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A B S T R A C T 

Weak lensing of the cosmic microwave background is rapidly emerging as a powerful probe of neutrinos, dark energy, and new 

physics. We present a fast computation of the non-linear CMB lensing power spectrum that combines non-linear perturbation 

theory at early times with power spectrum emulation using cosmological simulations at late times. Comparing our calculation with 

light-cones from the FLAMINGO 5.6 Gpc cube dark-matter-only simulation, we confirm its accuracy to 1 per cent (2 per cent ) 
up to multipoles L = 3000 ( L = 5000) for a ν� CDM cosmology consistent with current data. Clustering suppression due to 

small-scale baryonic phenomena such as feedback from active galactic nuclei can reduce the lensing power by ∼ 10 per cent . 
To our perturbation theory and emulator-based calculation, we add SP(k) , a new fitting function for this suppression, and 

confirm its accuracy compared to the FLAMINGO hydrodynamic simulations to 4 per cent at L = 5000, with similar accuracy for 
massive neutrino models. We further demonstrate that scale-dependent suppression due to neutrinos and baryons approximately 

factorize, implying that a careful treatment of baryonic feedback can limit biasing neutrino mass constraints. 

Key words: neutrinos – cosmic background radiation – cosmological parameters – large-scale structure of Universe –
cosmology: theory. 
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 I N T RO D U C T I O N  

osmological bounds on the sum of neutrino masses, M ν = 

∑ 

m ν ≤
.12 eV, are rapidly converging on the lower bound M ν = 0.06 eV
rom laboratory experiments, promising a measurement in the next
everal years under restrictive assumptions about the cosmological
odel (Capozzi et al. 2018 ; de Salas et al. 2018 ; Aghanim et al.

020a ; Esteban et al. 2020 ; Palanque-Delabrouille et al. 2020 ; Alam
t al. 2021 ; Abbott et al. 2022 ). Ho we ver, relaxing these assumptions
y allowing greater variation in the neutrino sector, dark energy,
r scale-dependent bias, or by considering different combinations
f probes, can substantially weaken cosmological bounds to M ν

 0.5 eV (Upadhye 2019 ; Di Valentino, Melchiorri & Silk 2020 ;
gier et al. 2021 ; Di Valentino & Melchiorri 2022 ), while relatively
osmology-independent terrestrial experiments are consistent with
p to M ν ∼ 2 eV (Aker et al. 2019 , 2022 ). Meanwhile, tensions in the
ubble expansion rate and small-scale clustering demand a deeper
nderstanding of the interdependent constraints on neutrinos and
ther components of the standard cosmological model (Leauthaud
t al. 2017 ; Abdalla et al. 2022 ; Cai et al. 2022 ; Amon et al.
023 ). 
 E-mail: a.upadhye@ynu.edu.cn 
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Weak gravitational lensing of the cosmic microwave background
CMB), or CMB lensing, is a promising approach to measuring M ν . It
s immune to scale-dependent galaxy biasing, which has the potential
o bias M ν measurements from galaxy redshift surv e ys. Its source, the
MB, is well-understood, consisting of photons that last scattered
 v er a v ery narrow range of redshifts around 1100. Additionally,
nlensed CMB temperature and polarization perturbations are very
ccurately characterized using linear perturbation theory applied to
diabatic, nearly scale-invariant Gaussian random density fluctua-
ions. Thus, CMB lensing e v ades biases due to intrinsic alignments
nd photometric redshift errors that affect lower redshift weak lensing
urv e ys (Weinberg et al. 2013 ). 

Ne xt-generation CMB surv e ys are e xpected to impro v e upon
he signal-to-noise ratio of the Planck surv e y by o v er an order
f magnitude (Abazajian et al. 2016 ; Ade et al. 2019 ; Liu et al.
022 ). Aside from mapping the CMB temperature on smaller scales,
hey will substantially advance our knowledge of the polarized
MB. Systematic uncertainties due to astrophysical foregrounds and
tmospheric noise are significantly smaller for the polarization than
he temperature, and the lack of a small-scale primordial B mode
olarization reduces the uncertainty due to cosmic variance. Thus
he next generation of experiments will be able to quantify CMB
ensing to Legendre moments L of a few thousand, or angles below

0 arcmin. 
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Furthermore, whereas current data have significant uncertainties 
 30 per cent in the non-linear regime L � 1000, CMB polarization 
easurements will allow Stage-IV surv e ys to make precision obser-

ations of CMB lensing. Abazajian et al. ( 2016 ) show that, in their
tage-IV forecast, the noise per mode of the lensing power spectrum 

rom polarization measurements remains below unity past L = 1000, 
esulting in binned constraints at the 2 per cent accuracy level at 
 ≈ 2000 and the 5 per cent level at L ≈ 3000. Thus theoretical 
redictions must be at least this accurate. A further consideration is
hat a change of 0.06 eV in M ν is associated with an ≈ 2 per cent
eduction in the lensing power in the neutrino free-streaming regime, 
 greater than a few hundred, motivating a 1–2 per cent-level target

heoretical accuracy. We demonstrate a CMB lensing computation 
apable of reaching this target, improving by a few percentage 
oints at small scales relative to the commonly used Halofit 
omputation. 

Precision prediction of CMB lensing at these scales requires an 
nderstanding of non-linear corrections to the clustering of matter. 
everal approaches to non-linear clustering have been explored in 
ecent years. Non-linear perturbation theory typically begins with 
he continuity and Euler equations of fluid dynamics, whose non- 
inear terms couple different Fourier modes together; see Crocce & 

coccimarro ( 2006 ), McDonald ( 2007 ), Taruya & Hiramatsu ( 2008 ),
atsubara ( 2008a , b ), Pietroni ( 2008 ), and Lesgourgues et al. ( 2009 ).
e focus here on the Time-Renormalization Group (Time-RG) 

erturbation theory of Pietroni ( 2008 ) and Lesgourgues et al. ( 2009 ),
esigned for massive-neutrino cosmologies with scale-dependent 
lustering growth, as implemented in the REDTIME code of Upadhye 
 2019 ). Another approach to non-linear corrections begins with the 
alo model of clustering, detailed in Ma & Fry ( 2000 ), Seljak
 2000 ), and Cooray & Sheth ( 2002 ), tuned or supplemented by
tting functions to agree with large computer simulations, as in 
mith et al. ( 2003 ), Bird, Viel & Haehnelt ( 2012 ), Takahashi et al.
 2012 ), and Mead et al. ( 2015 , 2020 ). As the Halofit function of
ird et al. ( 2012 ) was fit to neutrino simulations, we also consider

t here. Finally, the most accurate estimates of non-linear clustering, 
ithin limited ranges of parameters and redshifts, are emulators 
ased upon large suites of N -body simulations; see Heitmann et al.
 2009 ), Lawrence et al. ( 2010 ), Knabenhans et al. ( 2021 ), and Moran
t al. ( 2023 ). In this study, we use Euclid Emulator 2 of Knabenhans
t al. ( 2021 ) and the Mira-Titan IV emulator of Moran et al. ( 2023 ).

As we are particularly interested in the small-scale ( k �
.1 h Mpc −1 ) suppression of clustering, hence CMB lensing, due 
o massive neutrinos, we must distinguish this suppression from the 
mall-scale hydrodynamic effects of baryons. Cooling and clumping 
f baryons leads to the formation of supernovae, which expel 
aryonic matter from galaxies. Baryonic clustering at the centres of 
arge haloes feeds active galactic nuclei (AGNs), which, in turn, heat 
he baryonic gas and expel baryonic particles. The combined effect 
f these phenomena is a suppression of clustering on ∼1 Mpc scales,
hile hydrodynamic models typically predict enhanced clustering 
n much smaller scales. We model hydrodynamic effects through an 
nnov ati ve fitting function, SP(k) , by Salcido et al. ( 2023 ), which
ses the fact that the total hydrodynamic suppression is strongly 
orrelated with the baryonic content of haloes of a characteristic 
ass; 1 see also van Daalen, McCarthy & Schaye ( 2020 ) and P ande y

t al. ( 2023 ). We briefly explore a one-parameter generalization of
P(k) , showing that it co v ers a wide range of hydrodynamic models.
 SP(k) is publicly available at github.com/ jemme07/ pyspk. 
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Our goal in this work is a fast, accurate computation of CMB
ensing in the non-linear regime, quantified by the power spectrum 

f the lensing potential φ, whose gradient determines the angle 
y which a CMB photon is deflected. We combine the Mira-Titan
V emulator at low redshifts with Time-RG perturbation theory at 
igh redshifts to yield a rapid computation of the matter power
pectrum that is accurate at the times and length-scales necessary for
uantifying CMB lensing. Baryonic feedback effects are modelled 
sing SP(k) . Running in under a second, our calculation converges
o sub- per cent-level precision for Legendre moments L ≤ 10 000.

e release our code, HYPHI , publicly at github.com/ upadhye/ hyphi . 
Rigorously quantifying the errors in HYPHI requires a set of high-

esolution, large-volume numerical simulations. The FLAMINGO 
imulation suite of Schaye et al. ( 2023 ) and Kugel et al. ( 2023 )
s an ideal testing ground for HYPHI CMB lensing calculations. With
osmological parameters chosen to match data from CMB probes and 
alaxy surv e ys, its CMB lensing power spectrum closely matches
tate-of-the-art measurements, as we sho w belo w. FLAMINGO in- 
ludes the largest-particle-number hydrodynamic simulation reach- 
ng z = 0, which is necessary for co v ering the range of redshifts
ontributing the most to CMB lensing, and its relatively high- 
ass resolution of 7 × 10 9 M � provides a wealth of information

n the impact of non-linear clustering. Further, the FLAMINGO 
uite independently varies the neutrino masses and hydrodynamic 
eedback, both of which suppress small-scale clustering, allowing us 
o investigate their separate effects on lensing. 

