
Received: 12 February 2024 - Revised: 18 April 2024 - Accepted: 29 April 2024 - IET Smart CitiesDOI: 10.1049/smc2.12083

OR I G INAL RE SEARCH

Quick UDP Internet Connections and Transmission Control
Protocol in unsafe networks: A comparative analysis

Andrew Simpson1 | Maitha Alshaali1 | Wanqing Tu1 | Muhammad Rizwan Asghar2

1Department of Computer Science, Durham
University, Durham, UK

2Surrey Centre for Cyber Security, University of
Surrey, Surrey, UK

Correspondence

Wanqing Tu.
Email: wanqing.tu@durham.ac.uk

Funding information

Engineering and Physical Sciences Research Council
(EPSRC)

Abstract
Secure data transmission and efficient network performance are both key aspects of the
modern Internet. Traditionally, Transport Layer Security (TLS)/Transmission Control
Protocol (TCP) has been used for reliable and secure networking communications. In the
past decade, Quick User Datagram Protocol (UDP) Internet Connections QUIC has
been designed and implemented on UDP, attempting to improve security and efficiency
of Internet traffic. Real‐world platform investigations are carried out in this paper to
evaluate TLS/TCP and QUIC/UDP in maintaining communication, security and effi-
ciency under three different types of popular cyber‐attacks. A set of interesting findings,
including delay, loss, server CPU utilisation and server memory usage are presented to
provide a comprehensive understanding of the two protocol stacks in performing ma-
licious traffic. More specifically, in terms of the efficiency in achieving short delays and
low packet loss rates with limited CPU and memory resources, QUIC/UDP performs
better under Denial of Service attacks but TLS/TCP overtakes QUIC/UDP when
handling MitM attacks. In terms of security, the implementation of TCP tends to be more
secure than QUIC, but QUIC traffic patterns are harder to learn using machine learning
methods. We hope that these insights will be informative in protocol selection for future
networks and applications, as well as shedding light on the further development of the
two protocol stacks.

KEYWORD S
computer network security, data analytics and machine learning, data structures, information security and
privacy, network protocols, networks and telematics

1 | INTRODUCTION

The Internet traditionally employs the Transmission Control
Protocol (TCP)/Transport Layer Security (TLS) protocol stack
to achieve reliable and secure data transmissions between cli-
ents and servers. However, the implementations of TCP and
TLS incurs a trade‐off between communication efficiency and
network reliability or security. This is mainly because that the
handshaking processes of TCP and TLS in establishing con-
nections and negotiating security measurements cost additional
latency. In order to address this trade‐off, Google proposes
Quick User Datagram Protocol (UDP) Internet Connections
QUIC on top of UDP to support fast and secure networking
applications (e.g. web applications). More than half of all

connections from the Chrome browser to Google's servers
were using QUIC by 2015 [1], and QUIC was standardised by
IETF in 2021 [2]. The future of QUIC seems to lead only to
more growth as the latest version of HTTP (e.g. HTTP 3) uses
QUIC and has been declared by the IETF as the next secure
standard for web data transport.

Table 1 presents a comparative analysis of QUIC, TCP, and
UDP to demonstrate the major features that QUIC has to
enhance the efficiency of secured data transport. With QUIC,
only one Round Trip Time (RTT) is required to initialise a new
connection; whereas, zero RTT is required to resume a
connection. This ability is achieved by reusing cached transport
and security parameters from a previous connection, then
coalescing a new handshake alongside the early application data

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the
original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2024 The Authors. IET Smart Cities published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Smart Cities. 2024;1–10. wileyonlinelibrary.com/journal/smc2 - 1

https://doi.org/10.1049/smc2.12083
https://orcid.org/0000-0002-0849-6392
mailto:wanqing.tu@durham.ac.uk
https://orcid.org/0000-0002-0849-6392
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://ietresearch.onlinelibrary.wiley.com/journal/26317680
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fsmc2.12083&domain=pdf&date_stamp=2024-05-17

within the first packets, to provide forward security should
these old parameters be compromised. As such, it is commonly
believed that QUIC can theoretically establish a connection
more quickly than TCP and generate much less overheads
when setting up secure connections. However, it is unclear
whether QUIC really offers better protection and performance
to network users when confronted with various network attack
scenarios, or if it can survive through certain attacks at all. In
fact, various instances of replay and packet manipulation at-
tacks on QUIC have been identified leading to connection
failures and, in certain implementations, necessitating a fallback
to TCP (e.g. [3]). Therefore, in this article, we study the effi-
ciency and security of QUIC connections in comparison to
TCP connections amidst different types of network attacks.
More specifically, we look into three types of attacks that are
prevalent in the Internet: Denial of Service (DoS) attacks,
Man‐in‐the‐Middle (MitM) attacks, and traffic analysis attacks.
A real‐world platform is developed to analyse factors such as
delays, the frequency of interrupted connections, and the uti-
lisation of server resources when QUIC and TCP handle the
three types of attacks. From our investigations, we derive the
following novel insights:

� Efficiency. Our investigations in general indicate that
QUIC is more efficient when encountering DoS attacks,
while TCP is more efficient when handling MitM attacks.
QUIC connections achieve better delays and packet loss
rates while using CPU and memory resources less in DoS
attacks. TCP achieves short server connection delays and
less data loss rates in MitM attacks, but with similar or
slightly higher CPU or memory resource usage.

