferences. (b) A group of participants with greatly different preferences.

5 USER AESTHETIC MODEL
Schloss and Palmer [54] proposed a high correlation between user preference and color harmony. Concurrently,
Yang et al. [68] indicated that color harmony might be nonlinearly correlated with certain low-level features of
color themes. This inspires us to extend BPNN to learn such a relationship, aiming to predict both color theme
ratings and the user preference to judge aesthetics. As illustrated in Figure 1, we can infer the average color theme
ratings through the BPNN network, and predict the users’ initial (i.e., color theme specific) aesthetic preferences.
Such predicted aesthetic preferences are color theme specific since the color theme ratings in our dataset have the
same nature. To generalize the prediction of the user preference on unseen color themes, we need to obtain the
color-theme-independent user aesthetic preference. This is analogous to solving the worker modeling problem
in crowd-sourcing research [23]. Although we are aware that the collaborative filtering based approach [41]
can infer user-specific features to a certain extent, our experimental results show that such an approach is not
effective enough. To tackle this, we devise a probabilistic density estimation model as illustrated in Figure 6.

Fig. 6. User aesthetic preference U< obtained via probability density estimation.
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5.1 Model Training
To employ low-level color features for BPNN model training, we follow the work in [68] to extract features from
a color theme, including the colors enclosed in the color theme, mean, standard deviation, median, max, min,
mode, color moment, max-minus-min across a single channel in each color space (i.e., RGB, LAB, HSV, and LCH),
and the Euclidean distances between the adjacent colors in the color theme. These features reflect the impact
of the specific color features such as color difference, color sequence, hue, saturation, and so on, on user color
preferences. Note that, different from the work of [68], we do not use a two-layer MLE (Maximum Likelihood
Estimation) to produce coarse color-pair ratings as features. We obtain a total of 184 features from each color
theme as the input to our BPNN model.

For network design, the input layer of our BPNN model consists of 184 neurons for the input feature vector
while the output layer consists of only one neuron for its prediction. We choose three hidden layers to train
the color features of the input layer and determine the number of nodes in each hidden layer through multiple
experiments. The three hidden layers have 128, 64 and 32 neurons, respectively. This design is experimentally
chosen to balance the trade-off between training time and regression accuracy, while having a sufficient capability
to capture the nonlinear relations in different color themes. After the output of the third hidden layer, only a
scalar value is needed as the prediction outcome (i.e., the average rating of the input color theme), which is used
as one of the inputs to the subsequent probabilistic density estimation model.

We use a sigmoid function as the activation function in the three hidden layers. Between the third hidden layer
and the output layer, we use the purelin linear transfer function (i.e., ~ = G ) as the activation function. After that,
we then feed the result of the output layer, as well as the true ratings of the color themes, into a probabilistic
density estimation model to infer the color-theme-independent user aesthetic preference.

To facilitate model training, we set the learning rate [ = 0.00075 to balance prediction accuracy and training
time. Since if the learning rate is too large, the loss function may not converge after many iterations. On the
other hand, a small learning rate may not achieve the optimal convergence. The learning rate is set to decrease
over iterations. This ensures that our model remains stable with more iterations. The number of iterations is
important to obtain the optimal prediction result. We experimentally set the maximum number of iterations to
500. If the losses resulted from three consecutive iterations were approximately the same (i.e., the difference is
below a threshold), the training process will then be stopped.

5.2 Aesthetic Preference and Color Theme Evaluation
A novel contribution of this work is the capability of predicting the user’s preference to judge aesthetics on color
themes. To enable this, as depicted in Figure 6, our BPNN model accepts true ratings and average ratings on color
themes as the inputs to generate initial aesthetic preference values. Since the values are color theme specific, they
cannot be directly used to represent the generalized aesthetic preferences of users. Therefore, we introduce a
probabilistic density estimation model to generate color-theme-independent, user aesthetic preferences, based on
the initial user aesthetic preferences.

5.2.1 User Aesthetic Preference Modeling. Whitehill et al. [67] proposed an algorithm to control the quality of
crowdsourced data by applying a generative model to infer the expertise of different users. Inspired by this work,
we collected color theme ratings by different users and improve color theme evaluation by modeling the aesthetic
preferences of the users. Since aesthetic is a subjective preference. Therefore, “aesthetic preference” does not mean
that something can be done correctly or incorrectly. It is similar to the user’s differences in aesthetic cognition.
Unlike [67], we build a kernel-based probabilistic density model (KDM) to simulate and thus generate color theme
ratings for different users. In addition, we have explored alternatives to our framework design, including the
replacement of KDM with a neural network decoder, as shown in Section 6. We found that the configuration of
our current framework design (refer to Figure 1) performs the best.

ACM Trans. Appl. Percept.
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To explain our probabilistic density estimation model, let # be the number of color themes and" be the total
number of users (i.e., annotators) involved. User aesthetic preferences are represented by " = {U1, ..., U<, ..., U" } ∈
[0, 1], where< denotes the<-th user. The average ratings of color themes predicted by our BPNN model in
Section 5.1 are normalized and represented by # ′ = {V1, ..., V=, ..., V# } ∈ [0, 1]. The true rating of a color theme
�= given by a user< is represented by /<= . The total number of /<= is ( , where ( ≤ " × # since not all of the
users rated all the color themes.

In this work, " is the key factor that affects individual-specific ratings on color themes. Specifically, U< = 1
2

indicates the user< possesses the professional artist’s aesthetic cognition, being able to give an accurate evaluation
on different color themes;U< < 1

2 indicates that the user< generally gives lower ratings to color themes, compared
to the average user; and U< > 1

2 indicates that the user< generally gives higher ratings to color themes, compared
to the average user, and thus the ratings given by the user< are typically higher than the average ratings of color
themes. As extreme cases, U< = 0 or 1 indicates that the user< is extremely underestimates or overestimates the
aesthetic quality of color themes. In our model, the predicted individual-specific rating of the user< on the color
theme �= is denoted as .<= ; it is composed of the aesthetic preference U< of the user< and the average rating
V= predicted by the BPNN model: .<= = 2U< .V= ; if 2U< .V= > 1, then we force .<= = 1.

In this way, _ ∈ R(×1 represents all the predicted user-specific color theme ratings generated by our model.
We multiply a coefficient 2.0 in the computation of .<= so that the average color theme rating is the same as the
predicted result when U = 1

2 . We then formulate the learning of user aesthetic preference as a regression problem.
We use the mean squared error as a multi-personality regression loss function and calculate the gradients of
model parameters as follows:

! =
1
(

(∑
<=1,
==1

(/<= − .<=)2 =
1
(

(∑
<=1,
==1

(/<= − 2U< .V=)2. (1)

Obviously, {U<} are the parameters to be solved, and solving them is similar to the solving of the worker
modeling problem in the area of crowdsourcing research [23]. In our approach, we predict users’ color-theme-
independent aesthetic preferences by exploiting the probabilistic distribution of all instances of users’ color-
theme-specific aesthetic preferences.