We find close agreement between HYPHI and the FLAMINGO 
imulations across a wide range of neutrino masses, 0.06 eV ≤ M ν

0.24 eV; source redshift bins spanning 0 ≤ z ≤ 25; and a variety
f feedback models. In particular, comparison with the FLAMINGO 
 ν = 0.06 eV 5.6 Gpc-box dark-matter-only (DMO) simulation 

emonstrates the accuracy of HYPHI to 1 per cent up to L = 3000
nd 2 per cent up to L = 5000. Dividing the range 0 ≤ z ≤ 25
nto eight source mass bins, we find 5 per cent agreement to at least
 = 4000 for each bin. FLAMINGO simulations with larger M ν and
ydrodynamic feedback are run in smaller 1 Gpc boxes, meaning 
hat sample variance contributes more to the discrepancy between 
YPHI and simulations, but even so, the two agree to 4 per cent
p to L = 4000 in a model with M ν = 0.24 eV and the standard
ydrodynamic feedback. Furthermore, we demonstrate that neutrino 
nd baryonic suppression of the lensing power f actorize, f acilitating
 marginalization o v er feedback parameters to constrain M ν . We
how that this result extends to a wide variety of feedback models,
ncluding those with jets, as well as those reducing the cluster gas
raction well below its best-fitting value. 

This article is organized as follows. Section 2 provides overviews 
f CMB lensing, the FLAMINGO suite of simulations, and our 
odelling of baryonic feedback. DMO models are considered in 
ection 3 , which studies the dependence of CMB lensing on the
atter clustering, quantifies its suppression by massive neutrinos, 

nd compares our fast computation to FLAMINGO . Baryonic effects 
re included in Section 4 , which demonstrates that these two types
f scale-dependent suppression factorize. Finally, Section 5 shows 
ur conclusions. 

 B  AC K G R  O U N D  

.1 CMB lensing 

or a thorough, modern re vie w of CMB lensing, see Lewis &
hallinor ( 2006 ), which we briefly outline here. Lensing may be
nderstood as deflecting a light ray from the surface of last scattering
MNRAS 529, 1862–1876 (2024) 
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s it passes through density perturbations along our past light-cone.
he result is that a ray incident on a detector at angle ˆ n initially came

rom an angular position ˆ n + � ε on the sky. CMB temperature pertur-
ations � ( ̂  n ) : = δT ( ̂  n ) / ̄T on the last-scattering surface therefore are
istorted by lensing to the observed perturbations ˜ � ( ̂  n ) = � ( ̂  n + � ε).
Qualitati vely, the ef fects of lensing on the CMB temperature

nd polarization power spectra split into three regimes, defined by
arge, intermediate, and small scales. On large scales, with Legendre

oments L � 300, lensing has only a small effect on perturbations.
coustic peaks on intermediate scales L ∼ 1000 are smeared out by

ensing. On small scales, L � 3000, where diffusion damping sharply
educes the power of the unlensed CMB perturbations, lensing and
ther secondary anisotropies dominate the power. 
At each position along a photon’s path to us, its deflection is

roportional to the gradient of the local gravitational potential. Thus
ts total deflection is the gradient of the line-of-sight integral of
he gravitational potential, weighted by a lensing kernel g defined
elo w. This integral, kno wn as the lensing potential φ( ̂  n ), sources
he deflection � ε = 

� ∇ φ. 
Gravitational lensing of the CMB may be quantified statistically

sing the power spectrum C 

φφ
L of φ. In the Limber approximation of

imber ( 1953 ), appropriate to the scales of interest to us here, this is

 

φφ
L ≈

∫ χ� 

0 
dχ P 
 

(
L 

χ
, z( χ ) 

)
g( χ ) 2 

χ6 
(1) 

 
 

( k, z) = 

[
3 �m 

( z) H( z) 2 

2 k 2 

]2 

P m 

( k, z) = 

9 �2 
m , 0 H 

4 
0 

4 a 2 k 4 
P m 

( k, z) (2) 

( χ ) = 2 χ (1 − χ/χ� ) . (3) 

ere, P 
 

and P m 

are, respectively, the power spectra of the grav-
tational potential and total matter in units of volume; χ ( z) is the
omoving distance to redshift z; χ� = χ ( z � ); and z � is the redshift of
he baryon drag epoch. The cosmological parameters �m,0 and H 0 

re the present-day values of the matter density as a fraction of the
ritical density ρ̄m , 0 / ̄ρcrit, 0 , and the deri v ati ve of the logarithm of the
cale factor with respect to conformal time d log ( a )/ d τ , respectively.
he functions H( z) = d log ( a) /dτ and �m 

( z) = �m , 0 H 

2 
0 (1 + z) / H 

2 

re the expansion rate and matter fraction at all redshifts. 
In turn, the power spectrum of the lensed temperature perturbation

˜ 
 ( ̂  n ) is found from the appropriately weighted convolution of C 

φφ
L 

ith the unlensed power C 

�� 

� : 

 

˜ � ̃

 � 

� = 

∫ 
d 2 � L 

(2 π ) 2 

[ 
� L ·

(
� � − � L 

)] 2 
C 

�� 

� C 

φφ
L 

+ 

(
1 − � 2 

∫ 
dL L 

3 C 

φφ
L 

)
C 

�� 

� . (4) 

ere, we work in the flat-sky limit in which � � is the two-dimensional
ourier conjugate to the direction ̂  n . Factors of L and � − L arise from
radients of the lensing potential power spectrum. The first term on
he right hand side describes the lensing-induced smearing of C 

�� 

� ,
hile the second represents a smooth suppression of power due to

ensing. Lensed CMB polarization power spectra are similarly found
y convolution with C 

φφ
L ; see Lewis & Challinor ( 2006 ). 

Thus C 

φφ
L is necessary for quantifying lensing of the CMB, and is

seful for comparing the observed lensing to theoretical predictions.
ur goal henceforth is a computation of C 

φφ
L , including non-linear

lustering as well as power suppression by massive neutrinos and
ydrodynamic effects. 
NRAS 529, 1862–1876 (2024) 
.2 The FLAMINGO simulations 

he FLAMINGO simulations used here are thoroughly described in
chaye et al. ( 2023 ) and Kugel et al. ( 2023 ). They employed the
WIFT code of Schaller et al. ( 2023 ), which includes gravitation,
ydrodynamic feedback, and subgrid models for unresolved physics
ele v ant to galaxy formation, including metal-dependent radiative
ooling, star formation, stellar evolution, and stellar and AGN
eedback. Neutrinos were incorporated into the simulations through
he δf method of Elbers et al. ( 2021 ), and included in the initial
onditions of MONOFONIC , Hahn, Rampf & Uhlemann ( 2021 ) and
ahn et al. ( 2020 ), as detailed and implemented in Elbers ( 2022a , b )

nd Elbers et al. ( 2022 ). 
Table 1 lists the code and cosmological parameters for the
LAMINGO simulations used in this work. We will use the large-
olume run L5p6 m10 DMO to quantify the accuracy of our
 

φφ
L computation at high redshifts; the L sim 

= 2.8 Gpc runs,
2p8 m9 DMO and L2p8 m9, to study the impact of baryonic

eedback; and the several L sim 

= 1 Gpc runs to assess the impact
f different neutrino masses and feedback processes on C 

φφ
L . 

Light-cones are data products of the FLAMINGO simulations of
chaye et al. ( 2023 ). Light-cone maps apply the HEALPIX pixelization
f G ́orski et al. ( 2005 ) to spherical shells, recording the total mass
ontained in each resulting volume element. Shell thicknesses in red-
hift space, z i + 1 − z i , are 0.05 up to z = 3, and then 0.25 up to z = 5,
radually increasing to 5 at z = 15, corresponding to homogeneous-
niv erse como ving radii χ ( z) between χ i = χ ( z i ) and χ i + 1 =
( z i + 1 ). Each shell is divided into 12 N 

2 
side = 3 , 221 , 225 , 472 pixels,

ach of angular size 166 arcsec 2 , with the HEALPIX parameter N side =
6 384. For each HEALPIX angular pixel j , the lensing convergence
j is computed through a summation discretizing the line-of-sight

nte gral o v er como ving distance: 

j = 

3 

2 
�m , 0 H 

2 
0 

∑ 

i 

�χi 〈 χi 〉 (1 + z i ) 

(
1 − 〈 χ〉 i 

χ� 

)
M ij − M̄ ij 

M̄ ij 

. (5) 

ere, �χ i : = χ i + 1 − χ i ; <χ > i is the mean comoving distance
n redshift shell i ; χ� is the comoving distance to the surface of last
cattering; M ij is the mass in shell i and HEALPIX pixel j ; and M̄ ij =

4 π
3 ρ̄m , 0 ( χ3 

i+ 1 − χ3 
i ) / (12 N 

2 
side ) is the homogenous-universe mass in i

nd j . We fix χ� = χ ( z � ), with z � = 1089.80 as measured by Aghanim
t al. ( 2020a ). 

