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TEMPEREDNESS OF 𝐿2(Γ⧵𝐺) AND POSITIVE EIGENFUNCTIONS IN
HIGHER RANK

SAM EDWARDS AND HEE OH

Abstract. Let 𝐺 = SO∘(𝑛, 1) × SO∘(𝑛, 1) and 𝑋 = ℍ𝑛 × ℍ𝑛 for 𝑛 ≥ 2. For a pair
(𝜋1, 𝜋2) of non-elementary convex cocompact representations of a finitely generated
group Σ into SO∘(𝑛, 1), let Γ = (𝜋1 × 𝜋2)(Σ). Denoting the bottom of the 𝐿2-spectrum
of the negative Laplacian on Γ⧵𝑋 by 𝜆0, we show:
(1) 𝐿2(Γ⧵𝐺) is tempered and 𝜆0 = 1

2 (𝑛 − 1)2;
(2) There exists no positive Laplace eigenfunction in 𝐿2(Γ⧵𝑋).

In fact, analogues of (1)-(2) hold for any Anosov subgroup Γ in the product of at least
two simple algebraic groups of rank one as well as for Hitchin subgroups Γ < PSL𝑑(ℝ),
𝑑 ≥ 3. Moreover, if 𝐺 is a semisimple real algebraic group of rank at least 2, then (2)
holds for any Anosov subgroup Γ of 𝐺.
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1. Introduction

Motivation and background. Locally symmetric spaces provide key examples of
Riemannian manifolds for which there exist numerous tools for studying various as-
pects of spectral geometry. For example, properties of dynamical systems related to the
manifold are closely connected to the spectral theory of the Laplace operator, as well
as to representation theory. While the spectral theory of finite-volume locally symmet-
ric spaces has been quite extensively developed, the infinite volume setting provides
many examples of interesting phenomena that are less well understood. Nevertheless,
for rank one locally symmetric spaces of infinite volume, a number of key facts about
the spectrum have been established.
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Let (ℍ𝑛, 𝑑), 𝑛 ≥ 2, denote the 𝑛-dimensional hyperbolic space of constant curvature
−1, and let 𝐺 = Isom+(ℍ𝑛) ≃ SO∘(𝑛, 1) denote the group of all orientation preserving
isometries ofℍ𝑛. Let Γ < 𝐺 be a torsion-free1 discrete subgroup. The critical exponent
0 ≤ 𝛿 = 𝛿Γ ≤ 𝑛 − 1 is defined as the abscissa of convergence of the Poincaré series
∑𝛾∈Γ 𝑒−𝑠𝑑(𝑜,𝛾𝑜) for 𝑜 ∈ ℍ𝑛. We denote by Δ the hyperbolic Laplacian and by 𝜆0 =
𝜆0(Γ⧵ℍ𝑛) the bottom of the 𝐿2-spectrum of the negative Laplace operator−Δ, which is
given as

(1.1) 𝜆0 ≔ inf{
∫Γ⧵ℍ𝑛 ‖ grad 𝑓‖2 𝑑 vol

∫Γ⧵ℍ𝑛 |𝑓|2 𝑑 vol
∶ 𝑓 ∈ 𝐶∞

𝑐 (Γ⧵ℍ𝑛)}

(see [45, Theorem 2.2]). In a series of papers, Elstrodt ([11], [12], [13]) and Patterson
([33], [34], [35]) developed the relationship between 𝛿 and 𝜆0, proving Theorem 1.1 for
𝑛 = 2. The general case is due to Sullivan [45, Theorem 2.21].

Theorem 1.1 (Generalized Elstrodt-Patterson I). For any discrete subgroup Γ <
SO∘(𝑛, 1), the following are equivalent:

(1) 𝛿 ≤ 1
2 (𝑛 − 1);

(2) 𝜆0 = 1
4 (𝑛 − 1)2.

The right translation action of 𝐺 on the quotient space Γ⧵𝐺 equipped with a 𝐺-
invariant measure gives rise to a unitary representation of 𝐺 on the Hilbert space
𝐿2(Γ⧵𝐺), called a quasi-regular representation of 𝐺. If we set 𝐾 ≃ SO(𝑛) to be a maxi-
mal compact subgroup of 𝐺 and identify ℍ𝑛 with 𝐺/𝐾, the space of 𝐾-invariant func-
tions of 𝐿2(Γ⧵𝐺) can be identified with 𝐿2(Γ⧵ℍ𝑛). The bottom of the 𝐿2-spectrum 𝜆0
then provides information on which complementary series representation of𝐺 can oc-
cur in 𝐿2(Γ⧵𝐺). Indeed, it follows from the classification of the unitary dual of SO∘(𝑛, 1)
that 𝜆0 = (𝑛 − 1)2/4 is equivalent to saying that the quasi-regular representation
𝐿2(Γ⧵𝐺) does not contain any complementary series representation (cf. [45], [10]),
which is again equivalent to the temperedness of𝐿2(Γ⧵𝐺). As first introduced byHarish-
Chandra [18], a unitary representation (𝜋,ℋ𝜋) of a semisimple real algebraic group 𝐺
is tempered (Definition 2.6) if all of its matrix coefficients belong to 𝐿2+𝜀(𝐺) for any
𝜀 > 0, or, equivalently, if 𝜋 is weakly contained2 in the regular representation 𝐿2(𝐺)
([8], see Proposition 2.7).
Therefore Theorem 1.1 can be rephrased as follows:

Theorem 1.2 (Generalized Elstrodt-Patterson II). For any discrete subgroup Γ < 𝐺 =
SO∘(𝑛, 1), the following are equivalent:

(1) 𝛿 ≤ 1
2 (𝑛 − 1);

(2) 𝐿2(Γ⧵𝐺) is tempered.

The size of the critical exponent 𝛿 is also related to the existence of a square-integrable
positive Laplace eigenfunction on Γ⧵ℍ𝑛. A discrete subgroup Γ < 𝐺 is called convex
cocompact if there exists a convex subspace of ℍ𝑛 on which Γ acts cocompactly. For
convex cocompact subgroups of𝐺 (more generally for geometrically finite subgroups),

1All discrete subgroups in this paper will be assumed to be torsion-free.
2𝜋 is weakly contained in a unitary representation 𝜎 of 𝐺 if any diagonal matrix coefficients of 𝜋 can be

approximated, uniformly on compact sets, by convex combinations of diagonal matrix coefficients of 𝜎.
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Patterson and Sullivan showed the following using their theory of conformal measures
on the boundary 𝜕ℍ𝑛 ([36], [46], [45, Theorem 2.21]):

Theorem 1.3 (Sullivan). For a convex cocompact subgroup Γ < SO∘(𝑛, 1), the following
are equivalent:

(1) 𝛿 ≤ 1
2 (𝑛 − 1);

(2) There exists no positive Laplace eigenfunction in 𝐿2(Γ⧵ℍ𝑛).

Since 𝜆0 divides the positive spectrum and the 𝐿2-spectrum on Γ⧵ℍ𝑛 by Sullivan’s
theorem [45, Theorem 2.1] (see Theorem 4.1), (2) is equivalent to saying that any 𝜆0-
harmonic function (i.e., −Δ𝑓 = 𝜆0𝑓) on Γ⧵ℍ𝑛 is not square-integrable.

Main results. The main aim of this article is to discuss analogues of Theorems 1.1,
1.2, and 1.3 for a certain class of discrete subgroups of a connected semisimple real
algebraic group of higher rank, i.e., rank at least 2.
We begin by describing a special case of our main theorem when 𝐺 = SO∘(𝑛1, 1) ×

SO∘(𝑛2, 1) with 𝑛1, 𝑛2 ≥ 2. Let 𝑋 be the Riemannian product ℍ𝑛1 × ℍ𝑛2 and Δ the
Laplace-Beltrami operator on 𝑋 . For a torsion-free discrete subgroup Γ < 𝐺, a smooth
function 𝑓 on Γ⧵𝑋 is called 𝜆-harmonic if −Δ𝑓 = 𝜆𝑓. The number 𝜆0 = 𝜆0(Γ⧵𝑋) is
given in the same way as (1.1) replacing Γ⧵ℍ𝑛 by Γ⧵𝑋 .

Theorem 1.4. Let
(1.2) Γ = (𝜋1 × 𝜋2)(Σ) = {(𝜋1(𝜎), 𝜋2(𝜎)) ∈ 𝐺 ∶ 𝜎 ∈ Σ},
where 𝜋𝑖 ∶ Σ → SO∘(𝑛𝑖, 1) is a non-elementary convex cocompact representation of a
finitely generated group Σ for 𝑖 = 1, 2. Then

(1) 𝐿2(Γ⧵𝐺) is tempered and 𝜆0 = 1
4 ((𝑛1 − 1)2 + (𝑛2 − 1)2);

(2) There exists no positive Laplace eigenfunction in 𝐿2(Γ⧵𝑋), or equivalently, no 𝜆0-
harmonic function is square-integrable.

Remark 1.5. Theorem 1.4 does not hold for a general subgroup Γ < 𝐺 of infinite co-
volume. For example, if Γ < SO∘(𝑛1, 1) × SO∘(𝑛2, 1) is the product of two convex co-
compact subgroups, each ofwhichhaving critical exponent greater than 1

2 (𝑛𝑖 − 1), then
𝐿2(Γ⧵𝐺) is not tempered and 𝐿2(Γ⧵𝑋) possesses a positive Laplace eigenfunction.

We now discuss a general setting. Let 𝐺 be a connected semisimple real algebraic
group and 𝑋 the associated Riemannian symmetric space. In the rest of this section,
we assume that Γ < 𝐺 is a torsion-free Zariski dense discrete subgroup. We let 𝜓Γ ∶
𝔞 → ℝ ∪ {−∞} denote the growth indicator function of Γ as defined in (2.4), where 𝔞 is
the Lie algebra of a maximal real split torus of 𝐺. The function 𝜓Γ can be regarded as a
higher rank generalization of the critical exponent of Γ. Let 𝜌 denote the half-sum of all
positive roots for (𝔤, 𝔞), countedwithmultiplicity. Analogous to the fact that the critical
exponent 𝛿 is always bounded above by 𝑛−1 for a discrete subgroup Γ < SO∘(𝑛, 1), we
have the upper bound 𝜓Γ ≤ 2𝜌 for any discrete subgroup Γ of 𝐺 [40].
Theorem 1.6 generalizes Theorems 1.1, 1.2, and 1.3 to Anosov subgroups of 𝐺 (with

respect to a minimal parabolic subgroup of 𝐺) which are regarded as higher rank gen-
eralizations of convex cocompact subgroups. For 𝐺 = SO∘(𝑛1, 1) × SO∘(𝑛2, 1), they are
precisely given by the class of subgroups considered in Theorem 1.4. We refer to Defi-
nition 2.4 for a general case. We mention that they were first introduced by Labourie
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[26] for surface groups and then generalized by Guichard andWienhard for hyperbolic
groups [17] (see also [16], [21]).
In Theorem 1.6, the norm ‖𝜌‖ is defined via the identification 𝔞∗ and 𝔞 using the

Killing form on 𝔤. Denote by 𝜎(Γ⧵𝑋) the 𝐿2-spectrum of −Δ on Γ⧵𝑋 .
Theorem 1.6. Let 𝐺 be a connected semisimple real algebraic group and Γ a Zariski
dense Anosov subgroup of 𝐺. The following (1)-(3) are equivalent, and imply (4):

(1) 𝜓Γ ≤ 𝜌;
(2) 𝐿2(Γ⧵𝐺) is tempered and 𝜆0(Γ⧵𝑋) = ‖𝜌‖2;
(3) 𝐿2(𝐺) and 𝐿2(Γ⧵𝐺) are weakly contained in each other and 𝜎(Γ⧵𝑋) = 𝜎(𝑋) =

[‖𝜌‖2,∞);
(4) There exists no positive Laplace eigenfunction in 𝐿2(Γ⧵𝑋).

Moreover, if rank𝐺 ≥ 2, then (4) always holds for any Anosov subgroup Γ < 𝐺.
Our proof of the implication (1) ⇒ (2) is based on the asymptotic behavior of the

Haarmatrix coefficients forAnosov subgroups obtained in [9] and [6] aswell asHarish-
Chandra’s Plancherel formula (see Theorems 6.4 and 9.4). The implication (2) ⇒ (1)
is true for a general discrete subgroup (see the proof of Theorem 9.4). The equivalence
(2) ⇔ (3) uses the observation that 𝐿2(𝐺) is weakly contained in 𝐿2(Γ⧵𝐺) whenever
the injectivity radius of Γ⧵𝐺 is infinite, and that Γ⧵𝐺 has infinite injectivity radius for
any Anosov subgroup Γ < 𝐺, except for cocompact lattices of a rank one Lie group (see
Section 8). For (4), we first prove that any positive Laplace eigenfunction in 𝐿2(Γ⧵𝑋)
is indeed a joint eigenfunction for the whole ring of 𝐺-invariant differential operators,
which then can be studied via Γ-conformal measures on the Furstenberg boundary of
𝐺 (see Sections 3 and 6). We establish a higher rank version of Sullivan-Thurston’s
smearing theorem (Theorem 7.4) from which we deduce the non-existence of square-
integrable positive Laplace eigenfunctions for any higher rank Anosov subgroup (see
Section 7 and Corollary 7.2). When rank𝐺 = 1, Anosov subgroups are convex cocom-
pact groups and the implication (1)+(2) ⇒ (4) is obtained in [45] (see also [42, Theorem
3.1]) for 𝑋 = ℍ𝑛 and in [50] in general.
Although the condition 𝜓Γ ≤ 𝜌may appear quite strong, it was verified in a recent

work of Kim-Minsky-Oh [23] for Anosov subgroups in the following setting, and hence
we deduce from Theorem 1.6:

Theorem 1.7. Let Γ be a Zariski dense Anosov subgroup of the product of at least two
simple real algebraic groups of rank one, or a Zariski dense Anosov subgroup of a Hitchin
subgroup of PSL𝑑(ℝ) for 𝑑 ≥ 3. Then (1)-(4) of Theorem 1.6 hold.

It is conjectured in [23] that any Anosov subgroup of a higher rank semisimple real
algebraic group satisfies the condition 𝜓Γ ≤ 𝜌. This conjecture suggests that Anosov
subgroups in higher rank groups are more like generalizations of convex cocompact
subgroups of small critical exponent.

Groups of the second kind and positive joint eigenfunctions. For any discrete
subgroup Γwhich is not cocompact in 𝐺 and for any 𝜆 ≤ 𝜆0(Γ⧵𝑋), Sullivan proved the
existence of a positive 𝜆-harmonic function. We prove a higher-rank strengthening of
this result: for any discrete subgroup of the second kind (see Definition 5.1) whose limit
cone is contained in the interior of 𝔞+ and for any linear form 𝜓 ≥ 𝜓Γ, we construct a
positive joint eigenfunction with character corresponding to 𝜓 (Theorem 5.2).
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Organization. In Section 2, we review the basic notions and notations which will be
used throughout the paper. In Section 3, we show that any positive joint eigenfunction
on Γ⧵𝑋 (i.e., an eigenfunction for the whole ring of 𝐺-invariant differential operators)
arises from a (Γ, 𝜓)-conformal density (Proposition 3.7). In Section 4, we compute the
Laplace eigenvalue of a positive joint eigenfunction associated to a (Γ, 𝜓)-conformal
measure (Proposition 4.2). In Section 5, we introduce the notion of subgroups of the
second kind. We then construct positive joint eigenfunctions for any 𝜓 ≥ 𝜓Γ for any
subgroup of the second kind with its limit cone contained in int 𝔞+∪{0} (Theorem 5.2).
In Section 6, we compute the 𝐿2-spectrum of 𝑋 (Theorem 6.3) and show that 𝜆0 = ‖𝜌‖2
if 𝐿2(Γ⧵𝐺) is tempered (Theorem 6.4). We show that a positive Laplace eigenfunction
in𝐿2(Γ⧵𝑋) is necessarily a joint eigenfunction (Corollary 6.6) and a spherical vector of a
unique irreducible subrepresentation of 𝐿2(Γ⧵𝐺) (Theorem 6.8). In Section 7, we prove
a higher rank version of Sullivan-Thurston’s smearing theorem (Theorem 7.4) to obtain
the non-existence theorem of 𝐿2-positive Laplace eigenfunctions in higher rank. In
Section 8, we prove the weak containment 𝐿2(𝐺) ∝ 𝐿2(Γ⧵𝐺) for all Anosov subgroups
Γ in higher rank groups. In Section 9, we prove the equivalence of the temperedness
of 𝐿2(Γ⧵𝐺) and 𝜓Γ ≤ 𝜌 (Theorem 9.4). We also deduce Theorem 1.6.

2. Preliminaries and notations

Let 𝐺 be a connected semisimple real algebraic group, i.e., the identity component
of the group of real points of a semisimple algebraic group defined over ℝ. Let Γ < 𝐺
be a torsion-free discrete subgroup. Let 𝑃 be a minimal parabolic subgroup of 𝐺 with
a fixed Langlands decomposition 𝑃 = 𝑀𝐴𝑁 where 𝐴 is a maximal real split torus of
𝐺, 𝑀 is the maximal compact subgroup of 𝑃, which commutes with 𝐴, and 𝑁 is the
unipotent radical of 𝑃. We denote by 𝔤, 𝔞, 𝔫 respectively the Lie algebras of𝐺,𝐴,𝑁. We
fix a positive Weyl chamber 𝔞+ ⊂ 𝔞 so that 𝔫 consists of positive root subspaces. Let
Σ+ denote the set of all positive roots for (𝔤, 𝔞+). We also writeΠ ⊂ Σ+ for the set of all
simple roots. We denote by

𝜌 = 1
2 ∑
𝛼∈Σ+

𝛼

the half-sum of the positive roots for (𝔤, 𝔞+), counted with multiplicity. We denote by
⟨⋅, ⋅⟩ and ‖ ⋅ ‖ the inner product and norm on 𝔤 respectively, induced from the Killing
form: 𝐵(𝑥, 𝑦) = Tr(ad𝑥 ad𝑦) for 𝑥, 𝑦 ∈ 𝔤.
We fix a maximal compact subgroup 𝐾 of 𝐺 so that the Cartan decomposition 𝐺 =

𝐾(exp 𝔞+)𝐾 holds, that is, for any 𝑔 ∈ 𝐺, there exists a unique element 𝜇(𝑔) ∈ 𝔞+ such
that 𝑔 ∈ 𝐾 exp𝜇(𝑔)𝐾. We call the map 𝜇 ∶ 𝐺 → 𝔞+ the Cartan projection map.
The Riemannian symmetric space (𝑋, 𝑑) can be identified with the quotient space

𝐺/𝐾 with the metric 𝑑 induced from ⟨⋅, ⋅⟩. We denote by 𝑑 vol the Riemannian volume
form on 𝑋 or on Γ⧵𝑋 . We also use 𝑑𝑥 to denote this volume form as well as the Haar
measure on𝐺, or on Γ⧵𝐺. In particular, 𝑑(⋅, ⋅)will denote both the left𝐺-invariant Rie-
mannian distance function on 𝑋 , as well as the left 𝐺-invariant and right 𝐾-invariant
distance on 𝐺. We set 𝑜 = [𝐾] ∈ 𝑋 . We then have ‖𝜇(𝑔)‖ = 𝑑(𝑔𝑜, 𝑜) for 𝑔 ∈ 𝐺. We do
not distinguish a function on 𝑋 and a right 𝐾-invariant function on 𝐺.
Let 𝑤0 ∈ 𝐾 be an element of the normalizer of 𝐴 so that Ad𝑤0 𝔞+ = −𝔞+. The

opposition involution i ∶ 𝔞 → 𝔞 is defined by
(2.1) i(𝑢) = −Ad𝑤0(𝑢) for all 𝑢 ∈ 𝔞.
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Letℱ ≔ 𝐺/𝑃 denote the Furstenberg boundary of𝐺. We define the following visual
maps 𝐺 → ℱ: for each 𝑔 ∈ 𝐺,
(2.2) 𝑔+ ≔ 𝑔𝑃 ∈ ℱ and 𝑔− ≔ 𝑔𝑤0𝑃 ∈ ℱ.
The unique open 𝐺-orbit ℱ(2) in ℱ × ℱ under the diagonal 𝐺-action is given by:

ℱ(2) = 𝐺(𝑒+, 𝑒−) = {(𝑔+, 𝑔−) ∈ ℱ × ℱ ∶ 𝑔 ∈ 𝐺}.
Two points 𝜉, 𝜂 in ℱ are said to be in general position if (𝜉, 𝜂) ∈ ℱ(2).

