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1 Introduction

Quiver gauge theories describing the low energy dynamics on D-branes probing singularities
have been extensively studied for more than 25 years, in the context of the AdS/CFT
correspondence (starting from [1–4]) and for model building in string theory (see e.g. [5, 6]).
Engineering strongly coupled field theories in this way allows to geometrize many of their
properties, which are harder to access directly in field theory. Conversely, understanding the
field theories from first principles can shed light on aspects of the associated geometry.

The correspondence is best understood when the geometry has restricted holonomy so
that the worldvolume theory preserves supersymmetry [3], ensuring greater theoretical control.
In this paper we focus on conical Gorenstein 3-fold singularities Y which admit a Ricci-flat
Kähler metric with SU(3) holonomy, which we refer to as Calabi-Yau threefold (CY3) cones
with a common abuse of terminology. The low energy worldvolume theory on Dp-branes
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(p ≤ 3) probing Y × R3−p enjoys 4d N = 1 SUSY if p = 3 (in which case the superalgebra
extends to the superconformal algebra SU(2, 2|1)) or its dimensional reductions 3d N = 2,
2d N = (2, 2), etc, if p < 3. The p = 3 case provides AdS5/CFT4 dual pairs, and is the
language in which the paper is written. However, most of the analysis is p-independent, and
an important motivation for revisiting this setup comes from the p = 0 case, which provides
BPS quivers for 5d N = 1 SCFTs compactified on S1 (4d Kaluza-Klein theories) [7]. A key
aspect of the correspondence is that the moduli space of supersymmetric vacua of the field
theory on N regular D-branes probing a conical CY3 Y contains a component, the so called
geometric branch, which is isomorphic to the configuration space of N points on Y.

The situation is under even better control if the singularity is toric, in which case the field
theory on regular D-branes enjoys (at least) a mesonic U(1)2 symmetry in addition to the
U(1)R symmetry, and is known as a toric quiver gauge theory [4, 8]. The maps between toric
geometry and toric quiver gauge theories are completely understood by exploiting the graph-
theoretic properties of bipartite graphs which describe twice T-dual brane configurations to
D-branes at toric singularities, known as brane tilings [9–12].

In this paper we consider toric geometries with non-isolated singularities, which are
necessarily of type A. When a regular D-brane reaches an Ak−1 singularity, it can marginally
decay into k fractional D-branes of so called N = 2 type, which can separately probe this
one-complex-dimensional singular locus [1, 13, 14]. In the field theory, this is reflected in
an additional branch of the moduli space of vacua that intersects the geometric branch at
each of its non-isolated singularities. In this work we dub this branch an N = 2 Coulomb
branch for its analogy to the Coulomb branch of 4d N = 2 theories.

The non-isolated singularity of Y has an interesting and sometimes underappreciated role
in the geometric engineering of 5d SCFTs via M-theory on R1,4 × Y [15–17], or equivalently
via webs of fivebranes in type IIB string theory [18], where an Ak−1 singularity translates into
k parallel semi-infinite fivebranes (see [19] for the relation between the two constructions).
M-theory on an Ak−1 singularity engineers 7d SYM with gauge Lie algebra su(k) [20, 21].
On the other hand, M-theory on a CY3 cone Y with an isolated singularity engineers a
5d SCFT [16]. If Y contains both isolated and non-isolated singularities, M-theory on Y
engineers a 5d SCFT coupled to a 7d SYM theory as a codimension two half-BPS defect:
in particular, an SU(k) global symmetry of the 5d SCFT couples to the su(k) gauge field
in the bulk. Further compactifying on a circle, so that the background is dual to type
IIA string theory on R1,3 × Y, engineers a Kaluza-Klein theory. The BPS quiver of this
Kaluza-Klein theory is nothing but the worldline theory on regular or fractional D0-branes
(p = 0 above) [7]. Crucially, the BPS quiver with superpotential is sensitive not only to
the singularity at the apex of Y, but also to any non-isolated singularity that intersects
it. Therefore it is a BPS quiver for the circle compactification of the full coupled 5d-7d
system, not just the 5d SCFT. The Hilbert space of BPS particles in a given charge sector,
which is a quantization of the moduli space of semi-stable quiver representations with given
dimension vector, knows about the higher-dimensional degrees of freedom through quiver
representations that correspond to N = 2 Coulomb branch vacua.

For the purpose of engineering purely 5d SCFTs not coupled to higher dimensional degrees
of freedom, it is therefore desirable to deform the geometry Y and lift any non-isolated
singularities. Such deformations break the toric U(1)3 symmetry to a proper subgroup,
which should contain U(1) for the field theory on D-brane probes to have a continuous
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R-symmetry (a necessary condition for superconformal invariance if p = 3). Such general
non-toric deformations of toric quiver gauge theories were studied in [22].

In this paper we are interested in non-toric deformations of a special type. We construct
one-parameter families of deformations of toric quiver gauge theories, which preserve U(1)2

symmetry for generic values of the deformation parameter µ ∈ C∪{∞} ∼= P1, and interpolate
between two toric models at µ = 0 and µ = ∞ respectively. We then study how the
deformation of the quiver gauge theory impacts its moduli space of vacua and is reflected
in the geometry probed by regular D-branes. For definiteness, in this paper we will focus
on toric geometries which are affine cones over weak toric del Pezzo surfaces, or complex
cones over pseudo-del Pezzo surfaces in physics parlance [23], corresponding to reflexive toric
diagrams.1 We turn on a superpotential deformation in one-to-one correspondence with a
zig-zag path η, a path in the brane tiling which follows the edges and turns maximally left
(resp. right) at white (resp. left) nodes [26, 27]. This corresponds to an outward pointing
normal vector to an edge of the toric diagram, and to an external leg in the dual (p, q)-web.
The superpotential is deformed by δW = µOη, where Oη is the difference of the two mesonic
chiral operators represented by the loops which wind oppositely to the chosen zig-zag path
in the tiling, on either side of it. We dub this a zig-zag deformation.

