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We reexamine the low-energy potential for a macroscopic fifth force generated from the exchange of two
axions. The shift symmetry of the linear axion interactions leads to a potential falling off as VðrÞ ∼ 1=r5.
We find that in the case of the QCD axion higher-order terms in the Lagrangian break the shift symmetry
and lead to the dominant contribution to the potential scaling as VðrÞ ∼ 1=r3. These terms are generated by
the same physics responsible for the axion mass, and therefore the new contributions to the potential induce
a different force for external nucleons and leptons. We demonstrate how this result affects the sensitivity of
searches for new long-range forces.
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Introduction.—Fifth forces were identified as potential
probes for axions very early [1]. The early focus was on the
exchange on spin-dependent interactions, which are the
consequence of the exchange of single light CP-odd
scalars. The leading contribution to a spin-independent
long-range force mediated by axions is generated by axion-
pair exchange at one loop [2] and therefore similarly
suppressed as the “neutrino force” generated by the
exchange of neutrino pairs [3,4]. The potential correspond-
ing to the exchange of a pair of neutrinos scales as
VðrÞ ∼ 1=r5, as does the potential generated by the
exchange of pairs of massless axions [2,5]. In contrast,
the exchange of pairs of pseudoscalars leads to a non-
relativistic potential scaling as VðrÞ ∼ 1=r3, whereas the
potential for an axion-Higgs portal scales as VðrÞ ∼ 1=r7

[6,7]. The difference between the potentials induced by
pseudoscalars and axions is a consequence of the manifest
shift symmetry that protects all linear axion interactions
and has been discussed already in the case of the pion in
very early literature [8–11].
In this Letter, we show that, in the case of the QCD

axion, the dominant contribution to the potential is gen-
erated by the same physics responsible for the axion mass
and that these contributions generate a VðrÞ ∼ 1=r3 poten-
tial, even though they are induced by higher-order operators
in the effective field theory (EFT) expansion in the axion
decay constant. Since the axion mass is generated by strong
dynamics, these additional contributions to the low-energy
potential only occur for external hadrons. Axion-induced
forces between leptons as well as between hadrons and

leptons are substantially weaker. This could allow one to
directly measure the contribution to the axion mass from
the chiral anomaly by comparing different searches for fifth
forces.
There are several ways to search for the effects of a new,

macroscopic force, including searches with Cavendish-type
experiments [12], searches for new forces in atoms and
molecules [13], measurements of the effective Casimir
pressure [14,15], and experiments specifically designed to
suppress the Casimir force [16]. In the following sections,
we introduce the different contributions to axion inter-
actions at low energy, derive the potential for axions
including the new contributions from high-order operators,
and demonstrate the effect of the new contribution for the
Casimir-less experiment [16].
Two axion interactions.—The Lagrangian for an axion

a interacting with fermions ψ can bewritten with an explicit
shift-invariant interaction with strength cψ and axion
mass ma,

L ¼ 1

2
ð∂aÞ2 −m2

a

2
a2 −

X
ψ

cψ
2

∂μa

f
ψ̄γ5γ

μψ ; ð1Þ

up to linear order in the axion field over the axion decay
constant f. This Lagrangian can be rewritten by using the
divergence of the axial-vector current

L ¼ 1

2
ð∂aÞ2 −m2

a

2
a2

þ
X
ψ

cψ

�
imψ

a
f
ψ̄γ5ψ −

αQ2
ψ

4π

a
f
FμνF̃μν

�
; ð2Þ

where mψ and Qψ are the mass and electric charge of the
fermion, Fμν is the photon field strength tensor, and α is the
fine-structure constant. We assume the fermions only carry
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electric charge, otherwise there would be additional cou-
plings to gauge bosons. Even though (1) and (2) are both
linear in a=f, they lead to contradicting results for processes
with more than one axion involved. The reason is that
the divergence of the axial-vector current or, equivalently,
the equations of motion for the axion only capture terms
up to linear order in the fields. A consistent rescaling
of the fermion fields generates higher-order terms in a=f
that precisely account for the difference between results
obtained from (1) and (2) (details are given in Appendix A).
The effects can be accounted for by modifying the anomaly
equation for the divergence of the axial-vector current,

cψ
2

∂μa

f
ψ̄γ5γ

μψ ¼ −cψ imψ
a
f
ψ̄γ5ψ þ c2ψmψ

a2

f2
ψ̄ψ

þ cψ
αQ2

ψ

4π

a
f
FμνF̃μν þO

�
a3

f3

�
: ð3Þ

To quadratic order in the axion fields the inclusion of the
additional operator in (2) restores the results obtained using
the shift-invariant coupling. However, the shift invariance in
(1) is explicitly broken by the presence of an axion mass.
Treating m2

a as the only spurion that breaks the shift
invariance suggests the existence of higher-order shift
symmetry breaking (ssb) operators proportional to this
spurion term,