Standard power spectrum computation codes such as the POLSPICE

ode of Szapudi et al. ( 2000 ) cannot process more than 2 31 ≈ 2 × 10 9 

ixels, so we downsample the κ map to N side = 8192. Then we
se POLSPICE with the -pixelfile YES option to compute its
ower spectrum, which we subsequently multiply by 4/ L 

4 to yield the
ensing potential power spectrum C 

φφ
L . We confirm by comparison to

ower spectra from lower resolution maps that our C 

φφ
L with N side =

192 has converged to better than 1 per cent (2 per cent ) up to L =
000 ( L = 6000), which is sufficient for testing HYPHI . 
The lensing potential power spectrum from the L sim 

= 5.6 Gpc
LAMINGO simulation, L5p6 m10 DMO, av eraged o v er light-cones
omputed from eight different positions in the simulation volume,
s compared with several recent observations in Fig. 1 . Agreement
cross two orders of magnitude in the Legendre moment is im-
ressive, demonstrating that the FLAMINGO simulation suite is an
ppropriate tool for quantifying non-linear CMB lensing. Since we
re primarily concerned with neutrino and baryonic suppression
ffects, which are largest at small scales L � 1000 where data error
ars are large, we henceforth focus on FLAMINGO directly as a means
f quantifying these small-scale effects and testing their predictions.
Fig. 2 shows FLAMINGO lensing potential power spectra for
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Table 1. List of FLAMINGO simulations, with simulation parameters and cosmological parameters. n LC is the number of high-redshift simulation light-cones 
produced; these co v er the range 0 ≤ z ≤ 3 for L sim 

= 1000 Mpc h −1 ; 0 ≤ z ≤ 5 for L sim 

= 2800 Mpc h −1 ; and 0 ≤ z ≤ 25 for L sim 

= 5600 Mpc h −1 . For 
feedback fits and standard deviations, as well as a description of the feedback models realizing the f gas and SMF listed, see Schaye et al. ( 2023 ) and Kugel et al. 
( 2023 ). 

Name 
L sim 

(Mpc) N 

1 / 3 
CDM 

N 

1 / 3 
ν n LC f gas SMF M ν (eV) h �b, 0 �m, 0 10 9 A s n s 

L1 m10 DMO 1000 900 500 1 N/A N/A 0.06 0.681 0.0486 0.306 2.099 0.967 
L1 m9 DMO 1000 1800 1000 1 N/A N/A 0.06 0.681 0.0486 0.306 2.099 0.967 
L1 m8 DMO 1000 3600 2000 1 N/A N/A 0.06 0.681 0.0486 0.306 2.099 0.967 
L2p8 m9 DMO 2800 5040 2800 8 N/A N/A 0.06 0.681 0.0486 0.306 2.099 0.967 
L5p6 m10 DMO 5600 5040 2800 8 N/A N/A 0.06 0.681 0.0486 0.306 2.099 0.967 
L11p2 m11 DMO 11 200 5040 2800 8 N/A N/A 0.06 0.681 0.0486 0.306 2.099 0.967 
Planck DMO 1000 1800 1000 1 N/A N/A 0.06 0.673 0.0494 0.316 2.101 0.966 
PlanckNu0p12Var DMO 1000 1800 1000 1 N/A N/A 0.12 0.673 0.0496 0.316 2.113 0.967 
PlanckNu0p24Fix DMO 1000 1800 1000 1 N/A N/A 0.24 0.673 0.0494 0.316 2.101 0.966 
L1 m9 1000 1800 1000 1 fit fit 0.06 0.681 0.0486 0.306 2.099 0.967 
L1 m8 1000 3600 2000 1 fit fit 0.06 0.681 0.0486 0.306 2.099 0.967 
L2p8 m9 2800 5040 2800 8 fit fit 0.06 0.681 0.0486 0.306 2.099 0.967 
Planck 1000 1800 1000 1 fit fit 0.06 0.673 0.0494 0.316 2.101 0.966 
PlanckNu0p24Fix 1000 1800 1000 1 fit fit 0.24 0.673 0.0494 0.316 2.101 0.966 
fgas + 2 σ 1000 1800 1000 1 fit + 2 σ fit 0.06 0.681 0.0486 0.306 2.099 0.967 
fgas-2 σ 1000 1800 1000 1 fit −2 σ fit 0.06 0.681 0.0486 0.306 2.099 0.967 
fgas-4 σ 1000 1800 1000 1 fit −4 σ fit 0.06 0.681 0.0486 0.306 2.099 0.967 
fgas-8 σ 1000 1800 1000 1 fit −8 σ fit 0.06 0.681 0.0486 0.306 2.099 0.967 
Jet 1000 1800 1000 1 fit a fit a 0.06 0.681 0.0486 0.306 2.099 0.967 
Jet fgas-4 σ 1000 1800 1000 1 fit −4 σ a fit a 0.06 0.681 0.0486 0.306 2.099 0.967 
M ∗ − σ 1000 1800 1000 1 fit fit −1 σ 0.06 0.681 0.0486 0.306 2.099 0.967 
M ∗ − σ fgas-4 σ 1000 1800 1000 1 fit −4 σ fit −1 σ 0.06 0.681 0.0486 0.306 2.099 0.967 

Note. a Jet and Jet fgas-4 σ realize the fit f gas and SMF listed using momentum jets rather than thermal energy injection, as detailed in Schaye et al. ( 2023 ). 

Figure 1. Lensing potential power spectrum from FLAMINGO model 
L5p6 m10 DMO of Table 1 , integrated up to z = 25 and averaged over 
eight light-cones, compared with measurements of van Engelen et al. ( 2012 ), 
Das et al. ( 2014 ), Ade et al. ( 2016 ), Sherwin et al. ( 2017 ), Simard et al. 
( 2018 ), Aghanim et al. ( 2020b ), Wu et al. ( 2019 ), Aguilar Fa ́undez et al. 
( 2020 ), Carron, Mirmelstein & Lewis ( 2022 ), and Qu et al. ( 2023 ). Small 
(large) data points show detections to 2 σ ( ≥3 σ ). 
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everal models. Although neutrinos and baryons both suppress C 

φφ
L 

y ∼ 10 per cent , these effects depend very differently upon scale. 
he neutrino suppression extends down to L ≈ 100, while the 
aryonic suppression is visible only beyond L = 1000. Quantifying 
he difference between these effects is a major goal of this article. 

The other obvious difference between L2p8 m9 and the Planck- 
ike models, Planck and PlanckNu0p24Fix, in Fig. 2 , is in their
arge-scale power. This difference is due to the fact the Planck-like 

odels are simulated in smaller boxes whose light-cones are limited 
o z ≤ 3, so our C 

φφ
L computation based upon equation ( 5 ) is limited
o that redshift range. A direct comparison of these power spectra
o the data would first require some approximation of the higher z 
ontribution to C 

φφ
L , such as the use of the FLAMINGO matter power

pectra in the line-of-sight integral of equations ( 1 )–( 3 ). Ho we ver,
MNRAS 529, 1862–1876 (2024) 
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M

Figure 3. Ratios of C 

φφ
L computed from the L1 m10 DMO, L1 m9 DMO, 

L1 m8 DMO, L5p6 m10 DMO, and L11p2 m11 DMO simulations to that 
from L2p8 m9 DMO, smoothed using a centred 100-point moving average. 
The higher resolution runs L1 m9 DMO, L1 m8 DMO, L2p8 m9 DMO, and 
L5p6 m10 DMO, with multiple box sizes, agree to 1 per cent up to L = 3000 
and < 1 . 5 per cent beyond L = 20 000. 
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Figure 4. Effects of binning and bin/shell rotation on C 

φφ
L . For 

L5p6 m10 DMO, with a 5.6 Gpc box, methods (ii) (sum of powers of z 
bins), (iii) (power of sum of rotated z bins), and (i v) (po wer of sum of rotated 
z shells) are shown divided by the standard method (i), computed o v er the 
region z ≤ 2 (dashed) and z ≤ 25 (solid). Also shown are: methods (ii) and 
(i v) di vided by (i) for L11p2 m11 DMO, whose large simulation volume 
makes it immune to volume replication errors; and method (ii) divided by 
(i) for L1 m9 DMO and L2p8 m9 DMO, whose small volumes make them 

especially prone to such errors. 
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ince our goal is to test fast approximations using the light-cones, we
ake the opposite approach, and limit our perturbative and emulated
omputations to the redshift range co v ered by each light-cone. 

One strength of the FLAMINGO simulation suite is that it con-
ains multiple resolutions and box sizes for the same cosmology,
llowing for convergence tests. Fig. 3 compares C 

φφ
L integrated

p to z = 3, computed from six different FLAMINGO simula-
ions, with box sizes ranging from 1 to 11.2 Gpc and mean
nterparticle spacings ranging from 0.27 to 2.22 Mpc. Although
he smaller box simulations might be expected to underpredict
ower on large scales, we see that this effect is under a per cent
y L = 100. Similarly, although the simulation with the largest
nterparticle spacing, L11p2 m11 DMO, has significant small-scale
rrors, for L5p6 m10 DMO we see that these only appear for
 > 10 000. The runs L1 m9 DMO, L1 m8 DMO, L2p8 m9 DMO,
nd L5p6 m10 DMO all agree to 1 per cent up to L = 3000 and
 1 . 5 per cent beyond L = 20 000, so we may use any of them

or testing HYPHI . In particular, FLAMINGO simulations varying the
eutrino mass and the hydrodynamic feedback parameters have the
ame resolution as L1 m9 DMO, so Fig. 3 confirms their suitability
or our purposes. 