� Security. We observe the security of QUIC and TCP con-
nections when traffic analysis attacks in the network. Our
observations find that, while our implementation of TCP
tends to be more secure than QUIC, QUIC traffic patterns
are surprisingly harder to learn using machine learning
methods (e.g. Deep Convolutional Neural Networks).

To the best of our knowledge, there is no existing work
comparing the efficiency of QUIC and TCP under network at-
tacks covered in our study. Our real‐world platform also allows
us to evaluate native features, such as network connectivity, CPU
and memory use, providing an accurate and comprehensive

investigation. Our results will not only provide guidance for
selecting the appropriate transport protocol for combating at-
tacks but also offer insights into the limitations of QUIC or TCP
protocols in terms of efficient and secure connections.

The rest of this article is organised as follows. Section 2
reviews related work. Section 3 discusses the key features of
the QUIC protocol. Section 4 provides the experimental
design. Section 4.2 describes the testing platform. Section 4.3
explains the evaluation metrics. Section 5 presents the results.
Section 6 concludes this work and offers research directions
for future work.

2 | RELATED WORK

In this section, we review existing studies on QUIC by
focusing on work on security and performance. Many studies
explored QUIC security as evident from the most recent study
by Murthy, Asghar, and Tu [4] in which they present a data‐
driven framework for optimising security‐efficiency trade‐off
in QUIC, where use case scenarios have been leveraged to
maximise benefits. Chen et al. [5] compared the security and
availability of TLS and QUIC and found that QUIC imple-
ments the reset authentication function because of its stateless
reset mechanism. In ref. [6], symbolic model checking is used
to analyse the security of QUIC's handshake protocol. It
identifies a vulnerability of QUIC allowing an attacker to
complete a handshake as a legitimate client with a server.
Fischlin et al. [7] proposed QUICi that implements a more
sophisticated key generation technique to enhance the poten-
tial security flaws in QUIC's handshakes. In ref. [3], the quick
communication protocol is introduced to regulate the uti-
lisation of the initial session key before the final session key is
created during handshakes. In ref. [8], in order to address the
forward security issue that the 0‐RTT handshake of QUIC
experiences, the Belichenbacher attack is designed to quickly
guess a server's secret key. In addition to these efforts, quite a
few studies (e.g. [9]) investigated different QUIC versions and
implementations to verify their key features and security
characteristics. Interested readers may find an overview of such
efforts in ref. [10]. In general, these experimental or analytical
studies attempt to understand QUIC's security properties
without taking efficient performance into account.

As for performance, Yu et al. investigated QUIC and TCP
by analysing production environments [11]. This work finds
that QUIC has advantages over TCP but at the cost of high
implementation overhead. Biswal et al. studied the web page
loading latencies of QUIC and HTTP/2 under different
network conditions [12]. Their studies show that QUIC is
faster than HTTP/2 even when network conditions are poor.
In ref. [13], QUIC's congestion response is studied, which
concludes that QUIC data takes more link capacity when
sharing with TCP in a bottleneck link and hence achieves
higher throughput. In ref. [14], the efficiency of QUIC is
proved to outperform TCP in 5G network. However, these
studies do not consider QUIC's performance under network
attacks, which is the focus of our study.

TABLE 1 QUIC enhancements over TCP and UDP.

Functionality TCP UDP QUIC

Connection ID and migration ✗ ✗ ✓

1‐RTT handshake ✗ ✓ ✓

0‐RTT handshake ✗ ✓ ✓

In‐order delivery guarantee ✓ ✗ ✓

Connection verification ✓ ✗ ✓

Padding frames ✗ ✗ ✓

Anti‐amplification limit ✓ ✗ ✓

Abbreviations: TCP, Transmission Control Protocol; UDP, User Datagram Protocol.

2 - SIMPSON ET AL.

 26317680, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sm

c2.12083 by D
urham

 U
niversity - U

niversity, W
iley O

nline L
ibrary on [22/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

There are a few studies investigated QUIC's performance
under network attacks. Lychev et al. studied the security and
performance of QUIC when replay or manipulation attacks
appear, which demonstrates the low security and long latency
of QUIC in handling these attacks [3]. Overall, most of the
existing studies present the insights that QUIC's security and
performance may be compromised by network conditions and
attacks. This encourages our curiosity in exploring whether
QUIC may always outperform its predecessor TCP in
achieving efficient yet secure connections under popular
network attacks. In the next sections, we will present our study
to answer this question.

3 | KEY FEATURES OF QUICK UDP
INTERNET CONNECTIONS PROTOCOL

In this section, we discuss the key features of QUIC protocol,
as compared to TCP protocol, that contribute to faster, secure,
and reliable connections.

3.1 | Connection IDs and migration

Connections held by a QUIC endpoint are given a unique
source and destination ID pair, connID scID:dcID, which has
no linkage to the Internet Protocol (IP) address or port of the
remote endpoint. This connID is used to resume a connection
if the path, or even the client address, changes (and that change
is detected by a probe packet). To determine the connID pair
for a connection at a client endpoint, the initial packet is sent
with a set scID, provided there is no other client with that ID.
The server then registers that scID as its own dcID, and replies
with a source scID, which should be used as the client's own
destination dcID. To put it simply, this creates a binding on
both the client and server that uniquely and robustly identifies
this connection for its lifetime.

