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1 Introduction

The study of the Landscape and the Swampland of quantum gravity has seen a surge
of excitement in recent years. Among the plethora of new ideas, the Emergent String
Conjecture [1] has emerged as one of the most exciting. This conjecture holds that any infinite-
distance limit in the moduli space of a quantum gravity theory is either a decompactification
limit (in which extra compact dimensions grow to infinite size) or else it is an emergent string
limit (in which a fundamental string becomes tensionless).

Compelling evidence for the Emergent String Conjecture has been given in various
contexts in string theory [1–7]. However, to date there has been little progress towards a
bottom-up argument for the Emergent String Conjecture, as there is for other Swampland
conjectures like the absence of global symmetries. To this end, the first part of this paper,
section 3, provides evidence for the Emergent String Conjecture in 5d supergravity by studying
the scaling of gauge couplings in infinite-distance limits, expanding on previous work in [6].
Notably, this argument does not rely on any UV input from string/M-theory, and instead it
depends solely on the cubic structure of the prepotential in five dimensions.

In the second part of this paper, section 4, we provide an additional top-down argument
for the Emergent String Conjecture by studying the spectrum of BPS states that become
light in infinite-distance limits in 5d supergravity. For M-theory compactified on a Calabi-Yau
threefold, this BPS spectrum is encoded in the Gopakumar-Vafa invariants of the threefold,
which can be computed in a large class of examples using the methods of [8, 9]. In a
decompactification limit to six dimensions, we expect a light tower of BPS Kaluza-Klein
modes, each of which is labeled by a Kaluza-Klein momentum q ∈ Z, which does not grow
indefinitely as q increases. In contrast, an emergent string limit features a tower of string
oscillator modes, which grows exponentially with increasing mass. By studying how the
Gopakumar-Vafa invariants nq scale with increasing q, therefore, we find evidence as to
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whether the infinite-distance limit in question represents a decompactification limit or an
emergent string limit.

Comparing this with the analysis of section 3 for several simple Calabi-Yau threefolds,
we find perfect agreement: the GV invariants scale like a Kaluza-Klein tower precisely
when the gauge couplings scale like a decompactification limit, and the GV invariants scale
like a tower of string oscillator modes precisely when the gauge couplings scale like an
emergent string limit. Taken together, this gives strong evidence that these limits are indeed
decompactification limits and emergent string limits in appropriate duality frames, consistent
with the Emergent String Conjecture.

Our analysis also yields a surprising geometric implication of the Emergent String Con-
jecture for Calabi-Yau manifolds, which can be tested in examples through the computation
of Gopakumar-Vafa invariants and (classical) triple intersection numbers. In section 5, we
carry out these tests in 7820 examples of Calabi-Yau threefolds, extending the analysis
of section 4 to the entire set of Calabi-Yau threefolds which arise as (favorable) complete
intersections of hypersurfaces in products of projective spaces (CICYs). For all such CICYs,
we again find perfect agreement between the scaling of the GV invariants and the scaling
of the gauge couplings, strongly suggesting that each infinite-distance limit in the vector
multiplet moduli spaces of these theories represents either an emergent string limit or a
decompactification limit. This is remarkable because all of the limits we consider — even
the decompactification limits — arise from shrinking one of the Pn factors of the ambient
space. It is a surprising prediction of the Emergent String Conjecture that shrinking this
cycle actually corresponds to decompactifying a circle in a different duality frame, but our
analysis suggests that this is indeed the case.

The results of section 4–5 were previously anticipated in the works [1, 10], which explained
how decompactification limits and emergent string limits correspond respectively to limits in
which a genus-one fiber or a complex 2-dimensional surface inside the Calabi-Yau threefold
shrinks to zero size. Our results align nicely with the results of those works.

Before we get to the crux of the matter, we first review relevant aspects of 5d supergravity,
Calabi-Yau geometry, and Kaluza-Klein compactifications from six to five dimensions; this
is covered in the following section.

2 Review of supergravity, Calabi-Yau geometry, and dimensional
reduction

In this section, we first review supergravity theories in five dimensions and their construction
through compactification of M-theory on a Calabi-Yau threefold. We then review the towers
of light states that appear when such a theory is decompactified to six dimensions by taking
one of the extra dimensions to be large.

2.1 5d supergravity and Calabi-Yau threefolds

Many features of a 5d supergravity theory are captured by its prepotential, a cubic ho-
mogeneous polynomial:

F = 1
6CIJKY IY JY K . (2.1)
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In an M-theory compactification to 5d on a Calabi-Yau threefold X, indices I, J, K run from
1 to h1,1(X), the constants CIJK are the triple intersection numbers of the manifold, and
the moduli Y I are volumes of certain two-cycles.

The prepotential is subject to the constraint F = 1, which follows from the fact that
the overall volume of the Calabi-Yau is not a vector multiplet modulus in 5d, so the vector
multiplet moduli space has dimension h1,1(X) − 1. In this work, however, we will drop this
constraint by instead taking the Y I to be homogeneous coordinates, which are identified under
simultaneous rescaling, Y I ∼ λY I , λ > 0. Of course, this is simply a choice of convention,
which does not affect our results in any way.