We consider one further issue related to FLAMINGO light-cones,
hat of simulation volume replication, with L5p6 m10 DMO and
11p2 m11 DMO as particular examples. The radius of a light-
one extending to z = 25 exceeds the simulation box size L sim 

for
5p6 m10 DMO, but not for L11p2 m11 DMO. Light-cones are
enerated by replicating the simulation volume consistently with its
eriodic boundary conditions. A photon propagating from z = 25 to
 = 0 in L5p6 m10 DMO could pass through the same structures
wice, and different portions of a large- z shell could see the same
tructures, introducing spurious correlations into our κ map. We
onsider several methods of mitigating such volume replication
ffects. We compute multiple κ maps, one for each z shell, and
hen combine them using one of four methods to obtain C 

φφ
L . 

(i) Sum all κ maps along the entire line of sight as in equation ( 5 ),
hen compute C 

φφ
L from the resulting κ map. This is our standard C 

φφ
L 

omputation, used in subsequent figures unless noted otherwise. 
(ii) Sum the κ maps within redshift bins z i ≤ z ≤ z i + 1 , with the bin

idths χ ( z i + 1 ) − χ ( z i ) chosen to be of the order of the simulation
ox size. In practice, we choose z 0 = 0, z 1 = 1, z 2 = 2, z 3 = 3, z 4 =
NRAS 529, 1862–1876 (2024) 
, z 5 = 5, z 6 = 6, z 7 = 7.25, z 8 = 9.5, z 9 = 12.25, z 10 = 15, z 11 =
0, and z 12 = 25. We compute a separate κ map for each bin, and a
 

φφ
L from each κ map, before summing to obtain the total C 

φφ
L . 

(iii) Compute a κ map for each of the abo v e z bins, then rotate
ach κ by a random angle. The rotated z-binned κ maps are then
ummed and the result used to compute C 

φφ
L . 

(iv) Compute a κ map for each redshift shell, with �z = 0.05 up
o z = 3, and then randomly rotate each one. The rotated κ maps are
ummed and the result used to compute C 

φφ
L . 

Using ρ to represent a random rotation, B a redshift binning,
 a summation o v er bins or shells, and P the computation of an

utopower spectrum, we may represent these as: (i) P ( �κ); (ii)
 P ( B ( κ)); (iii) P ( � ( ρ( B ( κ)))); and (iv) P ( � ρ( κ)). Further, since

he light-cone radius up to z = 2 is less than the simulation box size
or L5p6 m10 DMO, we also compute C 

φφ
L integrating only up to

 = 2. This calculation, along with both z ≤ 2 and z ≤ 25 light-
ones for L11p2 m11 DMO, are thus immune to volume replication
ffects. For further comparison, we also compute C 

φφ
L up to z = 2 for

he 1.0 Gpc-box L1 m9 DMO and the 2.8 Gpc-box L2p8 m9 DMO,
hich ought to be affected by volume replication. 
Fig. 4 compares the second, third, and fourth methods to the first.

mmediately apparent is the fact that the two largest box sizes agree to
 1 per cent at all L , even though the L11p2 m11 DMO simulation

oes not suffer from volume replication errors. Thus we see that these
rrors are negligible for our purposes, at least within the context of
ur power spectrum ratios smoothed with centred 100-point moving
verages. This conclusion is strengthened o v er the 0 ≤ z ≤ 2 range
y comparing the two smaller box runs, with volume-replication
rrors, to the larger box runs without them; the two sets are again
dentical at the per cent level. Also apparent is the close agreement
etween methods (ii) and (iii), showing that bin rotation and separate-
in power spectrum computation decorrelate different z bins in very
imilar ways. 

Next, consider small scales, L ≥ 1000, which are most rele v ant to
ests of the non-linear C 

φφ
L . The sum-of-bins calculation, method (ii),

nd the sum-of-rotated-bins calculation, method (iii), agree with
he standard method (i) to 1 per cent across this entire range, for
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ll simulations and both light-cone sizes. Thus any of these three 
ethods is sufficiently accurate for per cent-level tests of the non- 

inear C 

φφ
L . Meanwhile, method (iv) exhibits significant power loss, 

nd should not be used for testing HYPHI . 
Finally, consider L < 1000 in Fig. 4 . Evidently, breaking the

edshift range into a greater number of intervals, and rotating the 
esulting κ maps, leads to a greater power suppression; method (iv) 
ses 80 redshift shells, while methods (ii) and (iii) use 12 redshift
ins each. Furthermore, the presence of this suppression even in the 
11p2 m11 DMO power spectra and the z ≤ 2 L5p6 m10 DMO
ower spectrum, for which the light-cone radii are less than L sim 

,
hows that it is not due to volume replication effects. 

The oscillatory nature of this lo w- L po wer suppression for
ethod (iv), as well as its L -dependence, suggests that it is due

o the exclusion of baryon acoustic oscillations (BAO) along the line 
f sight. Since χ� /2 is the peak of the lensing kernel of equation ( 3 ),
he Legendre moment L is approximately associated with the length- 
cale χ� /(2 L ) ∼ 5000 L 

−1 Mpc/ h , which for L ∼ 50 corresponds
o the BAO scale. Thus, not only is map rotation unnecessary 
or suppressing volume replication effects, but e xcessiv e rotation 
rroneously throws out actual large-scale correlations which ought 
o be included in the power spectrum. 

We conclude that κ maps from FLAMINGO light-cones, computed 
sing method (i) abo v e for the total power and methods (ii) or (iii)
or tomographic redshift bins, are suitable for testing calculations 
f C 

φφ
L in the non-linear regime L � 1000 at the per cent level. At

arger scales, L ∼ 100, the redshift-binned methods (ii) and (iii) 
nderpredict power by 2 per cent –3 per cent , an error of which we 
hould be aware when testing the application of HYPHI to tomographic 
ins. 

.3 Baryonic feedback 

tellar and AGN feedback in the FLAMINGO simulations was 
alibrated using machine learning to two observables: the galaxy 
tellar mass function (SMF) at z = 0, measured in Driver et al.
 2022 ); and cluster gas fractions, f gas , measured using X-ray and weak
ensing observations, as compiled in Kugel et al. ( 2023 ). The SMF
onstrains the galaxy–halo connection, while f gas correlates with the 
agnitude of the clustering suppression due to baryonic feedback 

van Daalen et al. 2020 ). This approach allowed FLAMINGO to 
xplore the parameter space of feedback models in an observationally 
ele v ant manner. For example, the high-gas-fraction model fgas + 2 σ
n Table 1 increased f gas by twice the observational uncertainty, 
hile the low-gas-fraction model fgas-2 σ decreased f gas by the same 

mount. For a complete description of feedback in FLAMINGO , see 
chaye et al. ( 2023 ) and Kugel et al. ( 2023 ). 
Fig. 5 demonstrates the impact of neglecting baryonic feedback 

bo v e a redshift z b on the lensing potential power spectrum. The
gure compares FLAMINGO runs L2p8 m9 DMO and L2p8 m9 
rom Table 1 , which are, respectively, DMO and hydrodynamic 
uns in 2.8 Gpc box es. Ne glecting feedback at all redshifts ( z b =
) leads to a maximum error of 8 per cent , which is reduced to
 per cent (0 . 4 per cent ) by including feedback for z b ≤ 1 ( z b ≤ 2).
hus, per cent-level accuracy in the computation of C 

φφ
L up to L

 1000 requires the inclusion of baryonic feedback at least at low
edshifts, z � 2. 

Effects of baryons upon the clustering of matter have been 
nvestigated using hydrodynamic simulations by van Daalen et al. 
 2011 , 2014 ), van Daalen et al. ( 2020 ), Hellwing et al. ( 2016 ),

cCarthy et al. ( 2018 ), Springel et al. ( 2018 ), Chisari et al. ( 2018 ),
nd Pakmor et al. ( 2022 ), while their impact upon CMB lensing
as considered by Chung, Foreman & van Engelen ( 2020 ) and
cCarthy, Hill & Madhavacheril ( 2022 ). Recently, Salcido et al.

 2023 ; see also Semboloni et al. 2011 ; van Daalen et al. 2020 ;
ebackere, Schaye & Hoekstra 2021 ) demonstrated that, for the pur-
ose of determining hydrodynamic suppression of the matter power 
pectrum, these phenomena may be reduced to their effect on the

haracteristic relative baryon fractions ˆ ˜ f b ( z) = f b ( ˆ M , z) / ( �b /�m 

)

f haloes of characteristic mass ˆ M ( z) at redshift z. Given ˆ ˜ f b , whether
easured from observations or computed through simulations, the 

ydrodynamic suppression factor P m, hyd / P m, dmo is fit to 2 per cent
ccuracy in the range k ≤ 12 h Mpc −1 and z ≤ 3 by the SP(k)
unction of that reference. 