Conformal measures. Let 𝐺 = 𝐾𝐴𝑁 be the Iwasawa decomposition, 𝜅 ∶ 𝐺 → 𝐾
the 𝐾-factor projection of this decomposition, and 𝐻 ∶ 𝐺 → 𝔞 be the Iwasawa cocycle
defined by the relation: for 𝑔 ∈ 𝐺,

𝑔 ∈ 𝜅(𝑔) exp (𝐻(𝑔))𝑁.
Note that 𝐾 acts transitively on ℱ and 𝐾 ∩ 𝑃 = 𝑀, and hence we may identify ℱ with
𝐾/𝑀. The Iwasawa decomposition can be used to describe both the action of 𝐺 on
ℱ = 𝐾/𝑀 and the 𝔞-valued Busemann map as follows: for all 𝑔 ∈ 𝐺 and [𝑘] ∈ ℱ with
𝑘 ∈ 𝐾,

𝑔 ⋅ [𝑘] = [𝜅(𝑔𝑘)],
and the 𝔞-valued Busemann map is defined by

𝛽[𝑘](𝑔(𝑜), ℎ(𝑜)) ≔ 𝐻(𝑔−1𝑘) − 𝐻(ℎ−1𝑘) ∈ 𝔞 for all 𝑔, ℎ ∈ 𝐺.
We denote by 𝔞∗ = Homℝ(𝔞, ℝ) the space of all linear forms on 𝔞.

Definition 2.1. Let 𝜓 ∈ 𝔞∗.
(1) A finite Borel measure 𝜈𝑜 onℱ = 𝐾/𝑀 is said to be a (Γ, 𝜓)-conformal measure

(with respect to 𝑜 = [𝐾]) if for all 𝛾 ∈ Γ and 𝜉 = [𝑘] ∈ 𝐾/𝑀,
𝑑𝛾∗𝜈𝑜
𝑑𝜈𝑜

(𝜉) = 𝑒−𝜓(𝛽𝜉(𝛾𝑜,𝑜)) = 𝑒−𝜓(𝐻(𝛾−1𝑘)),

or equivalently

𝑑𝜈𝑜([𝑘]) = 𝑒𝜓(𝐻(𝛾𝑘))𝑑𝜈𝑜(𝛾 ⋅ [𝑘]),
where 𝛾∗𝜈𝑜(𝑄) = 𝜈𝑜(𝛾−1𝑄) for any Borel subset 𝑄 ⊂ ℱ. Unless mentioned
otherwise, all conformalmeasures in this paper are assumed to be with respect
to 𝑜.

(2) A collection {𝜈𝑥 ∶ 𝑥 ∈ 𝑋} of finite Borel measures on ℱ is called a (Γ, 𝜓)-
conformal density if for all 𝑥, 𝑦 ∈ 𝑋 , 𝜉 ∈ ℱ and 𝛾 ∈ Γ,

(2.3) 𝑑𝜈𝑥
𝑑𝜈𝑦

(𝜉) = 𝑒−𝜓(𝛽𝜉(𝑥,𝑦)) and 𝑑𝛾∗𝜈𝑥 = 𝑑𝜈𝛾(𝑥).

A (Γ, 𝜓)-conformal measure 𝜈𝑜 defines a (Γ, 𝜓)-conformal density {𝜈𝑥 ∶ 𝑥 ∈ 𝑋} by
the formula:

𝑑𝜈𝑥(𝜉) = 𝑒−𝜓(𝛽𝜉(𝑥,𝑜))𝑑𝜈𝑜(𝜉),
and conversely any (Γ, 𝜓)-conformal density {𝜈𝑥} is uniquely determined by itsmember
𝜈𝑜 by (2.3). For this reason, by abuse of terminology, we sometimes do not distinguish
conformal measures and conformal densities.
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Growth indicator function. Let Γ < 𝐺 be a Zariski dense discrete subgroup. Fol-
lowing Quint [40], let 𝜓Γ ∶ 𝔞 → ℝ ∪ {−∞} denote the growth indicator function of Γ:
for any non-zero 𝑣 ∈ 𝔞,

(2.4) 𝜓Γ(𝑣) ≔ ‖𝑣‖ inf
𝑣∈𝒞

𝜏𝒞 ,

where the infimum is over all open cones 𝒞 containing 𝑣 and 𝜏𝒞 denotes the abscissa of
convergence of the series∑𝛾∈Γ,𝜇(𝛾)∈𝒞 𝑒−𝑠‖𝜇(𝛾)‖. For 𝑣 = 0, we let 𝜓Γ(0) = 0. We note
that 𝜓Γ does not change if we replace the norm ‖ ⋅ ‖ by any other norm on 𝔞. For any
discrete subgroup Γ < 𝐺, we have the upper bound 𝜓Γ ≤ 2𝜌 [40]. On the other hand,
when Γ is of infinite covolume in a simple real algebraic group of rank at least 2, Quint
deduced from [32] that 𝜓Γ ≤ 2𝜌 − 𝜂𝐺 , where 𝜂𝐺 is the half-sum of a maximal strongly
orthogonal subset of the root system of 𝐺 ([41], see also [31, Theorem 7.1]).

Limit cone and limit set. The limit cone ℒ = ℒΓ of Γ is defined as the asymptotic
cone of 𝜇(Γ), i.e.,

ℒ = {lim 𝑡𝑖𝜇(𝛾𝑖) ∈ 𝔞+ ∶ 𝑡𝑖 → 0, 𝛾𝑖 ∈ Γ}.

Benoist showed that for Γ Zariski dense, ℒ is a convex cone with non-empty interior
[2]. Quint [40] showed that 𝜓Γ is a concave and upper-semicontinuous function such
that 𝜓Γ ≥ 0 on ℒ, 𝜓Γ > 0 on intℒ and 𝜓Γ = −∞ outside ℒ.
For a sequence 𝑔𝑖 ∈ 𝐺, we write 𝑔𝑖 → ∞ regularly if 𝛼(𝜇(𝑔𝑖)) → ∞ for all 𝛼 ∈ Π.

For 𝑔 ∈ 𝐺, we write 𝑔 = 𝜅1(𝑔) exp(𝜇(𝑔))𝜅2(𝑔) ∈ 𝐾𝐴+𝐾; if 𝜇(𝑔) ∈ int 𝔞+, then [𝜅1(𝑔)] ∈
𝐾/𝑀 = ℱ is well-defined.

Definition 2.2. Asequence𝑝𝑖 ∈ 𝑋 is said to converge to 𝜉 ∈ ℱ andwewrite lim𝑖→∞ 𝑝𝑖
= 𝜉 if there exists a sequence 𝑔𝑖 →∞ regularly in𝐺with 𝑝𝑖 = 𝑔𝑖(𝑜) and lim𝑖→∞[𝜅1(𝑔𝑖)]
= 𝜉.

We denote by Λ ⊂ ℱ the limit set of Γ, which is defined as

(2.5) Λ = {lim 𝛾𝑖(𝑜) ∈ ℱ ∶ 𝛾𝑖 ∈ Γ}.

For Γ < 𝐺 Zariski dense, this is the unique Γ-minimal subset of ℱ ([2], [30]).

Tangent linear forms. We set

(2.6) 𝐷Γ = {𝜓 ∈ 𝔞∗ ∶ 𝜓 ≥ 𝜓Γ}.

A linear form 𝜓 ∈ 𝔞∗ is said to be tangent to 𝜓Γ at 𝑢 ∈ 𝔞 if 𝜓 ∈ 𝐷Γ and 𝜓(𝑢) = 𝜓Γ(𝑢).
We denote by 𝐷⋆

Γ the set of all linear forms tangent to 𝜓Γ at ℒ ∩ int 𝔞+, i.e.,

(2.7) 𝐷⋆
Γ ≔ {𝜓 ∈ 𝐷Γ ∶ 𝜓(𝑢) = 𝜓Γ(𝑢) for some 𝑢 ∈ ℒ ∩ int 𝔞+}.

For Γ < SO∘(𝑛, 1) and 𝛿 its critical exponent, we have 𝐷⋆
Γ = {𝛿} and 𝐷Γ = {𝑠 ≥ 𝛿}.

Extending the construction of Patterson [36] and Sullivan [44], Quint [39] showed
the following:

Theorem 2.3. For any 𝜓 ∈ 𝐷⋆
Γ , there exists a (Γ, 𝜓)-conformal measure supported onΛ.
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Anosov subgroups. Let Σ be a finitely generated group. For 𝜎 ∈ Σ, let |𝜎| denote the
word length of 𝜎 for some fixed symmetric generating set of Σ.
Definition 2.4 ([17], [21], [16], [3]). A representation 𝜋 ∶ Σ → 𝐺 is Anosov with
respect to 𝑃 if there exists a constant 𝑐 > 0 such that for all 𝜎 ∈ Σ and 𝛼 ∈ Π,
(2.8) 𝛼(𝜇(𝜋(𝜎))) ≥ 𝑐|𝜎| − 𝑐−1.
A discrete subgroup Γ < 𝐺 is called an Anosov subgroup (with respect to 𝑃) if Γ can

be realized as the image 𝜋(Σ) of an Anosov representation 𝜋 ∶ Σ → 𝐺. If Γ = 𝜋(Σ)
is Anosov, then Σ is a Gromov hyperbolic group ([21], [3]). As mentioned in Section
1, Anosov subgroups of 𝐺 were first introduced by Labourie for surface groups [26],
and then extended by Guichard andWienhard [17] to general word hyperbolic groups.
Several equivalent characterizations have been established, one of which is Definition
2.4 (see [16], [21]). When𝐺 has rank one, the class of Anosov subgroups coincideswith
that of convex cocompact subgroups, and when 𝐺 is a product of two rank one simple
algebraic groups, any Anosov subgroup arises in a similar fashion to (1.2). Examples
of Anosov subgroups include Schottky groups (cf. [9, Def. 7.1]), as well as Hitchin
subgroups defined as follows. Let 𝜄𝑑 denote the irreducible representation PSL2(ℝ) →
PSL𝑑(ℝ), which is unique up to conjugations. A Hitchin subgroup is the image of a
representation 𝜋 ∶ Σ → PSL𝑑(ℝ) of a uniform lattice Σ < PSL2(ℝ), which belongs to
the same connected component as 𝜄𝑑|Σ in the character variety Hom(Σ, PSL𝑑(ℝ))/ ∼
where the equivalence is given by conjugations.
One of the important features of an Anosov subgroup is the following:

Theorem 2.5 ([38]). For any Anosov subgroup Γ < 𝐺, we have
ℒ ⊂ int 𝔞+ ∪ {0}.

Tempered representations. By definition, a unitary representation of 𝐺 is a Hilbert
spaceℋ𝜋 equipped with a strongly continuous homomorphism 𝜋 from 𝐺 to the group
of unitary operators onℋ𝜋. Given two unitary representations𝜋 and 𝜎 of𝐺,𝜋 is said to
be weakly contained in 𝜎 if any diagonal matrix coefficients of 𝜋 can be approximated,
uniformly on compact sets, by convex combinations of diagonal matrix coefficients of
𝜎. We use the notation 𝜋 ∝ 𝜎 for the weak containment.
The Harish-Chandra function Ξ𝐺 ∶ 𝐺 → (0,∞) is a bi-𝐾-invariant function defined

via the formula
Ξ𝐺(𝑔) = ∫

𝐾
𝑒−𝜌(𝐻(𝑔𝑘))𝑑𝑘 for all 𝑔 ∈ 𝐺,

where 𝑑𝑘 denotes the probability Haar measure on 𝐾. The following estimate is well
known, cf. e.g. [24]: for any 𝜀 > 0, there exist 𝐶, 𝐶𝜀 > 0 such that for any 𝑔 ∈ 𝐺,
(2.9) 𝐶𝑒−𝜌(𝜇(𝑔)) ≤ Ξ𝐺(𝑔) ≤ 𝐶𝜀𝑒−(1−𝜀)𝜌(𝜇(𝑔)).
Definition 2.6. A unitary representation (𝜋,ℋ𝜋) of 𝐺 is called tempered if for any
𝐾-finite unit vectors 𝑣, 𝑤 ∈ ℋ𝜋 and any 𝑔 ∈ 𝐺,

|⟨𝜋(𝑔)𝑣, 𝑤⟩| ≤ (dim⟨𝐾𝑣⟩ dim⟨𝐾𝑤⟩)1/2Ξ𝐺(𝑔),
where ⟨𝐾𝑣⟩ denotes the linear subspace ofℋ𝜋 spanned by 𝐾𝑣.
Proposition 2.7 ([8]). The following are equivalent for a unitary representation (𝜋,ℋ𝜋)
of 𝐺:
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(1) 𝜋 is tempered;
(2) 𝜋 ∝ 𝐿2(𝐺);
(3) for any vectors 𝑣, 𝑤 ∈ ℋ𝜋, the matrix coefficient 𝑔 ↦ ⟨𝜋(𝑔)𝑣, 𝑤⟩ lies in 𝐿2+𝜀(𝐺)

for any 𝜀 > 0;
(4) for any 𝜀 > 0, 𝜋 is strongly 𝐿2+𝜀, i.e., there exists a dense subset of ℋ𝜋 whose

matrix coefficients all belong to 𝐿2+𝜀(𝐺).

In the whole paper, the notation 𝑓(𝑣) ≍ 𝑔(𝑣) means that the ratio 𝑓(𝑣)/𝑔(𝑣) is
bounded uniformly between two positive constants, and 𝑓 ≪ 𝑔 means that |𝑓| ≤ 𝑐|𝑔|
for some 𝑐 > 0.

3. Positive joint eigenfunctions and conformal densities

Let 𝐺 be a connected semisimple real algebraic group and Γ < 𝐺 be a Zariski dense
discrete subgroup. The main goal of this section is to obtain Proposition 3.7, which ex-
plains the relationship between positive joint eigenfunctions on Γ⧵𝑋 and Γ-conformal
measures on the Furstenberg boundary of 𝐺.

Joint eigenfunctions on 𝑋. Let 𝒟 = 𝒟(𝑋) denote the ring of all 𝐺-invariant differ-
ential operators on 𝑋 . We call a real valued function on 𝑋 a joint eigenfunction if it is
an eigenfunction for all operators in𝒟. For each joint eigenfunction 𝑓, there exists an
associated character 𝜒𝑓 ∶ 𝒟 → ℝ such that

𝐷𝑓 = 𝜒𝑓(𝐷)𝑓
for all elements𝐷 ∈ 𝒟. The ring𝒟 is generated by rank(𝐺) elements, and the set of all
characters of𝒟 is in bijectionwith the space 𝔞∗ = Homℝ(𝔞, ℝ)modulo the action of the
Weyl group, as we now explain. Denote by 𝑍(𝔤ℂ) the center of the universal enveloping
algebra 𝒰(𝔤ℂ) of 𝔤ℂ. Recall the well-known fact that the joint eigenfunctions on 𝑋
can be identified with the right 𝐾-invariant real-valued 𝒵(𝔤ℂ)-eigenfunctions on 𝐺 (cf.
[19]).
Letting 𝑇 be a maximal torus in 𝑀 with Lie algebra 𝔱, set 𝔥 = (𝔞 ⊕ 𝔱). Then 𝔥ℂ ≔

(𝔞 ⊕ 𝔱)ℂ is a Cartan subalgebra of 𝔤ℂ. We let
𝜄 ∶ 𝒵(𝔤ℂ) → 𝒮𝑊 (𝔥ℂ)

denote the Harish-Chandra isomorphism from 𝑍(𝔤ℂ) to the Weyl group-invariant ele-
ments of the symmetric algebra 𝒮(𝔥ℂ) of 𝔥ℂ [24, Theorem 8.18].
For any 𝜓 ∈ 𝔞∗, we can extend it to 𝔥 by letting 𝜓(𝐽) = 0 for all 𝐽 ∈ 𝔪, and then to

𝒮(𝔥ℂ) polynomially. This lets us define a character 𝜒𝜓 on 𝒵(𝔤ℂ) by

(3.1) 𝜒𝜓(𝑍) ≔ 𝜓(𝜄(𝑍))
for all 𝑍 ∈ 𝒵(𝔤ℂ). Conversely, if 𝑓 is a right 𝐾-invariant 𝒵(𝔤ℂ)-eigenfunction, then,
since 𝔱 acts trivially on 𝑓, the associated character𝜒𝑓must arise as𝜓∘𝜄 for some𝜓 ∈ 𝔞∗.

Example 3.1.
• Consider the hyperbolic space ℍ𝑛 = {(𝑥1,⋯ , 𝑥𝑛−1, 𝑦) ∈ ℝ𝑛 ∶ 𝑦 > 0} with the

metric √∑𝑛−1
𝑖=1 𝑑𝑥2𝑖+𝑑𝑦2

𝑦 . The Laplacian Δ onℍ𝑛 is given as Δ = −𝑦2(∑𝑛−1
𝑖=1

𝜕2
𝜕𝑥2𝑖

+
𝜕2
𝜕𝑦2 ) + (𝑛 − 2)𝑦 𝜕

𝜕𝑦 and the ring of SO
∘(𝑛, 1)-invariant differential operators is
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generated by Δ, i.e., a polynomial in Δ. If 𝜓 ∈ 𝔞∗ is given by 𝜓(𝑣) = 𝛿𝑣 for
some 𝛿 ∈ ℝ under the isomorphism 𝔞 = ℝ, then 𝜒𝜓(−Δ) = 𝛿(𝑛 − 1 − 𝛿).