Lssb ∋
X
ψ

cm
m2

aa2

f3
ψ̄ψ ; ð4Þ

where cm is a dimensionless Wilson coefficient. These
operators spoil the cancellation in (3). In general, it is a
conservative assumption that the spurion is given by m2

a,
because the source of shift symmetry breaking responsible
for generating the axion mass can induce higher-order
operators that are less suppressed than (4). An example
of such an enhancement is the coupling of the QCD axion to
nucleons. The shift symmetry is broken by the presence of
light quark masses and the QCD confinement scale.
Interactions between the QCD axion and nucleons are
therefore shift invariant or suppressed by these spurions.
At leading order, the operators of the two-flavor chiral
Lagrangian coupling baryons to pions and axions are

Lð1Þ ¼ N̄

�
i=D −mN þ gA

2
γμγ5uμ þ g0γμγ5a

ðsÞ
μ

�
N: ð5Þ

Couplings to the axion enter via the covariant derivative and

the vielbeins uμ and a
ðsÞ
μ , which both contain the axion in an

explicitly shift-invariant way, can be found in Sec. 3.1
in [17] or Sec. 2.5 in [18].

At second order there are four operators,

Lð2Þ ¼ c1tr½χþ�N̄N −
c2
4m2

tr½uμuν�ðN̄DμDνN þ H:c:Þ

þ c3
2
tr½uμuμ�N̄N −

c4
4
N̄γμγν½uμ; uν�N: ð6Þ

All operators in Lð2Þ are shift invariant apart from the
operator with coefficient c1, which contains a shift-
symmetry breaking interaction

c1tr½χþ�N̄N ¼ cN
a2

f2
N̄N þ � � � : ð7Þ

The axion field enters via

χþ ¼ 2B0

�
ξ†mqðaÞξ† þ ξm†

qðaÞξ
�
; ð8Þ

mqðaÞ ¼ e−iκq
a
fcGGmqe

−iκqafcGG ; ð9Þ

where ξ ¼ expði= ffiffiffi
2

p
Π=fπÞ contains the pion fields, the

quark masses read mq ¼ diagðmu;mdÞ, and κq ¼
diagðκu; κdÞ are unphysical parameters, because they are
arbitrary phases in a basis change transformation, subject to
the constraint κu þ κd ¼ 1, and cGG denotes the axion
coupling to gluons,

L ∋ cGG
αs
4π

a
f
GμνG̃

μν: ð10Þ

After rotating into the mass eigenbasis and taking into
account contributions from pion mixing, one can write the
leading terms for the amplitude of axions coupled to
nucleons from (5) and (6) as

iA½Nðk0Þ → NðkÞ þ aðqÞ� ¼ −
gN
4f

ūNðk0Þ=qγ5uNðkÞ; ð11Þ

iA½Nðk0Þ → NðkÞ þ 2aðq=2Þ� ¼ −
cN
f2

ūNðk0ÞuNðkÞ; ð12Þ

respectively. Here, the couplings are defined for protons
and neutrons N ¼ p, n as

gp=n ¼ g0ðcuþ cdþ 2cGGÞ

� gA
1

1− τ2a

�
cu − cdþ 2cGG

md −mu

muþmd

�
;

cN ¼ c1
m2

π

2ð1− τaÞ2
�
−4c2GG

�
τ2aþ 4ð1−2τaÞ

mumd

ðmuþmdÞ2
�

þ 4τ2acGGðcd − cuÞ
md −mu

muþmd
− τ2aðcd− cuÞ2

�
; ð13Þ

where τa ¼ m2
a=m2

π . The isoscalar and isovector coupling
constants are determined using lattice gauge theory [19,20]
g0 ¼ 0.440ð44Þ and experimentally extracted from
nucleon β decay [21] gA ¼ 1.2754ð13Þ, respectively.
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The low-energy coefficients c1, c2, c3, c4 can be found in
[22] and we use c1 ¼ −1.26ð14Þ GeV−1 here. The axion
couplings to gluons and quarks in (13) are to be evaluated at
the QCD scale [23,24].
Expanding cN in small axion masses and using the