Given the full functional form of ˜ f b ( M, z), we could in principle
ompute the baryonic suppression directly using a halo model. 
o we ver, this function is difficult to measure. Salcido et al. ( 2023 )

howed that, for each z, the k -dependent baryonic suppression is most
trongly correlated with the baryon fraction at a single characteristic 
ass ˆ M ( z). This correlation was shown to be independent of the

trength of the subgrid feedback. 
Our calculations in Section 4 will use ˜ f b ( M, z) measured directly

rom the FLAMINGO L1 m9 simulations, e v aluated at the ˆ M ( z) of
alcido et al. ( 2023 ). Qualitatively, ˜ f b is large for haloes at high
edshifts, before structures such as AGNs have formed; for haloes 
oo small to form such structures; and for the largest haloes, which
fficiently capture baryons, and are representative of the universe as 
 whole. The SP(k) fit co v ers the range k ≤ 12 h Mpc −1 and z ≤
 necessary for ≈ 2 per cent -lev el accurac y in C 

φφ
L . Abo v e z = 3,

e assume that the power spectrum suppression due to baryons is
egligible, an approximation consistent with Fig. 5 . For k > 12 h
pc −1 , we again assume a negligible suppression, an approximation 
hich we confirm to have a sub-per cent-level impact on C 

φφ
L up to

 = 9000. 

 N O N - L I N E A R  C M B  LENSI NG  

.1 Non-linear perturbation theory 

n order to calculate the non-linear perturbative CDM + baryon (CB)
ower spectrum in the presence of massive neutrinos, we employ the
ime-RG perturbation theory of Pietroni ( 2008 ) and Lesgourgues 
t al. ( 2009 ). Time-RG integrates the non-linear continuity and
uler equations of fluid dynamics o v er time for each wavenumber,
MNRAS 529, 1862–1876 (2024) 
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Figure 7. Mapping between L and k = L / χ ( z) for a range of z. 
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aking it well-suited to massive neutrinos, which introduce a scale
ependence into the growth factor, and to dark energy models with
volving equations of state. 

Let η = ln ( a / a in ) for some initial scale factor a in , and let
rimes denote deri v ati ves with respect to η. Let the perturbation
ndices 0 and 1 correspond, respectively, to the density contrast
= ( ρCB − ρ̄CB ) / ̄ρCB and the velocity divergence θ = −� ∇ · � v / H;

hus, for example, P 01 ( k ) represents P δθ ( k ). Then at each k , the Time-
G equations of motion for the CB power spectra P ab are 

 

′ 
ab = −� ac P cb − � bc P ac + I ac d,b c d + I b c d,ac d , (6) 

here 

[ � ab ] = 

⎡ 

⎣ 

0 −1 

k 2 
 

H 

2 δ
1 + 

H 

′ 

H 

⎤ 

⎦ (7) 

 ac d,b ef = 

∫ 
q 

γ
� k , � q , � p 

acd B 

� k , � q , � p 

bef (8) 

� k , � q , � p 

001 = γ
� k , � p , � q 

010 = 

( � q + � p ) · � p 

2 p 

2 
and γ

� k , � q , � p 

acd = 

( � q + � p ) 2 � q · � p 

2 q 2 p 

2 
(9) 

 

′ 
ac d,b ef = − � bg I acd,gef −� eg I acd,bgf − � fg I ac d,b eg + 2 A ac d,b ef (10) 

 ac d,b ef = 

∫ 
q 

γ
� k , � q , � p 

acd 

[ 
γ

� k , � q , � p 

bgh P 

q 
ge P 

p 

hf + γ
� q , − � p , � k 
egh P 

p 

gf P 

k 
hb + γ

� p , � k , −� q 
fgh P 

k 
gb P 

q 

he 

] 

(11)

ith all other γ abc zero, and summation o v er repeated indices
mplicit. Here, wavenumber superscripts denote functional de-
endence, so that P 

� k 
ab denotes the power spectrum P ab ( � k ) and

 

� k , � q , � p 

abc the bispectrum B abc ( � k , � q , � p ). We use 
∫ 

q 
X 

� k , � q , � p as short-

and for 
∫ 

d 3 q 

(2 π) 3 
d 3 p 

(2 π) 3 
(2 π ) 3 δ(D) ( � k − � q − � p ) X( � k , � q , � p ) for any func-

ion X( � k , � q , � p ), where δ(D) is the three-dimensional Dirac delta
unction. In Time-RG, the bipsectrum integrals I acd , bef , initialized to
ero, are the repositories of non-linear information, and are sourced
y the mode-coupling integral A acd , bef . 
We may add to this system an evolution equation for the lensing

otential power spectrum of equation ( 1 ). Substituting k = L / χ , we
ecast the line-of-sight integral as an integral over our time coordinate
of 

dC 

φφ
L 

dη
= 

9 �2 
m , 0 H 

4 
0 

4 a 2 L 

4 H 

g( χ ) 2 

χ2 
P m 

(
L 

χ
, z 

)
. (12) 

here a , z, H, and χ are now functions of η. Since P cb , hence
 m 

, is available at each time-step in our Time-RG integration, C 

φφ
L 

ay simply be added to our system of equations ( 6 )–( 11 ) with very
ittle additional computational cost. Furthermore, if P m 

contains a
ydrodynamic suppression factor parametrized by some variables,
e can compute a separate C 

φφ
L for each of several choices of

ariables all at once, again with little additional computation. 

.2 Non-linear lensing power 

ext, we use non-linear perturbation theory to consider the de-
endence of C 

φφ
L upon clustering in different redshift ranges. The

ontribution of z min ≤ z ≤ z max is found by integrating equation ( 12 )
rom η( z max ) to η( z min ), where η( z) = −ln [(1 + z) a in ]. We use
 m 

= ( f cb P 

1 / 2 
00 + f νP 

1 / 2 
ν ) 2 , as in Saito, Takada & Taruya ( 2008 ),

here P 00 is the Time-RG power spectrum of equation ( 6 ). We shall
ee in the remainder of this section that Time-RG is sufficiently
ccurate to provide a qualitative picture of the contributions of
ifferent redshifts. 
NRAS 529, 1862–1876 (2024) 
Fig. 6 shows the contributions of several redshift bins to the total
ensing potential power spectrum. The domination of the low- L
ensing power by low- z clustering is explained by Fig. 7 . Matter
ower spectra P m 

( k , z) typically peak around k = 0.01 h Mpc −1 , a
cale which contributes to C 

φφ
L for L = 10 at z ≈ 0.5, and for L = 30

t z ≈ 2. Interestingly, at L ∼ 1000, the total contribution from z >

 in Fig. 6 is ≈ 30 per cent , since the lower z clustering contributing
o this L is drawn from increasingly large k , for which the power
pectrum rapidly declines. 

Heat maps quantifying the fractional contributions of different
avenumbers and scale factors to C 

φφ
L are shown in Fig. 8 , which

ivides d C 

φφ
L /d η from equation ( 12 ) by the final a = 1 lensing

otential power. For L = 1000 (top) and L = 3000 (bottom), the
ontributions peak at ( a , k ) of (0.60, 0.26 h Mpc −1 ) and (0.79, 0.84 h
pc −1 ), respectively, and are significant within factors of ∼3 of these

alues. Thus, the accurate computation of C 

φφ
L up to L of several

housand requires reliable estimates of the matter power spectrum
or z � 5 and k � 2 h Mpc −1 . 

Since our focus is non-linear lensing at high L , we must also
uantify the contribution of non-linear clustering to C 

φφ
L , which we

ay do by substituting the difference between non-linear and linear
atter power spectra for P m 

in equation ( 12 ). Fig. 9 shows the result.
cross the entire range L ≤ 10 000 considered, the total non-linear

ontribution for all z > 3 is ≤ 7 per cent of C 

φφ
L , while that for all

 > 5 is ≤ 2 per cent . Thus our numerical tests of the non-linear
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Figure 8. Heat map showing d C 

φφ
L /d η/C 

φφ
L , that is, the fractional contribu- 

tion of each wavenumber and scale factor, to the total a = 1 lensing potential 
power spectrum. (Top) L = 1000. (Bottom) L = 3000. Large scales k < L / χ∗
do not contribute to C 

φφ
L . 

Figure 9. Fractional contributions of non-linear power to the total lensing 
potential power spectrum C 

φφ
L due to clustering in different redshift bins. 

Solid (dashed) lines correspond to positive (negative) contributions. 
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onvergence power spectrum in the remainder of this section should 
ocus on z � 3–5. 

.3 N -body fits and emulation 

lthough Section 3.1 used the Time-RG non-linear perturbation 
heory to compute the matter power spectrum P m 

( k ), we may
ubstitute any non-linear P m 

( k ) into equation ( 12 ). Perturbation
heory accurately approximates P m 

( k ) at high redshifts but becomes
ncreasingly inaccurate for z < 1, while approximations calibrated 
o N -body simulations have prioritized low-redshift accuracy. 

This work considers three such simulation-based approximations. 
alofit , inspired by the halo model, splits the non-linear power 
pectrum into a quasi-linear term, which approaches the linear power 
pectrum on large scales, and a non-linear term, which is fit to
imulations; see Smith et al. ( 2003 ), Bird et al. ( 2012 ), and Takahashi
t al. ( 2012 ). We implement the Halofit model of Bird et al. ( 2012 )
hat has been fit for massive neutrino cosmologies. 