3.2 | 1‐RTT handshakes and 0‐RTT
handshakes

Quick UDP Internet Connections balances the fast connection
initialisation provided by UDP with the security of TCP/TLS
by combining the cryptographic handshake with the transport
parameter negotiation. When a client wishes to initialise a
connection over QUIC with a server for the first time, it will be
carried out with a 1‐RTT handshake. The first packet sent
from the client is an initial packet requesting a connection with
the server. As this is the first time connecting, the server does
not recognise the client as it inevitably provided incomplete
transport parameters. The server rejects the incoming request
and replies with the handshake information required to start a
valid connection, including a connection ID pair and a public
encryption key. The client uses this handshake information to
reply with a valid initial packet, followed by a valid handshake
packet containing the correct transport parameters and

encryption token. Application stream data can be sent from
this point.

0‐RTT handshakes refer to QUIC's ability to resume a
connection without going through the handshakes of crypto-
graphic key exchange between a server and a client. Quick
UDP Internet Connections endpoints are able to cache
connection information and reuse a cached connection within
a certain amount of time, bypassing the delay of a handshake
entirely. More specifically, when a client wishes to resume a
connection with a cached server, it will carry out a process
similar to the 1‐RTT handshake. That is, the first packet sent
from the client is an initial packet requesting a connection with
the server. However, this packet can also contain application
data encrypted with the cached key from a previous connec-
tion, validated with a cached server token. The handshake is
completed as before and application stream data can be sent
from this point. New parameters are also negotiated at this
point to guarantee secrecy going forward.

3.3 | In‐order delivery

Like TCP, QUIC can guarantee in order delivery on top of
send and forget approach of UDP, when requested by an
application‐layer protocol. It does this by numbering packets in
the intended order of delivery, transmitting them, and reor-
dering them upon receipt for use in the application. The
benefit to taking this approach is that the ordering of packets
can be disabled to increase performance in non‐critical, lossy
connections without violating the transport protocol.

3.4 | Connection verification

In TLS/TCP, all packets pertaining to handshakes are verified
by the server. If at any point there is an inconsistency, the
entire connection is reset without warning to prevent DoS or
spoofing attacks. With the QUIC protocol, the reduced num-
ber of round trips in the handshake process means that the
client's initial packet cannot be verified by a server. This is
because QUIC endpoints encrypt and verify all packets using
the keying material established during the handshake process,
which has not been completed yet. Quick UDP Internet
Connections is designed to work around this by giving all
incoming requests the benefit of the doubt during the hand-
shake, before dropping any illegitimate connections once they
are recognised. This recognition delay allows for a variety of
handshake spoofing attacks to be attempted, but all are
stopped after one round trip – when the server detects and
inconsistency in the handshake negotiations.

3.5 | Padding frames

Quick UDP Internet Connections inserts padding frames into
each packet. Padding frames are of arbitrary length and provide
endpoints with the ability to obscure the total length of a

SIMPSON ET AL. - 3

 26317680, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sm

c2.12083 by D
urham

 U
niversity - U

niversity, W
iley O

nline L
ibrary on [22/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

packet. The obscurity of data length may benefit the mitigation
of traffic attacks. However, using length is not the only way to
information leakage. Padding frames cannot prevent other
attacks (e.g. side‐channel attacks) entirely.

3.6 | Anti‐amplification limit

With all unverified connections, specially crafted frames within
a packet may cause an endpoint to produce a much greater
number of packets in response. In the case that an adversary
chose to do this maliciously, they could inject these special
frames into a packet with a spoofed victim's IP address.
Sending these frames within an initial packet as part of an
unverified handshake attempt could cause the server to redirect
a large volume of traffic to them, severely impacting their
network performance. Quick UDP Internet Connections im-
plements an anti‐amplification limit, which mitigates the
severity of this type of attack by restricting the maximum
amount of data that can be sent to an unverified endpoint to
three times the amount of incoming data.

4 | EXPERIMENTAL DESIGN

4.1 | Selection of network attack scenarios

This subsection describes the network attacks that we select to
test efficiency and benchmark security when networks use
QUIC as compared to TCP. For the purpose of evaluating
efficiency, we look into how quickly clients can establish reli-
able connections with a server. As for security, we investigate
the core principles, that is, confidentiality, integrity, and avail-
ability. As such, we select DoS attacks, Man‐in‐the‐Middle
(MitM) attacks, and traffic analysis for our investigations.
This is because DoS attacks target the server resources that are
important for establishing and managing connections, affecting
data transmission availability and efficiency. MitM attacks
interfere with the integrity and confidentiality of a connection,
degrading communication security. As for traffic analysis, it is
selected as an attack type affecting client security and effi-
ciency, allowing complementary investigations to the previous
two types. We also choose the above three types of attacks such
that both QUIC and TCP are likely to be affected in similar
ways, avoiding any that are protocol specific as they would not
provide comparable differences between the two.

4.1.1 | Denial of Service attacks

Denial of Service attacks are constantly increasing in frequency
across all areas of the web. Although there are services such as
CloudFlare that aim to detect and mitigate these attacks, the
global volume of attacks is still rising due to reasons such as
growing online presence, increasing botnets, and malicious
activities. We plan to evaluate QUIC and TCP under the two
DoS attacks: connection flooding and slowloris.

Connection flooding is performed by sending a high vol-
ume of tiny requests to a server over a short period of time.
Using this attack, the majority of the processing done on the
server will be to open or close connections, thus allowing us to
measure the overhead caused by these parts of the connection
while neglecting the relatively small amount caused by the re-
quests itself. Slowloris attacks aim to slowly consume servers'
resources by opening connections and not closing them. We
hope that such attacks will shift the majority of connection
overheads to maintaining many active connections, enabling us
to perform a detailed analysis and neglect the relatively small
overhead caused by other factors.