At a generic point in moduli space, the gauge group is U(1)h1,1(X), and the gauge kinetic
matrix is given by

aIJ = FIFJ

F4/3 − FIJ

F1/3 , (2.2)

with
FI = ∂IF = 1

2CIJKY JY K , FIJ = ∂I∂JF = CIJKY K . (2.3)

The eigenvalues of the gauge kinetic matrix correspond to the inverse-squares of gauge
couplings, λI ∼ 1/g2

I . This means that an eigenvalue of aIJ diverges precisely when a gauge
coupling vanishes. Conversely, a gauge coupling diverges precisely when an eigenvalue of
aIJ vanishes. By electromagnetic duality, this happens precisely when the gauge coupling
of a magnetic 2-form gauge field vanishes.

Meanwhile, the metric on moduli space in homogeneous coordinates is given by

gIJ = 2
3
FIFJ

F2 − FIJ

F
. (2.4)

This metric is positive-semidefinite: all eigenvalues are positive except for one null eigenvalue,
which corresponds to rescaling Y I → λY I .

The BPS bound is given by

m(qI) ≥
(√

2π

κ5

)1/3

|Z| =
(√

2π

κ5

)1/3 |qIY I |
F1/3 , (2.5)

where qI ∈ Z is the charge of the particle under the Ith U(1), and κ2
5 = 1/(8πG). Particles

that saturate the BPS bound are called BPS particles, and the number of BPS particles of
charge qI is counted by the Gopakumar-Vafa invariant nqI [11, 12].1

This concludes our lightning review of 5d supergravity and Calabi-Yau geometry. More
details can be found in e.g. [13, 14].

2.2 Dimensional reduction

Consider an Einstein-dilaton theory coupled to a 2-form gauge field in six dimensions

S =
∫

d6x
√
−g

( 1
2κ2

6
RD − 1

2(∇ϕ)2 − 1
2g2

0
e2ϕ|H3|2

)
. (2.6)

1More precisely, Gopakumar-Vafa invariants compute an index of the number of BPS particles, so there can
be a cancellation between BPS particles of different spins. This will not be important for our purposes, however.
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An action of this form shows up, for instance, in minimal supergravity coupled to a tensor
multiplet. In the limit ϕ → ∞, the 2-form gauge field becomes weakly coupled, with
gauge coupling

g2
B,6 = g2

0e−2ϕ → 0 . (2.7)

The Weak Gravity Conjecture for strings [15] implies that in this limit, a tensionless string
emerges, with tension T ∼ gB,6/κ6. This leads to an infinite tower of charged particles
beginning at the string scale, Mstring =

√
2πT ∼

√
gB,6/κ6 ∼ exp(−ϕ/2).

Next, suppose that we dimensionally reduce this theory on a circle, with dimensional
reduction ansatz

ds2
6 = e

−ρ(x)√
3 dŝ2

5(x) + e
√

3ρ(x)dy2. (2.8)

This yields a canonically normalized radion field ρ in five dimensions, in addition to the
canonically normalized dilaton ϕ that descends from six dimensions. With this, the 5-
dimensional gauge coupling for the string picks up an exponential dependence on the radion:

g2
B = (2πR)g2

0e−2ϕ− 1√
3

ρ
. (2.9)

This leads to a tower of string oscillator modes beginning at the string scale, Mstring =√
2πT ∼

√
gB/κ5 ∼ exp(−1

2ϕ − 1
2
√

3ρ).
Circle reduction also leads to a Kaluza-Klein photon, with gauge coupling

e2
KK = 2κ2

5
R2 e−

4√
3

ρ
. (2.10)

The tower Weak Gravity Conjecture [15–17] implies that in the decompactification limit
eKK → 0, there is a tower of particles beginning at the scale mKK ∼ eKK/κ5 ∼ exp(−2ρ/

√
3).

Of course, this is nothing other than the Kaluza-Klein scale, and the tower in question is
simply a tower of Kaluza-Klein modes.

It is helpful to define the scalar charge-to-mass vector of a particle of mass m as [6, 18]

ζi ≡ − ∂

∂ϕi
log m , (2.11)

where differentiation is performed with the d-dimensional Planck mass held fixed. With
this, we have

ζ⃗string = (1
2 ,

1
2
√

3
) , ζ⃗string = (0,

2√
3

) . (2.12)

These vectors are plotted in figure 1.
The Distance Conjecture [19] holds that in any infinite-distance limit in moduli space, a

tower of particles must become light with a characteristic mass scale that decays exponentially
as m ∼ exp(−λκ5ϕ). From the discussion above, we see that in the limit ρ → ∞, the Kaluza-
Klein tower satisfies the Distance Conjecture with a coefficient λ = 2/

√
3. We refer to this as

the “strict” decompactification limit because the radion is taken to infinity while the dilaton
is held fixed. Meanwhile, in the limit ϕ, ρ → ∞ with constant slope dρ/dϕ = 1/

√
3, the

– 4 –



J
H
E
P
0
3
(
2
0
2
4
)
0
6
1

~⇣KK = (0, 2/
p
3)
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Figure 1. The scalar charge-to-mass vectors, ζi = −∂i log(m), for Kaluza-Klein modes and string
oscillator modes for a compactification from six to five dimensions. In the string decompactification limit
ρ → ∞, Kaluza-Klein modes and string oscillator modes become light with coefficients λKK = 2/