The second approximation is the Mira-Titan IV (MT4) emulator 
f Moran et al. ( 2023 ) that uses Gaussian process modelling to
nterpolate a suite of 111 simulations. Chosen carefully to span 
 large parameter space, this suite includes 101 massive neutrino 
osmologies with 0.00017 ≤ ω ν ≤ 0.01. The third approximation, 
uclid Emulator 2 (EE2) of Knabenhans et al. ( 2021 ), co v ers a
reater range of redshifts and wavenumbers than the MT4 emulator, 
t the cost of a smaller neutrino mass range, 

∑ 

m ν ≤ 0.15 eV.
alofit has been calibrated up to z = 3, the MT4 emulator to
 = 2, and EE2 to z = 10; at higher redshifts, we revert to Time-RG
n equation ( 12 ). 

MT4 and EE2 are based upon simulations with mass resolutions 
f 10 10 and 10 9 M �, respectively, compared with 7 × 10 9 M � for
tandard FLAMINGO simulations, and 8 × 10 8 M � for L1 m8 DMO.

T4 reaches k ≈ 7 h Mpc −1 and EE2 reaches ≈9 h Mpc −1 , compared
ith 17 h Mpc −1 for standard FLAMINGO simulations and 33 h
pc −1 for L1 m8 DMO. Thus the FLAMINGO simulation suite is

ppropriate for testing emulator results. 
Fig. 10 compares these non-linear methods at a range of redshifts.

vidently, the two emulators provide the most accurate power spectra 
t all redshifts for which they are available, with the MT4 emulator
lightly more accurate at z ≥ 1 and 1 h Mpc −1 � k � 7 h Mpc −1 .
s the MT4 emulator is restricted to the range k ≤ 5/Mpc ≈7 h
pc −1 , we logarithmically extrapolate its power spectrum beyond 

hat wavenumber, an approximation whose accuracy evidently di- 
inishes around z = 2. For z > 2, Time-RG is somewhat more

ccurate than Halofit at large scales, k � 2 h Mpc −1 , and less
ccurate at small scales. 

.4 Tests of C 

φφ
L 

ig. 11 compares lensing potential power spectra from linear and 
ime-RG perturbation theories, Halofit , and the two emulators 

o the FLAMINGO lensing potential power spectrum, computed as 
escribed in Section 2.2 . As might be expected from the comparison
o a higher resolution simulation in Fig. 10 , both perturbation
heories underpredict small-scale power, with linear and Time- 
G perturbation theory underpredicting by ≥ 3 per cent abo v e L 

300 and L ≈ 2400, respectively. Halofit is more accurate 
han Time-RG for 200 � L � 1000 but underpredicts power by

3 per cent abo v e L ≈ 1300. In this and subsequent plots, the
atios to N -body power spectra are summed o v er all available
ight-cones and smoothed using centred 100-point moving a ver - 
ges. 

Meanwhile, the emulator-based calculations are highly accurate. 
he two emulators, MT4 and EE2, agree at the per cent level at L �
000, with MT4 somewhat more accurate for 1000 � L � 4000 and
ess accurate for L � 5000. Due to its greater neutrino mass range,
nd its slight accuracy advantage in Fig. 11 , we will focus henceforth
n MT4. Our standard C 

φφ
L calculation (MT4 + TRG) will use the

T4 emulator for the matter power spectrum in the range z ≤ 2 and
ime-RG perturbation theory abo v e that redshift. 
The accuracy of this standard MT4 + TRG calculation for 
atter sources in several redshift bins is assessed in Fig. 12 (Top).
side from low- L bumps consistent with Fig. 4 , our MT4 + TRG

alculation is accurate to ≤ 2 per cent up to L = 3000. For all
ut one redshift bin, 2 ≤ z ≤ 3, MT4 + TRG is ≤ 5 per cent
ccurate for L ≤ 6000. Meanwhile, for 2 ≤ z � 5, Euclid Emulator
MNRAS 529, 1862–1876 (2024) 
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Figure 10. Matter power spectrum ratios to FLAMINGO for the models 
L1 m8 DMO (solid) and L1 m8 (dashed). Shown are power spectra from 

linear (lin) and Time-RG (TRG) perturbation theories; the Halofit 
(HF) model of Bird et al. ( 2012 ); the Mira-Titan IV emulator (MT4) 
of Moran et al. ( 2023 ); and Euclid Emulator 2 (EE2) of Knabenhans et al. 
( 2021 ). SP(k) was used to model the baryonic suppression. MT4 is limited 
to z ≤ 2. 

Figure 11. Lensing potential power spectrum computed using linear (lin) or 
Time-RG (TRG) perturbation theories, Halofit (HF), the Mira-Titan IV 

(MT4) emulator, or Euclid Emulator 2 (EE2), compared with the FLAMINGO 
power spectrum. HF is used up to z = 3, MT4 to z = 2, and EE2 to z = 10, 
abo v e which C 

φφ
L is computed using Time-RG. Solid lines compare DMO 

calculations to the FLAMINGO L5p6 m10 DMO C 

φφ
L computed up to z = 

25. Dashed lines, using SP(k) for the baryonic suppression, are compared 
with the FLAMINGO L2p8 m9 C 

φφ
L computed to z = 5. 

Figure 12. Accuracy of C 

φφ
L contributions from several redshift bins. Our 

computation integrates equation ( 12 ) over the appropriate redshift range, 
using (Top) the Mira-Titan IV Emulator for P m 

at z ≤ 2 and Time-RG 

perturbation theory at z > 2; and (Bottom) Euclid Emulator 2 at z ≤ 10 and 
Time-RG abo v e that. These are compared with the FLAMINGO N -body C 

φφ
L 

contributions from the same redshift bins. Inner and outer dotted lines show 

errors of 2 per cent and 5 per cent , respectively. 
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 provides 5 per cent -accurate tomographic bins all the way to
 = 10 000, as seen in Fig. 12 (Bottom). Thus our calculation

s accurate not just for the total CMB lensing power, but also
or individual redshift bins, as needed for tomographic analyses
uch as Peacock & Bilicki ( 2018 ), Krolewski, Ferraro & White
 2021 ), Chang et al. ( 2023 ), Abbott et al. ( 2023 ), and Wang et al.
 2023 ). 

.5 Massi v e neutrino suppression 

e begin by considering the effects of neutrinos on the matter power
tself. Following the approach of Lesgourgues et al. ( 2009 ), Upadhye
t al. ( 2014 ), and Upadhye ( 2019 ), we include neutrinos at the
ully linear level, interpolating the ratio δν / δcb from CAMB (Lewis,
hallinor & Lasenby 2000 ; Lewis & Bridle 2002 ). Thus, we include
eutrinos in the gravitational potential 
 ( k , z) of equation ( 7 )
s 

 

2 
 = −3 

2 
H 

2 

(
�cb ( z) + �ν( z) 

δν

δcb 

∣∣∣∣
lin 

)
δcb . (13) 

Ratios of matter power spectra differing only in M ν , with �m, 0 ,
b, 0 , h , n s , A s , w 0 , and w a held fixed, exhibit a characteristic ‘spoon’

eature shown in Fig. 13 that even non-linear perturbation theory fails
o capture. Hannestad, Upadhye & Wong ( 2020 ) showed this to be a
onsequence of halo formation. Halofit , which was calibrated in
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Figure 13. Spoon-like feature in the ratios of power spectra of two models, 
PlanckNu0p24Fix DMO and Planck DMO from Table 1 , differing only in 
their neutrino mass sums M ν . Halofit has been calibrated to fit low-redshift 
spoons accurately, while perturbation theory is qualitatively incapable of 
reproducing this non-perturbative effect. MT4 is limited to z ≤ 2. 
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0.24 eV. Shown are power spectra from linear (lin) and Time-RG (TRG) 
perturbation theories, Halofit (HF), and the Mira-Titan IV emulator 
(MT4), with SP(k) used to model the baryonic suppression. MT4 is limited 
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ird et al. ( 2012 ) to fit this feature, agrees closely with the N -body
atio, at least at low- z, while the Mira-Titan IV emulator is accurate
o a few per cent. 

Fig. 14 plots the matter power spectrum for a massive neutrino 
osmology with M ν = 0.24 eV. In spite of Halofit ’s accurate
omputation of the neutrino spoon for z < 2, we find that the matter
ower itself is more accurately computed for z ≤ 2 by the Mira-Titan
V emulator, and for z > 2 at large scales, k ≤ 1 h Mpc −1 , by Time-
G perturbation theory. Thus, our MT4 + TRG calculation continues 

o be the best approximation to the matter power spectrum for the
 and z rele v ant to computing the CMB lensing power spectrum in
� CDM cosmologies. 
Next, we return to our computation of the lensing potential 

ower spectrum in massive neutrino models. We tested our fully 
inear neutrino approximation by allowing neutrinos to respond 
inearly to the non-linear CB growth, using the code of Chen, 
padhye & Wong ( 2021 ), and found the impact on C 

φφ
L to be

 0 . 06 per cent even for neutrino fractions as large as �ν, 0 h 2 =
.01. Chen, Upadhye & Wong ( 2023 ) used a non-linear perturbation
heory for massive neutrinos to show that the non-linear neutrino 
ower is at most 2–3 times the linear response power for �ν, 0 h 2 ≤
.005, corresponding to M ν = 0.47 eV, so we may safely bound the
mpact of neutrino non-linearity to < 0 . 2 per cent o v er this range.
his is a negligible source of error for near-future experiments, so
e use the fully linear- ν approximation of equation ( 13 ) hence-

orth. 
Errors in the CMB lensing potential power spectra for a model with
 ν = 0.24 eV are shown in Fig. 15 . The FLAMINGO simulation uses

 1000 Mpc box, for which we have light-cones up to z = 3, so the
ther calculations are integrated only to z = 3 for comparison. In
ccordance with our previous results, the MT4 + TRG calculation 
s accurate to < 2 . 5 per cent up to L = 2000 and to < 5 per cent
p to L = 6000. These error estimates are limited by noise in the
imulation itself, since only one high- z light-cone is available in the
igh- M ν run. 