Given that our BPNN model can predict {V=} and true ratings {/<=} were obtained in our dataset, we can
evaluate the color-theme-specific aesthetic preference U ′<= of user< as:

U ′<= =
/<= − V=

2
+ 1
2
, (2)

where U ′<= is referred to as an initial aesthetic preference value. Note that /<= − V= and U ′<= are linearly correlated.
When /<= = V= , the initial aesthetic preference value U ′<= = 1

2 .

5.2.2 Color-Theme-Independent, User Aesthetic Preference Generation. In order to predict user preferences for
unseen color themes, we fit the aesthetic preference of users through probability distributions. To analyze the
distribution of {U ′<=}, we experimented with some different types of widely-used probabilistic distribution models
as depicted in Figure 7. We found that the distribution of {U ′<=} can well fit into the kernel distribution as shown
in Figure 7(a), while the other types of distributions can hardly fit the distribution of {U ′<=}. We therefore derive
color theme independent, aesthetic preference values of the users through the fitting of kernel distributions.

Since we independently solve the color-theme-independent, aesthetic preference value for each user, without
the loss of generality, we describe how we compute the U< of a specific user<. Assuming from the previous
steps we have obtained ;< initial aesthetic preference values of the user<, {U ′<1, ..., U

′
<;<

}, now we model the
probabilistic distribution of U< by fitting a kernel distribution to {U ′<1, ..., U

′
<;<

}.
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(a) (b)

(c) (d)

Fig. 7. Probability density histogram comparisons between the initial aesthetic preference values (" ′) and the aesthetic
preference values (" ) generated by (a) Kernel distribution, (b) Gaussian distribution, (c) Extreme value distribution, and (d)
Exponential distribution, respectively. For each type of distribution, the red curve (fitted) shows its fitted probability density
curve.

Specifically, first, we obtain the bandwidth parameterℎ and evaluate the probability density function ? (U< | ,ℎ)
through the following kernel density estimator:

? (U< | ,ℎ) = 1
;<ℎ

;<∑
9=1

 (U<, U ′<9 , ℎ) (
U< − U ′<9

ℎ
), (3)
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ℎ = ( 4
3;<

) 1
5f, (4)

 (U<, U ′<9 , ℎ) =
3
4
(1 −

(U< − U ′<9 )2

ℎ2
), (5)

where f is the standard deviation of {U ′<1, ..., U
′
<;<

}, and ℎ is the bandwidth parameter. We adopt the bandwidth
estimator proposed by Dehnad [15]. In addition,  is a scaled kernel function. Based on our experiments, we
empirically choose the Epanechnikov kernel for estimation.

Second, we use the method in [4] to change the probability density function ? (U< | ,ℎ) into a cumulative
distribution function � (U< | ,ℎ) as follows:

� (U< | ,ℎ) = 1
;<

;<∑
9=1

∫ U<−U ′
<9

ℎ

−∞
 (U<, U ′<9 , ℎ)3 (

U< − U ′<9

ℎ
)

=
1
;<

;<∑
9=1

, (U<, U ′<9 , ℎ).

(6)

, (U<, U ′<9 , ℎ) = −1
4

(U< − U ′<9 )
3

ℎ3
+ 3
4

(U< − U ′<9 )
ℎ

+ 1
2
. (7)

In the above Equation (6) and Equation (7),, (U<, U ′<9 , ℎ) is a kernel function of the cumulative distribution in
the case of the Epanechnikov kernel.

Finally, we use the above cumulative distribution function to inversely compute the aesthetic preference U<
satisfying the Kernel distribution. We first generate a group of random variables {D8 } that satisfy the uniform
distribution [0,1], and then we generate their corresponding color theme independent, aesthetic preference values
{U∗<8 } by applying inverse transform sampling to the cumulative distribution function as follows:

U∗<8 = �
−1 (D8 ) =

1
;<

;<∑
9=1

, −1 (D8 , U ′<9 ). (8)

, −1 (D, U ′<9 ) = ℎ(2
√
(1 − D)D − 2D + 1) 1

3

+ ℎ(2
√
(1 − D)D − 2D + 1)− 1

3 + U ′<9 .
(9)

Finally, we average the computed {U∗<8 } to obtain the final U< as the color-theme-independent aesthetic
preference value of the user<. In our experiments, we sampled D 1000 times and then performed the averaging
operation.

5.2.3 Color Theme Rating Generation. After the above U< is obtained, we can generate the aesthetic-aware rating
on a color theme �8 by the user< as follows: (i) We first use our BPNN model to predict its average rating V8 ;
(ii) then, we further compute its aesthetic-aware rating by the user< as .<8 = 2U< .V8 , and if 2U< .V8 is larger
than 1.0, then we truncate .<8 to 1; (iii) finally, we linearly scale .<8 from its [0, 1] range to the 7-point scale.
Figure 8 illustrates how aesthetic-aware color theme ratings are computed. In the figure, annotator #1 evaluates
all three color themes. Annotator-specific color theme ratings .11, .12 and .13 are then evaluated based on the
computed aesthetic preference of annotator #1, U1, and the corresponding average color theme ratings, V1, V2 and
V3, outputted by the BPNN model. Note that annotator #2 only rates two color themes instead of all of them.

After obtaining the aesthetic-aware color ratings of different users, {.<=}, we can calculate the losses according
to /<= and .<= for back-propagation iterations and updating the weights. In this way, we obtain an updated
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Fig. 8. An illustration of the process of generating aesthetic-aware color theme ratings .<= . The example involves three color
themes �1,�2,�3 and three annotators U1, U2, U3.

kernel density bandwidth ℎ, an updated probability density function ? (U< | ,ℎ), and an updated cumulative
distribution function � (U< | ,ℎ). Finally, {U<} will be updated accordingly. This iterative process continues until
convergence (i.e., the loss difference between two consecutive iterations is smaller than a threshold or a maximum
number of iterations are achieved). In each iteration, {U<} and {V=} are trained simultaneously.

6 EXPERIMENT RESULTS AND EVALUATIONS
We present experimental results on test color themes and personalized color theme datasets using our approach.
We then present a set of quantitative tests to validate the effectiveness and robustness of our method, and some
user study results.