√
3

and λstring = 1/
√

12. In the emergent string limit ρ, ϕ → ∞ with dρ/dϕ = 1/
√

3, Kaluza-Klein modes
and string oscillator modes become light with coefficient λKK = λstring = 1/

√
3. In the intermediate

regime (shaded blue), ρ, ϕ → ∞ with dρ/dϕ = tan ϑ, Kaluza-Klein modes and string oscillator modes
become light with coefficients λKK = 2√

3 sin(ϑ), λstring = 1
2 cos(ϑ) + 1

2
√

3 sin(ϑ).

tower of string oscillator modes satisfies the Distance Conjecture with λ = 1/
√

3. This is
an emergent string limit, in the terminology of [1]. In a more general decompactification
limit ρ, ϕ → ∞ with constant slope dρ/dϕ ≡ m, let us define a normalized tangent vector
t̂ = (cos ϑ, sin ϑ), so that tan ϑ = m. With this, the Kaluza-Klein modes and the string
oscillator modes satisfy the Distance Conjecture in this limit with respective coefficients

λKK = t̂ · ζ⃗KK = 2√
3

sin(ϑ) , λstring = t̂ · ζ⃗string = 1
2 cos(ϑ) + 1

2
√

3
sin(ϑ) . (2.13)

For m ≥ 1/
√

3 (shaded blue in figure 1), these coefficients satisfy 1/
√

12 ≤ λstring ≤ 1/
√

3 ≤
λKK ≤ 2/

√
3.

3 Decompactification and emergent strings

Consider a path in vector multiplet moduli space of the form Y I(s), s ∈ [0, 1], and suppose
that the limit s → 0 lies at infinite distance. As shown in [6], if we restrict the path to take
a “straight-line” form in homogeneous coordinates, i.e., Y I(s) = Y I

0 + sY I
1 , then there are

two possible behaviors for the prepotential: either F vanishes linearly as s → 0 (F ∼ s)
or else F vanishes quadratically as s → 0 (F ∼ s2). In the former case, the smallest and
largest gauge couplings scale as

gmin ∼ exp(− 2√
3

ρ) ,
1

√
gmax

∼ exp(− 1√
12

ρ) , (3.1)

– 5 –



J
H
E
P
0
3
(
2
0
2
4
)
0
6
1

where ρ is a canonically normalized scalar field which diverges as ρ → ∞ as s → 0. Com-
paring with section 2.2, we see that this precisely matches the scaling expected for a strict
decompactification limit to six dimensions, in which gmin represents the gauge coupling of
the Kaluza-Klein photon, 2π/gmax represents the gauge coupling for the 2-form gauge field
of a fundamental string in six dimensions, and ρ represents the radion field.

The tower Weak Gravity Conjecture (WGC) implies that as a gauge coupling g tends to
zero, a tower of light charged particles will appear beginning at the mass scale m ∼ g/κ5.
In this case, setting g = gmin, we find a tower of particles whose mass decays in the limit
s → 0 as exp(−λρ), with λ = 2/

√
3. Meanwhile, the WGC for strings implies that as a

2-form gauge coupling gstring tends to zero, a tower of string oscillator modes will appear at
the string scale Mstring ∼ √

gstring/κ
1/2
5 . Setting gstring ∼ 1/gmax, we find a tower of string

oscillator modes whose mass decays in the limit s → 0 as exp(−λρ), with λ = 1/
√

12. This
precisely matches the expected scaling for a circle compactification of string theory in six
dimensions, and it strongly suggests that the limit ρ → ∞ represents a decompactification
limit in some duality frame.

In the second case, F ∼ s2, the gauge couplings scale as

gmin ∼ exp(− 1√
3

ϕ) ,
1

√
gmax

∼ exp(− 1√
3

ϕ) , (3.2)

where ϕ is a canonically normalized scalar field which diverges as ϕ → ∞ as s → 0. Comparing
with section 2.2, we see that this precisely matches the expected scaling for an emergent
string limit, where.again gmin represents the gauge coupling of a Kaluza-Klein photon and
2π/gmax represents the gauge coupling for the 2-form gauge field of a fundamental string.
Invoking the tower WGC and the magnetic WGC for strings, respectively, we find a tower of
particles with λ = 1/

√
3 and a tower of string oscillator modes with λ = 1/

√
3; this precisely

matches the scaling expected for an emergent string limit.
This cannot be the full story, however. Dimensional reduction of a 6d string theory gives

a tower of Kaluza-Klein modes with mKK ∼ exp(−2ρ/
√

3) and a tower of string oscillator
modes with Mstring ∼ exp(−ϕ/2 − ρ/(2

√
3)). The two cases we considered above correspond

respectively to the limit ρ → ∞, ϕ fixed and the limit ρ, ϕ → ∞, dρ/dϕ = 1/
√

3 fixed. But
this does not include the intermediate regime with ρ, ϕ → ∞, dρ/dϕ > 1/

√
3 fixed. How are

we to see these limits within the 5d vector multiplet moduli space?
The answer is that these limits require curved paths in the space of homogeneous

coordinates. Consider once again a path of the form Y I(s), and let the limit s → 0 be at
infinite distance. By a suitable linear transformation, we may set Y I(s = 0) = δI

1 . Then,
suppose Y I(s) takes the form:

Y 1 = 1 , Y 2 = s , Y 3 = sα , Y I = 0 , I > 3 , (3.3)

for 0 < α < 1. With this, the relevant terms in the prepotential F = CIJKY IY JY K/6
are those with I, J, K = 1, 2, 3. Since we have assumed that s → 0 lies at infinite distance,
we must have C111 = 0. Let us further assume that C333 = C133 = C113 = C112 = 0: this
assumption will prove necessary for our purposes, as we will see momentarily. As a result,
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the nonzero terms in the prepotential are given by

F = 1
6
(
C222(Y 2)3 + 3C122Y 1(Y 2)2 + 6C123Y 1Y 2Y 3 + 3C223(Y 2)2Y 3 + 3C233Y 2(Y 3)2

)
.