expression for the QCD axion mass with mu ¼ md one can
write the coefficient in (4) as cm ¼ −8c1f3=f2π , which
corresponds to a substantial enhancement compared with
the naive assumption.
Since the axion has a potential, in principle, any

quadratic interaction can also give rise to a linear spin-
independent interaction if the axion vacuum expectation
value does not vanish. The Vafa-Witten theorem guarantees
that hai ¼ 0 in vacuum [25], but in a high-density envi-
ronment the potential is modified and hai ¼ a0 ≠ 0, lead-
ing to long-range forces for large, dense objects such as
neutron stars [26,27]. Linear interactions proportional to
the θ angle are strongly suppressed [28–30]. For the
remainder of this Letter, we focus on the spin-independent
force induced by the exchange of axion pairs. The
importance of the shift-symmetry breaking operator has
been pointed out previously in the context of coherent
axion-nucleon scattering [31].
The axion force.—In the following, we will derive the

potential for the spin-independent force induced by the
exchange of a pair of axions [2,6,32]. We show explicitly
that the contributions from the linear and quadratic axion
interactions in (3) cancel and that the shift-symmetry
breaking interaction induced by (7) spoils this cancellation
and provides the most important contribution to the
potential. We obtain that the nonrelativistic potential for
the exchange of two axions can be obtained by taking the
discontinuities in the scattering amplitude in the non-
relativistic limit and perform the Fourier transform.
Feynman diagrams for the two-axion exchange are shown
in Fig. 1. In the basis with derivative axion interactions (1),
only Figs. 1(a) and 1(b) contribute. We instead use
the nonderivative basis for which one needs to include
Figs. 1(c)–1(e), taking into account the quadratic axion

coupling in (3) to obtain a consistent result. Operators
breaking the shift invariance generate additional contribu-
tions to Figs. 1(c)–1(e).
In the heavy fermion limit and retaining only terms odd

in the momentum exchanged
ffiffi
t

p
in the amplitudes [33], we

obtain the following spin-independent contributions at
next-to-leading order in ma for Figs. 1(a) and 1(b):

VabðrÞ ¼ −
c2ψ1

c2ψ2

64π3f4
mψ1

mψ2

	
1

r3
xaK1ðxaÞ

þ
�

1

m2
ψ1

þ 1

m2
ψ2

−
1

2mψ1
mψ2

�
3

r5

×

��
xa þ

x3a
6

�
K1ðxaÞ þ

x2a
2
K0ðxaÞ

�

; ð14Þ

in which we define the dimensionless variable xa ¼ 2mar,
andK0ðxaÞ andK1ðxaÞ are modified Bessel functions of the
second kind. In the case of a pseudoscalar particle described
by the linear coupling in (2), the potential (14) would be the
full potential and one recovers the leading term

VabðrÞ ¼ −
c2ψ1

c2ψ2

64π3f4
mψ1

mψ2

r3
þO

�
m2

a

r3
;
1

r5

�
: ð15Þ

The contributions from Figs. 1(c) and 1(d) are given by

VcðrÞ ¼
c2ψ1

c2ψ2

64π3f4
mψ1

mψ2

	
1

r3
xaK1ðxaÞ

þ 1

m2
ψ2

3

r5

��
xa þ

x3a
6

�
K1ðxaÞ þ

x2a
2
K0ðxaÞ

�

;

VdðrÞ ¼ VcðrÞ with mψ1
↔ mψ2

; ð16Þ

whereas Fig. 1(e) gives

VeðrÞ ¼ −
c2ψ1

c2ψ2

64π3f4
mψ1

mψ2

1

r3
xaK1ðxaÞ: ð17Þ

In the sum of these contributions, the terms proportional to
r−3 cancel out and we are left with

VðrÞ¼VabðrÞþVcðrÞþVdðrÞþVeðrÞ

¼ 3c2ψ1
c2ψ2

128π3f4
1

r5

��
xaþ

x3a
6

�
K1ðxaÞþ

x2a
2
K0ðxaÞ

�
: ð18Þ

Expanding this result around xa ¼ 0we recover the familiar
r−5 potential

VðrÞ ¼ 3c2ψ1
c2ψ2

128π3f4

�
1

r5
−
1

3

m2
a

r3
þOðm4

aÞ
�
: ð19Þ

In the case of axions with an explicit mass term, the potential
(18) is proportional to VðrÞ ∼ 1=r5 up to terms suppressed

(a) (b)

(c) (d) (e)