6.1 Color Theme Assessment
To evaluate the effectiveness of our method on predicting the generic (in contrast to personalized) rating of color
themes, we tested our method on both the MTurk dataset [41] and our collected dataset (as described in Section
6). Specifically, the MTurk Dataset is the only publicly available dataset with personalized aesthetic ratings for
color themes. This dataset comprises 13,343 five-color themes downloaded from the Adobe Kuler website [1],
which were rated by a total of 1,137 annotators. From both the datasets, we randomly selected 60% of the data for
training, 20% for validation, and the remaining 20% for test. With our method, we learn the aesthetic preference
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Fig. 9. Comparisons between the predicted preference ratings by our method (red) and the ground truth (dark cyan) for
some color themes in our test set.

of each annotator and then predict user preference levels of the color themes in the test set for each annotator.
Finally, we use majority voting to obtain the final rating of each color theme in the test set. Figure 9 shows the
predictions of some testing color themes by our method, compared to the ground truth (i.e., true labels). As shown
in this figure, our method can generate reasonably accurate ratings for test color themes with small deviations
from the ground truth.

Accuracy: To evaluate the accuracy of our method, we used two widely-used regression quantitative metrics:
RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error). We compared our approach with state-of-the-
art color theme evaluation methods, including the color pairs based method [68], the LASSO regression based
method [40], and the collaborative filtering based method [41]. To ensure a fair comparison, we trained all the
methods using our dataset (refer to Section 6) and applied a 7-point scale for color theme rating across the board.
As shown in Table 1, in terms of RMSE (or MAE), the accuracy of our method is about 30% (or 18.0%) more than
that of the color pair based method [68] and about 46.7% (or 34.1%) more than that of the LASSO regression
based method [40]. This proves that taking into account user-specific aesthetic preferences can significantly
improve the accuracy of color theme rating prediction. Our work also outperformed the collaborative filtering
based method [41], in particular, by about 15.5% in terms of RMSE.

Our Framework Design: To verify the effectiveness of the design choice of our proposed framework, we have
conducted an ablation study by comparing our method (i.e., BPNN + kernel density model) with two alternative
combinations, namely, 1) BPNN + decoder and 2) InceptionV3 + kernel density model (KDM).

Essentially, we attempt to replace our encoder — BPNN with the deep learning model InceptionV3 to test
whether BPNN is a better choice of encoder to process color themes and relevant information. We also replace
our KDM with a decoder of three full connection layers (FC) to test whether KDM is a better choice for user
preference rating regression. Specifically, the input of the decoder is the rating prediction of a color theme
from BPNN, while the output is a user-specific color theme rating. The three FC layers constitute the decoder,
composed of 128 nodes, 64 nodes, and 32 nodes, respectively, which can generate the features for the color theme
rating task. Following each FC layer, BN (batch normalization) is added to improve generalization and accelerate
the convergence rate of training. We did not perform any fine-tuning, but the model is re-trained to predict the
ratings.
Design Comparison: As shown in Table 1, the design choice of BPNN + kernel density distribution model

(KDM) achieves a better accuracy than the alternative BPNN + decoder scheme (by 31.9% for RMSE, and by 23.8%
for MAE). Using BPNN as the encoder to process color themes and relevant information is more accurate than
using InceptionV3 (by 4.2% for RMSE, and by 4.9% for MAE). This result implies that, unlike dealing with image
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Table 1. Color theme evaluation performances of different methods using both regression quantitative metrics and categorical
quantitative metrics, based on our collected dataset (described in Section 6).

Model
Metric RMSE ↓ MAE ↓ Acc(%) ↑ PLCC ↑

LASSO regression based [40] 1.2484 0.8264 53.3 0.1218
Color pairs based [68] 0.9464 0.6642 63.7 0.2698

Collaborative filtering [41] 0.7872 0.5862 74.9 0.3937
Alternative Combination

(BPNN + decoder) 0.9779 0.7147 59.2 0.2454

Alternative Combination
(InceptionV3 + KDM) 0.6944 0.5727 77.2 0.4002

Our method 0.6650 0.5445 81.1 0.4672

processing tasks, deep neural networks, such as InceptionV3, are inferior options to BPNN when dealing with
simple five-color theme features.

Since we use majority voting to quantize the continuous values of regression into discrete values, we use
categorical quantitative metrics to compare the performances of different methods. In this work, we select Acc
(Accuracy) and PLCC (Pearson linear correlation coefficient) as the two used categorical quantitative metrics.
Acc is one of the widely used metrics for evaluating the performance of classification, and is computed by
�22 = )%+)#

%+# , where % and # denote the number of positive and negative samples, respectively; )% and )# are
the number of correctly classified positive and negative samples. Specifically, since our collected dataset employs
a 7-point scale, we consider ratings of no smaller than 4 points in our collected dataset as positive samples, and
ratings of smaller than 4 points as negative samples. Also, since the MTurk dataset employs a 5-point scale,
we consider ratings of no smaller than 3 as positive samples, and those smaller than 3 as negative samples.
PLCC can be used to evaluate the correlation between the predicted ratings and the ground truth after majority
voting. As can be seen from Table 1, with the Acc metric, the collaborative filtering based method achieved the
highest accuracy, 74.9%, among the existing methods. By contrast, our method achieved 81.1% accuracy, which
significantly outperforms all the existing methods. By comparing the Acc (or PLCC) of our method and that of
alternative combinations (BPNN + decoder and InceptionV3 + KDM), we can see our design choice of BPNN
+ kernel density model significantly boosts the Acc (or PLCC) performance of our proposed model. To further
illustrate the generality of our model, Table 2 shows the accuracy performance of our method and state-of-the-art
methods on the MTurk dataset [41]. Although the Acc performance of our method is slightly reduced (i.e., from
81.1% on our collected dataset to 77.4% on the MTurk dataset), our method still achieved the best accuracy among
all the methods in comparison. Also, we can observe similar comparison results with respect to the PLCC metric,
and our method achieved the best PLCC performance among all the methods.
Distribution of Color Theme Ratings: To have an in-depth analysis on the accuracy of our method, we

compared the probability distributions of the color theme ratings generated by different methods against the
ground truth. The results are shown in Figure 10. We can see that both the Color Pairs based method [68] (Figure
10(b)) and the LASSO regression based method [40] (Figure 10(d)) produce similar distributions, where most of the
predicted color theme ratings are concentrated at ratings of 4 to 5. However, the ratings by the Color Pairs based
method [68] also distribute to other intervals, while the LASSO regression based method [40] cannot achieve that.
This is because general color theme evaluation models cannot predict the ratings of different users on the same
color theme. Therefore, in order to reduce the prediction error during model training, they tend to be over-fitted in
the intervals of 4 to 5. The collaborative filtering based method [41] (Figure 10(c)) worked significantly better than
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Table 2. Color theme evaluation performances of different methods using different regression and categorical quantitative
metrics on the MTurk dataset.