The zig-zag deformation is non-trivial in the chiral ring if and only if the chosen zig-zag
path is parallel to other zig-zag paths in the tiling, signalling a non-isolated singularity in
the geometry. In such cases, the two mesonic operators entering Oη are N = 2 Coulomb
moduli of the undeformed toric quiver gauge theory, which are lifted by the deformation. At
the same time, the geometric branch of the abelian theory on the worldvolume of a regular
D-brane is deformed, lifting (partially or fully) the non-isolated singularity.

We study the resulting deformed geometry and show that a new toric geometry arises
as µ → ∞, whose toric diagram is a mutation of the toric diagram of the µ = 0 model. If
the chosen zig-zag operator has length 4, the µ = ∞ model is described by a new brane
tiling obtained from brane tiling of the µ = 0 model by a zig-zag move that reverses the
chosen zig-zag, generalizing the observation of [28] for mass deformations. Equivalently, the
µ =∞ brane tiling can be obtained from the µ = 0 brane tiling by applying specular duality,
followed by a toric Seiberg duality on the face dual to the chosen zig-zag, and then applying
specular duality again. This is in agreement with [29], which related mutations of generalized
toric polytopes (GTPs) [30, 31] to mutations of twin quivers. We show that this matches
precisely the field theory analysis, where we turn on the zig-zag deformation of the original
toric model, integrate out any massive fields, and find field redefinitions to recover the quiver
and toric superpotential of a new toric model as µ→∞. For µ large but finite, the µ→∞
model is also deformed by a (possibly trivial) zig-zag deformation 1

µO
′
η′ , where η′ is the

reversed zig-zag. See figure 14 for the general idea. For the toric del Pezzo theories that we
study in this paper, zig-zag deformations define RG flows between 4d N = 1 toric SCFTs,
where the IR model has fewer N = 2 Coulomb moduli than the IR model and the geometry
has less non-isolated singularity. In terms of the BPS quivers of 5d rank one En≤5 SCFTs
(coupled to 7d SYM), each flow removes the coupling to some higher dimensional degrees
of freedom. See figure 1 for a summary of the flows.

1The ideas apply more generally and will be explored [24] and developed [25] further elsewhere.
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Figure 1. Toric-to-toric 4d N = 1 RG flows connecting geometries with reflexive toric diagrams via
zig-zag deformations. Rows and columns are organized by the number of nodes G in the quiver and
the number of extremal points ne in the polytope, following [32]. Links in the arrows point to details
in appendix A.
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Finally, we observe (and test for arbitrary resolution parameters) that the triangulated
toric diagrams of the µ = 0 and µ =∞ geometries are related by a mutation of a triangulated
polytope (the untriangulated version was considered in [29]). As already pointed out in [29, 33],
this mutation is dual to reversing a fivebrane in the (p, q)-web, by making it terminate on a
7-brane, sliding the 7-brane along the line of the five-brane keeping track of Hanany-Witten
transitions, and finally rotating the SL(2,Z) monodromy cut so that it disappears in the
limit. In this paper we have tested this observation in detail against purely field theoretical
results for arbitrary FI parameters, and keeping track of the superpotential. We will derive
this fact from string dualities in [25], where the ideas of this paper will be generalized and
put in a broader mathematical context.2

We note that upon adding orientifolds, some of the non-toric mass deformations of toric
models discussed in [28] have been shown to lead to N = 1 conformal dualities [36–40].
It would be interesting to study the interplay of orientifolds and the more general zig-zag
deformations considered in this paper to search for new families of conformal dualities.3

The paper is organized as follows. Section 2 reviews generalities of toric quiver gauge
theories and brane tilings. In section 3 we introduce zig-zag deformations and study them
for toric quiver gauge theories on a regular D-brane probing local toric pseudo del Pezzo
surfaces. We analyze the chiral ring of the zig-zag deformed theory, identify the new toric
model in the µ → ∞ limit, and describe how the toric endpoints of zig-zag deformations
are related in terms of brane tilings and specular and toric duality. Finally, in section 4 we
study the interplay of the zig-zag deformation and FI parameters, showing that the field
theory and quiver representation theory analysis are in precise agreement with the mutation
of (triangulated) lattice polytopes and the dual Hanany-Witten move for the 5-brane web
with a 7-brane. We also include two appendices for self-containedness: appendix A lists the
details of all the zig-zag deformations of toric del Pezzo models and the field redefinitions
needed to manifest the toric symmetry in the µ→∞ limit; appendix B reviews generalities
of quiver representation theory used in section 4. A pdf document entitled “Kähler chamber
mapping of PdP3a to PdP3c phase A”, that details the interplay of zig-zag deformations and
resolutions, is available in the supplementary material attached to this paper.

Note added. After this manuscript was completed, an interesting paper appeared which
uses a local piece of our zig-zag move in the brane tiling discussed in this paper (in fact,
of the move of [28]) to describe how the insertion of certain defects in the 4d N = 2 KK
theory modifies its BPS quiver and superpotential. It would be interesting to work out the
relation between the two constructions.

2 Toric quiver gauge theories and brane tilings

2.1 Brane tiling dictionary

A brane tiling [9, 10, 41] is a bipartite graph on a 2-torus T2 which encodes quiver and
superpotential of a so toric supersymmetric gauge theory with four supercharges (4d N = 1

2Several of the results of this paper and of the forthcoming work [25] have been presented in a number of
talks over the last two years [34, 35].

3SC thanks Salvo Mancani for discussions.
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and dimensional reductions thereof). This is the low energy field theory on the worldvolume
of N D-branes probing a CY3 cone Y with U(1)3 isometry. The graph consists of 0-
dimensional vertices (or nodes), 1-dimensional edges connecting a pair of vertices, and
2-dimensional faces bounded by edges. The graph is bipartite, meaning that vertices are
coloured black or white and edges connect vertices of different colours. The colouring encodes
a counterclockwise/clockwise ordering of the edges incident to a vertex.