FIG. 1. Diagrams contributing to the potential generated by
two-axion exchange (a),(b) from linear interactions, (c),(d) from
linear and quadratic interactions, and (e) from purely quadratic
interactions.
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by m2
a < 1=r2 as a result of the shift symmetry of the

Lagrangian. Additional contributions from shift-symmetry
breaking operators (4) are suppressed by ∼1=f6. However,
in the case of the QCD axion there are additional terms at the
same order in 1=f4 induced by the quadratic interaction
terms (7) proportional to the shift-symmetry breaking
spurion responsible for the axion mass. Evaluated for a
potential between two nucleons N1 and N2 the additional
diagrams generate the potential

VspðrÞ ¼
1

64π3f4

	
−cN1

cN2

1

r3
xaK1ðxaÞ

þ 3

4

�
cN1

g2N2

1

mN2

þ cN2
g2N1

1

mN1

�
1

r5

×

��
xa þ

x3a
6

�
K1ðxaÞ þ

x2a
2
K0ðxaÞ

�


¼ −
cN1

cN2

64π3f4
1

r3
þO

�
m2

a

r3
;
1

r5

�
; ð20Þ

where gN and cN are defined in (13). The contributions from
the quadratic axion interaction induced by the spurion
dominate over the contribution from the interaction induced
by shift-invariant operators, even though the latter appear at
leading order in the EFT expansion. Note that this is
different from the corrections in the expansion (19) that
are suppressed by the axion mass, which in the case of the
QCD axion scales as m2

a ∝ f4π=f2. While (18) results in a
repulsive potential, (20) can, in principle, have either sign,
but is universally attractive for a QCD axion only interacting
with gluons. The effect of the shift-symmetry breaking
interaction—to leading order—does not affect leptons,
because Feynman diagrams in Figs. 1(c) and 1(d) do not
contribute to the leading term in (20).
Fifth-force constraints on QCD axions.—In the follow-

ing, we demonstrate the effect of the shift-symmetry
breaking interaction on the sensitivity of experiments
searching for a fifth force. We consider the simplest
QCD axion model with a single coupling to gluons
described by the Wilson coefficient cGG, keeping its mass
ma a free parameter. Bounds from atomic and molecular
spectroscopy are not substantially changed by the inclusion
of the higher-order operators (6) because the leading effects
only affect nucleon-nucleon interactions. We instead con-
sider experiments probing macroscopic, spin-independent
forces such as the one described in [16], in which the
difference in the force between a sphere and a plate of two
different materials is probed, which minimizes the con-
tribution from the Casimir effect. The accuracy in meas-
uring this force (or absence thereof) has been used in [34] to
obtain the best limits on the pseudoscalar-to-nucleon
coupling in the meV–eV mass range of the pseudoscalar
for an experiment of this type. The corresponding differ-
ential force between a sphere of radius R and a disk with

thickness D with Au and Si coating placed at a distance l
from the sphere reads

ΔFðlÞ ¼ 2πCs½CAu − CSi�
Z

2Rþl

l
dz1½R2 − ðz1 − R − lÞ2�

×
∂

∂z1

Z
0

−D
dz2

Z
∞

0

ρdρV
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðz1 − z2Þ2
q �

;

ð21Þ

where we factor out the coupling constants such that
VðrÞ ¼ c2ψ1

c2ψ2
VðrÞ in the case of the potential derived

from the derivative interaction (18) and VspðrÞ ¼
cN1

cN2
VspðrÞ for the leading term of (20) and define the

material-dependent prefactors in terms of the axion cou-
plings to nucleons (13),

CX ¼ ρX

�
g2p
4

ZX

mX
þ g2n

4

NX

mX

�
for ð18Þ; ð22Þ

CX ¼ ρXcN
AX

mX
for ð20Þ; ð23Þ

with density ρX, average number of protons and neutrons
AX ¼ ZX þ NX, and mean masses mX of the disk and
sphere atoms for a material X. The calculation of (21) is
lengthy but straightforward following [14,34,35] and we
give the result in Appendix B. As expected, the axion force
derived from the shift-symmetry breaking interactions
VspðrÞ grows with l compared to the force derived from
derivative interactions as ΔFsp=ΔFðlÞ ∼m2