Model
Metric RMSE ↓ MAE ↓ Acc(%) ↑ PLCC ↑

LASSO regression based [40] 1.2125 0.8697 51.7 0.1175
Color pairs based [68] 0.9852 0.7124 60.1 0.2447

Collaborative filtering [41] 0.8301 0.6322 63.2 0.3151
Alternative Combination

(BPNN + decoder) 1.0248 0.7412 57.4 0.2257

Alternative Combination
(InceptionV3 + KDM) 0.7765 0.5921 74.3 0.3506

Our method 0.7074 0.5852 77.4 0.4255

the above two methods [40, 68] by producing a distribution of the predicted color theme ratings, which can better
match with that of the ground truth, because this method can infer user variations through matrix factorization.
Finally, our method (Figure 10(a)) generated the most accurate distribution among all the four methods, with
respect to the probability distribution of the ground truth. This validates that taking into account the variations
of user aesthetic preference is a critical factor to achieve accurate color theme rating predictions. We used
Kullback-Leibler Divergence (KL) and Squared Earth Movers Distance (EMD) to calculate the difference of the
probability distributions between the ground truth and the color theme ratings predicted by different methods in
Figure 10. Additionally, we analyze the correlations between different probability distributions using Pearson (d% )
and Spearman correlation coefficients (d(% ), with the results presented in Table 3. The rating distribution obtained
by our method has significantly smaller errors than those by other methods, compared to the ground-truth rating
distribution.

Extreme Test Data Challenge: To thoroughly validate the robustness of our method, we challenged different
methods by using some test cases with extreme color preference ratings. Since most of the color theme ratings in
our dataset are in the range of 4-6, we randomly selected 500 sparse color theme ratings in the ranges of 1-3
and 6-7 as an additional test set to perform comparisons. We again compared all the methods through the RMSE
and MAE metrics, and the newly obtained results are shown in Table 4. Notably, our method outperformed all
the state-of-the-art methods and achieved a comparable accuracy even with extreme color theme preference
ratings as the test data, compared to the accuracy of our method as reported in main text Table 3. Meanwhile,
it can be observed that the LASSO regression based method [40] cannot properly handle such a challenge and
had a big drop in accuracy. More importantly, although the collaborative filtering based method [41] can infer
user variations through matrix factorization, its performance significantly deteriorated under this challenge. This
suggests that the collaborative filtering based method [41] may only work well if the color theme ratings could
approximately follow a normal distribution. By contrast, our method explicitly models individual users’ aesthetic
preferences. Therefore, it offers a more robust solution to color theme evaluation even for extreme test data.

Robustness to Personalized Datasets: Being able to infer user aesthetic preference is a unique feature of our
method. Hence, we performed a test to see whether our method can function properly if all color themes were
rated by users with the same aesthetic preference. This serves as another test to validate the robustness of our
method. To carry out the test, we constructed a personalized dataset based on all the color theme ratings done
by the user #34667 in our original dataset. We chose this user because the user evaluated 2,233 color themes,
producing a total of 7,138 color theme ratings, and the user rated some color themes multiple times. This gave us
a sufficient amount of data to train our model. Figure 11 visualizes our findings by showing how each color theme
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Fig. 10. Comparison of the predicted and ground-truth color theme rating distributions for different color theme evaluation
models, including (a) Our method, (b) the Color Pairs based method [68], (c) the collaborative filtering based method [41],
and (d) the LASSO regression based method [40].

is rated by 1) our method with personalized dataset adaption, 2) the user #34667 (obtained by majority voting
if multiple ratings exist), and 3) our native method (i.e., trained by using the dataset as described in main text
Section 4). As shown in the figure, the predicted color theme ratings generated by our method with personalized
dataset adaption are generally in line with the ratings given by the user #34667, while the predicted ratings by our
native method could be quite different from those given by the user #34667. This demonstrates that our method
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Table 3. Quantitative comparison of evaluation models for different color themes in Figure 10 data.

Model
Metric KL EMD d% d(%

Our method 0.0127 0.0068 0.8887 0.8903
Color Pairs based [68] 0.5407 0.5186 0.4390 0.5905

Collaborative Filtering [41] 0.1055 0.3079 0.7675 0.8532
LASSO regression based [40] 1.4195 0.7889 0.1129 0.3536

Table 4. RMSE and MAE comparison with extreme test data.

Model
Metric RMSE MAE

Our method 0.6536 0.5844
Color Pairs based [68] 0.8725 0.8271

Collaborative Filtering [41] 1.3523 1.2425
LASSO regression based [40] 4.3345 2.0642

Fig. 11. Comparison of the color theme evaluations. The three numbers (from left to right) underneath each color theme are
the color theme ratings given by: 1) our method with personalized dataset adaption (red), 2) the user #34667 (purple), and 3)
our native method (dark cyan), respectively.

can properly predict color theme ratings even if the training dataset was significantly biased towards a specific
user.

6.2 Personalized Color Theme Assessment
To quantify the performance of our personalized aesthetics model, we evaluated our approach using a baseline
method as well as compared it with the collaborative filtering based approach [41].

We first leveraged a training set of our dataset to learn a multi-user personalized evaluation model, and then
conducted personalized aesthetic experiments on a test set. Specifically, we screened our dataset to ensure that the
number of color themes labeled by each annotator is more than 105 to facilitate subsequent experiments. Based on
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Fig. 12. Comparison between the ground-truth personalized ratings of three randomly selected test users and the prediction
results by our approach when : = 100. The predicted personalized color theme rating by our method (red) and the ground-
truth rating by the user (dark cyan) are shown below each color theme.

this criterion, we selected 22,851 color themes labeled by 396 annotators (called “training users”) as a training set,
and selected 4,016 color themes labeled by 57 annotators (called “test users”) as a test set. Further, we ensure the
in-existence of overlaps between the training users and the test users. This allows us to simulate situations where
each user only provides ratings on his or her own color themes, and algorithms cannot access those color themes
and ratings in the test set beforehand. In a multi-user personalized evaluation model, the ranking consistency
between the predicted and ground-truth results is an important evaluation criterion [24, 32, 48, 71]. We employ the
Spearman rank-order correlation coefficient (SROCC) [38] to evaluate the performance of multi-user personalized
evaluation approaches.