(3.4)

In the limit s → 0, the proper distance along the path scales with s as

ℓ(s) = 1√
2

∫ 1

s
ds′
√
gIJ Ẏ I Ẏ J , (3.5)

where ˙ indicates differentiation with respect to the parameter s′, and gIJ is given by (2.4).
Plugging in the prepotential in (3.4), we find

ℓ(s) = 1√
3
√

α2 − α + 1| log(s)| + . . . , (3.6)

where . . . represents terms that are finite in the limit s → 0. Meanwhile, the smallest and
largest gauge couplings scale with s as

gmin ∼ 1
√

a22
∼ s(2−α)/3 ∼ exp(−λKKℓ(s)) (3.7)

1
√

gmax
∼ a

1/4
11 ∼ s(α+1)/6 ∼ exp(−λstringℓ(s)) , (3.8)

where
λKK = 1√

3
2 − α√

α2 − α + 1
, λstring = 1

2
√

3
α + 1√

α2 − α + 1
. (3.9)

Recall that the tower WGC implies a tower of charged particles beginning at the scale gmin,
and the WGC for strings implies a tower of string oscillator modes beginning at the scale
1/

√
gmax. The masses of these towers therefore decay exponentially in the limit s → 0 with

coefficients λKK and λstring, respectively.
Next, we define an angle ϑ by

ϑ = sin−1
( 2 − α

2
√

α2 − α + 1

)
. (3.10)

With this, we may rewrite the λ coefficients as

λKK = 2√
3

sin(ϑ) , λstring = 1
2 cos(ϑ) + 1

2
√

3
sin(ϑ) . (3.11)

This precisely matches the coefficients of (2.13)! We see that the tower implied by the
tower WGC matches the expected scaling for a Kaluza-Klein tower, and the string scale
implied by the WGC for strings matches the expected scaling for a fundamental string in six
dimensions. In other words, we have recovered the “intermediate regime” between the strict
decompactification limit ρ → ∞ and the emergent string limit dρ/dϕ = 1/

√
3.

The crucial ingredient here was the introduction of the parameter α. For α = 0, we
recover the expected scaling behavior for the strict decompactification limit, whereas for
α = 1 we recover the emergent string limit. As α varies between 0 and 1, we interpolate
between these two limits, as shown in figure 1. Notably, this result did not rely on any
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top-down input from string theory: the observed scaling behavior of the gauge couplings
gmin, gmax depends on a delicate interplay between the gauge kinetic matrix aIJ and the
metric gIJ , but the low-energy 5d supergravity relates these two through the prepotential
F , irrespective of the details of the UV completion.

What happens if we drop the assumption C333 = C133 = C113 = C112 = 0? If any of these
coefficients are nonzero, we find that the scaling above no longer applies. Instead, the presence
of any of these terms automatically yields the limiting cases of a strict decompactification
or an emergent string limit and renders the intermediate regime tan−1(1/

√
3) < ϑ < π/2

inaccessible.
In this example, the emergent string limit arises only when both Y 2 and Y 3 are taken

to zero with finite, nonzero Y 2/Y 3. In fact, for h1,1 > 2, emergent string limits always
require at least two moduli to vanish. To see this, suppose that only a single modulus
vanishes in an emergent string limit, Y 1 = s with all other moduli constant. Since F
must vanish quadratically in an emergent string limit, this means that F must factorize as
F = (Y 1)2(aIY I), where each aI is c-number coefficient. However, defining X = aIY I , we
find that prepotential is given simply by F = (Y 1)2X: in particular, it depends on only two
homogeneous coordinates X, Y 1. This is possible only if h1,1 = 2.

For h1,1 > 2, therefore, emergent string limits necessarily involve multiple vanishing
moduli. This strongly suggests that most emergent string limits arise through the structure
we have uncovered above, in which curved paths interpolate smoothly between a strict
decompactification limit and an emergent string limit.

4 Gopakumar-Vafa invariants and infinite-distance limits

We have seen that infinite-distance limits in vector multiplet moduli space in 5d supergravity
feature the correct scaling of the smallest and largest gauge couplings gmin, gmax to correspond
to either emergent string limits or decompactification limits to six dimensions. In the latter
case, the tower WGC implies a tower of light particles with precisely the correct scaling
behavior for a tower of Kaluza-Klein modes.

Towers of Kaluza-Klein modes are not only distinguished by the exponential scaling
of their masses with increasing field distance, however; they are also distinguished by an
approximately constant density of states. Said differently, the number of particles in a
Kaluza-Klein tower of mass m ≈ nmKK = n/R in 5d is approximately independent of n.