 H Y D RO DY NA M I C  SUPPRESSION  

.1 Matter and conv er gence po wer spectra 

ashed curves in Fig. 10 compare the total matter power spectrum
rom the high-resolution FLAMINGO hydrodynamic simulation, 
1 m8, to approximations applying the SP(k) fitting function of 
alcido et al. ( 2023 ) to each of the following: linear and Time-
G perturbation theories, Halofit , and MT4 and EE2 emulators. 
ince SP(k) applied to P m 

is a multiplicative correction, the ratio
MNRAS 529, 1862–1876 (2024) 
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M

Figure 15. Lensing potential power spectra for M ν = 0.24 eV, computed 
using linear (lin) or Time-RG (TRG) perturbation theories, Halofit (HF), 
or the Mira-Titan IV (MT4) emulator, compared with FLAMINGO models 
PlanckNu0p24Fix DMO and PlanckNu0p24Fix, computed using light-cone 
sources up to z = 3. For the orange curves, MT4 is used up to z = 2 and 
TRG abo v e that. Solid lines compare DMO C 

φφ
L to PlanckNu0p24Fix DMO. 

Dashed lines compare C 

φφ
L from the abo v e methods, using SP(k) for the 

baryonic suppression, to PlanckNu0p24Fix. 
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power spectra. (Top) C 

φφ
L ratio. Thick lines show the FLAMINGO 

(PlanckNu0p24Fix DMO/Planck DMO and PlanckNu0p24Fix/Planck) 
spoons, while thin lines show the corresponding MT4 + TRG spoons. 
(Bottom) Ratio of each MT4 + TRG spoon to its FLAMINGO counterpart. 
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f corresponding dashed and solid lines is the same in all cases, and
he deviation between each dashed and solid line is due to error in
P(k) . At all redshifts, this error is ≤ 2 per cent up to k ≈ 5 h
pc −1 . 
Aside from the small systematic o v erprediction of power at small

cales, k � 5 h Mpc −1 , for the hydro models, the DMO and hydro
urv es are qualitativ ely similar. Thus, our earlier conclusions apply
s well to the hydro power spectra of Fig. 10 : the two emulators
redict the power spectrum accurately across their tested redshift
anges, while abo v e z = 2, Time-RG perturbation theory accurately
alculates the power up to k ≈ 1 h Mpc −1 and Halofit abo v e k ≈
 h Mpc −1 . 
Each of these methods, along with the SP(k) fitting func-

ion, has been applied to the computation of the CMB lens-
ng potential power spectrum in the dashed curves of Fig. 11 .
hey are compared to the FLAMINGO hydrodynamic simula-

ion, L2p8 m9, whose light-cones co v er redshifts z ≤ 5. Our
tandard MT4 + TRG + SP(k) computation is 2 per cent accurate
p to L = 3000 and 5 per cent accurate to L = 6000, while
he EE2 + SP(k) computation, which reaches smaller scales, is
 per cent accurate all the way to L = 10 000. Fig. 15 shows a similar
ccurac y lev el, 3 per cent to L = 2000 and 5 per cent to L = 5000,
or a model with both baryonic feedback and massive neutrinos,
lanckNu0p24Fix. 
Fig. 16 plots neutrino spoons for the lensing potential power

pectra, analogous to Fig. 13 for the matter power. The spoon is
ot an observable; since we do not know the exact cosmological
arameter values of the observ ed univ erse, we cannot divide its
ower spectrum by that of another model differing only in M ν .
nstead, we consider it as a test of systematic biases associated with
ariations of the neutrino mass alone. The power spectrum ratio is
ess sensitive to hydrodynamic effects than the power spectrum itself,
hich is why the DMO and hydrodynamic curves are nearly identical.
urthermore, this ratio also reduces errors present in perturbation

heory and the emulator, so that the MT4 + TRG spoon is correct to
 2 . 5 per cent for all L ≤ 10 000. 
Nevertheless, we may wonder about the impact of the systematic
2 per cent o v erprediction of the spoon depth seen in Fig. 16 .

his is indicative of a systematic overestimate of the neutrino
NRAS 529, 1862–1876 (2024) 
uppression of C 

φφ
L around M ν = 0.24 eV, a systematic underestimate

round M ν = 0.06 eV, or some combination of those, with other
osmological parameters around their currently preferred values.
ince this 2 per cent error for L � 2000 is comparable to the binned
rror at L = 2000 forecast for a CMB Stage-IV surv e y in Abazajian
t al. ( 2016 ), testing using mock analyses is warranted. 

.2 Factorizability of suppressions 

ince neutrinos and baryonic feedback both suppress small-scale
lustering, one may worry that errors in our feedback approximations
ill lead to significant biases in the neutrino mass determination.
o we ver, Mummery et al. ( 2017 ), using the BAHAMAS simulations
f McCarthy et al. ( 2017 , 2018 ), demonstrated for several clustering
tatistics that neutrino and baryonic suppressions factorize. That
s, the combined effect of neutrino and baryon suppression is the
roduct of the individual suppression factors. Here, we show that
his factorization of neutrino and baryon effects also applies to the
LAMINGO CMB lensing potential power spectrum. 
Consider the Planck-like cosmologies of Planck DMO,

lanckNu0p24Fix DMO, Planck, and PlanckNu0p24Fix from Ta-
le 1 , which have either a minimal ( M ν = 0.06 eV) or high ( M ν =
.24 eV) neutrino mass sum, and are simulated using dmo or a
 ydrodynamic (h yd) simulations. We may define three different
uppression factors, capturing the effects of neutrinos, baryons, and
oth at the same time: 

 ν = 

C 

φφ
L ( dmo , M ν = 0 . 24 eV ) 

C 

φφ
L ( dmo , M ν = 0 . 06 eV ) 

(14) 

 b = 

C 

φφ
L ( hyd , M ν = 0 . 06 eV ) 

C 

φφ
L ( dmo , M ν = 0 . 06 eV ) 

(15) 

 ν+ b = 

C 

φφ
L ( hyd , M ν = 0 . 24 eV ) 

C 

φφ
L ( dmo , M ν = 0 . 06 eV ) 

(16) 

actorizability then implies that F ν+ b = F ν × F b . 
Fig. 17 demonstrates the factorizability of neutrino and

aryon suppressions in the CMB lensing potential power spec-
rum, using simulations as well as our standard MT4 +
RG + SP(k) calculation. While the simulations and emulators
iffer by ≈ 2 per cent on small scales, in keeping with our previous
esults, in each case factorizability of the neutrino and baryon
uppressions is accurate to better than 1 per cent . 
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Figure 17. Factorizability of neutrino and hydrodynamic suppressions of the 
CMB lensing potential power spectrum. FLAMINGO simulations (solid) and 
MT4 + TRG calculations (dashed) of the neutrino suppression factor F ν , the 
baryon suppression factor F b , the combined suppression factor F ν+ b , and 
the product of the first two, which accurately approximates the third. 

Figure 18. Model-dependent feedback suppression of C 

φφ
L . Our p f feedback 

parametrization (dashed), which raises the L1 m9 baryon fraction ˆ ˜ f b to the 
power p f before applying the SP(k) fit of Salcido et al. ( 2023 ), is compared 
to a wide range of FLAMINGO hydrodynamic suppression factors (solid). 
Dashed curves range from p f = 0.5 (uppermost curve) to p f = 1.5 (lowest 
curve) in increments of � p f = 0.2. 
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This is due to the fact that the two suppressions depend very
ifferently on length and time. Neutrino free-streaming suppresses 
lustering below the free-streaming length, corresponding to k FS 

 0.1 h Mpc −1 for typical masses, which is manifested in a
10 per cent suppression of C 

φφ
L even at L = 100. Meanwhile, 

aryonic suppression is negligible below L = 1000 and is most
ignificant around L = 10 000. Further, the neutrino free-streaming 
ength is larger at earlier times, and the resulting impact upon C 

φφ
L 

ccurs o v er a wide range of redshifts, as opposed to the baryonic
uppression, which was shown in Fig. 5 to be dominated by z � 1. 