Baseline Method: For each test user, from the test set we randomly select : color themes that are labeled by
this specific test user, and further add them into the training set. Meanwhile, we use the remaining color themes
rated by the same test user (i.e., excluding the : selected color themes) in the original test set as a new test set.
Then, we use the expanded training set to train our approach and perform testing on the new test set. Due to the
randomness of selecting the : color themes in the above process, we ran the experiments 50 times for each test
user, and reported the averaged results as well as the standard deviation. In order to evaluate the performance of
our approach for different scenarios, we chose : = 10 and : = 100, respectively. Figure 12 shows the comparison
between the ground-truth personalized ratings of three randomly selected test users and the prediction results
by our approach when : = 100. As can be seen from the figure, the ratings predicted by our personalized color
theme evaluation model are very close to the ground-truth, user-specific ratings on the color themes. This shows
that our model can robustly learn the aesthetic preferences of specific users, with the aid of a small number of
training samples rated by the specific users.
Comparison with Existing Methods: Since the collaborative filtering based method [41] also learns the

users’ subjective preferences for color theme evaluations, we compared our personalized aesthetics model with
the collaborative filtering based method using the same baseline process (as described above). For the sake of
completeness, we also added two existing general (i.e., without personalization) color theme preference prediction
models [40, 68] and two ablation studies (BPNN + decoder and InceptionV3 + KDM) to this comparison. Table
5 shows the comparison results on our dataset in terms of SROCC. We can see that the general color theme
evaluation methods [40, 68] do not work well for this case (i.e., SROCC values are low), because they do not
consider the aesthetic differences of distinct users. The collaborative filtering based method [41] outperformed
the above two general models by predicting user preferences, but its performance improvement is limited. When
: is increased from 10 to 100, the collaborative filtering based method only has a marginal improvement (from
34.77% to 36.15%, that is, 1.38% improvement). By contrast, as shown in Table 5, our method has a larger SROCC
improvement (i.e., 3.03% improvement) than the collaborative filtering based method when : is changed from 10
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Table 5. SROCC comparison results between our method and the state-of-the-art methods on our dataset.

Method : = 10 : = 100
LASSO regression based [40] 0.1532 ± 0.070 0.1779 ± 0.082

Color Pairs based [68] 0.2871 ± 0.042 0.2944 ± 0.049
Collaborative Filtering [41] 0.3477 ± 0.004 0.3615 ± 0.008
Alternative Combination

(BPNN + decoder) 0.1746 ± 0.066 0.2015 ± 0.072

Alternative Combination
(InceptionV3 + KDM) 0.3501 ± 0.006 0.3822 ± 0.010

Our method 0.3954 ± 0.004 0.4257 ± 0.012
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Fig. 13. SROCC performance improvements of the 57 test users by directly comparing the generic color theme evaluation
model (i.e., our BPNN model) and our personalized aesthetic color theme evaluation model when : = 100. The blue bars show
the SROCC values of the 57 test users by our generic BPNN model, and the red bars show the SROCC increase after our
personalized color theme evaluation model is used.

to 100. This verifies the effectiveness of our kernel probability model for user aesthetic preference modeling. In
the ablation study, we still experimented three FC layers as the decoder instead of the kernel density model, and
the results were only slightly better than the collaborative filtering based method [41], indicating that the decoder
module does not have the ability to optimize the personalized task. We also experimented the deep learning
model InceptionV3 instead of BPNN for the encoding task, our model’s SROCC is better than InceptionV3 + KDM.

To further look into the effectiveness of our method for learning individual-specific aesthetic preferences, we
first directly used our BPNN model to predict the averaged ratings on color themes and then further computed
the SROCC prediction performance of the 57 test users in our test set. After that, we calculated the SROCC
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Table 6. SROCC Comparison results of our method and the collaborative filtering based method [41] on the MTurk dataset.

Method : = 10 : = 100
Collaborative Filtering [41] 0.3537 ± 0.005 0.4782 ± 0.016

Our method 0.4112 ± 0.006 0.5155 ± 0.010

increase by using our personalized color theme evaluation model with : = 100, as described in the above baseline
process. As shown in Figure 13, we observe that the SROCC performances for almost all the 57 test users increase
significantly through our personalized model. For example, the SROCC performance of the user #41 improves
from 0.22 to 0.60 (that is, an impressive improvement of 0.38). The average SROCC improvement of all the 57
test users is 0.19 (the range is from 0.235 to 0.426). Therefore, our personalized color theme evaluation model
can effectively make use of individuals’ aesthetic preference to predict specific users’ color theme evaluations
through the introduced kernel density estimation model.
Performance Comparison on the MTurk Dataset: In order to further validate the effectiveness of our

personalized model on the MTurk dataset, we need to first filter the MTurk dataset to ensure no duplicated color
themes between the test set and the training set. To this end, we selected 193 annotators who rated a total of
7,978 color themes. The number of color themes labeled by each annotator is between 106 and 200 (the average
value is 151). We selected 5,915 color themes labeled by 159 annotators as the training set, and 2,063 color themes
labeled by 34 annotators as the test set.

Only the collaborative filtering based method [41] publicly released its experimental results on the MTurk
dataset. To validate the performance of our personalized method on the MTurk datasets, we compared our method
with the collaborative filtering based method. We used the color themes in the training set to train both methods,
following the above baseline process. In this experiment, we set : = 10 and : = 100, respectively. The average
results and the standard deviations of 50 repeated experiments are reported in Table 6. As can be seen from this
table, the performance of our method is clearly better than that of the collaborative filtering based method on the
MTurk dataset for both : = 10 and : = 100.

Cross-dataset Evaluation: A model can work well in practical applications if the model could be generalized
to unseen data, i.e., high in generalization ability. To demonstrate such an ability of our proposed model in
performing personalized evaluation tasks, we have trained our model with one dataset and test it with another
dataset. We have also performed the same experiments with two other existing methods, including Collaborative
Filtering [41] and Color Pairs based method [68], for comparison.

Specifically, we conduct a cross-dataset evaluation. To compare the generalization abilities of different methods,
in one set of experiments, we train each method with our proposed dataset (as known users for personalized
evaluation tasks) and test with MTurk (as unknown users), and vice versa, i.e., train with MTurk and test with
our proposed dataset in another set of experiments. The sizes of the training and test sets are the same as those
in the previous experiments. Since the two datasets have different rating ranges for the ground truth, we have
performed a normalization operation on the ground truth.