• Let 𝐺 = SO∘(𝑛1, 1) × SO∘(𝑛2, 1) and 𝑋 be the Riemannian product ℍ𝑛1 × ℍ𝑛2

for 𝑛1, 𝑛2 ≥ 2. Then𝒟(𝑋) is generated by the hyperbolic Laplacians Δ1, Δ2 on
each factor ℍ𝑛1 and ℍ𝑛2 . If we identify 𝔞 with ℝ2 and if a linear form 𝜓 ∈ 𝔞∗
is given by 𝜓(𝑣) = ⟨𝑣, (𝛿1, 𝛿2)⟩ for some vector (𝛿1, 𝛿2) ∈ ℝ2, then 𝜒𝜓(−Δ𝑖) =
𝛿𝑖(𝑛𝑖 − 1 − 𝛿𝑖) for 𝑖 = 1, 2.

Joint eigenfunctions on Γ⧵𝑋. We now consider joint eigenfunctions on Γ⧵𝑋 or,
equivalently, Γ-invariant joint eigenfunctions on 𝑋 .

Definition 3.2. Let 𝜓 ∈ 𝔞∗. Associated to a (Γ, 𝜓)-conformal density 𝜈 = {𝜈𝑥 ∶ 𝑥 ∈ 𝑋}
on ℱ, we define the following function 𝐸𝜈 on 𝐺: for 𝑔 ∈ 𝐺,

(3.2) 𝐸𝜈(𝑔) ≔ |𝜈𝑔(𝑜)| = ∫
ℱ
𝑒−𝜓(𝐻(𝑔−1𝑘)) 𝑑𝜈𝑜([𝑘]).

Since |𝜈𝛾(𝑥)| = |𝜈𝑥| for all 𝛾 ∈ Γ and 𝑥 ∈ 𝑋 , the left Γ-invariance and right 𝐾-invariance
of 𝐸𝜈 are clear. Hence we may consider 𝐸𝜈 as a 𝐾-invariant function on Γ⧵𝐺, or, equiv-
alently, as a function on Γ⧵𝑋 .

Proposition 3.3. For each (Γ, 𝜓)-conformal density 𝜈 on ℱ, 𝐸𝜈 is a positive joint eigen-
function on Γ⧵𝑋 with character 𝜒𝜓−𝜌. Conversely, any positive joint eigenfunction on
Γ⧵𝑋 arises in this way for some 𝜓 ≥ 𝜌 and a (Γ, 𝜓)-conformal density 𝜈 with (𝜓, 𝜈)
uniquely determined.

In order to prove Proposition 3.3, we consider the following right 𝐾-invariant func-
tion on 𝐺 for each 𝜓 ∈ 𝔞∗ and ℎ ∈ 𝐺:

(3.3) 𝜑𝜓,ℎ(𝑔) = 𝑒−𝜓(𝐻(𝑔−1ℎ))

so that

𝐸𝜈(𝑔) = ∫
ℱ
𝜑𝜓,𝑘(𝑔) 𝑑𝜈𝑜([𝑘]).

We may also consider 𝜑𝜓,ℎ as a function on 𝑋 . Hence the first part of Proposition 3.3
is a consequence of the following:

Lemma 3.4 ([24, Propositions 8.22 and 9.9]). For any 𝜓 ∈ 𝔞∗ and ℎ ∈ 𝐺, the function
𝜑𝜓,ℎ is a joint eigenfunction on 𝑋 with character 𝜒𝜓−𝜌.

Proof. While we refer to [24] for the full proof, we outline some of the key points below,
as we will use some part of this proof later. Since the elements of 𝒵(𝔤ℂ) commute with
translation, we simply need to prove that

[𝑍𝜑𝜓,𝑒](𝑒) = 𝜒𝜓−𝜌(𝑍)𝜑𝜓,𝑒(𝑒) for any 𝑍 ∈ 𝒵(𝔤ℂ);

the same identity will then hold for the function 𝑔 ↦ 𝜑𝜓,𝑒(ℎ−1𝑔), and thus also for
𝜑𝜓,ℎ for any ℎ ∈ 𝐺. Following [24, Chapter VII], we define the (non-unitary) principal
series representation 𝑈𝜓: for all 𝑔 ∈ 𝐺 and 𝑓 ∈ 𝐶(𝐾)

[𝑈𝜓(𝑔)𝑓](𝑘) ≔ 𝑒−𝜓(𝐻(𝑔−1𝑘))𝑓(𝜅(𝑔−1𝑘))
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for all 𝑘 ∈ 𝐾. This extends to a representation 𝑑𝑈𝜓 of 𝒰(𝔤ℂ) on the right𝑀-invariant
functions in 𝐶∞(𝐾) by way of the formula

[𝑑𝑈𝜓(𝑋)𝑓](𝑘) = 𝑑
𝑑𝑡
|||𝑡=0

[𝑈𝜓( exp(𝑡𝑋))𝑓](𝑘) for any 𝑋 ∈ 𝔤.

Observe that [𝑍𝜑𝜓,𝑒](𝑒) = [𝑑𝑈𝜓(𝑍)1](𝑒), so in order to prove the proposition, it suffices
to show that 𝑑𝑈𝜓(𝑍) = 𝜒𝜓−𝜌(𝑍) for all 𝑍 ∈ 𝒵(𝔤ℂ).
The next key observation is that

𝑍(𝔤ℂ) ⊂ 𝒰(𝔥ℂ) ⊕ 𝔫𝒰(𝑔ℂ).

We thus write
𝑍 = 𝑌 +∑

𝑖
𝑋𝑖𝑈 𝑖,

where 𝑌 ∈ 𝒰(𝔥ℂ), 𝑋𝑖 ∈ 𝔫, and 𝑈 𝑖 ∈ 𝒰(𝔤ℂ). Note that in this decomposition, 𝑌 is
uniquely defined. Now, for arbitrary 𝑋 ∈ 𝔫 and 𝑓,

[𝑑𝑈𝜓(𝑋)𝑓](𝑒) = 𝑑
𝑑𝑡
|||𝑡=0

[𝑈𝜓( exp(𝑡𝑋))𝑓](𝑒) = 𝑑
𝑑𝑡
|||𝑡=0

[𝑈𝜓( exp(𝑡𝑋))𝑓](𝑒)

= 𝑑
𝑑𝑡
|||𝑡=0

𝑒−𝜓(𝐻(exp(−𝑡𝑋)))𝑓(𝜅(exp(−𝑡𝑋))) = 𝑑
𝑑𝑡
|||𝑡=0

𝑓(𝑒) = 0,

so applying this to the 𝑋𝑖 and functions 𝑑𝑈𝜓(𝑈 𝑖)𝑓 gives

[𝑑𝑈𝜓(𝑋𝑖𝑈 𝑖)𝑓](𝑒) = [𝑑𝑈𝜓(𝑋𝑖)(𝑑𝑈𝜓(𝑈 𝑖)𝑓)](𝑒) = 0,

hence [𝑑𝑈𝜓(𝑍)𝑓](𝑒) = [𝑑𝑈𝜓(𝑌)𝑓](𝑒). For 𝐿 ∈ 𝔪, we have 𝑓(exp(−𝐿)) = 𝑓(𝑒), so
[𝑑𝑈𝜓(𝐽)𝑓](𝑒) = 0 for all 𝐽 ∈ 𝔱. Thus, it is only the 𝔞 component of 𝑌 that contributes
to [𝑑𝑈𝜓(𝑌)𝑓](𝑒). Finally, note that for 𝑋 ∈ 𝔞, we have

[𝑑𝑈𝜓(𝑋)𝑓](𝑒) = 𝑑
𝑑𝑡
|||𝑡=0

𝑒−𝜓(𝐻(exp(−𝑡𝑋)))𝑓(𝜅(exp(−𝑡𝑋)))

= 𝑑
𝑑𝑡
|||𝑡=0

𝑒𝑡𝜓(𝑋)𝑓(𝑒) = 𝜓(𝑋)𝑓(𝑒).

Since the Harish-Chandra isomorphism consists of projection onto 𝒰(𝔥ℂ) and then
composition with the “𝛿-shift” 𝐻 ↦ 𝐻 + 𝛿(𝐻)1 = 𝐻 + 𝜌(𝐻)1, where 𝛿 ∈ 𝔥∗ℂ is the
half-sum of the positive roots for 𝔤ℂ, this shows that 𝑑𝑈𝜓(𝑍) = 𝜒𝜓−𝜌(𝑍). □

Letting ℎ = 𝑘𝑎𝑛 ∈ 𝐾𝐴𝑁, we see that for any 𝑔 ∈ 𝐺,

𝜑𝜓,ℎ(𝑔) = 𝑒−𝜓(𝐻(𝑔−1ℎ)) = 𝑒−𝜓(𝐻(𝑔−1𝑘𝑎𝑛)) = 𝑒−𝜓(𝐻(𝑔−1𝑘)) ⋅ 𝑒−𝜓( log(𝑎)),

i.e., the function 𝜑𝜓,ℎ is a scalar multiple of 𝜑𝜓,𝜅(ℎ). In fact, the functions 𝜑𝜓,𝑘, 𝑘 ∈ 𝐾
form a complete set of minimal positive joint eigenfunctions with character 𝜒𝜓−𝜌 with
𝜓 ≥ 𝜌, in the sense that if 𝑓 is a positive joint eigenfunction on 𝑋 with character 𝜒𝜓−𝜌
such that 𝑓 ≤ 𝜑𝜓,𝑘 for some 𝑘 ∈ 𝐾, then

𝑓 = 𝑐 ⋅ 𝜑𝜓,𝑘
for some 𝑐 > 0 (cf. [15, 22], see also [26, Theorem 1]).
As a consequence, we have the following (cf. [26, Theorem 3]):
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Theorem 3.5. For any positive joint eigenfunction 𝑓 on 𝑋 , there exist 𝜓 ∈ 𝔞∗ with 𝜓 ≥ 𝜌
and a Borel measure 𝜈𝑜 onℱ = 𝐾/𝑀 such that for all 𝑔 ∈ 𝐺,

𝑓(𝑔) = ∫
ℱ
𝜑𝜓,𝑘(𝑔) 𝑑𝜈𝑜([𝑘]).

Moreover, the pair (𝜓, 𝜈𝑜) is uniquely determined by 𝑓.

Proof of the second part of Proposition 3.3. Let𝑓 be aΓ-invariant joint eigenfunction on
𝑋 . By Theorem 3.5, there exist unique 𝜓 ∈ 𝔞∗ and a Borel measure 𝜈𝑜 on ℱ so that for
all 𝑔 ∈ 𝐺,

𝑓(𝑔) = ∫
ℱ
𝜑𝜓,𝑘(𝑔) 𝑑𝜈𝑜([𝑘]).

Since 𝑓 is Γ-invariant, for any 𝛾 ∈ Γ,

𝑓(𝑔) = 𝑓(𝛾𝑔) = ∫
ℱ
𝜑𝜓,𝑘(𝛾𝑔) 𝑑𝜈𝑜([𝑘])

= ∫
ℱ
𝜑𝜓,𝜅(𝛾−1𝑘)(𝑔) 𝑒−𝜓(𝐻(𝛾−1𝑘)) 𝑑𝜈𝑜([𝑘])

= ∫
ℱ
𝜑𝜓,𝑘(𝑔) 𝑒

𝜓(𝐻(𝛾𝑘)) 𝑑𝜈𝑜(𝛾 ⋅ [ ̃𝑘]).

By the uniqueness of 𝜈𝑜 in the integral representation of 𝑓,

𝑑𝜈𝑜([𝑘]) = 𝑒𝜓(𝐻(𝛾𝑘)) 𝑑𝜈𝑜(𝛾 ⋅ [𝑘]).
Hence 𝜈 = {𝜈𝑥} is a (Γ, 𝜓)-conformal density on ℱ, finishing the proof.

We denote by 𝜓Γ ∶ 𝔞 → ℝ ∪ {−∞} the growth indicator function of Γ as defined in
(2.4).

Theorem 3.6 ([39, Theorem 8.1]). Let Γ < 𝐺 be Zariski dense. If there exists a (Γ, 𝜓)-
conformal measure onℱ for some 𝜓 ∈ 𝔞∗, then

𝜓 ≥ 𝜓Γ.

Therefore Proposition 3.3 and Theorem 3.6 yield the following:

Proposition 3.7. Let Γ < 𝐺 be a Zariski dense discrete subgroup. If 𝜈 is a (Γ, 𝜓)-
conformal density for some 𝜓 ∈ 𝔞∗, then 𝐸𝜈 is a positive joint eigenfunction on Γ⧵𝑋 with
character 𝜒𝜓−𝜌. Conversely, any positive joint eigenfunction on Γ⧵𝑋 is of the form 𝐸𝜈
for some (Γ, 𝜓)-conformal density 𝜈 with 𝜓 ≥ max(𝜌, 𝜓Γ), where (𝜓, 𝜈) is uniquely deter-
mined.

4. Eigenvalues of positive eigenfunctions

Let Γ be a torsion-free discrete subgroup of a connected semisimple real algebraic
group 𝐺. Let Δ denote the Laplace-Beltrami operator on 𝑋 or on Γ⧵𝑋 . Since Δ is an
elliptic differential operator, an eigenfunction is always smooth. We call a smooth func-
tion 𝜆-harmonic if

−Δ𝑓 = 𝜆𝑓.
Let 𝒞 ∈ 𝒵(𝔤ℂ) denote the Casimir operator on 𝐶∞(𝐺) (or on 𝐶∞(Γ⧵𝐺)) whose restric-
tion to 𝐾-invariant functions coincides with Δ. Then 𝐾-invariant 𝒞-eigenfunctions on
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Γ⧵𝐺 correspond to Laplace eigenfunctions on Γ⧵𝑋 . In particular, a joint eigenfunction
of Γ⧵𝑋 is a Laplace eigenfunction.
Define the real number 𝜆0 = 𝜆0(Γ⧵𝑋) ∈ [0,∞) as follows:

(4.1) 𝜆0 ≔ inf{
∫Γ⧵𝑋 ‖ grad 𝑓‖2 𝑑 vol

∫Γ⧵𝑋 |𝑓|2 𝑑 vol
∶ 𝑓 ∈ 𝐶∞

𝑐 (Γ⧵𝑋), 𝑓 ≠ 0} .

Positive Laplace eigenfunctions.
Theorem 4.1 ([45, Theorem 2.1, 2.2]). Suppose that Γ⧵𝑋 is not compact.

(1) For any 𝜆 ≤ 𝜆0, there exists a positive 𝜆-harmonic function on Γ⧵𝑋 ;
(2) For any 𝜆 > 𝜆0, there is no positive 𝜆-harmonic function on Γ⧵𝑋 .
We identity 𝔞∗ with 𝔞 via the inner product on 𝔞 induced by the Killing form on 𝔤.

This endows an inner product on 𝔞∗. More precisely, for each 𝜓 ∈ 𝔞∗, there exists a
unique 𝑣𝜓 ∈ 𝔞 such that 𝜓 = ⟨𝑣𝜓, ⋅⟩. Then ⟨𝜓1, 𝜓2⟩ = ⟨𝑣𝜓1 , 𝑣𝜓2⟩. Equivalently, fixing
an orthonormal basis {𝐻𝑖} of 𝔞, we have ⟨𝜓1, 𝜓2⟩ = ∑𝑖 𝜓1(𝐻𝑖)𝜓2(𝐻𝑖).
For 𝜓 ∈ 𝔞∗, we set

(4.2) 𝜆𝜓 ≔ (‖𝜌‖2 − ‖𝜓 − 𝜌‖2).
Proposition 4.2.

(1) A positive joint eigenfunction on𝑋 with character𝜒𝜓−𝜌, 𝜓 ∈ 𝔞∗, is 𝜆𝜓-harmonic.
(2) A positive Laplace eigenfunction on 𝑋 is 𝜆𝜓-harmonic for some 𝜓 ∈ 𝔞∗ with 𝜓 ≥

𝜌.
Proof. Let 𝜓 ∈ 𝔞∗. Recall the functions 𝜑𝜓,ℎ in (3.3). By Theorem 3.5, (1) follows if we
show that for any ℎ ∈ 𝐺,
(4.3) −𝒞𝜑𝜓,ℎ = 𝜆𝜓𝜑𝜓,ℎ.
Let {𝐻𝑖} be an orthonormal basis of 𝔞. To each 𝛼 ∈ Σ, let 𝐻𝛼 ∈ 𝔞 be the unique vector
such that 𝛼(𝑥) = 𝐵(𝑥,𝐻𝛼) = ⟨𝑥,𝐻𝛼⟩ for all 𝑥 ∈ 𝔞, and choose a unit root vector 𝐸𝛼 ∈ 𝔫
so that [𝑥, 𝐸𝛼] = 𝛼(𝑥)𝐸𝛼 for all 𝑥 ∈ 𝔞. We may write

𝒞 = ∑
𝑖
𝐻2
𝑖 + ∑

𝛼∈Σ+
(𝐸𝛼𝐸−𝛼 + 𝐸−𝛼𝐸𝛼) + 𝐽,

where 𝐽 ∈ 𝒰(𝔪ℂ) (cf. [25, Proposition 5.28]). Now using 𝐸−𝛼𝐸𝛼 = 𝐸𝛼𝐸−𝛼 − 𝐻𝛼 gives
𝒞 = ∑

𝑖
𝐻2
𝑖 − ∑

𝛼∈Σ+
𝐻𝛼 + ∑

𝛼∈Σ+
2𝐸𝛼𝐸−𝛼 + 𝐽.

As in the proof of Lemma 3.4, [𝐽𝜑𝜓,ℎ](𝑒) = 0, and [𝐸𝛼𝐸−𝛼𝜑𝜓,ℎ](𝑒) = 0. Applying −𝒞
to 𝜑𝜓,ℎ gives

−𝒞𝜑𝜓,ℎ = −(∑
𝑖
𝜓(𝐻𝑖)2 − ∑

𝛼∈Σ+
𝜓(𝐻𝛼)) 𝜑𝜓,ℎ

= − (‖𝜓‖2 − 2⟨𝜌, 𝜓⟩) 𝜑𝜓,ℎ
= (‖𝜌‖2 − ‖𝜓 − 𝜌‖2) 𝜑𝜓,ℎ,

proving (4.3). Let 𝑓 be a positive 𝜆-harmonic function on 𝑋 , which we consider as a
𝐾-invariant function on 𝐺. By [26, Theorem 2], 𝑓 is of the form: for any 𝑔 ∈ 𝐺,

𝑓(𝑔) = ∫
𝐾/𝑀×{𝜓≥𝜌∶𝜆𝜓=𝜆}

𝜑𝜓,𝑘(𝑔) 𝑑𝜇([𝑘], 𝜓)
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for some Borel measure 𝜇 on 𝐾/𝑀 × {𝜓 ≥ 𝜌 ∶ 𝜆𝜓 = 𝜆}. By (4.3), this implies (2). □
Corollary 4.3. For any Zariski dense discrete subgroup Γ < 𝐺,

sup{𝜆𝜓 ∶ 𝜓 ∈ 𝐷⋆
Γ } ≤ 𝜆0.