In simple cases, the number of Kaluza-Klein modes of a given KK momentum n is exactly
independent of n, as each particle in 6d gives rise to one Kaluza-Klein mode of Kaluza-Klein
momentum n for each integer n. However, in the presence of discrete symmetries or orbifold
actions, certain Kaluza-Klein may be projected out of the spectrum, resulting in a density of
states that is periodic rather than constant. One example of this is the “simple orbifold” in
section 2.2 of [20]: in this example, many Kaluza-Klein modes of odd charge are projected
out of the spectrum by the orbifold action, and the number of Kaluza-Klein modes of KK
momentum n depends only on whether n is odd or even, but it is order-one in either case.

This is in stark contrast to the exponentially large Hagedorn density of string oscillator
modes which become light in an emergent string limit; here, the mass of the oscillator mode
at level k is given by mk ∼

√
kMstring, and the number of oscillator modes at level k scales
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q2
q1 0 1 2 3 4

0 − 40 4 0 0
1 144 496 496 23953120 2388434784
2 164 5616 23100 34528 23100
3 144 44384 602016 2471824 4709216
4 88 279976 10439512 97922024 398659384
5 144 1482384 136431424 2616030416 20133562480
6 164 6751472 1439003864 52447406096 707697743208
7 144 27208608 12779098368 841622542048 18899196173440
8 88 99569856 98370714948 11277044593704 405560003481888

Table 1. Genus 0 GV invariants of degree (q1, q2) for the geometry X7643. The BPS particles that
become light in the candidate decompactification limit Y → 0 are shaded orange; these GV invariants
are order-one and periodic (of order 4) as a function of q2, consistent with the fact that they represent
Kaluza-Klein modes for a circle in another duality frame, which grows to infinite size as Y → 0.

exponentially with
√

k.2 Sometimes, as in the case of heterotic string theory, string oscillator
modes may carry gauge charge. In the heterotic case, the charge under a U(1) in the Cartan
of the gauge group is quantized, the mass of the lightest state of a given charge n grows
linearly with n, while its level k scales as k ∼ n2. As a result, the number of states with
this mass and charge grows exponentially with

√
k ∼ n.3 We expect that this exponential

growth with charge should apply more generally, and we will see that this expectation is
borne out in the examples below.

Within the vector multiplet moduli space of a 5d supergravity arising from M-theory
on a Calabi-Yau threefold, the spectrum of charged BPS states that become light in an
infinite-distance limit are encoded in the Gopakumar-Vafa (GV) invariants of the threefold.
By studying how these GV invariants depend on the charge n, we can put the Emergent
String Conjecture to the test.

In what follows, we will carry out such tests in a large number of Complete Intersection
Calabi-Yau threefolds (CICYs). Many of our results follow from the more general analyses
of [1, 10].

As a first example, consider the case of the complete intersection Calabi-Yau X7643
with configuration matrix4 (

P2 0 0 2 1
P5 2 2 1 1

)
. (4.1)

In other words, this Calabi-Yau consists of the intersection of four polynomials of bidegree
(0, 2), (0, 2), (2, 1), and (1, 1), respectively, inside P2×P5. The GV invariants for this geometry
can be computed using the Mathematica notebook of Klemm and Kreuzer [23], which was
based on the earlier work [8, 9], and the result is shown in table 1.

2For the heterotic string in ten dimensions, for example, the degeneracy of oscillator modes at level n scales
as d(k) ∼ exp(2π(2 +

√
2)

√
k) [21].

3For the heterotic string, this exponential growth comes from the exponentially-large number of choices for
the right-moving oscillators needed to level-match the left-moving charge.

4For a pedagogical introduction to CICYs and their configuration matrices, see [22].
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q2
q1 0 1 2 3 4

0 − 24 0 0 0
1 396 1152 396 0 0
2 2610 53136 112068 53136 2610
3 35640 2377728 15951564 28024704 15951564
4 605844 103323672 1602730872 6746381496 10576809936
5 12212172 4400303616 132192153792 1084701369600 3472953972948
6 273644244 184590071136 9593083752300 135592015659408 762494479579314

Table 2. Genus 0 GV invariants of degree (q1, q2) for the geometry X7806. The BPS particles that
become light in the emergent string limit Y → 0 are shaded blue; the exponential growth of these
GV invariants with q2 is consistent with the exponential, Hagedorn growth of string states with
increasing mass.

The mass of a BPS particle of charge (q1, q2) is given by

mq1,q2 =
(√

2π

κ5

)1/3 |q1X + q2Y |
F1/3 , (4.2)

where X ≡ Y 1 measures the volume of the P2 factor and Y ≡ Y 2 measures the volume of
the P5 factor. In the limit Y → 0 the tower of particles with q1 = 0, q2 = 1, 2, . . . become
massless. Furthermore, from the form of the prepotential,

F = 2X2Y + 6XY 2 + 4
3Y 3 , (4.3)

we see that the limit Y → 0 represents a candidate decompactification limit, since the
prepotential vanishes linearly in this limit, F ∼ Y . This agrees with the fact that the GV
invariants n0,q2 (shaded orange in table 1) are order-one and periodic as a function of q2, as
expected for a Kaluza-Klein tower. This is especially remarkable when these GV invariants are
compared with the GV invariants for q1 ̸= 0, which grow exponentially with increasing q1 or q2.