The data of a brane tiling and its field theory interpretation are given by:

• Faces correspond to U(N)i group factors,4 for i ∈ {1, . . . , G}, where G denotes the
number of unitary gauge group factors (sometimes F for the number of faces).

• Edges between two faces i and j represent chiral superfields Xa
ij , which transform in

the bifundamental representation of U(N)i × U(N)j . If i = j, the chiral superfield
is in the adjoint representation. The direction of the arrow in the quiver diagram is
determined by the orientation of the distinct-colored vertices that the corresponding
edge connects to in the tiling. We write E for the number of chiral superfields/edges.

• Vertices / represent toric superpotential terms. Each superpotential term is
the single trace of the product of bifundamentals chiral superfields associated to the
incoming edges of the corresponding vertex, ordered clockwise/counter-clockwise and
with a +/− sign according to the white/black colour of the vertex.

The bipartite nature of the graph guarantees that each bifundamental chiral superfield appears
exactly once in exactly two superpotential monomials with opposite signs. This is known
as the toric condition and leads to F-term equations of the form

∂W

∂Xij
= 0 ⇒ Xj,c1 · · ·Xcr,i = Xj,d1 · · ·Xds,i , (2.1)

for two specific connected paths (c1, . . . , cr) and (d1, . . . , ds) in the brane tiling/quiver.
The dual graph of the brane tiling is the periodic quiver diagram [10]: it consists of

0-dimensional vertices (or nodes) representing unitary gauge groups, 1-dimensional directed
edges (or arrows) representing bifundamental chiral superfields, and 2-dimensional oriented
faces whose boundaries represent (positive or negative) superpotential terms. The usual quiver
graph refers only to the 1-skeleton structure and encodes the gauge group and matter content
of the gauge theory. The quiver data is encoded in the incidence matrix d ∈ MG×E(Z)
of the graph:

die =


+1 t(e) = i

−1 s(e) = i

0 else
(2.2)

4In four dimensions the low energy gauge groups are special unitary, since central U(1) factors are massive
or decoupled. Considering unitary gauge groups is nevertheless useful to study mesonic moduli space of vacua,
which we focus on in this paper. Baryonic branches can also be studied, by relating baryonic VEVs to FI
parameters (see section 4). See [42] and references therein for a comprehensive discussion.
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where t(e) and s(e) denote the nodes at the tail and head of the arrow (or directed edge)
e. In the quiver gauge theory, we associate to each edge e a chiral superfield Xe in the
bifundamental representation of U(N)t(e) × U(N)s(e). By an abuse of notation, we will
interchangeably denote a chiral superfield as Xe according to the corresponding edge in the
graph or as Xa

ij according to the nodes i = t(e) and j = s(e) it connects. The superscript
a labels the Aij bifundamentals between nodes i and j in the quiver.

Toric quiver gauge theories are generically chiral, hence there is a non-trivial condition
for cancellation of gauge anomalies. In the most general case, where the gauge group is

G =
G∏
i=1

U(Ni) , (2.3)

the four-dimensional SU(Ni) gauge anomaly cancellation5 condition reads [44]∑
j

(Aij −Aji)Nj = 0 , (2.4)

where A ∈ MG×G(Z) is the adjacency matrix of the quiver, with entry Aij counting the
number of arrows from node i to node j.

2.2 The moduli space of vacua and its components

The moduli space of supersymmetric vacuaM of a 4d N = 1 low energy quiver gauge theory
on the worldvolume of regular D3-branes consists of various components (or branches).

The first go-to tool for studying the moduli of quiver gauge theories is the master space
F [ [45–48]. The master space is a toric variety of dimension 3N + G − 1 and is defined
as the space of solutions to the F-term equations, given the chiral superfields as matrices,
quotiented by SU(N)G, since only the non-abelian part of G = U(N)G couples in the IR.
In particular, for the abelian theory on the worldvolume of a single D3-brane, F [ is the
same as the full moduli space of the low energy quiver theory, of dimension G + 2. The
master space F [ typically decomposes into multiple irreducible components: the non-trivial
top component, referred as the coherent component IrrF [, and multiple lower-dimensional
pieces, typically freely-generated.

In general, we can write the master space as

F [ = Spec
(
C[Xe1 , . . . , XeE ]

/
〈∂XW 〉

)SU(N)GC . (2.5)

ByRSU(N)GC , we mean the algebraic invariants of the ringR under the complexified non-abelian
gauge symmetry SU(N)GC = SL(N,C)G, i.e. traces (mesons) and determinants (baryons).
These invariants form the spectrum of chiral BPS operators and their vacuum expectation
values (VEVs) parametrize two components of the moduli spaces, the mesonic branch and
the baryonic branch.

If the CY3 cone Y only has an isolated singularity at the tip of the cone, the two
branches are:

5The central U(1)i ⊂ U(Ni) generically also have (mixed) gauge anomalies, which are cancelled in string
theory by Stückelberg terms that make the corresponding gauge bosons massive [42, 43]. Anomaly-free central
U(1)i factors decouple in the infrared and become non-anomalous baryonic symmetries.
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• Mesonic branch = Geometric branch Mmes =Mgeom [42, 46, 47, 49]: it describes N
regular D3-branes probing the CY3 cone Y . It is an affine variety parametrised by VEVs
of mesonic operators (henceforth often referred to as mesons), i.e. traces of products of
chiral superfields which are associated to cycles in the quiver:

Mi = tr (Xe1 · · ·Xe`) . (2.6)

In general, we have thatMgeom = SymN (Y) with dimension 3N . If N = 1,Mgeom = Y
reproduces the affine Calabi-Yau geometry, hence the name geometric branch.