πl2.
The resulting bounds on cGG=f are shown as a function

of the axion mass in Fig. 2. The dashed blue line is the

FIG. 2. Limits on the axion-gluon couplings cGG=f obtained
from the Casimir-less experiment [16]. The dashed blue contour
corresponds to the limit obtained using the pseudoscalar form of
the potential (15), the solid red contour corresponds to the axion
potential without shift-symmetry breaking terms (18), and the
dotted purple line corresponds to the full axion potential includ-
ing the nucleon spurion term (20).
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bound obtained by using the interaction Lagrangian in (2).
However, including the quadratic interaction terms as
shown in (3) changes the potential to the 1=r5 form in
(18), resulting in a substantially weaker bound compared to
the previous potential, as shown by the position of the solid
red line in the figure. The quadratic nucleon spurion term in
(7) generates the additional potential (20) proportional to
1=r3 at leading order. Furthermore, the coupling of this
term is not suppressed by the axion mass, unlike what one
would expect from a spurion breaking the axion shift
symmetry. As a result, this spurion term generates a bound
close to that obtained using the 1=r3 pseudoscalar potential;
this bound is shown by the dotted purple line in Fig. 2.
Importantly, this contribution to the low-energy potential is
only relevant if the external states are nucleons. As a result,
similar probes for fifth forces are only sensitive to the
leading term in the potential if they do not depend on the
axion coupling to leptons; e.g., atomic or molecular spec-
troscopy [36–41] is only sensitive to the 1=r5 contribution to
the potential, whereas measurements of cold neutron scat-
tering or bouncing neutrons are sensitive to the dominant
1=r3 part of the potential [42–46]. We will provide a more
comprehensive discussion in a companion paper [47].
Conclusions.—We identify the dominant contribution to

the low-energy potential for the macroscopic fifth force
included by axion-pair exchange for axions that—like the
QCD axion—interact with gluons and thus obtain part of
their mass from the chiral anomaly. This contribution arises
from higher-order operators of the axion Lagrangian that
would be naively expected to produce subleading effects.
We show explicitly that these operators not only generate
the most important contribution to the low-energy potential,
but result in a scaling of the nonrelativistic potential VðrÞ ∼
1=r3 as opposed to the leading term VðrÞ ∼ 1=r5 expected
from derivative interactions. Moreover, since the QCD
axion mass is generated via strong dynamics, this new
contribution is only present for interactions between
nucleons and so the nature of the shift-symmetry breaking
for an axion can be probed via the comparison of different
searches for fifth forces. We demonstrate the impact at the
example of a Casimir-less fifth-force experiment and find
an improved sensitivity of almost 5 orders of magnitude.

Appendix A.—The axion interaction with chiral
fermions ψ ¼ ψL þ ψR in the UV theory can be derived
from the Lagrangian

LUV ¼ 1

2
ψ̄i∂

↔
ψð−yψ̄LSψR þ H:c:Þ ðA1Þ

after the scalar S develops a vacuum expectation value f
such that the fermion mass is given by m ¼ yf and

S ¼ ðf þ sÞ exp
�
2i
a
f

�
; ðA2Þ

with a scalar field s and the Goldstone boson a.
Ignoring interactions of the scalar mode, the Lagrangian
reads

L ¼ 1

2
ψ̄i∂

↔
ψ −mψ̄L exp

�
2i
a
f

�
ψR þ H:c: ðA3Þ

For small a=f one can expand the exponent and obtain
interactions

L ¼ 1

2
ψ̄ i∂

↔
ψ −m

�
2i
a
f
− 2

a2

f2
þO

�
a3

f3

��
ψ̄LψR þ H:c:

ðA4Þ

Alternatively, one can rescale the fermion fields

ψL → exp

�
i
a
f

�
ψL; ψR → exp

�
−i

a
f

�
ψR ðA5Þ

and find instead the explicitly shift-invariant Lagrangian

L ¼ 1

2
ψ̄ i∂

↔
ψ −

∂μa

f
ψ̄γ5γ

μψ −mψ̄LψR þ H:c: ðA6Þ

This leads to a nonrelativistic potential scaling like 1=r5.
Often this interaction term is rewritten using the
equation of motion of the fermion fields,

L ¼ 1

2
ψ̄ i∂

↔
ψ −

a
f

�
ψ̄γ5⃗∂ψ þ ψ̄γ5⃖∂ψ

�
−mψ̄LψR þ H:c:

¼ 1

2
ψ̄ i∂

↔
ψ þ 2im

a
f
ψ̄γ5ψ −mψ̄LψR þ H:c: ðA7Þ

This form of the Lagrangian leads to different Feynman
rules and, for example, the nonrelativistic potential from
two axion exchange has a 1=r3 dependence, because
higher-order terms are not captured by the naive
application of the equations of motion. Instead, we
rescale the fermion fields with field-dependent factors
that are linear in the axion field L;R ∝ a and factors
that are quadratic in the axion fields N; S ∝ a2 such that