In [1], it was shown that such a decompactification limit corresponds geometrically to a
limit in which a genus-one fiber shrinks to zero size. The order-one scaling of the GV invariants
then follows from modularity of the topological string partition function of genus-one fibrations

As a second example, we consider the case of the CICY X7806 with configuration matrix(
P1 0 2
P4 3 2

)
. (4.4)

In other words, this Calabi-Yau consists of the intersection of two polynomials of bidegree
(0, 3) and (2, 2), respectively, inside P1 × P4. The GV invariants for this geometry are shown
in table 2. Here, the mass of a BPS particle of charge (q1, q2) is again given by (4.2), where
now X ≡ Y 1 measures the size of P1 and Y ≡ Y 2 measures the size of P4. In the limit
Y → 0, the tower of particles with q1 = 0, q2 = 1, 2, . . . become massless. Furthermore,
from the form of the prepotential,

F = 3XY 2 + Y 3 , (4.5)
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q3
q2 0 1 2 3 4

0 − 16 0 0 0
1 128 128 0 0 0
2 144 960 144 0 0
3 128 5120 5120 128 0
4 80 20640 70272 20640 80
5 128 70656 626688 626688 70656
6 144 218752 4265600 10349760 4265600

Table 3. Genus 0 GV invariants of degree (0, q2, q3) for the geometry X7465. The BPS particles that
become light in the decompactification string limit Z → 0 are shaded orange, while the additional
BPS particles that become light in the emergent string limit Y, Z → 0 are shaded blue. The GV
invariants grow exponentially with increasing charge in the emergent string limit, whereas they are
order-one and periodic in the decompactification limit, as expected.

we see that the limit Y → 0 represents a candidate emergent string limit, since the prepotential
vanishes quadratically in this limit, F ∼ Y 2. This agrees with the fact that the GV invariants
n0,q2 (shaded blue in table 2) seem to grow exponentially with increasing q2, as expected
for a tower in an emergent string limit.5

In [1], it was shown that these emergent string limits correspond geometrically to a limit
in which a T 4 or K3 fiber shrinks to zero size. The former case corresponds to an emergent
Type II string, and it is possible that such a limit will have vanishing GV invariants due to
enhanced supersymmetry (see e.g. [10, 24]). In the K3 case, however, the GV invariants are
nonzero [1], and their exponential growth is a consequence of modularity of the topological
string partition function [10].

As a third and final example, consider the h1,1 = 3 CICY X7465 with configuration matrixP1 1 1 0 0 0
P2 1 0 2 0 0
P5 0 1 1 2 2

 . (4.6)

In other words, this Calabi-Yau consists of the intersection of five polynomials of tridegree
(1, 1, 1), (1, 0, 1), (0, 2, 1), (0, 0, 2), and (0, 0, 2), respectively, inside P1 × P2 × P5.6 The GV
invariants with q1 = 0 for this geometry are shown in table 3. Here, the mass of a BPS
particle of charge (q1, q2, q3) is given by

mq1,q2,q3 =
(√

2π

κ5

)1/3 |q1X + q2Y + q3Z|
F1/3 , (4.7)

5Throughout this paper, we used a simple eye test to assess exponential growth of the GV invariants,
checking that the number of digits in each respective GV invariant grows at a roughly constant rate as charge
increases. It would be interesting to measure the exponential rate of growth more precisely and see how it
varies across different examples of emergent string limits, but we leave this for future work.

6This geometry is of the type studied in [25], which also computed the GV invariants using Noether-Lefschetz
theory. Subsequently, [10] found a match between these and the BPS state counts for the heterotic string, in
accordance with expectations.
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where X ≡ Y 1 measures the volume of the P1 factor, Y ≡ Y 2 measures the volume of the P2

factor, and Z ≡ Y 3 measures the size of the P5 factor. Meanwhile, the prepotential is given by

F = 4XY Z + 2Y 2Z + 4XZ2 + 6Y Z2 + 4
3Z3 . (4.8)

In the limit Z → 0, we see that the prepotential vanishes linearly, F ∼ Z. Thus, this
corresponds to a candidate decompactification limit. On the other hand, in the limit Y, Z → 0
with fixed dY/dZ, the prepotential vanishes quadratically; this represents a candidate
emergent string limit. Indeed, this prepotential takes precisely the form (3.4), and thus
we interpolate between a decompactification limit and an emergent string limit when X is
constant, Z → 0, and Y ∼ Zα for α ∈ {0, 1}.

The Emergent String Conjecture suggests that the behavior seen in these particular
examples is in fact rather generic. Given any asymptotic boundary in which the prepotential
vanishes linearly with some modulus Y I , we expect a periodic tower of order-one GV invariants,
which correspond to Kaluza-Klein modes in some duality frame. Meanwhile, any asymptotic
boundary in which the prepotential vanishes quadratically with the moduli Y I corresponds
to an emergent string limit, and correspondingly we expect an exponentially-growing tower
of charged string modes. If the prepotential vanishes linearly as Y I → 0 and quadratically
as Y I , Y J → 0, then we expect a periodic tower of order-one GV invariants in the former
limit and an exponentially-growing tower of charged string modes in the latter limit. All
this may be viewed as a geometric consequence of the Emergent String Conjecture for
Calabi-Yau manifolds.