• Baryonic branch Mbar [50, 51]: it describes N regular D3-branes probing the moduli
space of (partial) resolutions Ỹξ of the singular CY3 cone Y. It is parametrised by
VEVs of dibaryonic operators (or simply dibaryons) of the schematic form

Bj = det (Xe1 . . . Xem) , (2.7)

where (e1, . . . , em) are open paths in the quiver. Geometrically, the full moduli space
of vacua IrrF [ can be thought as the total space of the fibration Ỹξ over a complexified
(G− 1)-dimensiontal Kähler moduli space of Y parametrised by a vector ξ. The fibre
directions are mesonic, while the base directions are baryonic. In the gauged linear
sigma model (GLSM) that describes the toric geometry of Ỹξ, the Kähler moduli Re(ξ)
are realized by Fayet-Iliopoulos (FI) parameters.

If we gauge the central U(1)G ⊂ U(N)G, the baryonic branch disappears and the moduli
space of vacua consists of the mesonic branch only.

In this paper we are interested in Calabi-Yau cones Y which have lines of non-isolated
singularities, which are of A-type since we assume that Y is toric. Then there are additional
mesonic components of the moduli space of vacua on top of the geometric branch:

• N = 2 Coulomb branch MN=2: for each non-isolated singularity of Y, locally of
Ak−1 type, this extra mesonic component of the moduli space of vacua describes kN
N = 2 fractional D3-branes [14] probing the locus of the non-isolated Ak−1 singularity.6
For N = 1 and for each Ak−1 singularity, this branch is parametrised by VEVs of k
independent chiral mesons, which take identical VEVs on Mgeom. The intersection
of an N = 2 Coulomb branch and the geometric branch is a locus of non-isolated
singularity of the latter. A regular D3-brane on a non-isolated singularity of Y can
marginally decay into k different N = 2 fractional branes which separately probe the
singular locus. Conversely, k coincident N = 2 fractional branes of different type can
recombine into a regular D3-brane, which is free to explore the whole Calabi-Yau Y.

The full mesonic moduli space of vacua is then the union of the geometric branch and the
N = 2 Coulomb branches: Mmes =Mgeom ∪MN=2. We will use f(Mi, . . . ) ' 0 to indicate

6If Y = C2/Γ × C, with Γ ⊂ SU(2) a finite subgroup, this is literally the Coulomb branch of an N = 2
theory. The physics of the fractional branes and the geometry of this component of the moduli space of vacua
is largely determined by the local geometry of Y near the singularity, hence the name for the type of fractional
branes and for the branch of the moduli space. The latter is a misnomer, as there is no Coulomb branch for
N = 1 gauge theories, but we stick to it for the sake of brevity.
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relations in the full chiral ring, while we will use ∼ to denote relations which only hold on
the geometric component, but not on N = 2 Coulomb branches.7

In this work we focus on the worldvolume theories on a stack of N regular D3-branes,
meaning that the resulting quiver theory has Ni = N . The gauge anomaly cancellation
is thus enforced by the bipartite nature of brane tilings. We will initially be interested in
the conical geometry probed by D3-branes, which is the geometric moduli space of their
worldvolume quiver gauge theory, as well as in the N = 2 Coulomb branches associated
to non-isolated singularities of this geometry. We will use brane tilings to construct and
study non-toric deformations of Klebanov-Witten type [2], which interpolate via deformation
of complex structure between different toric Calabi-Yau geometries Y (hence geometric
branches), and lift non-isolated singularities (hence N = 2 Coulomb branches). We will also
observe the consequences for the baryonic branch by studying the effects of the deformations
on resolutions Ỹξ and volumes of holomorphic 2-cycles therein. All of this can be studied
in the abelian case Ni = N = 1, which we thus restrict to in the following. The case with
N > 1 can be recovered by appropriate symmetric products.

2.3 Fast-forward algorithm and toric diagrams

The brane tiling data can be encoded in the Kasteleyn matrix [9, 10]. This is the node-node
connectivity matrix of the bipartite graph, which also keeps track of the winding number

h(Xe) =
(
hz(Xe), hw(Xe)

)
(2.8)

of the edges. To define it we need to pick a fundamental domain and choose two primitive
1-cycles (γz, γw) on T2. By fixing the bipartite orientation of the edges to be directed from
the white to black nodes, we have that hz,w equals +1/−1 if the edge Xe crosses the cycle
γz,w in the positive/negative direction, and 0 if no crossing occurred. As a convention, we
index the row and columns of the Kasteleyn matrix as black and white nodes respectively.
Therefore, the Kasteleyn matrix takes the form

Kij(z, w) =
∑

e∈Bi∩Wj

ae z
hz(Xe) whw(Xe) , (2.9)

where Bi ∩ Wj denotes the set of tiling edges that connect to both vertices Bi and Wj ,
and ae is an edge weight.

A perfect matching pα [9, 10] (or dimer collection) is a set of edges (“dimers”) which touch
each vertex of the brane tiling exactly once. Obtaining all perfect matchings is a combinatorial
problem that can be solved via the Kasteleyn matrix: each term in the expansion of its
permanent is associated to a unique perfect matching,

permK(z, w) =
c∑

α=1
zhz(pα) whw(pα) ∏

Xe∈pα
ae , (2.10)

with the winding number given by

h(pα) =
∑

Xe∈pα
h(Xe) . (2.11)

7Note that the presence of additional components in F[ does not immediately imply N = 2 Coulomb
branches, since isolated singularities can still produce reducible master spaces.
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Keeping the ae edge weight general we can keep track of which edge e belongs to a particular
perfect matching pα (if we take all ae = 1, the permanent lists the multiplicities of the perfect
matchings for each monomial zawb.) The collection of perfect matchings is summarised in
the perfect matching matrix P ∈ ME×c(Z) [9, 10], with entries

Peα =

1 , Xe ∈ pα
0 , Xe /∈ pα

. (2.12)