The reader may wonder how well such factorizability applies to 
ery different hydrodynamic feedback models. While SP(k) was 
alibrated to a wide range of feedback models (Salcido et al. 
023 ), a thorough exploration of the parameter space is beyond 
he scope of this article. For simplicity, consider a one-parameter 

amily of generalizations that raise ˆ ˜ f b ( z) = f b ( ˆ M , z) / ( �b /�m 

) to a
on-ne gativ e power p f before applying SP(k) . In this case, p f = 0
mplies no hydrodynamic feedback; p f < 1 implies feedback that is
eaker than that of the FLAMINGO fiducial model; and p f > 1 to

eedback that is stronger. Fig. 18 compares this approximation to a 
ide range of FLAMINGO feedback methods and finds 0.5 ≤ p f ≤ 1.5
o co v er this range, to L ≈ 4000, aside from one model, Jet fgas-4 σ .

Fig. 19 shows that factorizability of C 

φφ
L holds to excellent 

recision for a wide range of p f . While errors at 100 � L � 6000
end to rise with p f , they remain ≤ 0 . 2 per cent all the way to p f =
, which has substantially stronger feedback, and are < 0 . 1 per cent
t all L for the fiducial case, p f = 1. Also shown is the factorization
rror in FLAMINGO itself, which is ≤ 0 . 3 per cent everywhere 
nd has a similar functional form to HYPHI results. Factorizability 
pens up the possibility of a new SP(k) -like feedback fit applying
irectly to C 

φφ
L ( hyd ) /C 

φφ
L ( dmo ), whose parameters could be treated

s nuisance parameters whose marginalization would reveal the 
nderlying neutrino suppression. 
While Salcido et al. ( 2023 ) found that factorizability is a good

pproximation at the 2 per cent level with a history-independent 
aryonic correction model, the possibility remains that factorizability 
ails below this error threshold, or that baryonic correction is 
omewhat history-dependent. This limits the bound that we can 
lace on the accuracy of factorizability, though we note that the
irect factorizability measurement from FLAMINGO in Fig. 19 is 
onsistent with our result of sub-per cent-level factorization errors. 

.3 Applicability to data constraints 

omplete forecast constraints such as those of McCarthy et al. 
 2022 ), but using SP(k) through HYPHI , would first require forecast

onstraints on the halo baryon fraction ˆ ˜ f b ( z) as a function of redshift.
s such, they are beyond the scope of this article. Ho we ver, before

oncluding, we comment on the applicability of HYPHI to data and
orecast constraints. 

The simplest, but least powerful, approach is to parametrize 
˜ 
 b ( M, z) and then to treat these parameters as nuisance parameters
 v er which to marginalize. Salcido et al. ( 2023 ) explore two-
nd three-parameter approximations to ˜ f b ( M, z). A one-parameter 
pproach, described in Section 4.2 , begins with a representative 
˜ 
 b ( M, z) measured from a hydrodynamic simulation, and raises it

o a power p f prior to applying SP(k) , with p f marginalized o v er as
 nuisance parameter. Fig. 18 demonstrates that the range 0.5 ≤ p f ≤
.5 co v ers a wide range of feedback models. 
Ho we v er, marginalizing o v er broad priors on ˜ f b ( M, z) of-

ers no significant advantages o v er directly parametrizing 
MNRAS 529, 1862–1876 (2024) 
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 m, hyd ( k )/ P m, dmo ( k ) as a function of subgrid feedback parameters,
s done by Mead et al. ( 2020 ) in HMCODE . As such, we anticipate
hat the resulting forecast constraints will be similar to those of

cCarthy et al. ( 2022 ). 
The true strength of SP(k) -based power spectrum computations

uch as HYPHI is that ˜ f b ( M, z) is a physical observable. Measure-
ents of the baryon fraction may be used to narrow the range o v er
hich ˜ f b ( M, z) are marginalized. For example, Salcido et al. ( 2023 )
arametrize ˜ f b ( M, z) and then provides parameter ranges consistent
t the 2 σ and 3 σ level with the low-redshift measurements of Akino
t al. ( 2022 ). As CMB lensing is sensitive to baryonic suppression at
igher redshifts, z ∼ 1, SZ cluster constraints such as those of P ande y
t al. ( 2022 ) also provide useful priors on the baryon fraction, with
he caveat that SZ surveys are sensitive to haloes with masses larger
han the ˆ M ( z) used in SP(k) . 

 C O N C L U S I O N  

eak lensing of the CMB is becoming increasingly important as a
alaxy-bias-independent constraint on the sum of neutrino masses
 ν . Our ability to interpret upcoming lensing measurements at small

cales depends crucially on our ability to distinguish between the
cale-dependent clustering suppressions due to baryons and neutrino
ree-streaming in the non-linear regime. Employing the FLAMINGO
uite of simulations, the largest-particle-number hydrodynamic sim-
lations reaching z = 0 to date, we systematically compared several
ethods for computing the non-linear CMB lensing potential power

pectrum, implemented in our HYPHI code. 
Our preferred method combined the Mira-Titan IV DMO power

pectrum emulator at z ≤ 2 with Time-RG perturbation theory
t higher redshifts. Comparing HYPHI with a 5.6 Gpc-box DMO
imulation in Fig. 11 , we found agreement to 1 per cent up to
 = 3000 and 2 per cent to L = 5000. Fig. 12 shows that HYPHI

ttained 5 per cent accuracy to L = 4000 in individual redshift
ins, applicable to tomographic analyses. Including more massive
eutrinos, as well as baryonic feedback through the SP(k) fitting
unction, individually or simultaneously, as in Figs 11 and 15 , slightly
e graded the accurac y of HYPHI , but ev en with both effects, we found
T4 + TRG + SP(k) to be 4 per cent accurate up to L = 4000.

inally, we demonstrated that neutrino and baryonic suppression
ffects on C 

φφ
L factorize, potentially facilitating the marginalization

 v er baryonic effects in the future. 
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Figur e A1. Numerical conver gence of HYPHI C 

φφ
L computation. Each C 

φφ
L 

computation, labelled by its absolute and relative tolerances as well as its 
running time on a standard desktop computer, is compared to a high-quality 
run with absolute and relative error tolerances εabs = 10 −20 and εrel = 10 −12 , 
respectively, whose running time is 26.16 s. 

Figure A2. Accuracy of HYPHI C 

φφ
L computation compared with the 

FLAMINGO L5p6 m10 DMO (solid) and PlanckNu0p24Fix DMO (dashed) 
simulations. Absolute and relative tolerances for each line colour are the same 
as in Fig. A1 . 
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PPENDI X  A :  C O D E  USAG E  A N D  

E R F O R M A N C E  

ur CMB lensing potential power spectrum code, HYPHI , is publicly
vailable at github.com/upadhye/hyphi . Its precision and 
ccuracy are respectively shown in Figs A1 and A2 , for several
ombinations of the absolute and relative error tolerances εabs and 
rel , along with the running time for a single C 

φφ
L computation on

 standard desktop computer. Evidently, a highly accurate lensing 
otential power spectrum may be computed in a fraction of a second.
Fig. A2 also demonstrates the speed and accuracy of HYPHI for

arger neutrino masses. Since only one high-redshift light-cone is 
vailable, the simulated C 

φφ
L is noisier, preventing us from quantify- 

ng an accuracy better than 2 per cent − 3 per cent . Evidently HYPHI 

s ≤ 3 per cent accurate to nearly L = 4000. The running time for
ach εabs and εrel combination is within 30 per cent of the values 
isted in Fig. A1 . 

A technical point in the PlanckNu0p24Fix DMO computation de- 
erves further comment. The FLAMINGO PlanckNu0p24Fix DMO 

ight-cone co v ers the redshift range 0 ≤ z ≤ 3, so we compare it
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ith the HYPHI C L including only lens masses from that range
f redshifts. Although HYPHI can begin integrating C 

φφ
L at z =

, we find that doing so accurately requires a low absolute error
olerance, and correspondingly longer running times. Instead, in
he dashed curves of Fig. A2 , we have integrated C 

φφ
L over all

edshifts, but printed two separate power spectra at z of 3 and 0.
hese are then differenced to obtain the power spectra shown in the
gure, allowing us to achieve running times comparable to those of
5p6 m10 DMO. This technique is also applicable to tomographic
nalyses. F or e xample, printing C 

φφ
L at redshifts 3, 2, 1, and 0,

hen dif ferencing successi v e outputs, will pro vide fast and accurate
ower spectra in the 2 ≤ z ≤ 3, 1 ≤ z ≤ 2, and 0 ≤ z ≤ 1 bins,
espectively. 

Each HYPHI run requires an input transfer function for the
urpose of normalizing its matter power spectrum. Furthermore, the
inear neutrino density as a function of time is interpolated from
ransfer functions o v er a range of redshifts. We find accurate results
sing transfer functions at the following 12 redshifts: 200, 100, 50,
NRAS 529, 1862–1876 (2024) 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
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3-column transfer function files output by current versions
f the CAMB code. Additionally, in its most accurate setting,
YPHI uses the Mira-Titan IV emulator, which must be compiled
eparately. Further instructions for compilation and usage of HYPHI
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Two options are provided for implementing hydrodynamic cor-

ections in HYPHI through SP(k) . First, the baryon fraction for
he BAHAMAS simulations of McCarthy et al. ( 2017 , 2018 ) is
ncluded with the code, and may be raised to a positi ve po wer p f as in
ection 4.2 prior to application of SP(k) . Secondly, a variant of the
ower-law baryon fraction approximation of Akino et al. ( 2022 ), as
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