Table 7 shows both holistic analysis and fine-grained results of our cross-dataset evaluation on all methods
cross-dataset evaluation results of different methods. For holistic analysis, we have adopted two cross-dataset
measurements by [11], namely stiffness and stability, to evaluate the overall performance of different methods
on cross-datasets. Stiffness reflects the absolute performance of a system under cross-dataset setting. Given a
methods, the result of its cross-dataset evaluation using two datasets yields a 2 × 2 matrix with its elements
denoted by*8 9 , its stiffness is therefore A ` = 1

# ∗#
∑

8, 9 *8 9 . On the other hand, stableness characterizes the relative
performance gap between in-dataset and cross-dataset test. It is calculated as Af = 1

# ∗#
∑

8, 9 (*8 9/* 9 9 × 100%).
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Table 7. Cross-dataset evaluations on different methods. Both 1) holistic analysis based on stiffness and stability and 2)
fine-grained results based on SROCC are reported.

Method Our Method Collaborative
Filtering Color Pairs

Holistic Analysis stiff: 0.4045 stiff: 0.3545 stiff: 0.2809
stable: 91.53% stable: 88.76% stable: 85.73%

SROCC Test
Train Ours MTurk Ours MTurk Ours MTurk

Ours 0.4159 0.3801 0.3559 0.3049 0.2902 0.2388
MTurk 0.3535 0.4686 0.3094 0.4476 0.2265 0.3681

(a)

(b)

Fig. 14. The 20 selected color themes in our user study. (a) 10 color themes are used as additional data for training personalized
models, and (b) the other 10 color themes are used for testing.

As shown in Table 7, both the stiffness and stableness of our method are higher than those of the other two
methods. In addition, the fine-grained results based on SROCC also show that our method outperforms the other
two methods. In conclusion, our methods is more stable across datasets and has better generalization ability.

6.3 User Study
We conducted a user study to evaluate the effectiveness of our personalized color theme evaluation method based
on 20 randomly selected color themes from the COLOURLovers dataset, as shown in Figure 14. The selected color
themes cover different hues, saturations, and brightnesses. We invited 100 participants (50 males and 50 females,
with the ages between 20 and 65) to evaluate these color themes. These participants lacked professional expertise
in visual perception or color science. Instructions were given to the participants, informing them to use their
color aesthetics. They were also asked to select a rating from 1-7 scale to indicate their preference level on color
themes. To test our personalized color theme evaluation model, we used the ratings on the ten color themes in
Figure 14(a) by each participant as additional training data, together with the default training data as describe in
Section 4, to train a personalized color theme evaluation model for this specific participant. Figure 14(b) show the
remaining ten color themes for testing our personalized models in the user study. This study was certified by
the university committee for use with human participants, and all participants understood and harmonized the
content of the informed consent form.
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Fig. 15. (a) The predicted ratings by our personalized method and the ground-truth ratings given by the participants on
a specific color theme (T18 in Figure 14). (b) Heat map visualization of the differences between ratings predicted by our
personalized method and given by participants for all 10 test color themes.

Figure 15(a) shows the ratings of a randomly selected color theme example (i.e., T18 in Figure 14(b)) in our
study: the first type of ratings were predicted by our personalized method (indicated as “Ours” in the figure), and
the second type of ratings were rated by all the participants based on their own preferences (indicated as “Users”
in the figure). Since our method learned a different personalized model for each participant, in Figure 15(a) we
can see the predicted ratings even for the same color theme (T18 in this case) are different by our personalized
models that were customized for different participants. However, as shown in the figure, the ratings predicted by
our personalized method are sufficiently close to those made by the participants. This is further evidenced by the
evaluation results of our personalized method’s predicted scores under different quantitative metrics, as shown
in Table 8.

Figure 15(b) shows the heat map visualization of the differences between the predicted ratings by our personal-
ized method and the ratings given by the participants for all the 10 test color themes. In this figure, the X axis
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represents user IDs and the numbers 1 to 10 on the Y axis represents the test color themes T11 to T20 in Figure
14(b), respectively. As shown in the figure, most of the color blocks are white or light gray, meaning that, with a
large number of data points (100 participants × 10 color themes = 1000), the predicted ratings by our personalized
method are reasonably close to the ground-truth evaluations given by the participants.

Finally, we also compared the color theme ratings generated by our personalized method with the ground-truth
color theme ratings given by participants, using a group-based comparison theme. We first used our model
to quantify the aesthetic preferences of the participants and divide the range of the user aesthetic preference
{U8 } into three groups: [0, 0.33), [0.33, 0.67), and [0.67, 1.0]. Then, for the participants grouped into each group,
we conduct a quantitative comparison between the scores generated by our approach and those provided by
participants. Table 9 presents the comparative results for various quantitative metrics across different groups.
Here, d% represents Pearson correlation, and d(% represents Spearman correlation. The results indicate that
regardless of whether participants tend to underestimate or overestimate the aesthetic quality of color themes,
the color theme ratings predicted by our method are highly correlated with the actual ratings of the majority of
participants, exhibiting no bias toward any specific group of participants based on aesthetic preferences.

Table 8. Quantitative comparison of predicted ratings by our personalized method and personalization ratings given by
participants.

Method
Metric MAE RMSE d% d(%

Our method 0.5526 0.6254 0.8144 0.8303

Table 9. Quantitative comparison of ratings by groups in our user study. Participants are divided into three groups according
to their user aesthetic preference values: (a) {U8 } ∈ [0, 0.33), (b) {U8 } ∈ [0.33, 0.67), (c) {U8 } ∈ [0.67, 1].

Group
Metric MAE RMSE d% d(%

[0,0.33) 0.6032 0.6923 0.8126 0.8630
[0.33,0.67) 0.5013 0.6318 0.8532 0.8379
[0.67,1] 0.4781 0.5934 0.8375 0.8696

6.4 Correlation between Aesthetic Preference and Harmony
In this paper user aesthetic preference refers to the difference of the user’s perception on color aesthetic, which is
a subjective judgment on how the user perceives colors and color combinations. Meanwhile, color harmony is a
mixed bag of both objective and subjective factors measuring how colors get along with each other. Hence, these
are inter-related concepts. Some previous studies investigated the relationship between user preference and color
harmony qualitatively. Schloss and Palmer [54] conducted a comprehensive study to understand this relationship
by performing experiments against color pairs. A major finding of their study is that there is a high correlation
between user preferences and the color harmonies of color pairs (A = +0.79), where A is the Pearson correlation
coefficient.