4.1.2 | Man‐in‐the‐Middle (MitM) attacks

Online MitM attacks are where packets are intercepted or
changed by an on‐path adversary. While any public fields in a
packet can be manipulated in an attempt to interrupt a
connection, in order to produce a more meaningful compari-
son between QUIC and TCP, we select the two attacks: im-
mediate client echoes and random server relays that can impact
on shared or similar fields of QUIC and TCP.

Client echoes typically establish a socket to get a connec-
tion to a server. Attackers read input from a client on the
standard input stream and then forward that text to the server
by writing the text to the established socket. The server's re-
plies are also back to the client through the socket. Client
echoes can be developed to evaluate the performance of
QUIC's connIDs.

A replay attack is to detect and identify a data transmission
which will then be delayed or repeated by the attack. With
random server relays, when a client sends a request to a server,
the server randomly respond with a previous server message to
confuse the client the invalid shared connection parameters at
the transport layer but valid packet content. This attack is in
contrast to the immediate client echo attacks.

4.1.3 | Traffic analysis

Traffic analysis is selected as an attack type affecting the client
security rather than the server efficiency, aiming to contrast the
previous two categories. We plan to experiment website
fingerprinting attacks that analyse traffic patterns based on
which such attacks infer confidential information about clients.

4.2 | The testing platform

Our testing platform consists of a server, a client, a router, and
an attacker. Table 2 gives the specifications of these four
components. In our experiments, the client repeatedly opens or
closes connections to time corresponding responses. To
measure security, the client sends encrypted key or perform
some unknown activity while the attacker aims to detect and
decrypt these. The server employs Nginx [15], which is one of

4 - SIMPSON ET AL.

 26317680, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sm

c2.12083 by D
urham

 U
niversity - U

niversity, W
iley O

nline L
ibrary on [22/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

the most popular and widely used web servers that supports
both TCP and QUIC in one implementation. Nginx could
provide good comparisons for our work. The router is a
Raspberry Pi with a generic Dynamic Host Configuration
Protocol server installed to connect the client, the server, and
the attacker together.

The attacker implements the network attacks described in
Section 3. For connection flooding attacks, we spawn a thread
every n seconds, which opens a connection with the server,
requests the “/” resource using GET, then closes the
connection. Slowloris attacks are carried out using multiple
threads, which keep request data from the server periodically
without closing the connections. Our tests refer to the aioquic
test and slowloris python package [16] for the two DoS attacks.

The MitM attacks are implemented via a python script
running the scapy package [17]. With immediate client echoes,
a packet that the client sends will be echoed. The action is to
confuse the client with valid shared parameters but invalid
packet content. With random server replays, the server stores
all packets sent to the client, then any time the client sends a
packet to the server, the attack randomly responds with one of
the previous server messages.

As for website fingerprinting attacks, we use Wireshark [18]
to record 50,000 packets from three Google websites, Sheets
[19], Docs [20], and Slides [21]. These recorded packets are
pre‐processed using our method modified based on refs. [22,
23], before training a Deep Convolutional Neural Network to
classify the labelled packet sequences. The code developed for
the platform is in GitHub [24].

Finally, in order to control networking variables such as
bandwidth and delay that may affect the performance that we
observe for both protocols, we implemented the following
preventative actions. Firstly, the testing setup was within a local
wireless network and the locally connected endpoints were
kept consistent between experiments. The aim was to ensure
that no external factors could influence the bandwidth or la-
tency of the network during each attack. In addition to
network traffic, the CPU and memory consumption at end-
points can affect experimental results. To prevent such impact,
all endpoints were ensured to have only software running that
was relevant to each experiment and the system was restarted
between tests to remove the chance that one attack might
influence another at a later time. The control measurements
for each metric within the experiments show that this was
successful, as the data remains consistent throughout the
paper.

4.3 | Evaluation metrics

We evaluate the following metrics in our experiments to
compare QUIC and TCP.

� Client delay: It is the time taken from initialising a hand-
shake to closing the connection after data is received. It is
employed to evaluate the efficiency of both protocols in
accepting client connections when attacks happen.

� Loss rate: It refers to the ratio of the amount of data lost to
the amount of data transmitted in total. The loss rate is used
to evaluate the efficiency of using resources to transmit data,
as retransmissions are required by TCP. Data loss also af-
fects communication integrity.

� Server CPU utilisation: It monitors the per‐process uti-
lisation of CPUs. We take a reading every 0.1 s over 50 s to
account for any variation. CPU usage is used to evaluate the
resource efficiency at endpoints of the two protocols in
handling attacks.

� Server memory utilisation: It monitors the per‐process
memory utilisation. We observe this performance over a
period of 50 s. Memory usage is used to evaluate the
resource efficiency at endpoints of the two protocols in
handling attacks.

� F1‐score: The packets that we recorded are equally
distributed across classes. For any one class, say a, given the
true positive amount (TPa), the false positive amount (FPa),
and the false negative amount (FNa), its standard F1‐score is

TPa

TPa þ
1
2 ðFPa þ FNaÞ

This score is calculated for all classes, and then a macro, or
unweighted, average is taken to produce the final F1‐score. F1‐
scores are evaluated to look into the security protections of the
two protocols under different attacks.