Proof. IfΓ is cocompact in𝐺, then𝜓Γ = 2𝜌 andhence𝐷⋆
Γ = {2𝜌}. Since𝜆0 = 0 = 𝜆2𝜌 in

this case, the claim follows. In general, it follows fromTheorem 2.3 and Proposition 3.7
that for any 𝜓 ∈ 𝐷⋆

Γ , there exists a positive joint eigenfunction on Γ⧵𝑋 with character
𝜒𝜓−𝜌. Hence the claim for the casewhenΓ is not cocompact in𝐺 follows fromTheorem
4.1 and Proposition 4.2. □

5. Groups of the second kind and positive joint eigenfunctions

When 𝐺 has rank one (in which case the Furstenberg boundary is same as the geo-
metric boundary of 𝑋), a discrete subgroup Γ < 𝐺 is said to be of the second kind if
Λ ≠ ℱ. We extend this definition to higher rank groups as follows:
Definition 5.1. A discrete subgroup Γ < 𝐺 is of the second kind if there exists 𝜉 ∈ ℱ
which is in general position with all points of Λ, i.e., (𝜉, Λ) ⊂ ℱ(2).

Theorem 4.1 provides a positive 𝜆-harmonic function for any 𝜆 ≤ 𝜆0, when Γ⧵𝑋 is
not compact. Theorem 5.2 can be viewed as a higher rank strengthening of this result.

Theorem 5.2. Let Γ < 𝐺 be of the second kind with ℒ ⊂ int 𝔞+ ∪ {0}. For any 𝜓 ∈ 𝐷Γ,
there exists a positive joint eigenfunction on Γ⧵𝑋 with character 𝜒𝜓−𝜌.
By Proposition 3.7, we get the following immediate corollary:

Corollary 5.3. Let Γ < 𝐺 be of the second kind with ℒ ⊂ int 𝔞+ ∪ {0}. Then for any
𝜓 ≥ max(𝜓Γ, 𝜌), there exists a (Γ, 𝜓)-conformal density.
Remark 5.4.

(1) Let Γ0 < 𝐺 be an Anosov subgroup. Then any Anosov subgroup Γ < Γ0 with
ΛΓ0 ≠ ΛΓ is of the second kind. To see this, choose any 𝜉 ∈ ΛΓ0−ΛΓ, and note
that (ΛΓ, 𝜉) ⊂ ℱ(2), since any two distinct points of ΛΓ0 are in general position
by the Anosov assumption on Γ0.

(2) If Λ ⊂ 𝑔𝑁𝑤0𝑃 for some 𝑔 ∈ 𝐺, then (Λ, 𝑔+) ⊂ ℱ(2). One can construct many
Schottky groups with Λ ⊂ 𝑁𝑤0𝑃, which would then be of the second kind.

(3) Let𝐺 = ∏𝑘
𝑖=1 𝐺𝑖 be a product of simple algebraic groups𝐺𝑖 of rank one. Then

ℱ = ∏𝑖 ℱ 𝑖 where ℱ 𝑖 = 𝐺𝑖/𝑃𝑖. Let 𝜋𝑖 ∶ ℱ → ℱ 𝑖 denote the canonical pro-
jection. Then any discrete subgroup Γ < 𝐺 such that 𝜋𝑖(Λ) ≠ ℱ 𝑖 for all 𝑖 is
of the second kind. To see this, it suffices to note that (Λ, 𝜉) ⊂ ℱ(2) for any
𝜉 = (𝜉𝑖)𝑖 ∈ ℱ with 𝜉𝑖 ∈ ℱ 𝑖 − 𝜋𝑖(Λ).

(4) The well-known properties of the limit set of a Hitchin subgroup of PSL𝑑(ℝ)
imply that Hitchin groups are not of the second kind for any even 𝑑 ≥ 4 or
𝑑 = 3; we thank Canary and Labourie for communicating this with us.

For 𝑞 ∈ 𝑋 and 𝑟 > 0, we set
𝐵(𝑞, 𝑟) = {𝑥 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑞) ≤ 𝑟}.

For 𝑝 = 𝑔(𝑜) ∈ 𝑋 , the shadow of the ball 𝐵(𝑞, 𝑟) viewed from 𝑝 is defined as
𝑂𝑟(𝑝, 𝑞) ≔ {(𝑔𝑘)+ ∈ ℱ ∶ 𝑘 ∈ 𝐾, 𝑔𝑘 int 𝐴+𝑜 ∩ 𝐵(𝑞, 𝑟) ≠ ∅}.
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Similarly, for 𝜉 ∈ ℱ, the shadow of the ball 𝐵(𝑞, 𝑟) viewed from 𝜉 is defined by
𝑂𝑟(𝜉, 𝑞) ≔ {ℎ+ ∈ ℱ ∶ ℎ ∈ 𝐺 satisfies ℎ− = 𝜉, ℎ𝑜 ∈ 𝐵(𝑞, 𝑟)}.

We will use the following shadow lemma to prove Theorem 5.2:

Lemma 5.5 ([30, Lemma 5.6, 5.7]).
(1) If a sequence 𝑞𝑖 ∈ 𝑋 converges to 𝜂 ∈ ℱ, then for any 𝑞 ∈ 𝑋 , 𝑟 > 0 and 𝜀 > 0,

𝑂𝑟−𝜀(𝑞𝑖, 𝑞) ⊂ 𝑂𝑟(𝜂, 𝑞) ⊂ 𝑂𝑟+𝜀(𝑞𝑖, 𝑞)
for all sufficiently large 𝑖.

(2) There exists 𝜅 > 0 such that for any 𝑔 ∈ 𝐺 and 𝑟 > 0,
sup

𝜉∈𝑂𝑟(𝑔(𝑜),𝑜)
‖𝛽𝜉(𝑔(𝑜), 𝑜) − 𝜇(𝑔−1)‖ ≤ 𝜅𝑟.

Lemma 5.6. Ifℒ ⊂ int 𝔞+∪{0}, then the union Γ(𝑜)∪Λ is compact in the topology given
in Definition 2.2.

Proof. The hypothesis implies that any sequence 𝛾𝑖 → ∞ in Γ tends to ∞ regularly,
and hence has a limit in ℱ. Moreover the limit belongs to Λ by its definition. □

Lemma 5.7. Suppose that ℒ ⊂ int 𝔞+ ∪ {0}. If 𝜉 ∈ ℱ satisfies that (𝜉, Λ) ⊂ ℱ(2), then
there exists 𝑅 > 0 such that

𝜉 ∈ ⋂
𝛾∈Γ

𝑂𝑅(𝛾(𝑜), 𝑜).

Proof. Wefirst claim that 𝜉 ∈ ⋂𝜂∈Λ 𝑂𝑅(𝜂, 𝑜) for some 𝑅>0. Note that lim𝑅→∞𝑂𝑅(𝜂, 𝑜)
= {𝑧 ∈ ℱ ∶ (𝑧, 𝜂) ∈ ℱ(2)}. Hence for each 𝜂 ∈ Λ, we have

𝑅𝜂 ≔ inf{𝑅 + 1 ∶ 𝜉 ∈ 𝑂𝑅(𝜂, 𝑜)} < ∞.
It suffices to show that 𝑅 ≔ sup𝜂∈Λ 𝑅𝜂 < ∞. Suppose not; then 𝑅𝜂𝑖 → ∞ for some
sequence {𝜂𝑖} ⊂ Λ. By passing to a subsequence if necessary, we may assume that
the 𝜂𝑖 converge to some 𝜂. From this it follows that 𝑂𝑅𝜂+1(𝜂, 𝑜) ⊂ 𝑂𝑅𝜂+2(𝜂𝑖, 𝑜) for all
sufficiently large 𝑖. Therefore 𝑅𝜂𝑖 ≤ 𝑅𝜂 + 3, yielding a contradiction.
We now claim that 𝜉 ∈ ⋂𝛾∈Γ 𝑂𝑅′(𝛾𝑜, 𝑜) for some 𝑅′ > 0. Suppose not; then there

exist sequences 𝛾𝑖 → ∞ in Γ and 𝑅𝑖 → ∞ such that 𝜉 ∉ 𝑂𝑅𝑖 (𝛾𝑖𝑜, 𝑜). By Lemma 5.6,
after passing to a subsequence, we may assume that 𝛾𝑖(𝑜) converges to some 𝜂 ∈ Λ.
By the first claim, we have 𝜉 ∈ 𝑂𝑅(𝜂, 𝑜). By Lemma 5.5, we have 𝜉 ∈ 𝑂𝑅(𝜂, 𝑜) ⊂
𝑂𝑅+1(𝛾𝑖(𝑜), 𝑜) for all sufficiently large 𝑖. This is a contradiction, since for 𝑖 large enough
so that 𝑅𝑖 > 𝑅 + 1, we have 𝜉 ∉ 𝑂𝑅+1(𝛾𝑖(𝑜), 𝑜). This proves the claim. □

As an immediate corollary of Lemmas 5.5 and 5.7, we obtain:

Corollary 5.8. If ℒ ⊂ int 𝔞+ ∪ {0} and 𝜉 ∈ ℱ satisfies that (𝜉, Λ) ⊂ ℱ(2), then

sup
𝛾∈Γ

‖𝛽𝜉(𝛾−1𝑜, 𝑜) − 𝜇(𝛾)‖ < ∞.

Proof of Theorem 5.2. If 𝜓 ∈ 𝐷⋆
Γ , this follows from Theorem 2.3. Hence we assume

𝜓 ∈ 𝐷Γ − 𝐷⋆
Γ ; this implies that

(5.1) ∑
𝛾∈Γ

𝑒−𝜓(𝜇(𝛾)) < ∞
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by [40, Lem. III. 1.3]. As Γ is of the second kind, there exists 𝜉 ∈ ℱ such that (𝜉, 𝜂) ∈
ℱ(2) for all 𝜂 ∈ Λ. By Corollary 5.8, we have sup𝛾∈Γ ‖𝛽𝜉(𝛾−1𝑜, 𝑜) − 𝜇(𝛾)‖ < ∞. There-
fore (5.1) implies that

(5.2) ∑
𝛾∈Γ

𝑒−𝜓(𝛽𝜉(𝛾−1𝑜,𝑜)) < ∞.

For any fixed 𝑥 ∈ 𝑋 , we have 𝛽𝜉(𝛾−1𝑥, 𝑜) = 𝛽𝜉(𝛾−1𝑜, 𝑜)+𝛽𝛾𝜉(𝑥, 𝑜) and ‖𝛽𝛾𝜉(𝑥, 𝑜)‖ ≤
𝑑(𝑥, 𝑜). Hence 𝑒−𝜓(𝛽𝜉(𝛾−1𝑜,𝑜)) ≍ 𝑒−𝜓(𝜇(𝛾)) with implied constant uniform for all 𝛾 ∈ Γ.
Therefore, by (5.1) the following function 𝐹𝜓,𝜉 on 𝑋 is well-defined:

(5.3) 𝐹𝜓,𝜉(𝑥) ≔ ∑
𝛾∈Γ

𝑒−𝜓(𝛽𝜉(𝛾−1𝑥,𝑜)) for 𝑥 ∈ 𝑋.

If we write 𝜉 = [𝑘0] ∈ 𝐾/𝑀 = ℱ, then for any 𝑔 ∈ 𝐺,
𝛽𝜉(𝛾−1𝑔𝑜, 𝑜) = 𝛽𝑀(𝑘−10 𝛾−1𝑔𝑜, 𝑜) = 𝐻(𝑔−1𝛾𝑘0)

and hence 𝑒−𝜓(𝛽𝜉(𝛾−1𝑔𝑜,𝑜)) = 𝜑𝜓,𝛾𝑘0(𝑔). Therefore

𝐹𝜓,𝜉 = ∑
𝛾∈Γ

𝜑𝜓,𝛾𝑘0 .

It now follows from Lemma 2.2 that 𝐹𝜓,𝜉 is a positive Γ-invariant joint eigenfunction
on 𝑋 with eigenvalue 𝜒𝜓−𝜌. This finishes the proof.

Remark 5.9. In the above proof, for any 𝜓 ∈ 𝐷Γ−𝐷⋆
Γ and any 𝜉 ∈ ℱ with (Λ, 𝜉) ⊂ 𝐹(2),

we have constructed a positive joint eigenfunction 𝐹𝜓,𝜉 on Γ⧵𝑋 of eigenvalue 𝜒𝜓−𝜌.

Hence we get the following strengthened version of Corollary 4.3:

Corollary 5.10. If Γ < 𝐺 is of the second kind with ℒ ⊂ int 𝔞+ ∪ {0}, then
(5.4) sup{𝜆𝜓 ∶ 𝜓 ∈ 𝐷Γ} ≤ 𝜆0.

If Γ < SO∘(𝑛, 1) is a discrete subgroup with Λ ≠ 𝜕ℍ𝑛, we have equality in (5.4), as
was proved by Sullivan [45, Theorem 2.17].

6. The 𝐿2-spectrum and uniqueness

Let Γ be a torsion-free discrete subgroup of a connected semisimple real algebraic
group 𝐺. The space 𝐿2(Γ⧵𝑋) consists of square-integrable functions together with the
inner product ⟨𝑓1, 𝑓2⟩ = ∫Γ⧵𝑋 𝑓1 ̄𝑓2 𝑑 vol.
Let 𝑊 1(Γ⧵𝑋) ⊂ 𝐿2(Γ⧵𝑋) denote the closure of 𝐶∞

𝑐 (Γ⧵𝑋) with respect to the norm
‖ ⋅ ‖𝑊1 induced by the inner product

⟨𝑓1, 𝑓2⟩𝑊1 ≔∫
Γ⧵𝑋

𝑓1 ̄𝑓2 𝑑 vol+∫
Γ⧵𝑋

⟨grad 𝑓1, grad 𝑓2⟩ 𝑑 vol

for any 𝑓1, 𝑓2 ∈ 𝑊 1(Γ⧵𝑋).
AsΓ⧵𝑋 is complete, there exists a unique self-adjoint operator on the space𝑊 1(Γ⧵𝑋)

extending the Laplacian Δ on 𝐶∞
𝑐 (Γ⧵𝑋), which we also denote by Δ. The 𝐿2-spectrum

of −Δ, which we denote by
𝜎(Γ⧵𝑋),
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is the set of all 𝜆 ∈ ℂ such that Δ + 𝜆 does not have a bounded inverse (Δ + 𝜆)−1 ∶
𝐿2(Γ⧵𝑋) → 𝑊 1(Γ⧵𝑋). The self-adjointness of Δ and the fact that ⟨−Δ𝑓, 𝑓⟩ =
∫𝑋 ‖ grad 𝑓‖2𝑑 vol for all 𝑓 ∈ 𝐶∞

𝑐 (Γ⧵𝑋) imply 𝜎(Γ⧵𝑋) ⊂ [0,∞).
We will be using Weyl’s criterion to determine 𝜎(Γ⧵𝑋):

Theorem 6.1 (Cf. [48, Lemma 2.17]). For 𝜆 ∈ ℝ, we have 𝜆 ∈ 𝜎(Γ⧵𝑋) if and only if
there exists a sequence of unit vectors 𝐹𝑛 ∈ 𝑊 1(Γ⧵𝑋) such that

lim
𝑛→∞

‖(Δ + 𝜆)𝐹𝑛‖ = 0.

The number 𝜆0 = 𝜆0(Γ⧵𝑋) defined in (4.1) is the bottom of the 𝐿2-spectrum 𝜎(Γ⧵𝑋):
Theorem 6.2 ([45, Theorem 2.1, 2.2]). We have

𝜆0 ∈ 𝜎(Γ⧵𝑋) ⊂ [𝜆0,∞).
Using Harish-Chandra’s Plancherel formula, we can identify 𝜆0(𝑋) and 𝜎(𝑋) for the

symmetric space 𝑋 = 𝐺/𝐾:
Proposition 6.3. We have 𝜆0(𝑋) = ‖𝜌‖2 and 𝜎(𝑋) = [‖𝜌‖2,∞).
Proof. It is shown in [22] that there are no positive Laplace eigenfunctions on 𝑋 with
eigenvalue strictly bigger than ‖𝜌‖2; hence the inequality 𝜆0(𝑋) ≤ ‖𝜌‖2 follows from
Theorem 4.1 for Γ = {𝑒}. On the other hand, as seen in the proof of (1), 𝜑𝜌,ℎ is a positive
‖𝜌‖2-harmonic function (for any ℎ ∈ 𝐺), hence 𝜆0(𝑋) = ‖𝜌‖2 by Theorem 4.1. We now
deduce the second claim 𝜎(𝑋) = [‖𝜌‖2,∞) fromHarish-Chandra’s Plancherel theorem
(cf. e.g. [43]). For 𝜓 ∈ 𝔞∗, define Φ𝜓 ∈ 𝐶∞(𝐾⧵𝐺/𝐾) by

Φ𝜓(𝑔) = ∫
𝐾
𝜑𝜌+𝑖𝜓,𝑘(𝑔) 𝑑𝑘,

where 𝜑𝜌+𝑖𝜓,𝑘(𝑔) = 𝑒−(𝜌+𝑖𝜓)(𝐻(𝑔−1𝑘)).
Then by the same computation as (4.3), we have

−𝒞Φ𝜓 = −ΔΦ𝜓 = (‖𝜌‖2 + ‖𝜓‖2)Φ𝜓.
Given any 𝑓 ∈ 𝐶∞

𝑐 (𝔞∗), we can define a function 𝐹 ∈ 𝐿2(𝑋) by the formula

𝐹(𝑔) = ∫
𝔞∗
𝑓(𝜓)Φ𝜓(𝑔)

𝑑𝜓
|𝐜(𝜓)|2 ;

here 𝑑𝜓 denotes the Lebesgue measure on 𝔞∗ and 𝐜(𝜓) denotes the Harish-Chandra
𝐜-function. The Plancherel formula says

‖𝐹‖2𝐿2(𝑋) = ∫
𝔞∗
|𝑓(𝜓)|2 𝑑𝜓

|𝐜(𝜓)|2

(see [43]). Let 𝜆 ∈ [‖𝜌‖2,∞) be any number. Choose 𝜓0 ∈ 𝔞∗ so that 𝜆 = ‖𝜌‖2+‖𝜓0‖2.
We then choose a sequence of non-negative functions {𝑓𝑛} ⊂ 𝐶∞

𝑐 (𝔞∗) with supp 𝑓𝑛 ⊂
𝐵1/𝑛(𝜓0) and ‖𝐹𝑛‖𝐿2(𝑋) = 1.
Then

(Δ + 𝜆)𝐹𝑛 = ∫
𝔞∗
𝑓𝑛(𝜓)(Δ + 𝜆)Φ𝜓(𝑔)

𝑑𝜓
|𝐜(𝜓)|2

= ∫
𝔞∗
𝑓𝑛(𝜓)(𝜆 − ‖𝜌‖2 − ‖𝜓‖2)Φ𝜓(𝑔)

𝑑𝜓
|𝐜(𝜓)|2 .
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This gives

‖(Δ + 𝜆)𝐹𝑛‖2𝐿2(𝑋) =∫
𝔞∗
|(𝜆 − ‖𝜌‖2 − ‖𝜓‖2)𝑓𝑛(𝜓)|2

𝑑𝜓
|𝐜(𝜓)|2

≤ max
𝜓∈𝐵1/𝑛(𝜓0)

||‖𝜓0‖2 − ‖𝜓‖2||2 .