Inspired by the above problem, we study whether we can obtain similar or different findings on the correlation
between the user aesthetic preferences and the color harmonies of five-color themes from the perspectives of both
the average ratings and personalized ratings. We used some color theme data in [40], which were also collected
from the COLOURLovers website, and selected the same color themes in our dataset. The subjective ratings of the
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Fig. 16. Correlation plotting of two types of color theme ratings. (a) The plot of the predicted color theme ratings by our
method (Y-axis) against the ground-truth color harmony ratings (X-axis) in [40]. The red dashed line shows the fitted
regression line (~ = 0.787 + 0.7079G ). (b) Plots showing the influence of different user aesthetic preferences (U values) on the
relationship between the personalized ratings by our method (Y-axis) and the ground-truth color harmony ratings (X-axis).

selected color themes, obtained via large-scale Amazon Mechanical Turk in [40], were regarded as the ground
truth color harmony. To this end, we screened a total of 8,563 color themes (included in both the dataset in [40]
and our dataset in this work) evaluated by 863 annotators, and further used majority voting to integrate the
ratings on the same color themes by different annotators, so that the correspondences between the user ratings
and the color themes are one-to-one. We normalized the color harmony ratings so that their range is from 1 to 7.

Figure 16(a) shows the scatter plot of the ground-truth color harmony ratings from [40] (X-axis) and the
predicted color theme ratings through majority voting by our method (Y-axis). The red dotted line in the figure is
the regression line fitted to the scatter plot, and its slope is 0.787. The calculated Pearson correlation coefficient A is
+0.81. The result validates that there is a high positive correlation between the two types of ratings, although there
are some differences. For example, we found about 16% of the color themes are underestimated, and 4% of the color
themes are overestimated. By further analyzing the ground-truth user ratings on these under-estimated/over-
estimated color themes, we found that the number of annotators who rated these color themes is usually fewer
than 10. Meanwhile, these ratings are not normally distributed and cannot be extracted well by majority voting.

In order to further investigate the relationship between the personalized ratings by our method and the ground-
truth color harmony ratings in [40] for users with different aesthetic preferences, we looked into annotators with
different aesthetic preferences (U values) and their color theme evaluations. As shown in Figure 16(b), we set U =
0.8, 0.5, and 0.2, respectively, to represent high, medium, and low levels of aesthetic preferences. As shown in the
figure, under the same test conditions, users with high (or low) aesthetic preference usually give higher (or lower)
ratings on color themes than the ground-truth ratings. When the aesthetic preference of users is an appropriate
value (i.e., U = 0.5), the color theme ratings given by users are highly consistent with the ground-truth ratings.
These findings are consistent with those in previous studies [54], but our findings are based on more generalized
five-colors themes rather than simple color pairs in [54]. In theory, when U = 0.5, the personalized ratings should
approximately equal to the ground-truth color theme ratings, but experimental results always produce certain
deviations (A = +0.81) due to the unavoidable human biases. We also computed RMSE and MAE metrics as in
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Table 10. RMSE and MAE measurements for user aesthetic preference groups

Aesthetic preference
Metric RMSE MAE

U = 0.5 0.7388 0.6647
U = 0.8 11.2041 2.8744
U = 0.2 12.4025 3.5709

Fig. 17. The comparison of the personalized ratings by our method (red) and the predicted color harmony scores by Yang et
al. [68] (blue) for three users with different Aesthetic preferences. The left column shows the original color themes in our
dataset, and the middle and right columns show the more harmonious and more inharmonious color themes, respectively,
obtained by the color suggestion method in [68].

Table 10 for the three cases in Figure 16(b). These numbers show that as the aesthetic preference U is close to
0.5, the error between the predicted ratings by our methods and the ground-truth ratings becomes smaller. This
also suggests that it is generally difficult for users with too high and too low aesthetic preferences to find highly
harmonious color themes as their preferred color themes.

We also explored the relationship between user aesthetic preference and color harmony by changing the
harmony of five-color themes. As shown in Figure 17, we used a color suggestion method [68] to change both one
color of the five-color color themes and the order of the five colors to generate new color themes that are more
harmonious or inharmonious than the original color themes. We selected three users from our dataset and used
our model to predict their aesthetic preference and personalized ratings for the original and new color themes,
and compared the results with the color pairs based prediction model by [68]. From the figure, we can see that
when the user aesthetic preference U is approximately 0.5, the user’s personalized ratings are also very close
to the predicted harmony scores by [68]. Otherwise, the personalized ratings by our method are significantly
higher or lower than the predicted harmony scores by [68] when the U increases or decreases. Besides coming up
with a more generalized finding on how user preferences (or user aesthetic preferences) and color harmonies
are related to five-color themes, we anticipate our results would give fresh insights for designers or relevant
professionals to work on more suitable color choices for the artifacts they produce, based on the characteristics
of target audiences.

6.5 Selected Applications
In recent years numerous commercial applications have been developed to automatically recommend visual
content, such as video (e.g., YouTube)" ) and images (e.g., Pinterest)" ), to users based on their individual
preferences. Taking the Pinterest application as an example, a user first needs to select a few image categories as
his/her categories of interest, and also pick a few images from the categories of interest as his/her favorite images.
The Pinterest App can then learn the user preference and later recommend and push new images to the user
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Fig. 18. Some rated image examples in the “sky” semantic category of the AVA database. The score below each image is
rated by the participant #7.

based on his/her individual-specific preference. Since our color theme evaluation model is based on the modeling
of individual users’ aesthetic preferences, our model can be potentially applied for such individual-customized
recommendation applications. We will illustrate the utility of our approach and dataset in the field of personalized
recommendations, specifically in the contexts of general images, fashion, and interior design.

6.5.1 Personalized Image Recommendation. To validate the effectiveness of our model for the general image
recommendation applications, we conducted the following experiment. We selected images from the AVA database
[37] that contains more than 250,000 labeled aesthetic images and 66 semantic categories. We screened out 60
semantic categories from the AVA database to ensure that each image category contains more than 100 images. We
invited 30 participants (15 males and 15 females, ages 20-30) to participate in this experiment. These participants
did not possess professional visual perception or color science experience.
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Fig. 19. (a) Examples of the top-30 presented images by our method for three participants. The images (from top to bottom,
from left to right) are sorted by the predicted color harmony rating in a descending order. The image categories from top to
bottom are Sports, Animals, and Cityscape. (b) The plotting of the ratios of likes by the three different methods (our method,
the color pair based method [68], and the random selection method) for all the 30 participants in our experiment.
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To narrow down the scope of the experiment, we asked each participant to first select his/her favorite image
category from the 60 semantic categories. We then randomly selected 27 images from this category and show
them to the participant. Meanwhile, the participant rated these images (refer to Figure 18) based on their aesthetic
preferences. In the rating process, the participant was instructed to put more emphasis on the color harmony of
the images. For each of the selected images, we also used the algorithm in [26] to extract its five-color theme.