� Protocol conditional model accuracy: We base this
metric on the formula for conditional probability where C is
the event where a flow is predicted correctly, and F is the
event that a protocol is present in a flow. The probability
that a flow is predicted correctly given that said flow con-
tains a specific protocol can be expressed as follows:

PðCjFÞ ¼
PðC ∩ FÞ
PðFÞ

TABLE 2 Testing platform with
hardware specifications.

Device CPU No. of threads Max. Speed Memory Operating system

Server Celeron N3050 2 2.16 GHz 4 GB Ubuntu

Client Ryzen 7 3700X 16 4.4Ghz 32 GB Arch Linux

Attacker Ryzen 7 5800H 16 4.4Ghz 16 GB Arch Linux

Router ARM Cortex‐A7 4 900Mhz 1 GB Raspbian

SIMPSON ET AL. - 5

 26317680, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sm

c2.12083 by D
urham

 U
niversity - U

niversity, W
iley O

nline L
ibrary on [22/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

We calculate this probability for each protocol present in each
dataset and directly compare the values as a measure of how
secure each one is. The protocol conditional model accuracy is
used to complement the security scenarios that F1‐score may
not measure. This is because the packets that leak the most
information may have actually been transmitted using a
different protocol—although when QUIC is enabled, some of
the processes still use TCP and UDP to send data.

5 | RESULTS

5.1 | Denial of Service attacks

Our first experiment is to evaluate QUIC and TCP when
experiencing connection flooding attacks. Figure 1a shows the
comparison of client connection delays of the two protocols.
Quick UDP Internet Connections achieves shorter client
connection delays than TCP. When there are 100 attacks per
second, the client connection delays with TCP is almost 20
times of those with QUIC in our experiment. This shows that
QUIC can handle a large amount of connection flooding at-
tacks while maintaining the quick connections between clients
and the server, owing to its 1‐RTT handshakes to initiate
connections. A QUIC server and client complete their ex-
change of setup keys and supported information in the initial
handshake process. However, with TLS/TCP, the connection
between server and client requires them to process TLS
handshakes, in addition to TCP's 3‐way handshake. The
lengthy TLS/TCP initial procedure incurs delays.

Figure 1b presents the packet losses of QUIC and TCP.
Both QUIC and TCP do not lose packets when the number of
attacks per second is small (under 60 in our experiment).
However, the number of lost TCP packets increases greatly
when the number of attacks is greater than 60. This is mainly
because TCP and TLS handshakes consume more CPU

capacity than QUIC does. When a large number of connection
requests arrive (60 attacks per second in our experiment), with
TLS/TCP, our CPU cannot handle them all and hence starts
dropping data.

Figure 1c illustrates the CPU usage of QUIC and TCP in
this experiment. Quick UDP Internet Connections has a lower
CPU usage than TCP. We observe that, with TCP, the server's
CPU becomes fully occupied when the number of attacks per
second increases (above 50 in our experiment). For QUIC, it
does not use up CPU capacity even when there are 100 attacks
per second in our experiment. Figure 1d is about the memory
usage of both protocols. Quick UDP Internet Connections has
a lower memory usage than TCP in general. This is mainly due
to QUIC's requiring less handshake overhead, generating less
information to be cached. TCP needs to cache the status in-
formation of clients (e.g. sequence numbers and acknowl-
edgement numbers) that have requested connections.

As connection flooding attacks leverage short‐term con-
nections, our second experiment observes the efficiency of
QUIC and TCP when being attacked with long‐term con-
nections, that is, slowloris attacks. Figure 2a reports the client
connection delays of QUIC and TCP when the number of
slowloris attacks increases from 0 to 1000. Both protocols do
not have greatly increased delays when the number of attacks
increases greatly. This is because slowloris attacks do not
disconnect connections once established. As such, both QUIC
and TCP do not need to generate as many handshakes as they
do in the experiment of client flooding attacks. Therefore, both
the server and the network have more capacity to accept
connection requests once these requests are issued, contrib-
uting to short client delays.

Figure 2b shows the data loss rate performance. Both
protocols have presented a practical performance that avoids
packet loss during slowloris attacks in our experiment. Similar
to the reason for short client delays, under slowloris attacks,
QUIC and TCP implement less handshakes, consuming less

F I GURE 1 Measurements for QUIC/UDP versus TLS/TCP during the flooding attack. TCP, Transmission Control Protocol; TLS, Transport Layer
Security; UDP, User Datagram Protocol.

6 - SIMPSON ET AL.

 26317680, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sm

c2.12083 by D
urham

 U
niversity - U

niversity, W
iley O

nline L
ibrary on [22/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

CPU and memory capacity. In our experiment, the server's
CPU and memory are able to handle these attacks (as in 2c and
2d) without dropping packets.

In our experiment, with 0‐1000 slowloris attacks, the CPU
utilisation with both QUIC and TCP is rarely registered above
5%, as shown in 2c. The memory utilisation curves in
Figure 2d for both protocols fluctuate with the increasing in
the number of attacks due to the different processes of the two
protocols in handling connections and security. With slowloris
attacks, QUIC uses less memory than TCP does as QUIC
caches less status information as compared to TCP.

Overall, when handling DoS attacks issuing short‐term
connections, QUIC outperforms TCP in terms of better
delay and packet loss performance. Quick UDP Internet
Connections is able to achieve such performance enhancement
by using less computing resources. When handling DoS attacks
issuing long‐term connections, QUIC achieves similar perfor-
mance as TCP but with less memory usages.