Consequently,
lim
𝑛→∞

‖(Δ + 𝜆)𝐹𝑛‖𝐿2(𝑋) = 0.

By Weyl’s criterion (Theorem 6.1), this implies that 𝜆 ∈ 𝜎(𝑋). This proves the claim.
□

Theorem 6.4. If 𝐿2(Γ⧵𝐺) is tempered, then
𝜆0(Γ⧵𝑋) = ‖𝜌‖2.

Proof. Note that 𝜆0 = 𝜆0(Γ⧵𝑋) ≤ 𝜆0(𝑋) = ‖𝜌‖2 by Proposition 6.3. Assume that
𝜆0 < ‖𝜌‖2. By Theorem 6.1, we can then find a 𝐾-invariant unit vector 𝑓 ∈ 𝐿2(Γ⧵𝐺)𝐾
such that

‖(Δ − 𝜆0)𝑓‖ <
‖𝜌‖2 − 𝜆0

2 .
This gives

‖𝒞𝑓‖ = ‖Δ𝑓‖ ≤ ‖(Δ − 𝜆0)𝑓‖ + 𝜆0 <
‖𝜌‖2 + 𝜆0

2 < ‖𝜌‖2.
On the other hand, consider the direct integral representation of

𝐿2(Γ⧵𝐺) = ∫
⊕

𝖹
(𝜋𝜁,ℋ𝜁) 𝑑𝜇(𝜁)

into irreducible unitary representations of𝐺 which are tempered, by the hypothesis on
the temperedness of 𝐿2(Γ⧵𝐺). Hence

‖𝒞𝑓‖2 = ∫
𝖹
‖𝑑𝜋𝜁(𝒞)𝑓𝜁‖2𝜁 𝑑𝜇(𝜁) ≥ ( min

𝜋 spherical tempered
|𝑑𝜋(𝒞)|2) ,

where𝑑𝜋 denotes the derived representation of𝒰(𝔤ℂ) induced by𝜋. By Schur’s lemma,
there exists a character 𝜒𝜋 of 𝒵(𝔤ℂ) such that 𝑑𝜋(𝑍) = 𝜒𝜋(𝑍) for all 𝑍 ∈ 𝒵(𝔤ℂ). More-
over, for any spherical 𝜋, there exists 𝜓𝜋 ∈ 𝔞∗ℂ such that 𝜒𝜋 = 𝜒𝜓𝜋 (cf. (3.1)). Now, by
Harish-Chandra’s Plancherel formula (cf. e.g. [20]), for any tempered spherical repre-
sentation, we have

𝜓𝜋 = 𝜌 + 𝑖 Im(𝜓𝜋),
where Im(𝜓𝜋) ∈ 𝔞∗. As in the proof of Proposition 6.3, we then obtain

𝜒𝜋(−𝒞) = ‖𝜌‖2 + ‖ Im(𝜓𝜋)‖2.
Thus for any spherical tempered representation (𝜋,ℋ), we have 𝑑𝜋(𝒞) ∈ 𝜎(𝑋) and
hence, by Proposition 6.3,

min
𝜋 spherical tempered

|𝑑𝜋(𝒞)| ≥ ‖𝜌‖2,

giving a contradiction. □

Theorem 6.5 ([45, Theorem 2.8 and Corollary 2.9]).
(1) Any positive Laplace eigenfunction in 𝐿2(Γ⧵𝑋) is 𝜆0-harmonic.



762 SAM EDWARDS AND HEE OH

(2) If there exists a 𝜆0-harmonic function in 𝐿2(Γ⧵𝑋), then the space of 𝜆0-harmonic
functions in Γ⧵𝑋 is one-dimensional and generated by a positive function.

Proof. Sullivan’s proof in [45] uses the heat operator and superharmonic functions. We
provide a more direct proof here.
Note that if 𝑓 ∈ 𝐿2(Γ⧵𝑋) ∩ 𝐶∞(Γ⧵𝑋) is a real-valued 𝜆-harmonic function, then

𝑓 ∈ 𝑊 1(Γ⧵𝑋), since

∫
Γ⧵𝑋

‖ grad 𝑓‖2 𝑑 vol = −∫
Γ⧵𝑋

𝑓Δ𝑓 𝑑 vol = 𝜆∫
Γ⧵𝑋

𝑓2 𝑑 vol .

The key fact for us is that 𝜆0 may also be expressed as an infimum over real-valued
functions in𝑊 1(Γ⧵𝑋); for 𝑓 ≠ 0 in𝑊 1(Γ⧵𝑋), define 𝑅(𝑓) by

𝑅(𝑓) =
‖𝑓‖2𝑊1

‖𝑓‖2 − 1 ≥ 0,

where ‖ ⋅ ‖ denotes the 𝐿2(Γ⧵𝑋) norm. For any 𝑓 ≠ 0 ∈ 𝑊 1(Γ⧵𝑋), and all 𝜑 with
‖𝑓 − 𝜑‖𝑊1 small enough, we have

‖𝜑‖𝑊1 − ‖𝑓 − 𝜑‖𝑊1

‖𝜑‖ + ‖𝑓 − 𝜑‖𝑊1
− 1 ≤ 𝑅(𝑓) ≤ ‖𝜑‖𝑊1 + ‖𝑓 − 𝜑‖𝑊1

‖𝜑‖ − ‖𝑓 − 𝜑‖𝑊1
− 1,

i.e. 𝑓 ↦ 𝑅(𝑓) is continuous at each 𝑓 ≠ 0 ∈ 𝑊 1(Γ⧵𝑋). The density of 𝐶∞
𝑐 (Γ⧵𝑋) in

𝑊 1(Γ⧵𝑋) then gives
𝜆0 = inf

𝑓∈𝐶∞𝑐 (Γ⧵𝑋)
𝑓≠0

𝑅(𝑓) = inf
𝑓∈𝑊1(Γ⧵𝑋)

𝑓≠0

𝑅(𝑓).

Now suppose that 𝜙 ∈ 𝐿2(Γ⧵𝑋) is a positive 𝜆-harmonic function; so 𝜙 ∈ 𝑊 1(Γ⧵𝑋).
We claim that 𝜆 = 𝜆0. By Green’s identity, we have

𝜆0 ≤ 𝑅(𝜙) =
∫Γ⧵𝑋 ‖ grad 𝜙‖2 𝑑 vol

∫Γ⧵𝑋 |𝜙|2 𝑑 vol
=
∫Γ⧵𝑋 𝜙(−Δ𝜙) 𝑑 vol
∫Γ⧵𝑋 |𝜙|2 𝑑 vol

= 𝜆

(cf. Proposition 4.2). On the other hand, since 𝜙 > 0, we have that for any 𝜑 ∈
𝐶∞
𝑐 (Γ⧵𝑋),

∫Γ⧵𝑋 ‖ grad 𝜑‖2 𝑑 vol
∫Γ⧵𝑋 |𝜑|2 𝑑 vol

=
∫Γ⧵𝑋 ‖ grad (𝜙 ⋅ 𝜑𝜙 )‖

2 𝑑 vol
∫Γ⧵𝑋 |𝜑|2 𝑑 vol

.

By Barta’s identity [1],

∫
Γ⧵𝑋

‖ grad (𝜙 ⋅ 𝜑𝜙 )‖
2 𝑑 vol = ∫

Γ⧵𝑋
𝜙2‖ grad 𝜑

𝜙‖
2 𝑑 vol−∫

Γ⧵𝑋
(𝜑𝜙 )

2𝜙Δ𝜙𝑑 vol,

so
∫
Γ⧵𝑋

‖ grad 𝜑‖2 𝑑 vol ≥ ∫
Γ⧵𝑋

(𝜑𝜙 )
2𝜙(−Δ𝜙) 𝑑 vol = 𝜆∫𝜑2 𝑑 vol,

i.e.

𝜆 ≤
∫Γ⧵𝑋 ‖ grad 𝜑‖2 𝑑 vol

∫Γ⧵𝑋 |𝜑|2 𝑑 vol
,

showing that 𝜆0 ≥ 𝜆. Hence 𝜆 = 𝜆0.
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In order to prove (2), we first claim that 𝑓 ∈ 𝑊 1(Γ⧵𝑋) satisfies −Δ𝑓 = 𝜆0𝑓 if and
only if 𝑅(𝑓) = 𝜆0. Suppose that 𝑅(𝑓) = 𝜆0. We will then show that for any 𝜑 ∈
𝐶∞
𝑐 (Γ⧵𝑋), we have

(6.1) ⟨𝑓, −Δ𝜑⟩ = 𝜆0⟨𝑓, 𝜑⟩;
this implies that 𝑓 is 𝜆0-harmonic. Let 𝜑 ∈ 𝐶∞

𝑐 (Γ⧵𝑋). Since 𝑅(𝑓) = 𝜆0, 𝑓 minimizes
𝑅. So for any 𝜑 ∈ 𝐶∞

𝑐 (Γ⧵𝑋), the function 𝐹 ∶ ℝ → ℝ≥0 defined by 𝐹(𝑥) = 𝑅(𝑓 + 𝑥𝜑)
has a local minimum at 𝑥 = 0, hence 𝐹′(0) = 0. Now computing 𝐹′(0) gives

𝐹′(0) =
2⟨𝑓, 𝜑⟩𝑊1‖𝑓‖2 − 2⟨𝑓, 𝜑⟩‖𝑓‖2𝑊1

‖𝑓‖4 = 0.

From 𝑅(𝑓) = 𝜆0, we obtain ‖𝑓‖2𝑊1 = (𝜆0 + 1)‖𝑓‖2, which, when entered into the
identity above, gives

(6.2) ⟨𝑓, 𝜑⟩𝑊1 = (𝜆0 + 1)⟨𝑓, 𝜑⟩.
Letting {𝑓𝑖}𝑖∈ℕ ⊂ 𝐶∞

𝑐 (Γ⧵𝑋) be a sequence converging to 𝑓 in𝑊 1(Γ⧵𝑋), Green’s identity
again gives

⟨𝑓, 𝜑⟩𝑊1 = lim
𝑖→∞

⟨𝑓𝑖, 𝜑⟩𝑊1 = lim
𝑖→∞

∫
Γ⧵𝑋

𝑓𝑖𝜑 + ⟨grad 𝑓𝑖, grad 𝜑⟩ 𝑑 vol

= lim
𝑖→∞

∫
Γ⧵𝑋

𝑓𝑖𝜑 + 𝑓𝑖(−Δ𝜑) 𝑑 vol = ⟨𝑓, 𝜑⟩ + ⟨𝑓, −Δ𝜑⟩.(6.3)

Combined with (6.2), this gives ⟨𝑓, −Δ𝜑⟩ = 𝜆0⟨𝑓, 𝜑⟩ as in (6.1).
Conversely, if 𝑓 ∈ 𝑊 1(Γ⧵𝑋) satisfies −Δ𝑓 = 𝜆0𝑓, then for any 𝜑 ∈ 𝐶∞

𝑐 (Γ⧵𝑋), we
have (as in (6.3))

⟨𝑓, 𝜑⟩𝑊1 = ⟨𝑓, 𝜑⟩ + ⟨𝑓, −Δ𝜑⟩ = (𝜆0 + 1)⟨𝑓, 𝜑⟩,
hence

‖𝑓‖2𝑊1 = sup
𝜑∈𝐶∞𝑐 (Γ⧵𝑋)

⟨𝑓, 𝜑⟩𝑊1 = sup
𝜑∈𝐶∞𝑐 (Γ⧵𝑋)

(𝜆0 + 1)⟨𝑓, 𝜑⟩ = (𝜆0 + 1)‖𝑓‖2,

giving 𝑅(𝑓) = 𝜆0. This proves the claim.
Let 𝑓 ∈ 𝑊 1(Γ⧵𝑋) ∩ 𝐶∞(Γ⧵𝑋) now be a real-valued 𝜆0-harmonic function. Then

|𝑓| ∈ 𝑊 1(Γ⧵𝑋) and 𝑅(|𝑓|) = 𝜆0. As shown above, |𝑓| is also a 𝜆0-harmonic function.
Hence either 𝑓 is a constant multiple of |𝑓| or 𝑓 must change sign at some point 𝑥0,
hence |𝑓(𝑥)| ≥ |𝑓(𝑥0)| = 0 for all 𝑥 ∈ Γ⧵𝑋 . However, since Δ|𝑓| = −𝜆0|𝑓| ≤ 0, the
strong minimum principle (cf. e.g. [37, Theorem 66, p. 280]) gives that if |𝑓| attains its
infimum, then |𝑓| is in fact constant (in this case equal to zero). We therefore conclude
that any 𝜆0-harmonic function in 𝐿2(Γ⧵𝑋) is a constant multiple of a positive function.
This then implies that the space of 𝜆0-harmonic functions must be one-dimensional as
two positive functions cannot be orthogonal to each other. □

The uniqueness in Theorem 6.5 has the following implications for joint eigenfunc-
tions:

Corollary 6.6.
(1) There exists at most one positive joint eigenfunction in 𝐿2(Γ⧵𝑋) up to a constant

multiple.
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(2) If there exists a positive joint eigenfunction in 𝐿2(Γ⧵𝑋) with character 𝜒𝜓−𝜌, 𝜓 ∈
𝔞∗, then

𝜆0 = 𝜆𝜓.
(3) There exists a positive Laplace eigenfunction in 𝐿2(Γ⧵𝑋) if and only if there exists

a positive joint eigenfunction in 𝐿2(Γ⧵𝑋) of character 𝜒𝜓−𝜌 with 𝜆𝜓 = 𝜆0.

Proof. We only need to verify the third claim. Suppose that 𝜙 ∈ 𝐿2(Γ⧵𝑋) is a positive
Laplace eigenfunction. Via the identification 𝐿2(Γ⧵𝑋) = 𝐿2(Γ⧵𝐺)𝐾 , we may consider
𝜙 ∈ 𝐿2(Γ⧵𝐺)𝐾 as a positive 𝒞-eigenfunction for the Casimir operator 𝒞. By Theorem
6.5, 𝒞𝜙 = −𝜆0𝜙. Let 𝐷 ∈ 𝒵(𝔤ℂ). Then 𝒞 ∘ 𝐷𝜙 = 𝐷 ∘ 𝒞𝜙 = −𝜆0𝐷𝜙. By the unique-
ness in Theorem 6.5, it follows that 𝐷𝜙 is a constant multiple of 𝜙; and hence 𝜙 is an
eigenfunction for 𝐷 as well. Therefore 𝜙 is a joint eigenfunction. □

Spherical unitary representations contained in 𝐿2(Γ⧵𝐺). We let 𝐶𝑐(𝐺//𝐾) denote
the Hecke algebra of 𝐺, i.e.

𝐶𝑐(𝐺//𝐾) = {𝑓 ∈ 𝐶𝑐(𝐺) ∶ 𝑓(𝑘1𝑔𝑘2) = 𝑓(𝑔) for all 𝑔 ∈ 𝐺, 𝑘1, 𝑘2 ∈ 𝐾}.

Each element of 𝐶𝑐(𝐺//𝐾) acts on 𝐶(𝐺) via right convolution ∗.

Lemma 6.7. A positive 𝐾-invariant joint eigenfunction on 𝐺 is an eigenfunction for the
action of the Hecke algebra. More precisely, if

(6.4) 𝜙(𝑔) = ∫
ℱ
𝜑𝜓,𝑘(𝑔) 𝑑𝜈𝑜([𝑘]), 𝑔 ∈ 𝐺,

for some 𝜓 ∈ 𝔞∗ and a (Γ, 𝜓)-conformal measure 𝜈𝑜 on ℱ = 𝐾/𝑀, then for all 𝑓 ∈
𝐶𝑐(𝐺//𝐾),

(𝜙 ∗ 𝑓)(𝑔) = (∫
𝐺
𝑓(ℎ)𝑒−𝜓(𝐻(ℎ)) 𝑑ℎ) 𝜙(𝑔).

Proof. Given 𝑓 ∈ 𝐶𝑐(𝐺//𝐾), we have

(𝜙 ∗ 𝑓)(𝑔) = ∫
𝐺
𝜙(𝑔ℎ−1)𝑓(ℎ) 𝑑ℎ = ∫

𝐺
∫
ℱ
𝜑𝜓,𝑘(𝑔ℎ−1)𝑓(ℎ) 𝑑𝜈𝑜([𝑘]) 𝑑ℎ

= ∫
ℱ
∫
𝐺
𝑓(ℎ)𝑒−𝜓(𝐻(ℎ𝑔−1𝑘)) 𝑑ℎ 𝑑𝜈𝑜([𝑘]).

Now using𝐻(ℎ𝑔−1𝑘) = 𝐻(ℎ𝜅(𝑔−1𝑘)) +𝐻(𝑔−1𝑘) and then the change of variables ℎ′ =
ℎ𝜅(𝑔−1𝑘) gives

(𝜙 ∗ 𝑓)(𝑔) = ∫
ℱ
(∫

𝐺
𝑓(ℎ𝜅(𝑔−1𝑘)−1)𝑒−𝜓(𝐻(ℎ)) 𝑑ℎ) 𝑒−𝜓(𝐻(𝑔−1𝑘)) 𝑑𝜈𝑜([𝑘])

= ∫
ℱ
(∫

𝐺
𝑓(ℎ)𝑒−𝜓(𝐻(ℎ)) 𝑑ℎ) 𝑒−𝜓(𝐻(𝑔−1𝑘)) 𝑑𝜈𝑜([𝑘])

= (∫
𝐺
𝑓(ℎ)𝑒−𝜓(𝐻(ℎ)) 𝑑ℎ) 𝜙(𝑔),

since 𝑓 ∈ 𝐶(𝐺//𝐾), and is thus right 𝐾-invariant. In total, we have shown that 𝜙 is an
eigenfunction of the 𝑓-action, with eigenvalue ∫𝐺 𝑓(ℎ)𝑒

−𝜓(𝐻(ℎ)) 𝑑ℎ. □
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Theorem 6.8. If 𝜙 ∈ 𝐿2(Γ⧵𝐺)𝐾 is a positive Laplace eigenfunction of norm one, there
exists a unique irreducible spherical unitary subrepresentation (𝜋,ℋ𝜙) of 𝐿2(Γ⧵𝐺), and
𝜙 is the unique 𝐾-invariant unit vector inℋ𝜙.