Based on the extracted color themes and the obtained individual-specific ratings on the 27 pages, we used our
approach to model each participant’s aesthetic preference value and then further predicted individual-specific
ratings on the remaining images in the chosen image category of interest. After that, we selected the top 30
images based on the predicted individual-specific ratings and presented the 30 images to the same participant.
Figure 19(a) shows the presented image examples for three participants in our experiment. The participant can
choose to “like” a presented image by simply clicking it if he/she indeed likes it, or otherwise just ignore it if
he/she is less enthusiastic for it. To this end, we can compute a ratio of the particular participant (called the “ratio
of likes” in this writing) as the number of “likes” clicked by the participants divided by 30 (i.e., the number of the
presented top-30 images), and the ratio of likes is between 0 and 1.

In this experiment, we also compared our method with the color-pair based method [68] and a random selection
method (as the baseline) for doing the same task as described above. Specifically, in the random selection method,
we just randomly selected 30 images from the remaining images (i.e., excluding the 27 images manually rated by
the specific participant) in the participant’s favorite category and presented them to the participant. Figure 19(b)
shows the plotting of the ratios of likes for all the 30 participants by the three different methods (i.e., our model,
the color-pair based method [68], and the random selection method). As shown in this figure, the color-pair based
method clearly achieves higher ratios of likes than the random selection method for most of the participants. Also,
our method achieves significantly higher ratios of likes than the other two methods for all the 30 participants.

We are aware that many possible factors can influence such individual preference based recommendation
applications. However, we believe color harmony could be one useful factor to consider in order to improve
individualized preference based visual content recommendation applications.

6.5.2 Personalized Fashion Outfit Recommendation. We employed the Polyvore Dataset [17, 72] for personalized
fashion outfit, consisting of 127,219 fashionable items segmented from 21,889 outfit images, spanning a total of
20 semantic categories. To adapt it for our model, we grouped these 20 fashion items into 5 categories: outwears,
tops, bottoms, shoes, and accessories. We specified that each outfit composition consists of these 5 fashion item
categories and utilized the algorithm outlined in [26] to extract the main color of each item, constructing their
respective five-color themes.

We invited 30 participants (15 males and 15 females, aged 20-30 years) to take part in the experiment. These
participants lacked professional visual perception or color science experience. To streamline the experiment,
for each participant, we initially required them to select their top 5 favorite categories from the 20 fashion
item categories, ensuring that these 5 categories fall within outwears, tops, bottoms, shoes, and accessories.
Subsequently, we randomly selected 27 outfit images from each chosen category, tailored to the participant’s
gender, and presented them to the participants. Participants rated these images based on their aesthetic preferences.
Afterwards, leveraging the extracted color themes and personalized ratings, we modeled the aesthetic preference
for each participant using our method, and predicting individualized ratings for the remaining images in the
selected category of interest. Finally, we regarded the highest-rated combination as the user’s favorite fashion
outfit. Figure 20 illustrates instances of our recommended fashion outfit. The figure includes the example of
color pairings of outfits preferred by two female users. To mitigate the impact of color harmony on user color
preferences, we employed the color suggestion method [68] to alter the sequence of color themes in fashion
outfit, maximizing color harmony. It is important to note that our method does not account for user preferences
in clothing styles and can only represent a color-reference scheme containing user color preferences. Table 11
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outwear top bottom shoe accessory

Fig. 20. Left: Examples of the fashion outfit recommendation based on user color preferences. Right: The color themes
composed of the dominant colors of five fashion items. The color sequence has been modified using the method in [68].

Table 11. Comparison of predicted ratings of different color theme evaluation models and users’ personalized ratings in
personalized fashion outfit recommendation.

Model
Metric MAE RMSE d% d(%

Our method 0.5635 0.5813 0.7471 0.7233
Color pair based [68] 0.8782 0.8536 0.3327 0.2689

Collaborative Filtering [41] 0.7281 0.6534 0.5533 0.5836

Table 12. Comparison of predicted ratings of different color theme evaluation models and users’ personalized ratings in
interior design color recommendation.

Model
Metric MAE RMSE d% d(%

Our method 0.5063 0.5308 0.7735 0.7564
Color pair based [68] 0.8080 0.8336 0.3658 0.3125

Collaborative Filtering [41] 0.7781 0.6934 0.5233 0.5035

shows the comparison results of the color ratings predicted by our method and state-of-the-art methods with the
personalized color ratings given by the user. It can be concluded from different quantitative indicators that our
method achieves the best performance among all methods.

6.5.3 Interior Design Color Recommendation. We employed the SynthHomes dataset [64] to showcase the
applicability of our method in interior design. This synthetic dataset comprises 1,000 RGB images, featuring two
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Fig. 21. (a) Preferred interior color designs for participant #13 in different living spaces. (b) Top: User color preferences for
interior design in the same room and layouts. Bottom: User color preferences for interior design the same function room but
different layouts. Taking participant #13 as an example, below each image are accompanied by a comparison between the
personalized predicted rating from our method and the preference rating from participant #13.
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types of homes with living rooms, kitchens, bathrooms, and bedrooms. We categorized the images based on the
functional attributes of the rooms, selecting 785 images for training and 215 images for testing. Each image was
processed to extract five-color themes using the method in [26].

We continued to select 30 participants (15 males and 15 females, aged 20-30 years) without professional visual
perception or color science experience to rate the color themes. Our method calculated the aesthetic preference
of each participant and predicted aesthetic preference ratings for the test images. Table 12 presents a comparison
of color ratings predicted by our method against those from the state-of-the-art methods, demonstrating that our
quantitative assessment outperforms other methods. Figure 21(a) displays the interior color design favored by
participant #13 for each living space. Our method can also select color schemes that match user preferences in
similar interior scenes. The first row of Figure 21(b) shows interior scenes with different color pairings but the
same room and layouts. Below each image are the predicted rating provided by our method and the preference
rating given by participant #13. The results indicate that our method accurately simulates user color preferences
and assists users in selecting interior scene designs that better match their color preferences. The second row of
Figure 21(b) demonstrates interior scene designs for the same living space (kitchen) in different layouts. Despite
the variations in room layouts, our method continues to accurately capture user color preferences, suggesting
that our approach can assist users in choosing their preferred color decoration styles.

7 DISCUSSION AND CONCLUSION
We present a new color theme evaluation method based on the different aesthetic cognition of individuals. To the
best of our knowledge, our work is the first-of-its-kind method to explicitly model and incorporate aesthetic
cognition of individuals for color theme evaluation. Experimental results show that our method outperforms
state-of-the-art methods for various test cases. Since our model relies on the aesthetic preferences of different
users, if fewer than five users make comments or give ratings on color themes, we may predict less accurate
results. Our current model is a preliminary exploration of color theme evaluation with user aesthetic awareness.
We plan to further design advanced algorithms and systems to facilitate novices to cope with various real-world
application scenarios.
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