ψL þ LψL þ NψL; ðA8Þ

ψR þ RψR þ SψR: ðA9Þ

We then find, to linear order in a,
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LðaÞ ¼ 1

2
ðLþ L†Þψ̄Li∂

↔
ψL þ 1

2
ð∂μL − ∂μL†Þψ̄LiγμψL

þ 1

2
ðRþ R†Þψ̄Ri∂

↔
ψR þ 1

2
ð∂μR − ∂μR†Þψ̄RiγμψR

−
a
f

�
ψ̄γ5⃗∂ψ þ ψ̄γ5⃖∂ψ

�

−mðL† þ RÞψ̄LψR −mðLþ R†Þψ̄RψL: ðA10Þ

Applying the equations of motions for the axion is
equivalent to the choice

L ¼ ia=f and R ¼ −ia=f: ðA11Þ

For this choice, the first term vanishes and the terms in
lines 2 and 3 in (A10) cancel and the remaining term
reads

LðaÞ ¼ 2mi
a
f
ψγ5ψ ; ðA12Þ

in agreement with (A7). Now we consistently shift the
terms quadratic in a and find

Lða2Þ ¼ 1

2
ðLL† þN þN†Þψ̄Li∂

↔
ψL þ

1

2
ðL†

∂μL−L∂μL† þ ∂μN − ∂μN†Þψ̄LiγμψL þ
1

2
ðRR† þ Sþ S†Þψ̄Ri∂

↔
ψR

þ 1

2
ðR†

∂μR−R∂μR† þ ∂μS− ∂μS†Þψ̄RiγμψR þ
a
f

h
ðLþL†Þ

�
ψ̄ L⃗∂ψL þ ψ̄ L⃖∂ψL

�
þ ð∂μLþ ∂μL†Þψ̄Lγ

μψL

− ðRþR†Þ
�
ψ̄ R⃗∂ψR þ ψ̄ R⃖∂ψR

�
− ð∂μRþ ∂μR†Þψ̄Rγ

μψR

i
−mðLR† þN† þ SÞψ̄RψL −mðRL† þ S† þNÞψ̄RψL:

ðA13Þ

Setting

2N ¼ 2S ¼ −L†L ¼ −R†R ¼ −
a2

f2
ðA14Þ

with R and L defined in (A11) cancels the terms with
derivative interactions and yields

Lða2Þ ¼ 2m
a2

f2
ψ̄ψ : ðA15Þ

Including this operator in the calculation of the non-
relativistic potential cancels terms that scale as 1=r3 and
reproduces the 1=r5 potential obtained from the explicitly
scale-invariant form (A6).

Appendix B.—Integrating (21) for the potential (18)
and (20) yields, respectively,

ΔFðlÞ ¼ 3

64πma

1

f4
jCAu − CSij

×
Z

∞

1

du

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 1

p

u3
X
l

ClΨðmauÞ; ðB1Þ

ΔFspðlÞ¼
1

32πma

1

f4
jCAu−CSij

Z
∞

1

du

×

ffiffiffiffiffiffiffiffiffiffiffiffi
u2−1

p

u3
e−2maulð1−e−2mauDÞXðmauÞ; ðB2Þ

where l is the separation between the sphere and the
surface of the disk with thickness D. The coefficients
CX are given by (22) and (23), respectively, and the

function XðxÞ is given by Eq. (11) in [34]. The
experiment measured the differential force between
either Au or Si sectors of a rotating disk.
The sphere is made of sapphire (sa.) coated with Au and

Cr, and the sum in (B1) is

X
l

ClΨðxÞ¼CAuΨðx;R;rÞ

þðCCr−CAuÞΨðx;R−dAu;rþdAuÞ
þðCsa:−CCrÞ
×Ψðx;R−dAu−dCr;rþdAuþdCrÞ; ðB3Þ

where R is the radius of the sphere, dAu and dCr are the
thicknesses of the gold and chrome coatings, and the
function

Ψðx;Rl; rlÞ ¼ 8x4
Z

2Rlþrl

rl

dz½R2
l − ðRl þ rl − zÞ2�

×

	
−
e−2xz

2xz

�
1 −

z
Dþ z

e−2xD
�

þ Ei½−2xðDþ zÞ� − Ei½−2xz�


; ðB4Þ

where EiðxÞ is the exponential integral function.
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