Proof. By Corollary 6.6, 𝜙 is given by (6.4) for some 𝜓 ∈ 𝔞∗. Define Φ ∶ 𝐺 → ℂ by

Φ(𝑔) ≔ ⟨𝑔.𝜙, 𝜙⟩

for all 𝑔 ∈ 𝐺 where the 𝑔 action on 𝐿2(Γ⧵𝐺) is via the translation action of 𝐺 on Γ⧵𝐺
from the right. Given 𝑓 ∈ 𝐶𝑐(𝐺//𝐾), we then have, using Lemma 6.7,

(Φ ∗ 𝑓)(𝑔) = ∫
𝐺
Φ(𝑔ℎ−1)𝑓(ℎ) 𝑑ℎ = ∫

𝐺
⟨(𝑔ℎ−1).𝜙, 𝜙⟩𝑓(ℎ) 𝑑ℎ

= ∫
𝐺
⟨𝑓(ℎ)ℎ−1.𝜙, 𝑔−1.𝜙⟩ 𝑑ℎ = ⟨𝜙 ∗ 𝑓, 𝑔−1.𝜙⟩

= (∫
𝐺
𝑓(ℎ)𝑒−𝜓(𝐻(ℎ)) 𝑑ℎ)Φ(𝑔),

i.e. Φ is also a 𝐶𝑐(𝐺//𝐾)-eigenfunction. Also note that Φ(𝑒) = 1, and since 𝜙 is right
𝐾-invariant, Φ is bi-𝐾-invariant. Moreover, being the matrix coefficient of a unitary
representation,Φ is also positive definite, i.e., for any 𝑔1, . . . , 𝑔𝑛 ∈ 𝐺 and 𝑧1, . . . , 𝑧𝑛 ∈ ℂ,

∑
1≤𝑖,𝑗≤𝑛

𝑧𝑖 ̄𝑧𝑗Φ(𝑔−1𝑗 𝑔𝑖) ≥ 0.

We have thus shown thatΦ is a positive definite spherical function. Lettingℋ𝜙 denote
the closure of span{𝑔.𝜙 ∶ 𝑔 ∈ 𝐺} in 𝐿2(Γ⧵𝐺), by [28, Chapter IV§5, Corollary of Theo-
rem 9],ℋ𝜙 is an irreducible (spherical) unitary subrepresentation of the quasi-regular
representation 𝐿2(Γ⧵𝐺). The uniqueness follows from Corollary 6.6. □

We require Lemma 6.9 in the proof of Theorem 6.10:

Lemma 6.9. Let 𝜓 ≥ 𝜌 and 𝜓 ∉ ℝ𝜌. Denote by 𝜓′ the element of the line ℝ𝜓 closest to
𝜌. Then 𝜓′ ≱ 𝜌.

Proof. Let 𝜙 ≔ 𝜓 − 𝜌. Note that 𝜙 ≥ 0 on 𝔞 by the hypothesis. Then

𝜓′ = ⟨𝜓, 𝜌⟩
‖𝜓‖2 𝜓 = ⟨𝜌 + 𝜙, 𝜌⟩

‖𝜌 + 𝜙‖2 𝜓 = (1 − ‖𝜙‖2 + ⟨𝜌, 𝜙⟩
‖𝜌 + 𝜙‖2 )𝜓,

i.e. 𝜓′ = 𝑡𝜓with 0 < 𝑡 < 1. Now, if 𝜓′ ≥ 𝜌, we could repeat the process with 𝜓′ in place
of 𝜓 to find another, different, closest vector in ℝ𝜓 to 𝜌, which is not possible. □

Theorem 6.10. Let Γ < 𝐺 be of the second kind with ℒ ⊂ int 𝔞+ ∪ {0}. If there exists a
𝜆0-harmonic function in 𝐿2(Γ⧵𝑋), then

𝜆0 = 𝜆𝜓
for some 𝜓 ∈ 𝐷⋆

Γ ∪ {𝜌}.

Proof. Suppose that 𝜓 ∈ 𝐷Γ ⧵ ({𝜌} ∪ 𝐷⋆
Γ ) and that 𝜓 ≥ 𝜌. Assume that there exists a

positive joint eigenfunction 𝜙 ∈ 𝐿2(Γ⧵𝑋) with character 𝜒𝜓−𝜌. By Corollary 6.6,

(6.5) 𝜆0 = 𝜆𝜓 = ‖𝜌‖2 − ‖𝜓 − 𝜌‖2.
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Since 𝜓Γ is concave, there exists 0 < 𝑐 ≤ 1 such that 𝑐𝜓(𝑢) = 𝜓Γ(𝑢) for some 𝑢 ∈ ℒ. So
𝜓0 ≔ 𝑐𝜓 ∈ 𝐷⋆

Γ . Since 𝜓 ∉ 𝐷⋆
Γ , we have 0 < 𝑐 < 1. There exists a unique 𝑠0 ∈ ℝ such

that
(6.6) ‖𝑠0𝜓0 − 𝜌‖ = min{‖𝑠𝜓 − 𝜌‖ ∶ 𝑠 ∈ ℝ},
that is, 𝑠0𝜓0 be the element on the line ℝ𝜓 that is closest to 𝜌.
We claim that 𝑠0𝑐 ≤ 1; since 0 < 𝑐 < 1, this implies thatmax{1, 𝑠0} < 𝑐−1. If𝜓 ∈ ℝ𝜌,

then 𝑠0𝜓0 = 𝜌. Since 𝜓0 = 𝑐𝜓, we get 𝑠0𝑐𝜓 = 𝜌. By the hypothesis 𝜌 ≤ 𝜓, 𝑠0𝑐 ≤ 1. Now
suppose 𝜓 ∉ ℝ𝜌. Assume that 𝑠0𝑐 > 1. Then 𝑠0𝜓0 = 𝑠0𝑐𝜓 > 𝜓. Hence 𝑠0𝑐𝜓 ∈ 𝐷Γ. By
Corollary 5.10 and (6.5), we get

‖𝑠0𝑐𝜓 − 𝜌‖ ≥ ‖𝜓 − 𝜌‖.
By the choice of 𝑠0 in (6.6), it follows that ‖𝑠0𝑐𝜓 − 𝜌‖ = ‖𝜓 − 𝜌‖. Since 𝑠0𝑐𝜓 > 𝜓 ≥ 𝜌,
this yields a contradiction. Therefore the claim 𝑠0𝑐 ≤ 1 follows.
We now choose 𝑡 so thatmax{1, 𝑠0} < 𝑡 < 𝑐−1. Since 𝑡 > 1 and 𝜓0 ∈ 𝐷⋆

Γ , 𝑡𝜓0 ∈ 𝐷Γ.
Note also that 𝑠 ↦ 𝜆𝑠𝜓0 is strictly decreasing on the interval [𝑠0,∞). Since 𝑠0 < 𝑡 < 𝑐−1
and 𝑐−1𝜓0 = 𝜓, we get

𝜆0 = 𝜆𝜓 < 𝜆𝑡𝜓0 .
This contradicts Corollary 5.10. This implies the claim by Corollary 6.6. □

If we use the norm on 𝔰𝔬(𝑛, 1) which endows the constant curvature −1 metric on
ℍ𝑛, then for any non-elementary discrete subgroup Γ < SO∘(𝑛, 1), 𝐷⋆

Γ = {𝛿} and hence
Theorem 6.10 says that if a 𝜆0-harmonic function belongs to 𝐿2(Γ⧵ℍ𝑛), then 𝜆0 must
be given by either 𝛿(𝑛 − 1 − 𝛿) or 1

4 (𝑛 − 1)2.

7. Smearing argument in higher rank

Let Γ be a torsion-free discrete subgroup of a connected semisimple real algebraic
group 𝐺. The goal of this section is to prove the following:
Theorem 7.1. If ℒ ≠ 𝔞+, then no positive joint eigenfunction belongs to 𝐿2(Γ⧵𝑋).
Combined with Corollary 6.6, we get Corollary 7.2 which implies Theorem 1.6(4) in

higher rank.

Corollary 7.2. If ℒ ≠ 𝔞+, there exists no positive Laplace eigenfunction in 𝐿2(Γ⧵𝑋). In
particular, if rank𝐺 ≥ 2 and Γ < 𝐺 is Anosov, no positive Laplace eigenfunction belongs
to 𝐿2(Γ⧵𝑋).
The second part follows from the first by Theorem 2.5. Theorem 7.1 will be deduced

from Theorem 7.4, the proof of which is based on the smearing argument of Thurston
and Sullivan (see [46], [7] and also [47] for historical remarks and the origin of the
name “smearing argument”). We also refer to [42, Theorem 3.1].

Definition 7.3 (Hopf parameterization). The homeomorphism𝐺/𝑀 → ℱ(2)×𝔞 given
by 𝑔𝑀 ↦ (𝑔+, 𝑔−, 𝑏 = 𝛽𝑔−(𝑒, 𝑔)) is called the Hopf parameterization of 𝐺/𝑀.

Fix a pair of linear forms 𝜓1, 𝜓2 ∈ 𝔞∗. For 𝑥 ∈ 𝑋 and (𝜉, 𝜂) ∈ ℱ(2), let

(7.1) 𝜙𝑥(𝜉, 𝜂) = 𝑒𝜓1(𝛽𝜉(𝑥,𝑔𝑜))+𝜓2(𝛽𝜂(𝑥,𝑔𝑜)),
where 𝑔 ∈ 𝐺 is such that 𝑔+ = 𝜉 and 𝑔− = 𝜂.
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Let 𝜈 = {𝜈𝑥 ∶ 𝑥 ∈ 𝑋} and ̄𝜈 = { ̄𝜈𝑥 ∶ 𝑥 ∈ 𝑋} be respectively (Γ, 𝜓1) and (Γ, 𝜓2)-
conformal densities on ℱ. Using the Hopf parametrization, we define the following
locally finite Borel measure �̃�𝜈, ̄𝜈 on 𝐺/𝑀: for (𝜉, 𝜂, 𝑣) ∈ ℱ(2) × 𝔞,
(7.2) 𝑑�̃�𝜈, ̄𝜈(𝜉, 𝜂, 𝑣) = 𝜙𝑥(𝜉, 𝜂)𝑑𝜈𝑥(𝜉)𝑑 ̄𝜈𝑥(𝜂)𝑑𝑣,
where 𝑑𝑣 is the Lebesguemeasure on 𝔞 and 𝑥 ∈ 𝑋 is any element; it follows from the Γ-
conformality of {𝜈𝑥} and { ̄𝜈𝑥} that this definition is independent of 𝑥 ∈ 𝑋 . The measure
�̃�𝜈, ̄𝜈 is left Γ-invariant and right 𝐴-semi-invariant: for all 𝑎 ∈ 𝐴,

(7.3) 𝑎∗�̃�𝜈, ̄𝜈 = 𝑒(−𝜓1+𝜓2∘i)(log𝑎) �̃�𝜈, ̄𝜈.
Note that 𝜓2 = 𝜓1 ∘ i if and only if �̃�𝜈, ̄𝜈 is 𝐴-invariant. We denote by 𝑚𝜈, ̄𝜈 the 𝑀-
invariant Borel measure on Γ⧵𝐺 induced by �̃�𝜈, ̄𝜈; this measure is called the (general-
ized) Bowen-Margulis-Sullivan measure associated to the pair (𝜈, ̄𝜈) [9].

Theorem 7.4 (Smearing theorem). For any pair (𝜈, ̄𝜈) of Γ-conformal densities on ℱ,
there exists 𝑐 > 0 such that

𝑚𝜈, ̄𝜈(Γ⧵𝐺) ≤ 𝑐∫
𝑜𝑛𝑒-neighborhood of supp𝑚𝜈,�̄�

𝐸𝜈(𝑥)𝐸 ̄𝜈(𝑥) 𝑑 vol(𝑥).

Proof. Let 𝑍 = 𝐺/𝐾 × ℱ(2). For any (𝜉, 𝜂) ∈ ℱ(2), we write [𝜉, 𝜂] = 𝑔𝐴𝑜 ⊂ 𝑋 for any
𝑔 ∈ 𝐺 such that 𝑔+ = 𝜉 and 𝑔− = 𝜂; [𝜉, 𝜂] is a maximal flat in 𝑋 defined independently
of the choice of 𝑔 ∈ 𝐺. Let𝜓1, 𝜓2 ∈ 𝔞∗ be linear forms such that 𝜈 and ̄𝜈 are respectively
(Γ, 𝜓1) and (Γ, 𝜓2)-conformal densities. Let 𝜙𝑥 be defined as in (7.1) for all 𝑥 ∈ 𝑋 . We
also denote by𝑊 𝜉,𝜂 ⊂ 𝑋 the one neighborhood of [𝜉, 𝜂]. Consider the following locally
finite Borel measure 𝛼 on 𝑍 defined as follows: for any 𝑓 ∈ 𝐶𝑐(𝑍),

𝛼(𝑓) = ∫
(𝜉,𝜂)∈ℱ(2)

∫
𝑧∈𝑊𝜉,𝜂

𝑓(𝑧, 𝜉, 𝜂) 𝑑𝑧 𝑑𝑚(𝜉, 𝜂),

where 𝑑𝑧 is the 𝐺-invariant measure on 𝑋 , and
𝑑𝑚(𝜉, 𝜂) = 𝜙𝑥(𝜉, 𝜂)𝑑𝜈𝑥(𝜉)𝑑 ̄𝜈𝑥(𝜂)

(observe that this definition is independent of 𝑥).
Consider the natural diagonal action of Γ on 𝑍. Since 𝑑𝑧 and 𝑑𝑚 are both left Γ-

invariant, 𝛼 is also left Γ-invariant and hence induces a measure on the quotient space
Γ⧵𝑍, which we also denote by 𝛼 by abuse of notation.
Define the projection 𝜋′ ∶ 𝑍 → 𝐺/𝑀 as follows: for (𝑥, 𝜉, 𝜂) ∈ 𝑋 × ℱ(2), choose

𝑔 ∈ 𝐺 so that 𝑔+ = 𝜉 and 𝑔− = 𝜂. Then there exists a unique element 𝑎 ∈ 𝐴 such that

𝑑(𝑥, 𝑔𝑎𝑜) = 𝑑(𝑥, 𝑔𝐴𝑜) = inf
𝑏∈𝐴

𝑑(𝑥, 𝑔𝑏𝑜);

this follows from [4, Proposition 2.4] since 𝑋 is a CAT(0) space and 𝑔𝐴(𝑜) is a convex
complete subspace of 𝑋 . In other words, the point 𝑔𝑎𝑜 is the orthogonal projection of
𝑥 to the flat [𝜉, 𝜂] = 𝑔𝐴𝑜. We then set

𝜋′(𝑥, 𝜉, 𝜂) = 𝑔𝑎𝑀 ∈ 𝐺/𝑀;
this is well-defined independent of the choice of 𝑔 ∈ 𝐺. Noting that𝜋′ is Γ-equivariant,
we denote by

𝜋 ∶ supp(𝛼) ⊂ Γ⧵𝑍 → supp (𝑚𝜈, ̄𝜈) ⊂ Γ⧵𝐺/𝑀
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the map induced by 𝜋′. Fixing [𝑔𝑎] ∈ Γ⧵𝐺/𝑀, the fiber 𝜋−1[𝑔𝑎] is of the form
[(𝑔𝑎𝐷0, 𝑔+, 𝑔−)], where

𝐷0 = {𝑠 ∈ 𝑋 ∶ 𝑑(𝑠, 𝑜) ≤ 1, the geodesic connecting 𝑠 and 𝑜 is orthogonal to 𝐴𝑜 at 𝑜}.
Noting that each fiber 𝜋−1(𝑣), 𝑣 ∈ supp𝑚𝜈, ̄𝜈, is isometric to 𝐷0, we have for any

Borel subset 𝑆 ⊂ supp𝑚𝜈, ̄𝜈,
(7.4) 𝛼(𝜋−1(𝑆)) = Vol(𝐷0) ⋅ 𝑚𝜈, ̄𝜈(𝑆);
the volume of 𝐷0 being computed with respect to the volume form induced by the
𝐺-invariant measure on 𝑋 . Consider now the map 𝑝 ∶ supp(𝛼) → Γ⧵𝑋 defined by
𝑝([(𝑧, 𝜉, 𝜂)]) = [𝑧] for any (𝑧, 𝜉, 𝜂) ∈ supp(𝛼). Let 𝐹 = 𝜋−1(supp𝑚𝜈, ̄𝜈) ⊂ supp(𝛼). We
write

𝛼(𝐹) = ∫
Γ⧵𝑋

𝛼𝑥(𝑝−1(𝑥) ∩ 𝐹) 𝑑𝑥,

where 𝛼𝑥 is a conditional measure on the fiber 𝑝−1(𝑥). We claim that there exists a
constant 𝑐 > 0 such that for any 𝑥 ∈ Γ⧵𝑋 ,
(7.5) 𝛼𝑥(𝑝−1(𝑥)) ≤ 𝑐 𝐸𝜈(𝑥) ⋅ 𝐸 ̄𝜈(𝑥).
Since 𝑝−1(𝑥)∩𝐹 = ∅ for 𝑥 outside of the one neighborhood of supp(𝑚𝜈, ̄𝜈), this together
with (7.4) implies that

Vol(𝐷0) ⋅ |𝑚𝜈, ̄𝜈| = 𝛼(𝐹) ≤ 𝑐 ⋅ ∫
one neighborhood of supp(𝑚𝜈,�̄�)

𝐸𝜈(𝑥)𝐸 ̄𝜈(𝑥) 𝑑𝑥

finishing the proof. Note that for any ℎ ∈ 𝐺,
𝑉 ℎ𝑜 ≔ {(𝜉, 𝜂) ∈ ℱ(2) ∶ [𝜉, 𝜂] ∩ 𝐵(ℎ𝑜, 1) ≠ ∅}

is a compact subset ofℱ(2); if {𝑔𝑖} ⊂ 𝐺 and {𝑎𝑖} ⊂ 𝐴 are sequences such that 𝑑(𝑔𝑖𝑎𝑖𝑜, ℎ𝑜)
≤ 1, then (by passing to a subsequence) we may assume that 𝑔𝑖𝑎𝑖 converges to some
𝑔0 ∈ 𝐺. This implies (𝑔+𝑖 , 𝑔−𝑖 ) → (𝑔+0 , 𝑔−0 ) ∈ ℱ(2) as 𝑖 → ∞ and 𝑑(𝑔0𝑜, ℎ𝑜) ≤ 1, from
which the compactness of 𝑉 ℎ𝑜 follows. It follows that