The toric diagram ∆ [9, 10, 19] of the CY3 cone Y = Mgeom can be read off directly
from eq. (2.10): to each monomial zawb in the expansion we associate a lattice point (a, b).
Alternatively, the coordinates of the lattice points can also be obtained from the winding
numbers of differences of perfect matchings and a reference perfect matching. These form
the lattice points of a convex lattice polygon ∆ ⊂ Z2, which we consider modulo SL(2,Z)
transformations and lattice translations. Alternatively, the perfect matching technology
gives the toric diagram directly via the fast-forward algorithm [10] (which improves the
forward algorithm of [8, 52]):

• To each perfect matching pα we associate a field in an abelian gauged linear sigma
model (GLSM) [8, 53], which we call a perfect matching variable and also denote by
pα, with a slight abuse of notation. Expressing the bifundamentals in terms of perfect
matching variables as

Xe =
c∏

α=1
(pα)Peα (2.13)

solves the F-term equations automatically

F̄e = ∂W

∂Xe
= 0 , (2.14)

at the expense of introducing an abelian gauge symmetry that leaves each bifundamental
in (2.13) invariant. The charges of perfect matching variables under this gauge symmetry
are encoded in a charge matrix QF ∈M(c−G−2)×c(Z), defined as

QFP
T = 0 ⇒ QF = (kerP )T . (2.15)

We remark that we can bypass the brane tiling construction step and still obtain P

by grouping superpotential terms. While we lose the edge-winding information of the
fundamental domain (z = w = 1 in (2.10)), the same combinatorics that allows us to
obtain the perfect matchings is still present.

• There are D-terms for each of the U(1) factors in the quiver, which take the form

Di = −g2
i

(∑
e

die|Xe|2 − ξi

)
, (2.16)

where ξi are Fayet-Iliopoulos (FI) parameters. The D-term charge matrix QD ∈
M(G−1)×c(Z) is obtained by solving the matrix equation

QDP
T = d̂ , (2.17)
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where we define the reduced incidence matrix d̂ ∈ M(G−1)×E(Z) by subtracting all
remaining rows of d by one of the rows, e.g. d̂ie = die − dGe , i ∈ {1, . . . , G− 1}. This
matrix encodes the charges of the bifundamentals under the faithfully acting gauge
group of the quiver U(1)G/U(1).

• We can combine QF and QD in a total charge matrix Qt ∈M(c−3)×c(Z)

Qt =
(
QF
QD

)
. (2.18)

Then, the 3× c matrix

Gt = (kerQt)T (2.19)

gives a collection of c lattice points in Z3 representing the charges of the perfect matching
variables under the U(1)3 toric symmetries. For the model to describe D3-branes probing
a toric Calabi-Yau the lattice points must be coplanar, so that it can be projectivized
to obtain the toric diagram ∆ ⊂ Z2.

The geometric branch of the moduli space Mgeom of the 4d N = 1 supersymmetric
gauge theory with abelian gauge group U(1)G coincides with the classical moduli space
of the GLSM introduced above. This is the Kähler quotient by the abelian gauge group
with the total charge matrix Qt

Mgeom = Cc
//

U(1)c−3
Qt

(2.20)

at level ξ = 0, which results in a toric CY3 cone Y . We stress that while the perfect matching
technology is very useful to extract the geometric branch, it does not provide a general
solution of the F -term equations and does not capture N = 2 Coulomb branches.

2.4 Zig-zag paths

A zig-zag path η is a special type of closed oriented path in a brane tiling, which forms
a homology cycle on T2 [27]. By definition, a zig-zag path follows the edges of the brane
tiling, making a maximal left turn at each white node and a maximal right turn at each
black node, until the path closes in T 2. A convenient way to depict a zig-zag path is to
deform it slightly so that it crosses in the middle each of the edges that it follows, keeping
the black vertex on the left and the white vertex on the right as we do when we go from
the tiling to the dual periodic quiver. From the description above, we can work out how
a brane tiling edge is oriented regarding a given zig-zag η: we define a zig to be an edge
that goes from a black to white node along η, otherwise we call it a zag. A given edge is
exactly a zig and a zag of two zig-zag paths.

The zig-zag paths form a collection of loops in T 2, with winding numbers h(ηi) in terms
of the homology basis of the reference fundamental domain, similar to eq. (2.11). From these
we can reconstruct the data of the singular toric geometry: winding numbers of zig-zag paths
form a set of vectors in Z2, which represent the outward pointing normals of edges in the
toric diagram (compare figure 2(b) with figure 2(a)).
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(b)
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Figure 2. Model PdP3c Phase B [32]: (a) brane tiling decorated with zig-zag paths; (b) toric diagram
with normal vectors (p, q) associated to zig-zags; (c) quiver diagram.

←→

Figure 3. Toric (Seiberg) duality as an operation on the brane tiling. Coloured arrows represent
chiral superfield products. Often, one can integrate out massive fields by shrinking pairs of edges
which share a bivalent vertex.

2.5 Toric (Seiberg) duality and specular duality of brane tilings

Often, different quiver gauge theories, represented by different brane tilings, are related by
a so called toric duality [54, 55]. This is just a manifestation of N = 1 Seiberg duality [56]
for theories with toric moduli spaces. A Seiberg duality on a quiver node of rank Nc defines
a mutation to a new (dual) node of rank Nf − Nc, with Nf = ∑

i 6=cNiAic = ∑
j 6=cAcjNj

guaranteed by the gauge anomaly cancellation. In general, Seiberg duality relates an infinite
tree of dual quiver gauge theories by allowing the mutation of any sequence of nodes in
the quiver [57]. To ensure that the Seiberg dual model is also toric, the ranks Ni = N of
the gauge groups in the worldvolume theory of N regular D3-branes probing a toric CY
3-fold singularity must be unchanged. The mutated node i that obeys this condition has
Nf = 2N and corresponds to a square in the brane tiling. The result of Seiberg duality on
square faces is graphically represented in figure 3.
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←→

Figure 4. Untwisting map, followed by the identification of punctures with gauge groups.