5.2 | Man‐in‐the‐Middle (MitM) attacks

In order to evaluate the efficiency of QUIC and TCP under
MitM attacks, we first experiment the immediate client echo
attacks. This attack uses an online MitM mechanism to reflect
all packets sent from a client back to that client in an attempt to
interrupt the expectation of well‐formed incoming traffic at an
endpoint. Since this attack does not directly involve the server,
our observations of Figures 3c and 3d are to be expected, with
only the baseline CPU and memory usage at the server. In
terms of delay, Figure 3a shows that the QUIC server requires
longer delay to accept a connection request than the TCP
server does under immediate client echo attacks. This is
because QUIC packets are largely encrypted and always
authenticated, requiring longer processing time at endpoints.
This prolongs the connection request procedures at the client.

Similarly, Figure 3b finds that this attack causes QUIC to lose
more data than TCP does due to the additional authentication
and encryption processes.

In Figure 4, we report our experimental results when
QUIC and TCP experience random server replay attacks. The
CPU and memory usage for random server replay attacks is
similar to the previous packet manipulation attacks, where we
observed no increase in either metric for the duration of the
attack as shown in Figures 4c and 4d. However, the delays and
data loss rates present some differences as compared to those
in Figure 3. While the delays for both protocols to accept client
connection requests are in [40,50]ms, the QUIC server needs a
slightly longer delay than the TCP server does as illustrated in
Figure 4a. Compared to client echo attacks, both QUIC and
TCP experience longer client delays under random server
replay attacks. This is because server replay attacks cause the
server to handle more connection requests, which affects
TCP's client delays more due to the greater handshake over-
head in initiating TLS/TCP connections.

Overall, MitM attacks do not exhaust the CPU and
memory resources of QUIC and TCP. In terms of perfor-
mance under this type of attacks, QUIC connections experi-
ence worse performance than TCP connections. The worse
performance of QUIC connections is less obvious under the
MitM attacks on servers than the poor performance of QUIC
connections under the MitM attacks on clients.

5.3 | Traffic analysis attacks

In this section, we observe the security of QUIC connections
and TLS/TCP connections under traffic analysis attacks. We
experiment the website fingerprinting attacks which aim to
expose side channel leaks in each of the protocols using a
Deep Convolutional Neural Network on data captured from
three Google sites. We observe F1‐score and protocol

F I GURE 2 Measurements for QUIC/UDP versus TLS/TCP during the slowloris attack. TCP, Transmission Control Protocol; TLS, Transport Layer
Security; UDP, User Datagram Protocol.

SIMPSON ET AL. - 7

 26317680, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sm

c2.12083 by D
urham

 U
niversity - U

niversity, W
iley O

nline L
ibrary on [22/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

F I GURE 3 Measurements for QUIC/UDP versus TLS/TCP during the immediate client echo attack. TCP, Transmission Control Protocol; TLS, Transport
Layer Security; UDP, User Datagram Protocol.

F I GURE 4 Measurements for QUIC/UDP versus TLS/TCP during the random server replay attack. TCP, Transmission Control Protocol; TLS, Transport
Layer Security; UDP, User Datagram Protocol.

F I GURE 5 CNN model losses for QUIC/UDP and TLS/TCP. CNN, Convolutional neural networks; TCP, Transmission Control Protocol; TLS,
Transport Layer Security; UDP, User Datagram Protocol.

8 - SIMPSON ET AL.

 26317680, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sm

c2.12083 by D
urham

 U
niversity - U

niversity, W
iley O

nline L
ibrary on [22/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

conditional model accuracy, alongside model loss to evaluate
the training process. Model loss represents the mean squared
error between the true class for an input and the predicted
class given by the model.

Figure 5 demonstrates a downward trend in model losses:
Figure 5a for QUIC and Figure 5b for TCP. However,
Figure 5b shows a closer alignment between train and test loss.
We regard this difference as not significant, as the results for
training this model showed a variation of disparities between
losses in previous tests, and this was most likely dependent on
the random initialisation of the optimiser we used, not the
dataset. Generally, after some number of epochs, every training
cycle ended in a lower train loss than the test loss, which
signifies the model was overfitting to the training dataset, and
when consistently occurring is a strong identifier of the dy-
namic fluctuations of network traffic due to small or highly
variant data.

We show the F1‐score for each trained model on a 10%
test subset in Table 3. Quick UDP Internet Connections had a
slightly lower F1‐score, and this was consistent over multiple
runs, suggesting the QUIC traffic was harder to learn from
than the TCP traffic. Clearly, low F1‐scores for a classifier lead
to poor model performance overall. We expected this to be the
case in such a general attack with no specific packet ordering
like that of studies in early traffic [17]. If the model had a high
F1‐score, this would strongly imply the implementation has no
packet obfuscation, and perhaps even a flawed encryption
scheme.

We finally present Figure 6, which aims to give insight into
which protocols within a flow are actually responsible for
leaking data about the nature of a connection to our con-
volutional neural network. The conditional accuracy for each
protocol, or column in the plot, was calculated using the
function defined in Section 6, across data from all three
websites that we visited in our data collection phase. We

observe that UDP is the most informative to an adversary,
while QUIC also leaks information. For TCP, we unsurpris-
ingly present how the newer the TLS version, the less data that
is leaked unintentionally to an on path adversary. The impor-
tant finding to take from this attack and our metrics is that the
QUIC model performed worse than TCP. On the other hand,
the QUIC model mainly got its information from the UDP
packets within the dataset. This is strong evidence for this
implementation of TCP being more secure than QUIC, but the
main culprit for QUIC's weakness is actually the involvement
of UDP, so rectifying this would simply require removing the
usage of UDP packets in the QUIC implementation.