𝑐 ≔ sup{𝜙𝑜(𝜉, 𝜂) ∶ (𝜉, 𝜂) ∈ 𝑉𝑜} < ∞.
By the equivariance 𝜙ℎ𝑜(𝜉, 𝜂) = 𝜙𝑜(ℎ−1𝜉, ℎ−1𝜂), we have for any ℎ ∈ 𝐺,

sup{𝜙ℎ𝑜(𝜉, 𝜂) ∶ (𝜉, 𝜂) ∈ 𝑉 ℎ𝑜} = 𝑐.
Note that if 𝑥 = [ℎ𝑜] ∈ Γ⧵𝑋 for ℎ ∈ 𝐺, then

𝑝−1(𝑥) = {[(ℎ𝑜, 𝜉, 𝜂)] ∈ supp(𝛼) ∶ [𝜉, 𝜂] ∩ 𝐵(ℎ𝑜, 1) ≠ ∅} ≃ 𝑉 ℎ𝑜.
Therefore for any 𝑥 = [ℎ𝑜] ∈ Γ⧵𝑋 ,

𝛼𝑥(𝑝−1(𝑥)) = 𝛼𝑥(𝑉 ℎ𝑜)

= ∫
(𝜉,𝜂)∈𝑉ℎ𝑜

𝜙ℎ𝑜(𝜉, 𝜂) 𝑑𝜈ℎ𝑜(𝜉)𝑑 ̄𝜈ℎ𝑜(𝜂)

≤ 𝑐∫
(𝜉,𝜂)∈𝑉ℎ𝑜

𝑑𝜈ℎ𝑜(𝜉)𝑑 ̄𝜈ℎ𝑜(𝜂)

≤ 𝑐 ⋅ |𝜈ℎ𝑜| ⋅ | ̄𝜈ℎ𝑜| = 𝑐 ⋅ 𝐸𝜈(𝑥) ⋅ 𝐸 ̄𝜈(𝑥).
This proves (7.5), and hence finishes the proof. □
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Proof of Theorem 7.1. Suppose that 𝜙 ∈ 𝐿2(Γ⧵𝑋) is a positive joint eigenfunction. By
Proposition 3.7, 𝜙 = 𝐸𝜈 for some (Γ, 𝜓)-conformal density 𝜈. We may form the 𝑀𝐴-
semi-invariant measure 𝑚𝜈,𝜈, and apply Theorem 7.4. Since 𝐸𝜈 ∈ 𝐿2(Γ⧵𝐺), it follows
that𝑚𝜈,𝜈(Γ⧵𝐺) < ∞. The finiteness of |𝑚𝜈,𝜈| implies that𝑚𝜈,𝜈 is indeed𝑀𝐴-invariant
by (7.3) and it is conservative for any one-parameter subgroup of 𝐴. In particular, for
any non-zero 𝑣 ∈ 𝔞+, there exist 𝑔 ∈ 𝐺, sequences 𝑡𝑖 → +∞ and 𝛾𝑖 ∈ Γ such that the
sequence 𝛾𝑖𝑔 exp(𝑡𝑖𝑣) is convergent. This implies that sup𝑖 ‖𝑡𝑖𝑣 − 𝜇(𝛾−1𝑖 )‖ < ∞ and
hence 𝑡−1𝑖 𝜇(𝛾−1𝑖 ) converges to 𝑣, and hence 𝑣 ∈ ℒ. Thereforeℒ = 𝔞+. This finishes the
proof.

Remark 7.5. If Γ < 𝐺 is Zariski dense and 𝜓 > 𝜓Γ, then for any (Γ, 𝜓)-conformal
density 𝜈, 𝐸𝜈 ∉ 𝐿2(Γ⧵𝑋). To see this, note that by [40, Lem. III. 1.3], the condition
𝜓 > 𝜓Γ implies that

∑
𝛾∈Γ

𝑒−𝜓(𝜇(𝛾)) < ∞.

On the other hand, by Theorem 1.4 of [5], the finiteness of𝑚𝜈,𝜈 implies that

∑
𝛾∈Γ

𝑒−𝜓(𝜇(𝛾)) = ∞.

Hence we must have |𝑚𝜈,𝜈| = ∞. Then the claim follows from Theorem 7.4.

8. Injectivity radius and 𝐿2(𝐺) ∝ 𝐿2(Γ⧵𝐺)
As before let 𝐺 be a connected semisimple real algebraic group. Recall from Propo-

sition 6.3 that 𝜎(𝑋) = [‖𝜌‖2,∞). In this section, we prove the following:

Theorem 8.1. Let Γ < 𝐺 be an Anosov subgroup. We suppose that Γ is not a cocompact
lattice in a rank one group 𝐺. Then

𝐿2(𝐺) ∝ 𝐿2(Γ⧵𝐺) and 𝜎(𝑋) = [‖𝜌‖2,∞) ⊂ 𝜎(Γ⧵𝑋).

Note that if Γ < 𝐺 is Anosov, Γ⧵𝐺 has infinite volume except when Γ is a cocompact
lattice in a rank one group 𝐺. The latter case has to be ruled out from Theorem 8.1
since the conclusions are not true in that case; 𝐿2(Γ⧵𝐺) contains the constant function
and 𝜎(Γ⧵𝑋) is countable. When 𝐺 = SO∘(𝑛, 1), an Anosov subgroup Γ < 𝐺 is simply
a convex cocompact subgroup, in which case this theorem is well known due to the
work of Lax and Phillips [29].
We will need Lemma 8.2: when𝐺 is of rank one, wemay write𝐴 = {𝑎𝑡 ∶ 𝑡 ∈ ℝ} as a

one-parameter subgroup, and a loxodromic element 𝑔 ∈ 𝐺 is of the form 𝑔 = ℎ𝑎𝑡𝑚ℎ−1
for some 𝑡 ≠ 0,𝑚 ∈ 𝑀 and ℎ ∈ 𝐺. The translation axis of 𝑔 is then given by ℎ𝐴(𝑜).

Lemma 8.2. Let 𝐺 be a simple real algebraic group of rank one. For any loxodromic
element 𝑔 ∈ 𝐺 with translation axis 𝐿 and any sequence 𝑥𝑖 ∈ 𝑋 such that 𝑑(𝑥𝑖, 𝐿) → ∞,
we have 𝑑(𝑥𝑖, 𝑔𝑥𝑖) → ∞.

Proof. Without loss of generality, we may assume 𝑔 = 𝑚−1𝑎−𝑠0 ∈ 𝑀𝐴 with 𝑠0 ≠ 0 so
that 𝐿 = 𝐴(𝑜). Let 𝑥𝑖 ∈ 𝑋 be a sequence such that 𝑑(𝑥𝑖, 𝐴(𝑜)) → ∞ as 𝑖 → ∞. Write
𝑥𝑖 = 𝑛𝑖𝑎−𝑡𝑖 (𝑜) with 𝑛𝑖 ∈ 𝑁 and 𝑡𝑖 ∈ ℝ.
We may then write

𝑑(𝑔𝑥𝑖, 𝑥𝑖) = 𝑑(𝑎𝑡𝑖ℎ𝑖𝑛𝑖𝑎−𝑡𝑖 , 𝑎−1𝑜),
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where ℎ𝑖 = 𝑚𝑎𝑠0𝑛−1𝑖 𝑎−𝑠0𝑚−1 ∈ 𝑁. As 𝑑(𝑥𝑖, 𝐴(𝑜)) → ∞, we have 𝑎𝑡𝑖𝑛𝑖𝑎−𝑡𝑖 → ∞. It
suffices to show 𝑎𝑡𝑖ℎ𝑖𝑛𝑖𝑎−𝑡𝑖 →∞.
By the assumption that 𝐺 has rank one, there is only one simple root, say 𝛼, and 𝔫

is the sum of at most two root subspaces 𝔫 = 𝔫𝛼 + 𝔫2𝛼 where [𝔫, 𝔫] = 𝔫2𝛼. Note that
when 𝑁 is abelian, 𝔫2𝛼 = {0}. Hence we have that for any 𝑋, 𝑌 ∈ 𝔫,

(8.1) log ( exp(𝑋) exp(𝑌)) = 𝑋 + 𝑌 + 1
2[𝑋, 𝑌].

Write log 𝑛𝑖 = 𝑌 𝑖 + 𝑍𝑖 with 𝑌 𝑖 ∈ 𝔫𝛼 and 𝑍𝑖 ∈ 𝔫2𝛼. Since Ad𝑚 preserves 𝔫𝛼 and
𝔫2𝛼, we have

log ℎ𝑖 = −Ad𝑚𝑎𝑠0
log 𝑛𝑖 = −𝑒𝛼(𝑠0)Ad𝑚𝑌 𝑖 − 𝑒2𝛼(𝑠0)Ad𝑚𝑍𝑖.

Therefore by (8.1), we get

log ℎ𝑖𝑛𝑖 = (1 − 𝑒𝛼(𝑠0)Ad𝑚)𝑌 𝑖 + (1 − 𝑒2𝛼(𝑠0)Ad𝑚)𝑍𝑖 −
1
2[𝑒

𝛼(𝑠0)Ad𝑚𝑌 𝑖, 𝑌 𝑖].
Hence

Ad𝑎𝑡𝑖 log ℎ𝑖𝑛𝑖 = (1 − 𝑒𝛼(𝑠0)Ad𝑚)𝑒𝛼(𝑡𝑖)𝑌 𝑖+

(1 − 𝑒2𝛼(𝑠0)Ad𝑚)𝑒2𝛼(𝑡𝑖)𝑍𝑖 − [𝑒𝛼(𝑠0)Ad𝑚𝑒𝛼(𝑡𝑖)𝑌 𝑖, 𝑒𝛼(𝑡𝑖)𝑌 𝑖].
Now suppose that 𝑎𝑡𝑖ℎ𝑖𝑛𝑖𝑎−𝑡𝑖 does not go to infinity as 𝑖 → ∞. By passing to a

subsequence, we may assume that Ad𝑎𝑡𝑖 log ℎ𝑖𝑛𝑖 is uniformly bounded. It follows that
both sequences (1 − 𝑒𝛼(𝑠0)Ad𝑚)𝑒𝛼(𝑡𝑖)𝑌 𝑖 and

(1 − 𝑒2𝛼(𝑠0)Ad𝑚)𝑒2𝛼(𝑡𝑖)𝑍𝑖 − [𝑒𝛼(𝑠0)Ad𝑚𝑒𝛼(𝑡𝑖)𝑌 𝑖, 𝑒𝛼(𝑡𝑖)𝑌 𝑖]
are uniformly bounded. Since 𝛼(𝑠0) ≠ 0, we have 𝑒𝛼(𝑡𝑖)𝑌 𝑖 is uniformly bounded,
which then implies that 𝑒2𝛼(𝑡𝑖)𝑍𝑖 is uniformly bounded. This implies thatAd𝑎𝑡𝑖 log 𝑛𝑖 =
𝑒𝛼(𝑡𝑖)𝑌 𝑖+𝑒2𝛼(𝑡𝑖)𝑍𝑖 is uniformly bounded, contradicting the hypothesis that 𝑑(𝑎𝑡𝑖𝑛𝑖𝑎−𝑡𝑖 )
→ ∞ as 𝑖 → ∞. This proves the claim. □

Let Γ < 𝐺 be a discrete subgroup. For 𝑥 = [𝑔] ∈ Γ⧵𝐺, the injectivity radius inj 𝑥 is
defined as the supremum 𝑟 > 0 such that the ball 𝐵𝑟(𝑔) = {ℎ ∈ 𝐺 ∶ 𝑑(ℎ, 𝑔) < 𝑟} injects
to Γ⧵𝐺 under the canonical quotient map 𝐺 → Γ⧵𝐺. The injectivity radius of Γ⧵𝐺 is
defined as inj(Γ⧵𝐺) = sup𝑥∈Γ⧵𝐺 inj(𝑥).

Proposition 8.3. For any Anosov subgroup Γ < 𝐺 which is not a cocompact lattice in a
rank one group 𝐺, we have inj(Γ⧵𝐺) = ∞.

Proof. If 𝐺 has rank one, Γ is a convex cocompact subgroup which is not a cocompact
lattice. In this case, take any 𝜉 ∈ 𝜕𝑋 which is not a limit point, and any 𝑔𝑖 ∈ 𝐺 such
that 𝑔𝑖(𝑜) → 𝜉. Then inj(𝑔𝑖(𝑜)) → ∞ as 𝑖 → ∞.
Now suppose rank𝐺 ≥ 2. We first observe that Vol(Γ⧵𝐺) = ∞; otherwise, Γ < 𝐺 is

a cocompact lattice, as Anosov subgroups consist only of loxodromic elements. Since
any Anosov subgroup Γ is a Gromov hyperbolic group as an abstract group ([21], [3]),
it follows that 𝐺 is a Gromov hyperbolic space and hence must be of rank one, which
contradicts the hypothesis.
If every simple factor of 𝐺 has rank at least 2, the claim inj(Γ⧵𝐺) = ∞ follows

from a more general result of Fraczyk and Gelander [14] which applies to all discrete
subgroups of infinite covolume. Therefore it remains to consider the case where 𝐺 =
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𝐺1×𝐺2where𝐺1 and𝐺2 are respectively semisimple real algebraic subgroups of rank at
least one and of rank precisely one. Let Σ be a finitely generated group and 𝜋 ∶ Σ → 𝐺
be anAnosov representationwith Γ = 𝜋(Σ) as in Definition 2.4. Let𝜋𝑖 ∶ Σ → 𝐺𝑖 be the
composition of 𝜋 and the projection 𝐺 → 𝐺𝑖 for each 𝑖. It follows from (2.8) that 𝜋𝑖(Σ)
is a discrete subgroup of 𝐺𝑖 for each 𝑖 = 1, 2. Let 𝑋𝑖 denote the rank one symmetric
space associated to 𝐺𝑖 and let 𝑋 denote the Riemmanian product 𝑋 = 𝑋1 × 𝑋2. Let
𝑅 > 0 be an arbitrary number. We will find a point 𝑥 ∈ 𝑋 with inj(𝑥) ≥ 𝑅, i.e.,
𝑑(𝑥, 𝛾𝑥) > 𝑅 for all non-trivial 𝛾 ∈ Γ; this implies the claim. Choose any 𝑥1 ∈ 𝑋1. By
the discreteness of 𝜋1(Σ), the set {𝜎 ∈ Σ−{𝑒} ∶ 𝑑1(𝜋1(𝜎)𝑥1, 𝑥1) < 𝑅} is finite, which we
write as {𝜎1,⋯ , 𝜎𝑚}. For each 𝜎 ∈ Σ ⧵ {𝑒}, define a subset 𝑇2(𝜎) ⊂ 𝑋2 by

𝑇2(𝜎) = {𝑧 ∈ 𝑋2 ∶ 𝑑2(𝜋2(𝜎)𝑧, 𝑧) < 𝑅}.

Note that 𝜋2(𝜎) is a loxodromic element of 𝐺2 and 𝑇2(𝜎) is contained in a bounded
neighborhood of the translation axis of 𝜋2(𝜎) by Lemma 8.2. In particular, the sym-
metric space 𝑋2 is not covered by the finite union⋃

𝑚
𝑗=1 𝑇2(𝜎𝑗). Hence we may choose

𝑥2 ∈ 𝑋2 outside of⋃
𝑚
𝑗=1 𝑇2(𝜎𝑗). We now claim that the injectivity radius at 𝑥 ≔ (𝑥1, 𝑥2)

is at least 𝑅; suppose not. Then for some 𝜎 ∈ Σ − {𝑒}, 𝑑((𝜋1(𝜎)𝑥1, 𝜋2(𝜎)𝑥2), 𝑥) < 𝑅. In
particular, for 𝑖 = 1, 2, 𝑑𝑖(𝜋𝑖(𝜎)𝑥𝑖, 𝑥𝑖) < 𝑅. It follows that 𝜎 = 𝜎𝑗 for some 1 ≤ 𝑗 ≤ 𝑚
and 𝑥2 ∈ 𝑇2(𝜎𝑗), contradicting the choice of 𝑥2. This proves the claim. □

Theorem 8.1 follows from Proposition 8.3 and Proposition 8.4, which was suggested
by C. McMullen.

Proposition 8.4. Let Γ < 𝐺 be a discrete subgroup with inj(Γ⧵𝐺) = ∞. Then

𝐿2(𝐺) ∝ 𝐿2(Γ⧵𝐺) and 𝜎(𝑋) ⊂ 𝜎(Γ⧵𝑋).

Proof. To prove the first claim, we need to show that the diagonal matrix coefficients
of 𝐿2(𝐺) can be approximated by the diagonal matrix coefficients of 𝐿2(Γ⧵𝐺) uniformly
on compact subsets of 𝐺.
Let 𝑣 be any element of 𝐿2(𝐺) and 𝒦 ⊂ 𝐺 a compact subset containing 𝑒. We will

use the fact that inj(Γ⧵𝐺) = ∞ to construct a sequence of functions {𝐹𝑖} ⊂ 𝐶𝑐(Γ⧵𝐺)
such that

lim
𝑖→∞

max
𝑔∈𝒦

||⟨𝑔.𝑣, 𝑣⟩𝐿2(𝐺) − ⟨𝑔.𝐹𝑖, 𝐹𝑖⟩𝐿2(Γ⧵𝐺)|| = 0,

as required. By the density of 𝐶𝑐(𝐺) in 𝐿2(𝐺), there exists a sequence {𝑓𝑖} ⊂ 𝐶𝑐(𝐺) such
that lim𝑖→∞ ‖𝑓𝑖 − 𝑣‖𝐿2(𝐺) = 0, hence

(8.2) lim
𝑖→∞

max
𝑔∈𝒦

||⟨𝑔.𝑣, 𝑣⟩𝐿2(𝐺) − ⟨𝑔.𝑓𝑖, 𝑓𝑖⟩𝐿2(𝐺)|| = 0.