Toric duality relates different brane tilings with identical mesonic moduli space Mmes.
The associated toric diagrams are GL(2,Z) equivalent. However, the multiplicities of internal
points are not the same and this leads to a different IrrF [ due to anomalous U(1) baryonic
symmetries. These become equivalent if we restrict to non-anomalous charges [48]. Toric
dual brane tilings are referred to as toric phases of the same geometry Y.

Specular duality [12, 58] is instead an application of mirror symmetry to brane tilings. It
is a correspondence between a brane tiling on T2 and a brane tiling defined on the mirror
curve Σ of the toric 3-fold Y. A toric Y, which is specified by a convex lattice polytope
∆ ⊂ Z2, has a mirror geometry W defined by the double fibration over the Z plane,

Z = P (z, w) :=
∑

(p,q)∈∆
cp,qz

pwq

Z = uv ,

(2.21)

for z, w ∈ C× and u, v ∈ C. The complex coefficients cp,q parameterize the complex structure
deformations of W and are mirror dual to the Kähler moduli of Y [59]. The mirror curve
ΣZ is defined by the first equation P (z, w) − Z = 0 and encodes all the toric geometry
information of Y through the Newton polynomial P (z, w) of ∆.

The fibre at the origin, P (z, w) = 0, which we denote simply by Σ, is of particular
relevance as it can be related to the brane tiling on T2 via the untwisting map [12], exemplified
graphically by figure 4.

In the untwisting map, the number of edges and vertices in the tiling remain the same.
A given edge Xab crossed by a zig ηi and a zag ηj is relabeled as Xij . The map acts on
the boundary of a face (gauge group U(N)a), turning it into a zig-zag path η̃a, which has
non-trivial homology on the new tiling. On the other hand, the original zig-zag paths ηi
become closed polygon cycles that wind around punctures of γi of the Riemann surface Σ.
The number of punctures of ΣZ is given by the number of external points B of ∆, which is
the same as the number of zig-zag paths. The untwisting map leads to the union of closed
polygon cycles winding around punctures γi of Σ, usually referred as a shiver. By mapping
γi to gauge groups U(N)i we obtain a consistent tiling. This is summarized in table 1.

The specular duality exchanges B zig-zag paths with G face boundaries and vice versa,
while keeping the number of nodes and edges in the tiling. From Pick’s theorem, G =
2 Area(∆) = B + 2I − 2, it is easy to show that

g(Σ) = g(T2)− B −G
2 = I , (2.22)
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brane tiling on T2 brane tiling on Σ
zig-zag path ηi face/gauge group U(N)i
face/gauge group U(N)a zig-zag path η̃a
node/term wk, bk node/term wk, bk

edge/field Xab edge/field Xij

Table 1. Specular duality mapping.

i.e. the new consistent tiling is embedded in a Riemann surface of genus equal to the number
of internal points I in the toric diagram ∆ of the original model. In this paper we restrict
to models with reflexive toric diagrams, with g(T2) = g(Σ) = 1. This set is closed under
specular duality. See [58] for the full web of duals for quiver gauge theories describing
(pseudo-)del Pezzo geometries.

3 Zig-zag deformations of toric (pseudo) del Pezzo theories

The focus of this work is to classify and study a special class of superpotential deformations
which relate worldvolume theories of D3-branes probing local toric (pseudo) del Pezzo
geometries [23], which have reflexive toric diagrams [32]. To do so, we perform a series of
operations on the brane tiling, which encodes the effect of relevant (or marginal, in one case)
superpotential deformations. The deformation violates the toric condition, breaking the U(1)3

mesonic symmetry to a U(1)2 subgroup. The extra term δW in the deformed superpotential

Wdef = W + δW (3.1)

have UV superconformal R-charge Rsc [δW ] ≤ 2 so that the deformation is relevant or
marginal. We are mostly interested in special deformations which have an extra emergent
U(1) symmetry in the infrared, restoring the full toric U(1)3 symmetry.

We present a general framework for deformations of brane tiling models by an operator
Oη fully defined by a zig-zag path η. We call Oη a zig-zag operator and the superpotential
deformation a zig-zag deformation. Firstly, we will work through some examples of relevant
deformations of this type by manipulating the gauge theory, integrating out any fields which
become massive after the deformation and finding field redefinitions which lead to a new
toric superpotential. We will also give an interpretation of the zig-zag deformation in terms
of brane tilings, extending [28], as well as analyze it from the perspective of the chiral ring
and the moduli space of vacua. Finally, we will present the main argument, which holds
for all Oη of zig-zag paths η of length 4. This is verified for all reflexive geometries. The
full details can be found in appendix A.

3.1 Zig-zag operator

The chiral ring of mesonic operators, and the mesonic branch of the moduli space of vacua
which is obtained by replacing chiral operators by their VEVs, are important for finding
the operators that trigger deformations that lead to new toric models. We reviewed in the
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Figure 5. Tiling of PdP3c phase B, focusing on the two parallel zig-zag paths and N = 2 fractional
branes strips associated to the most relevant (lowest Rsc) zigzag deformation. The red edge, X2

53,
indicates the F-term equation that relates the two non-zero winding mesons of the strip in the chiral
ring, i.e. X31X15X

1
53 ' X34X45X

1
53.

previous section the notions of geometric branch of the moduli space, which is isomorphic to
the geometry Y probed by a regular brane, and of N = 2 Coulomb branches emanating from
loci of non-isolated singularities of Y, which are probed by N = 2 fractional branes.