5 Numerical sweep

Complete intersection Calabi-Yau manifolds in products of projective spaces (CICYs) offer
a simple but sizeable arena to test this geometric consequence of the Emergent String
Conjecture. In the remainder of this paper, we consider all asymptotic limits of the Kähler
moduli spaces of CICYs that arise as a single Pn factor shrinks to zero size. In the language of
5d supergravity, this means that a single homogenous coordinate on vector multiplet moduli
space is taken to zero. We further consider all examples of the asymptotic limits discussed in
section 3, in which the prepotential takes the form (3.4). If the Emergent String Conjecture
is true, these limits should interpolate between decompactification limits and emergent string
limits depending on the rate at which two of the moduli are taken to zero size.

The GV invariants for all of these geometries can be found in the database of Carta,
Mininno, Righi, and Westphal [26] or, alternatively, computed using the Mathematica code of
Klemm and Kreuzer [23]. We examine the GV invariants up to degree 10 to confirm that they
exhibit the periodic behavior expected for a decompactification limit and the exponential
growth expected for an emergent string limit.

We have seen that decompactification limits are characterized by a prepotential that
vanishes linearly with some modulus, F ∼ Y I , and without loss of generality we take I = 1.
In terms of the triple intersection numbers, this means that CIJK = 0 if I, J, K ̸= 1, but
CIJ1 ̸= 0 for some choice of I, J ̸= 1.
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Given a CICY with configuration matrix
Pn1 d

(1)
1 d

(1)
2 · · · d

(1)
k

Pn2 d
(2)
1 d

(2)
2 · · · d

(2)
k

...
...

...

Pnh1,1 d
(h1,1)
1 d

(h1,1)
2 · · · d

(h1,1)
k

 , (5.1)

the condition CIJK = 0 if I, J, K ̸= 1 is satisfied precisely when the first row {d
(1)
j } has fewer

than n1 nonzero entries. Meanwhile, the condition CIJ1 ̸= 0 for some choice of I, J ̸= 1
requires {d

(1)
j } to have at least n1 − 1 nonzero entries. The Calabi-Yau condition implies∑

j d
(i)
j = ni, which means that there are only two ways {d

(1)
j } can have exactly n1 − 1

nonzero entries:

{d
(1)
j } = {2, 2, 1, . . . , 1︸ ︷︷ ︸

n1−3

, 0, . . . , 0} or {d
(1)
j } = {3, 1, . . . , 1︸ ︷︷ ︸

n1−2

, 0, . . . , 0} , (5.2)

or else {d
(1)
j } is given by some permutation of the above entries.

We performed a sweep of the favorable CICY database of [27] (based on the previous
work [28]), finding that just 140 of the 7820 favorable CICYs have rows {d

(I)
j } of the above

form (and only one of these 140, number 7884 in the database, has two rows of this form7).
Computing the GV invariants, we confirm that every row {d

(I)
j } of the form corresponds to

a periodic tower of order-one GV particles with qI = 1, 2, . . ., qK = 0 for K ̸= I. One such
example — number 7643 — was discussed in the previous section, and its GV invariants
are shown in table 1.

Physically speaking, this means that every candidate decompactification limit, for which
the prepotential vanishes linearly with the modulus, indeed features a tower of exponentially
light particles with an approximately constant density of states, precisely as we would
expect for a tower of Kaluza-Klein modes. This gives strong evidence that these limits
are indeed decompactification limits in some duality frame, as required by the Emergent
String Conjecture.

Another interesting result from our sweep of candidate decompactification limits in
CICYs is that the order of periodicity p of the GV invariants Kaluza-Klein tower is always
less than or equal to 4. Furthermore, the GV invariants nq of the tower satisfy not only
the periodicity condition nq = nq+p, but also the condition nq = np−q for 0 < q < p. This
can be understood as a consequence of charge conjugation, which implies nq = n−q, in
conjunction with the periodicity condition.8

Candidate emergent string limits, on the other hand, have a prepotential which vanishes
quadratically with the moduli. To begin, we focus on limits in which a single PnI factor
shrinks to zero size. Without loss of generality, suppose I = 1, so that the prepotential
vanishes as F ∼ (Y 1)2. This means that CIJK = 0 if I, J, K ̸= 1, CIJ1 = 0 for I, J ̸= 1,
but C11K ̸= 0 for some K ̸= 1.

7It is worth noting that CICY number 7884 has h1,1 = 2 and thus a one-dimensional vector multiplet
moduli space. The two decompactification limits lie at opposite ends of this moduli space, so they do not
intersect, and there is no way to decompactify both circles at once.

8We thank Ben Heidenreich for discussions on this point.
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For a Calabi-Yau with configuration matrix (5.1), these conditions on the CIJK imply
that the first row {d

(1)
j } must have precisely n1 − 2 nonzero entries. There are, once again,

only two ways this can happen:

{d
(1)
j } = {3, 2, 1, . . . , 1︸ ︷︷ ︸

n1−4

, 0, . . . , 0} or {d
(1)
j } = {4, 1, . . . , 1︸ ︷︷ ︸

n1−3

, 0, . . . , 0} , (5.3)

or else {d
(1)
j } is given by some permutation of these entries.

A sweep of the CICY database reveals that only 11 of the 7820 favorable CICYs have
rows of this form. All of these have h1,1 = 2, as required for an emergent string limit that
involves only one vanishing modulus, as shown above. Computing the GV invariants, we
find that every row {d

(I)
j } of this form corresponds to a tower of exponentially-growing GV

invariants with qI = 1, 2, . . ., qK = 0 for K ̸= I. One example of this type — number 7806 —
was discussed in the previous subsection, and the GV invariants are shown in table 2.