For each 𝑖 ≥ 1, we let 𝑅𝑖 > 0 be such that (supp 𝑓𝑖)𝒦 ⊂ 𝐵𝑅𝑖 (𝑒). Since inj(Γ⧵𝐺) = ∞,
there then exists a sequence {𝑔𝑖} ⊂ 𝐺 such that 𝑔𝑖𝐵𝑅𝑖 (𝑒) injects to Γ⧵𝐺, i.e. the map
ℎ ↦ Γℎ is injective on 𝑔𝑖𝐵𝑅𝑖 (𝑒).
For each 𝑖, consider the function 𝐹𝑖 ∈ 𝐶𝑐(Γ⧵𝐺) given by

𝐹𝑖(𝑥) = ∑
𝛾∈Γ

𝑓𝑖(𝑔−1𝑖 𝛾ℎ) for any 𝑥 = [ℎ] ∈ Γ⧵𝐺.
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We then have that for any 𝑔 ∈ 𝐺,

⟨𝑔.𝐹𝑖, 𝐹𝑖⟩𝐿2(Γ⧵𝐺) = ∫
Γ⧵𝐺

𝐹𝑖(𝑥𝑔)𝐹𝑖(𝑥) 𝑑𝑥

= ∫
Γ⧵𝐺

𝐹𝑖(Γℎ𝑔) (∑
𝛾∈Γ

𝑓𝑖(𝑔−1𝑖 𝛾ℎ)) 𝑑(Γℎ) = ∫
𝐺
𝐹𝑖(Γℎ𝑔)𝑓𝑖(𝑔−1𝑖 ℎ) 𝑑ℎ

= ∫
𝐺
(∑
𝛾∈Γ

𝑓𝑖(𝑔−1𝑖 𝛾𝑔𝑖ℎ𝑔)) 𝑓𝑖(ℎ) 𝑑ℎ.

We now observe that for ℎ ∈ 𝐺, 𝑔 ∈ 𝒦, and 𝛾 ∈ Γ, 𝑓𝑖(𝑔−1𝑖 𝛾𝑔𝑖ℎ𝑔)𝑓𝑖(ℎ) ≠ 0 implies that
𝑔−1𝑖 𝛾𝑔𝑖ℎ𝑔 ∈ 𝐵𝑅𝑖 (𝑒) and ℎ ∈ supp𝑓. This in turn implies that both 𝛾𝑔𝑖ℎ𝑔 and 𝑔𝑖ℎ𝑔 are
in 𝑔𝑖𝐵𝑅𝑖 (𝑒). Since 𝑔𝑖𝐵𝑅𝑖 (𝑒) injects to Γ⧵𝐺, we must then have 𝛾 = 𝑒. Hence for all 𝑖 ≥ 1
and 𝑔 ∈ 𝒦,

⟨𝑔.𝐹𝑖, 𝐹𝑖⟩𝐿2(Γ⧵𝐺) = ∫
𝐺
(∑
𝛾∈Γ

𝑓𝑖(𝑔−1𝑖 𝛾𝑔𝑖ℎ𝑔)) 𝑓𝑖(ℎ)𝑑ℎ

= ∫
𝐺
𝑓𝑖(𝑔−1𝑖 𝑒𝑔𝑖ℎ𝑔)𝑓𝑖(ℎ)𝑑ℎ = ∫

𝐺
𝑓𝑖(ℎ𝑔)𝑓𝑖(ℎ)𝑑ℎ = ⟨𝑔.𝑓𝑖, 𝑓𝑖⟩𝐿2(𝐺).

Combined with (8.2), this proves the first claim.
In order to prove the second claim, let 𝑊 1(Γ⧵𝑋) ⊂ 𝐿2(Γ⧵𝑋) be as defined in the

proof of Theorem 6.5. Let 𝜆 ∈ 𝜎(𝑋). By Weyl’s criterion (Theorem 6.1), there exists a
sequence of 𝐿2(𝑋)-unit vectors {𝑢𝑛}𝑛∈ℕ ⊂ 𝑊 1(𝑋) such that

lim
𝑛→∞

‖(Δ + 𝜆)𝑢𝑛‖𝐿2(𝑋) = 0.

Since𝐶∞
𝑐 (𝑋) is dense in𝑊 1(𝑋)with respect to ‖⋅‖𝑊1(𝑋), wemay assume that {𝑢𝑛}𝑛∈ℕ ⊂

𝐶∞
𝑐 (𝑋). Since Γ⧵𝑋 has infinite injectivity radius, for each 𝑛 ∈ ℕ, we can find 𝑔𝑛 ∈ 𝐺

so that 𝑔𝑛 supp(𝑢𝑛) injects to Γ⧵𝐺. We may therefore define {𝑣𝑛}𝑛∈ℕ ⊂ 𝑊 1(Γ⧵𝑋) by

𝑣𝑛(Γ𝑔𝑛𝑥) = {𝑢𝑛(𝑥) if 𝑥 ∈ supp(𝑢𝑛),
0 otherwise.

The 𝐺-invariance of Δ then gives

lim
𝑛→∞

‖(Δ + 𝜆)𝑣𝑛‖𝐿2(Γ⧵𝑋) = lim
𝑛→∞

‖(Δ + 𝜆)𝑢𝑛‖𝐿2(𝑋) = 0;

and so using Weyl’s criterion again yields 𝜆 ∈ 𝜎(Γ⧵𝑋). Hence 𝜎(𝑋) ⊂ 𝜎(Γ⧵𝑋), as
claimed. □

9. Temperedness of 𝐿2(Γ⧵𝐺)
Let 𝐺 be a connected semisimple real algebraic group and Γ < 𝐺 be a Zariski dense

discrete subgroup. The goal of this section is to prove Theorem 9.4 and Corollary 9.6.
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Burger-Roblin measures. We set 𝑁+ = 𝑤0𝑁𝑤−1
0 and 𝑁− = 𝑁. For a (Γ, 𝜓)-

conformal measure 𝜈𝑜 on ℱ, or equivalently for a (Γ, 𝜓)-conformal density 𝜈 = {𝜈𝑥 ∶
𝑥 ∈ 𝑋}, we denote by 𝑚BR

𝜈 and 𝑚BR∗𝜈 the associated 𝑁+ and 𝑁−-invariant Burger-
Roblin measures on Γ⧵𝐺 respectively, as defined in [9]. By [9, Lem. 4.9], it can also be
defined as follows: for any 𝑓 ∈ 𝐶𝑐(Γ⧵𝐺),

𝑚BR
𝜈 (𝑓) = ∫

[𝑘]𝑚(exp𝑎)𝑛∈𝐾/𝑀×𝑀𝐴𝑁+
𝑓([𝑘]𝑚(exp 𝑎)𝑛)𝑒−𝜓∘i(𝑎) 𝑑𝜈𝑜(𝑘−)𝑑𝑚𝑑𝑎𝑑𝑛

and

𝑚BR∗𝜈 (𝑓) = ∫
[𝑘]𝑚(exp𝑎)𝑛∈𝐾/𝑀×𝑀𝐴𝑁−

𝑓([𝑘]𝑚(exp 𝑎)𝑛)𝑒𝜓(𝑎) 𝑑𝜈𝑜(𝑘+)𝑑𝑚𝑑𝑎𝑑𝑛,

where 𝑑𝑚, 𝑑𝑎, 𝑑𝑛 are Haar measures on𝑀, 𝔞, 𝑁± respectively.
Recall that 𝑑𝑥 denotes the 𝐺-invariant measure on Γ⧵𝐺 which is defined using the

(𝐺, 2𝜌)-conformal measure, that is, the 𝐾-invariant probability measure on ℱ (see [9,
(3.11)]). For real-valued functions 𝑓1, 𝑓2 on Γ⧵𝐺, we write

⟨𝑓1, 𝑓2⟩ = ∫
Γ⧵𝐺

𝑓1(𝑥)𝑓2(𝑥) 𝑑𝑥

whenever the integral converges. Wewrite𝐶𝑐(Γ⧵𝐺)𝐾 for the space of𝐾-invariant com-
pactly supported continuous functions on Γ⧵𝐺.

Lemma 9.1. For a (Γ, 𝜓)-conformal density 𝜈 and any 𝑓 ∈ 𝐶𝑐(Γ⧵𝐺)𝐾 , we have
𝑚BR
𝜈 (𝑓) = ⟨𝑓, 𝐸𝜈⟩ = 𝑚BR∗𝜈 (𝑓).

Proof. If 𝑔 = (exp 𝑏)𝑛𝑘 ∈ 𝐴𝑁+𝐾, then
𝛽𝑒−(𝑔𝑜, 𝑜) = 𝛽𝑒+(exp(−i(𝑏)), 𝑜) = i(𝑏).

Hence

𝑚BR
𝜈 (𝑓) = ∫

𝐾𝐴𝑁+
∫
𝐾
𝑓(𝑘 exp 𝑏𝑛𝑘0)𝑒−𝜓∘i(𝑏)𝑑𝑘0𝑑𝜈𝑜(𝑘−)𝑑𝑏𝑑𝑛

= ∫
𝐺
∫
𝐾
𝑓(𝑘𝑔)𝑒−𝜓(𝛽𝑒− (𝑔𝑜,𝑜))𝑑𝜈𝑜(𝑘−)𝑑𝑔

= ∫
𝐺
𝑓(𝑔)∫

𝐾
𝑒−𝜓(𝛽𝑘− (𝑔𝑜,𝑜))𝑑𝜈𝑜(𝑘−)𝑑𝑔 = ⟨𝑓, 𝐸𝜈⟩.

If 𝑔 = (exp 𝑏)𝑛𝑘 ∈ 𝐴𝑁𝐾, then 𝛽𝑒+(𝑔𝑜, 𝑜) = −𝑏 and using this, the second identity can
be proved similarly. □

Local matrix coefficients for Anosov subgroups. In the rest of this section, we
assume that

Γ < 𝐺 is a Zariski dense Anosov subgroup.

Lemma 9.2. For any 𝜓 ∈ 𝐷Γ, there exist a unique unit vector 𝑢 ∈ 𝔞+ and 0 < 𝑐 ≤ 1
such that 𝑐𝜓(𝑢) = 𝜓Γ(𝑢). Moreover 𝑢 ∈ intℒ.

Proof. Since 𝜓Γ is strictly concave [38, Propositions 4.6, 4.11], there exists 0 < 𝑐 ≤ 1
and unique 𝑢 ∈ ℒ such that 𝑐 ⋅𝜓(𝑢) = 𝜓Γ(𝑢). Moreover there is no linear form tangent
to 𝜓Γ at 𝜕ℒ [38], and hence 𝑢 ∈ intℒ. □
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For each 𝑣 ∈ intℒ, there exist a unique linear form 𝜓𝑣 ∈ 𝐷⋆
Γ such that 𝜓𝑣(𝑣) =

𝜓Γ(𝑣) and a unique (Γ, 𝜓𝑣)-conformal density supported on Λ [9, Corollary 7.8 and
Theorem 7.9], which we denote by 𝜈𝑣. Hence [9, Theorem 7.12], together with Lemma
9.1, implies (let 𝑟 = rank𝐺):

Theorem 9.3. For any 𝑣 ∈ intℒ, there exists 𝜅𝑣 > 0 such that for all 𝑓1, 𝑓2 ∈ 𝐶𝑐(Γ⧵𝐺)𝐾
and any 𝑤 ∈ ker 𝜓𝑣,

lim
𝑡→+∞

𝑡(𝑟−1)/2𝑒𝑡(2𝜌−𝜓𝑣)(𝑡𝑣+√𝑡𝑤)⟨exp(𝑡𝑣+√𝑡𝑤)𝑓1, 𝑓2⟩ = 𝜅𝑣𝑒−𝐼(𝑤)⋅⟨𝑓1, 𝐸𝜈i(𝑣)⟩⋅⟨𝑓2, 𝐸𝜈𝑣⟩,

where 𝐼(𝑤) ∈ ℝ is given as in [9, 7.5]. Moreover, the left-hand side is uniformly bounded
over all (𝑡, 𝑤) ∈ (0,∞) × ker 𝜓𝑣 such that 𝑡𝑣 + √𝑡𝑤 ∈ 𝔞+.

Theorem 9.4.
(1) We have 𝐿2(Γ⧵𝐺) is tempered if and only if 𝜓Γ ≤ 𝜌.
(2) If 𝐿2(Γ⧵𝐺) is tempered, then

𝜆0(Γ⧵𝑋) = ‖𝜌‖2 and 𝜎(Γ⧵𝑋) = [‖𝜌2,∞).

Proof. The second claim follows from Theorems 6.4 and 8.1. Suppose that 𝜓Γ ≤ 𝜌.
In order to show that 𝐿2(Γ⧵𝐺) is tempered, by Proposition 2.7, it suffices to show that
the matrix coefficients 𝑔 ↦ ⟨𝑔.𝑓1, 𝑓2⟩ are in 𝐿2+𝜀(𝐺) for all 𝜀 > 0 and for all 𝑓1, 𝑓2 ∈
𝐶𝑐(Γ⧵𝐺), since 𝐶𝑐(Γ⧵𝐺) is dense in 𝐿2(Γ⧵𝐺). Without loss of generality, we may just
consider non-negative functions 𝑓1, 𝑓2 ∈ 𝐶𝑐(Γ⧵𝐺). Fix any 𝜀 > 0. Then using the
Cartan decomposition 𝐺 = 𝐾𝐴+𝐾, we have

∫
𝐺
⟨𝑔.𝑓1, 𝑓2⟩2+𝜀 𝑑𝑔 = ∫

𝐾
∫
𝔞+
∫
𝐾
⟨𝑘1 exp(𝑣)𝑘2.𝑓1, 𝑓2⟩2+𝜀 Ξ(𝑣) 𝑑𝑘1 𝑑𝑣 𝑑𝑘2,

where Ξ(𝑣) ≍ 𝑒2𝜌(𝑣) (cf. [24]). Denoting 𝐹𝑖(Γ𝑔) = max𝑘∈𝐾 𝑓𝑖(Γ𝑔𝑘) ∈ 𝐶𝑐(Γ⧵𝐺)𝐾 , we
then have

∫
𝐺
⟨𝑔.𝑓1, 𝑓2⟩2+𝜀 𝑑𝑔 ≪ ∫

𝔞+
⟨exp(𝑣).𝐹1, 𝐹2⟩2+𝜀𝑒2𝜌(𝑣) 𝑑𝑣.

Since 𝜓Γ ≤ 𝜌, we have 𝜌 ∈ 𝐷Γ. By Lemma 9.2, there exist 0 < 𝑐 ≤ 1 such that 𝑐𝜌 ∈ 𝐷⋆
Γ

and a unit vector 𝑢0 ∈ intℒ such that

𝜓Γ(𝑢0) = 𝑐𝜌(𝑢0).
We now parameterize 𝔞+ as follows: for each 𝑣 ∈ ker 𝜌, define

𝑡𝑣 ≔ min{𝑡 ∈ ℝ>0 ∶ 𝑡𝑢0 +√𝑡𝑣 ∈ 𝔞+}.

Substituting 𝑢 = 𝑡𝑢0+√𝑡𝑣 for 𝑡 ≥ 0 and 𝑣 ∈ 𝔟∩ker 𝜌 gives 𝑑𝑢 = 𝑠 ⋅ 𝑡
𝑟−1
2 𝑑𝑡 𝑑𝑣 for some

constant 𝑠 > 0. Then (letting 𝑟 = dim(𝔞))

∫
𝔞+
⟨exp(𝑢).𝐹1, 𝐹2⟩2+𝜀𝑒2𝜌(ᵆ) 𝑑𝑢

≪ ∫
ker𝜌

∫
∞

𝑡𝑣
⟨exp(𝑡𝑢0 +√𝑡𝑣).𝐹1, 𝐹2⟩2+𝜀𝑒2𝑡𝜌(ᵆ0)𝑡(𝑟−1)/2 𝑑𝑡 𝑑𝑣.

By Theorem 9.3, there exists 𝐶 = 𝐶(𝐹1, 𝐹2) > 0 such that

𝑡(𝑟−1)/2𝑒(2−𝑐)𝑡𝜌(ᵆ0)⟨exp(𝑡𝑢0 +√𝑡𝑣).𝐹1, 𝐹2⟩ ≤ 𝐶
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for all (𝑣, 𝑡) ∈ ker 𝜌 × [𝑡𝑣,∞). Combining this with the trivial bound

⟨𝑔.𝐹1, 𝐹2⟩ ≤ ‖𝐹1‖‖𝐹2‖,

we have (again, for all (𝑣, 𝑡) ∈ ker 𝜌 × [𝑡𝑣,∞))

⟨exp(𝑡𝑢0 +√𝑡𝑣).𝐹1, 𝐹2⟩2+𝜀

≤ (𝐶 + ‖𝐹1|‖𝐹2‖)2+𝜀 (min{1, 𝑡−(𝑟−1)/2𝑒−(2−𝑐)𝑡𝜌(ᵆ0)})
2+𝜀

≪ min{1, 𝑒−𝜂𝑡𝜌(ᵆ0)} ≤ 𝑒−𝜂𝑡𝜌(ᵆ0),

where 𝜂 = (2 − 𝑐)(2 + 𝜀) > 2. This gives

∫
𝐺
⟨𝑔.𝑓1, 𝑓2⟩2+𝜀 𝑑𝑔 ≪∫

𝑣∈ker𝜌
∫

∞

𝑡𝑣
𝑒−𝜂𝑡𝜌(ᵆ0)𝑒2𝑡𝜌(ᵆ0)𝑡(𝑟−1)/2 𝑑𝑡 𝑑𝑣

≪ ∫
𝔞+
𝑒−(𝜂−2)𝜌(ᵆ) 𝑑𝑢 < ∞.

Therefore 𝐿2(Γ⧵𝐺) is tempered.
The converse holds for a general discrete subgroup. Suppose now that 𝐿2(Γ⧵𝐺) is

tempered. Then by the definition of temperedness and the estimate of Ξ𝐺(𝑔) in (2.9),
it follows that for any 𝜀 > 0, there exists 𝐶𝜀 > 0 such that for any 𝑓1, 𝑓2 ∈ 𝐿2(Γ⧵𝐺)𝐾 and
𝑢 ∈ 𝔞+,

(9.1) |⟨exp(𝑢).𝑓1, 𝑓2⟩| ≤ 𝐶𝜀‖𝑓1‖‖𝑓2‖𝑒−(1−𝜀)𝜌(ᵆ).

Applying [31, Prop. 7.3], we get 𝜓Γ ≤ 𝜌. □

Now recall the following recent theorem of Kim, Minsky, and Oh [23]:

Theorem 9.5 ([23]). Let Γ be an Anosov subgroup of the product𝐺 of at least two simple
real algebraic groups or Γ < 𝐺 = PSL𝑑(ℝ) be a Zariski dense Anosov subgroup of a
Hitchin subgroup. Then

𝜓Γ ≤ 𝜌.

Hence by Theorem 9.4, we get:

Corollary 9.6. Let Γ < 𝐺 be as in Theorem 9.5. Then 𝐿2(Γ⧵𝐺) is tempered.

Proof of Theorem 1.6. The equivalence (1) ⇔ (2) is proved inTheorem9.4. The equiva-
lence (2) ⇔ (3) follows fromTheorems 8.1 and 9.4. When rank𝐺 ≥ 2, (4) holds for any
Anosov subgroup by Corollary 7.2. When rank𝐺 = 1, the implication (1) + (2) ⇒ (4)
is due to Sullivan [45] (see also [42, Theorem 3.1]) when 𝑋 is a real hyperbolic space
and to [50, Theorem 1.1 and Proposition 5.1] in general.
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