In the brane tiling, N = 2 fractional branes are associated to strips of faces in the tiling
bounded by zig-zag paths with the same homology class [14]. If Y has a non-isolated Ak
singularity (k ≥ 1), there is a subset of zig-zags {η0, η1, . . . , ηk} in the same homology class,
which divide the brane tiling into k+ 1 strips, corresponding to k+ 1 N = 2 fractional branes
that a regular brane can split into. For each strip, we have a mesonic operator in the chiral
ring, which is a loop in the tiling with opposite winding numbers to the zig-zag paths at the
boundary of the strip. In all the tilings we consider (and presumably in general) it is always
possible to find a place along the strip where it is exactly one face wide. Taking that face
as a start and end point of a path winding along the strip, and using that homotopic open
paths are F-term equivalent [60], it follows that for each strip there is exactly one meson
generator in the chiral ring with mesonic charges equal and opposite to the winding numbers
of the boundary zig-zags. Thus, for each Ak singularity, there are k + 1 inequivalent mesons
{M0,M1, . . . ,Mk} in the chiral ring, since by the zig-zag path construction there are no
F-terms connecting them. This is exemplified in figure 5.

For each zig-zag path separating two strips, say η, there are two inequivalent mesonic
generators OLη 6' ORη in the chiral ring which have the same charges:

OLη = Xei1
· · ·Xeir , ORη = Xej1

· · ·Xejs , (3.2)

where cL = ei1 · · · eir and cR = ej1 · · · ejs correspond to the 1-cycles in the tiling running
through all the edges on the immediate left and right sides of the oriented zig-zag path η. The
mesonic operators OLηj and O

R
ηj take equal VEV in the geometric branchMgeom (we write

OLηj ∼ O
R
ηj ), but different VEVs in an N = 2 Coulomb branch MN=2 (hence OLηj 6' O

R
ηj ).

Additionally, for a set of zig-zag paths in the same homology class {η0, η1, . . . , ηk}, ordered by

– 15 –



J
H
E
P
0
5
(
2
0
2
4
)
1
1
4

adjacency in the brane tiling, we have ORηj ' O
L
ηj+1 ('Mj+1). These two chiral mesons can

be forced to become equivalent in the chiral ring by turning on a superpotential deformation

δWη = µ
(
OLη −ORη

)
≡ µOη . (3.3)

We remark that the zig-zag operator Oη can be written as

Oη ≡
1∏

k=n

∂2W

∂η2k∂η2k−1
− (−1)n

1∏
k=n

∂2W

∂η2k+1∂η2k
, (3.4)

where ηi = η(i mod 2n) are the 2n chiral fields that represent the zig-zag closed path. In this
definition we assume that η1 is an edge that goes from a black to white node along η. The
operation ∂

∂ηi
is a cyclic derivative with respect to paths in the quiver, defined as

∂

∂Xei

Tr(Xe1 . . . Xen) = Xei+1 . . . XenXe1 . . . Xei−1 ,

∂

∂Xei

Xe1 . . . Xen = Xei+1 . . . Xei−1 if i = 1, n ,
(3.5)

otherwise undefined. The (−1)n factor on eq. (3.4) takes into account that the right-side
second derivative acts on black nodes in the tiling. Note that the chiral mesons defining
Oη are oriented in the opposite direction to η.

In a theory with four supercharges, a chiral operator O which acquires a VEV in the
full supersymmetric moduli space cannot be nilpotent in the chiral ring, because VEVs
of chiral operators factorize. For a theory with a U(1)R symmetry and a superpotential
Wdef ≡ W + δW ≡ W + µO, where ∂

∂µW = 0, one can show that〈
∂

∂µ
Wdef

〉
= 〈O〉 = 0 , (3.6)

where 〈·〉 is the expectation value in a supersymmetric vacuum. In the chiral ring of the
deformed theory the operator O must be nilpotent, i.e. On ' 0 for some nilpotency index
n. This argument was made for SCFTs with marginal deformations in [61], but it extends
to any theory with a U(1)R preserving deformation, marginal or not.

In our case, we have that
〈
OLη
〉

=
〈
ORη

〉
after the deformation, some N = 2 fractional

brane moduli are lifted, and the order of non-isolated Ak singularity decreases. For the toric
theories that we study in this paper, the deformed F-terms force OLη ' ORη in the chiral
ring, which means that the nilpotency index is 1.

3.2 Mesonic moduli from chiral rings

In this section we consider the mesonic branch of the moduli space Mmes, hence we take
abelian gauge group U(1)G with vanishing FI parameters, and we focus in particular on
its geometric component Mgeom, which describes the Calabi-Yau cone Y. Since we are
interested in deformations that violate toricity, we will not use the fast-forward algorithm or
plethystics [47, 62], and instead derive the algebraic description explicitly. For this description
it is convenient to study the parent space obtained by relaxing the D-term constraints, i.e. the
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master space F [ of the abelian theory [45–48]. Geometrically, this is a non-compact CYG+2
cone, which consists of 3-dimensional resolved Calabi-Yau cones Ỹξ fibered over a (G− 1)-
dimensional base space parameterized by FI parameters ξ (with ∑G

i=1 ξi = 0). The fiber at
ξ = 0 is the singular cone Y . Algebraically, the master space is described by the zero locus of
a set of homogeneous polynomials in an ambient affine space. For N = 1, eq. (2.5) is simply

F [ = Spec
(
k[Xe1 , . . . , XeE ]/〈∂XW 〉

)
, (3.7)

where k = C or k = C[µ±], for a deformation parameter µ.
To obtain the mesonic moduli we still need to quotient by G = U(1)G. We will do so

by constructing the chiral ring of the abelian theory, i.e. the quotient k[Mc1 , . . . ,Mcs ]/Ichiral
of the polynomial ring of a finite set of mesonic generators {Mc}, modulo the chiral ideal
Ichiral. The ideal Ichiral captures F-term equations in the GC-invariant sector of the master
space coordinate ring k[Xe1 , . . . , XeE ]/〈∂XW 〉. The chiral ring can be obtain via