Overall, our implementation of TCP tends to be more
secure than QUIC. However, QUIC traffic presents the
property of being harder to learn by machine learning methods
than TCP traffic.

6 | CONCLUSION

In this work, we investigated the performance of QUIC and
TCP in experiencing three types of network attacks: DoS at-
tacks, MitM attacks, and traffic analysis attacks. We conducted
real‐world experiments to look into delays, loss rates, CPU and
memory usage, and the resilience of the two protocols to se-
curity threats. Our experimental results indicate that, for
reducing delay and packet loss rates by using less CPU/
memory resources, QUIC is more efficient than TCP under
DoS attacks but less efficient than TCP under MitM attacks. In
terms of security, our experimental results suggest that TLS/
TCP tends to be more secure than QUIC. We discovered that
QUIC traffic patterns are harder to learn by machine learning
methods. To further enhance the efficiency of the testing
platform, instead of controlling these actions manually, another
low‐powered device (such as a raspberry pi) can be added to
the network with the purpose of controlling the simulated
attacks and logging systems. Doing so allows tests to be set up
much faster than performing these actions manually.

We hope that our results will contribute valuable insights to
not only inform protocol selection but also guide future pro-
tocol designs towards the best balance between network
resilience and communication efficiency when various attacks
occur. Particularly, as network threats evolve, schemes that can
support QUIC to achieve additional efficiency and reduction in
network traffic so as to further mitigate channel saturation and

F I GURE 6 Protocol conditional model accuracies for ‐QUIC/UDP and TLS/TCP. TCP, Transmission Control Protocol; TLS, Transport Layer Security;
UDP, User Datagram Protocol.

TABLE 3 Quick UDP Internet Connections versus TCP CNN
model F1‐score.

Protocol F1‐score

QUIC 0.63497

TCP 0.67495

Abbreviations: CNN, Convolutional neural networks; TCP, Transmission Control
Protocol; UDP, User Datagram Protocol.

SIMPSON ET AL. - 9

 26317680, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sm

c2.12083 by D
urham

 U
niversity - U

niversity, W
iley O

nline L
ibrary on [22/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

jamming issues is one future research direction. Strategies that
can enable TCP to limit its CPU or memory usage at servers
without compromising performance under evolving attacks is
another future research direction. Additionally, in light of the
different performance of QUIC and TCP when experiencing
different types of attacks, it will be interesting to design ma-
chine learning schemes or artificial intelligence approaches to
enable clients and servers to automatically verify and choose
between QUIC and TCP for the best communication and
threat prevention performance.

AUTHOR CONTRIBUTIONS
Andrew Simpson: Conceptualisation; Data curation; Formal
analysis; Investigation; Software; Writing – original draft.
Maitha Alshaali: Investigation; Validation; Writing – original
draft; Writing – review & editing. Wanqing Tu: Con-
ceptualisation; Formal analysis; Investigation; Supporting
platform and software; Data curation; Paper writing and edit-
ting; Publication. Muhammad Rizwan Asghar: Con-
ceptualisation; Resources; Validation.

ACKNOWLEDGEMENTS
This work is partially supported by the Engineering and
Physical Sciences Research Council (EPSRC) via the project
Research Hub CHEDDAR (EP/X040518/1).

CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT
We may provide the data from our experimental studies if the
manuscript is accepted for publishing in this journal.

ORCID
Wanqing Tu https://orcid.org/0000-0002-0849-6392

REFERENCES
1. LLC, G.: A QUIC Update on Google’s Experimental Transport (2015).

https://tinyurl.com/2p4ze3zz
2. Iyengar, E.J., Thomson, E.M.: QUIC: A UDP‐Based Multiplexed and

Secure Transport (2021). RFC 9000, RFC Editor. https://doi.org/10.
17487/rfc9000

3. Lychev, R., et al.: How Secure and Quick Is QUIC? Provable Security
and Performance Analyses 2015, pp. 214–231 (2015). https://doi.org/
10.1109/SP.2015.21

4. Murthy, A., Asghar, M.R., Tu, W.: Towards a data‐driven framework for
optimizing security‐efficiency tradeoff in QUIC. Security and Privacy
5(1), e184 (2022). https://doi.org/10.1002/spy2.184

5. Chen, S., et al.: Secure communication channel establishment: TLS 1.3
(over TCP fast open) vs. QUIC. In: Computer Security – ESORICS
2019: 24th European Symposium on Research in Computer Security,
Luxembourg, September 23–27, 2019, Proceedings, Part I, pp. 404–426.

Springer‐Verlag, Berlin (2019). https://doi.org/10.1007/978‐3‐030‐
29959‐0_20

6. Zhang, J., et al.: Formal analysis of QUIC handshake protocol using
symbolic model checking. IEEE Access 9, 14836–14848 (2021). https://
doi.org/10.1109/ACCESS.2021.3052578

7. Fischlin, M., Günther, F.: Multi‐stage key exchange and the case of
Google’s QUIC protocol. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS’14, pp.
1193–1204. Association for Computing Machinery, NY (2014). https://
doi.org/10.1145/2660267.2660308

8. Jager, T., Schwenk, J., Somorovsky, J.: On the security of TLS 1.3 and
QUIC against weaknesses in PKCS#1 v1.5 encryption. In: Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 1185–1196. CCS'15, Association for Computing
Machinery, New York (2015). https://doi.org/10.1145/2810103.
2813657