Finally, we consider candidate emergent string limits which occur in conjunction with
candidate decompactification limits, as in (4.6) above, so that a decompactification limit
appears when one modulus Y 1 is taken to zero while an emergent string limit appears when
another modulus Y 2 is taken to zero simultaneously. This means, in particular, that the
prepotential vanishes linearly as Y 1 → 0, so F ∼ Y 1, whereas it vanishes quadratically as
Y 1, Y 2 → 0. Such a prepotential necessarily takes the form in (3.4).

Since these emergent string limits necessarily feature decompactification limits and
moduli spaces of dimension larger than one, the only geometries that need to be considered
in this sweep are the 127 CICYs with candidate decompactification limits and h1,1 > 2, a
subset of the 140 total CICYs with candidate decompactification limits. Given such a small
set, it is straightforward to simply compute the triple intersection numbers (and hence the
prepotential for every Calabi-Yau) to see if it takes the form in (3.4).

We find that of the 127 CICYs with candidate decompactification limits and h1,1 > 2, 63
also have candidate emergent string limits in which two PnI factors shrink to zero size, and
all of these have h1,1 = 3. Furthermore, 40 of the 63 CICYs have two candidate emergent
string limits; this means that the prepotential vanishes linearly as Y 1 → 0, quadratically
as Y 1, Y 2 → 0, and quadratically as Y 1, Y 3 → 0. In terms of the prepotential in (3.4), this
happens precisely when C233 = 0.

Studying the GV invariants of these 63 CICYs, we find once again that every candidate
emergent string limit features an exponentially growing tower of BPS particles. One example
of this type — number 7465 — was discussed in the previous subsection, and the GV
invariants are shown in table 3.

Thus, the candidate emergent string limits feature exponential growth of GV invariants,
as expected. In summary, our numerical sweep of CICYs provides strong evidence for the
Emergent String Conjecture in vector multiplet moduli spaces of 5d supergravity theories

6 Discussion

In this paper, we have seen perfect agreement between the rate of growth of GV invariants
along certain rays in the charge lattice and the values of the triple intersection numbers for a
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large class of Calabi-Yau manifolds. This agreement conforms exactly to the expectations
of the Emergent String Conjecture, and thus our work provides strong evidence in favor of
this conjecture based on topological invariants of Calabi-Yau manifolds.

To turn this around, our work shows that the Emergent String Conjecture places strong
constraints on certain GV invariants, just as previous work has uncovered strong constraints
on GV invariants from the tower/sublattice WGC [14, 24]. Hopefully, the Swampland
program will someday yield rigorous predictions that can be tested experimentally, but it
is encouraging that it has already given us rigorous, precise, and testable predictions for
Calabi-Yau geometry. So far, the Emergent String Conjecture (and the sublattice WGC)
have passed these tests with flying colors.

We also found compelling bottom-up evidence for the Emergent String Conjecture by
studying curved paths in the vector multiplet moduli spaces of 5d supergravities. Such paths
lead to precisely the scaling behavior of gauge couplings for particles and strings that we
would expect after circle compactification of a six-dimensional string theory.

A few of our results warrant further study. We saw above many examples of candidate
decompactification limits in which the GV invariants are periodic rather than constant with
increasing charge. However, in all of the examples we saw, the order of periodicity was
less than or equal to 4. This is reminiscent of the counterexamples to the lattice Weak
Gravity Conjecture found in [20]; such counterexamples have BPS particles of charge 0 mod
k but no BPS particles of charge q, q ̸= 0 mod k, and in all examples considered, the order
of periodicity satisfies k ≤ 3.

A key difference between those examples and the examples we have seen in this work
is that our examples do not violate the lattice WGC: in table 1, for instance, we see that
the GV invariants n0,q are all nonzero, indicating that there are BPS particles of all charges
(0, q), q ̸= 0. This is true more generally for all 141 examples of candidate decompactification
limits that we have studied, and we find no evidence for violations of the lattice WGC
in our examples. However, one intriguing similarity between our results and these is that
the periodicity in either case never grows parametrically larger than 1. This is likely also
related to the observation that discrete gauge groups in string theory seem to have order-one
cardinality (see e.g. [29]). It would be nice to have a bottom-up argument as to why quantum
gravity seems to eschew large periodicities and discrete symmetries.

The CICY database studied here — while sizable — nonetheless represents only a small
fraction of all Calabi-Yau manifolds. A logical next step would be to extend the numerical
sweep considered here to the full Kreuzer-Skarke database of Calabi-Yau hypersurfaces in
ambient toric varieties [30].

The bottom-up argument for the Emergent String Conjecture we have given above is
suggestive, but it is nonetheless restricted to the case of vector multiplet moduli spaces in
5d supergravity. It would be nice to find a bottom-up argument that doesn’t rely on the
scaling of gauge couplings, since infinite-distance limits in 5d hypermultiplet moduli spaces
do not feature weakly coupled gauge fields, and it would be especially exciting to find an
argument for the Emergent String Conjecture that does not rely on supersymmetry at all.
We leave these as worthwhile targets for future study.
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