9. Marx, R., et al.: Towards QUIC Debuggability, pp. 1–7 (2018). https://
doi.org/10.1145/3284850.3284851

10. Tatschner, S., et al.: A quic(k) security overview: a literature research on
implemented security recommendations. In: Proceedings of the 18th
International Conference on Availability, Reliability and Security,
ARES'23. Association for Computing Machinery, New York (2023).
https://doi.org/10.1145/3600160.3605164

11. Yu, A., Benson, T.A.: Dissecting performance of production QUIC. In:
Proceedings of the Web Conference 2021, WWW'21, pp. 1157–1168.
Association for Computing Machinery, NY (2021). https://doi.org/10.
1145/3442381.3450103

12. Biswal, P., Gnawali, O.: Does QUIC make the web faster? In: 2016 IEEE
Global Communications Conference (GLOBECOM), pp. 1–6 (2016).
https://api.semanticscholar.org/CorpusID:10245063

13. Srivastava, A.: Performance Evaluation of QUIC Protocol under
Network Congestion. Thesis. Worcester Polytechnic Institute, 100
Institute Road, Worcester (2017)

14. Gärdborn, P.: Is QUIC a Better Choice than TCP in the 5G Core
Network Service Based Architecture? Ph.D. thesis (2020). https://urn.kb.
se/resolve?urn=urn:nbn:se:kth:diva‐289169

15. Mercurial: Nginx (2022). https://hg.nginx.org//
16. Yaltirakli, G.: Slowloris (2023). https://pypi.org/project/Slowloris/
17. Biondi, P.: Scapy (2022). https://pypi.org/project/scapy/
18. Wireshark Foundation. https://www.wireshark.org (2022)
19. Google: Google Sheets (2023). https://docs.google.com/spreadsheets
20. Google: Google Docs (2023). https://docs.google.com/document
21. Google: Google Slides (2023). https://docs.google.com/document
22. Lotfollahi, M., et al.: Deep Packet: a novel approach for encrypted traffic

classification using deep learning. Soft Comput. 24(3), 1999–2012 (2020).
https://doi.org/10.1007/s00500‐019‐04030‐2

23. Tong, V., et al.: A novel QUIC traffic classifier based on convolutional
neural networks. In: 2018 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6 (2018). https://doi.org/10.1109/GLOCOM.
2018.8647128

24. https://github.com/andrews891/quicvstcpanalysis

How to cite this article: Simpson, A., et al.: Quick
UDP Internet Connections and Transmission Control
Protocol in unsafe networks: A comparative analysis.
IET Smart Cities. 1–10 (2024). https://doi.org/10.
1049/smc2.12083

10 - SIMPSON ET AL.

 26317680, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/sm

c2.12083 by D
urham

 U
niversity - U

niversity, W
iley O

nline L
ibrary on [22/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-0849-6392
https://orcid.org/0000-0002-0849-6392
https://tinyurl.com/2p4ze3zz
https://doi.org/10.17487/rfc9000
https://doi.org/10.17487/rfc9000
https://doi.org/10.1109/SP.2015.21
https://doi.org/10.1109/SP.2015.21
https://doi.org/10.1002/spy2.184
https://doi.org/10.1007/978-3-030-29959-0_20
https://doi.org/10.1007/978-3-030-29959-0_20
https://doi.org/10.1109/ACCESS.2021.3052578
https://doi.org/10.1109/ACCESS.2021.3052578
https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1145/2810103.2813657
https://doi.org/10.1145/2810103.2813657
https://doi.org/10.1145/3284850.3284851
https://doi.org/10.1145/3284850.3284851
https://doi.org/10.1145/3600160.3605164
https://doi.org/10.1145/3442381.3450103
https://doi.org/10.1145/3442381.3450103
https://api.semanticscholar.org/CorpusID:10245063
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289169
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289169
https://hg.nginx.org//
https://pypi.org/project/Slowloris/
https://pypi.org/project/scapy/
https://www.wireshark.org
https://docs.google.com/spreadsheets
https://docs.google.com/document
https://docs.google.com/document
https://doi.org/10.1007/s00500-019-04030-2
https://doi.org/10.1109/GLOCOM.2018.8647128
https://doi.org/10.1109/GLOCOM.2018.8647128
https://github.com/andrews891/quicvstcpanalysis
https://doi.org/10.1049/smc2.12083
https://doi.org/10.1049/smc2.12083
https://orcid.org/0000-0002-0849-6392

	Quick UDP Internet Connections and Transmission Control Protocol in unsafe networks: A comparative analysis
	1 | INTRODUCTION
	2 | RELATED WORK
	3 | KEY FEATURES OF QUICK UDP INTERNET CONNECTIONS PROTOCOL
	3.1 | Connection IDs and migration
	3.2 | 1‐RTT handshakes and 0‐RTT handshakes
	3.3 | In‐order delivery
	3.4 | Connection verification
	3.5 | Padding frames
	3.6 | Anti‐amplification limit

	4 | EXPERIMENTAL DESIGN
	4.1 | Selection of network attack scenarios
	4.1.1 | Denial of Service attacks
	4.1.2 | Man‐in‐the‐Middle (MitM) attacks
	4.1.3 | Traffic analysis

	4.2 | The testing platform
	4.3 | Evaluation metrics

	5 | RESULTS
	5.1 | Denial of Service attacks
	5.2 | Man‐in‐the‐Middle (MitM) attacks
	5.3 | Traffic analysis attacks

	6 | CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