Ichiral = ker
(
ΦW : k[Mc1 , . . . ,Mcs ]→ k[Xe1 , . . . , XeE ]/〈∂XW 〉

)
, (3.8)

where the homomorphism ΦW is trivially constructed by assigning a mesonic generator Mc

(no relations) to a cycle c = e1e2 · · · en in the quiver

ΦW (Mc) = Xe1Xe2 . . . Xen . (3.9)

IfW = 0, the image im(ΦW ) is just the ring of GC-invariants k[Xe1 , . . . , XeE ]GC and ker(ΦW ) =
Ichiral consists of relations due to compositions of cycles, which follow purely from gauge
invariance. In the general case, ΦW is trivially defined by the inclusion k[Xe1 , . . . , XeE ]GC ↪→
k[Xe1 , . . . , XeE ], mapping generators to quiver cycles that descend to equivalence classes in
im(ΦW ) ( k[Xe1 , . . . , XeE ]/〈∂XW 〉. The kernel8 of ΦW is an ideal Ichiral that contains all
the relations between cycles in the abelian quiver up to F-terms. Alternatively, this can be
computed via the elimination of chiral superfield variables {Xe} in an ideal composed of the
F-term relations and the map ΦW that encodes the complexified gauge group orbits, sitting
in the larger base ring k[Mc1 , . . . ,Mcs , Xe1 , . . . , XeE ], i.e.

Ichiral = 〈∂XW,Mc1 − ΦW (Mc1), . . . ,Mcs − ΦW (Mcs)〉 ∩ k[Mc1 , . . . ,Mcs ] . (3.10)

This construction is particularly useful if the toric CY3 cone Y has lines of non-isolated
Ak−1 singularities. As we reviewed, in this case the moduli space includes additional N = 2
Coulomb branches, which account for the regular D3-brane splitting into N = 2 fractional
D3-branes which separately probe the locus of non-isolated singularities. For this reason,
the variety associated to the chiral ring k[Mi]/Ichiral may be the union of several irreducible
components, including the three-foldMgeom = Y and several other varieties. These additional
components can be detected via the primary decomposition

Ichiral = Igeom ∩ J1 ∩ · · · ∩ J` , (3.11)

8This can be easily obtain via computational algebraic geometry software, e.g. Macaulay2 [63].
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where the top non-trivial component Igeom is denoted as the geometric ideal. Generally,9 each
component Ji is associated to a single non-isolated Ak−1 singularity, which is freely generated
by k chiral mesons with no relations. These give rise to affine varieties Ck, which intersect Y
at 1-dimensional singular loci. We can identify the geometric branch with the quotient ring
associated to the 3-dimensional non-trivial component of the primary decomposition

Mgeom = Spec
(
k[Mc1 , . . . ,Mcs ]/Igeom

)
. (3.12)

This algorithm is a distilled version of the affine GIT quotient [42, 64, 65], adapted to
quiver gauge theories. We crucially used the fact that for a quiver with G = U(1)G the
typical unruliness of the chiral ring is kept in check by the commutativity and finiteness
of the mesonic generators.

3.3 RG flows between toric del Pezzos

The superpotential deformed by relevant terms violates the toric condition and breaks the
mesonic and R-symmetries down to a U(1)2 subgroup. We will be mostly interested in RG
flows with toric endpoints, namely with an emergent U(1)3 symmetry in the IR (we will
discuss an IR endpoint which is a marginal deformation of a toric model in section 3.4). By
construction, the deformation does not change the number of non-anomalous and anomalous
baryonic symmetries (of the SU(N)G theory). If the IR endpoint of the RG flow is toric,
its toric diagram must have the same number of internal points I and external points E as
the toric diagram of the undeformed UV theory, since the rank of the anomalous baryonic
symmetry is 2I and the rank of the non-anomalous baryonic symmetry is E − 3 for toric
models [47, 51, 66, 67]. In geometric terms, the deformation does not change the degree
of the del Pezzo surface.

We first integrate out any massive bifundamentals appearing in superpotential terms
of the form µXabXba, by imposing the F-term equations

∂Wdef
∂(Xab, Xba)

= 0 , (3.13)

which modifies the superpotential as follows:

µXabXba +Xabgba(X)− fab(X)Xba + · · · 7→ 1
µ
fab(X)gba(X) + · · · (3.14)

The resulting superpotential does not usually make manifest the toric symmetry, but
a particular set of field redefinitions may restore the toric condition. For the case of gauge
theories resulting from reflexive polytopes, we were able to restore the desired form by field
redefinitions of degree up to 2,

Xk
ij =

∑
m

αmij X̃
m
ij +

∑
l,m,n

βknmilj X̃m
il X̃

n
lj , (3.15)

9One brane tiling, PdP5 phase B [32], is found to have an additional branch, parametrized by chiral mesons
with opposite winding in the tiling. We conjecture that this is related to the fact that this tiling contains two
oppositely oriented strips, one of which contains the other.

– 18 –



J
H
E
P
0
5
(
2
0
2
4
)
1
1
4

for some coefficients αmij , βknmilj such that αkij 6= 0. The coefficients in the non-trivial field
redefinitions are proportional to 1/µ, and the Jacobian of this change of variables obeys
(up to an overall sign)

det
(
∂X

∂X̃

)
= µ(Ei−Ef−Vf)/2 , (3.16)

where Ei is the number of bifundamentals of the initial model and Vf , Ef denote respectively
the number of superpotential terms and bifundamentals of the final model after integrating
out massive degrees of freedom. The resulting low-energy superpotential can be written as

Wlow(X) = 1
µ
W ′(X̃) , (3.17)

with W ′ toric. The remaining power of µ can be cancelled by a complexified U(1)R trans-
formation X̃e 7→ µR[X̃e]/2 X̃e on all bifundamentals, which cancels the µ−Vf/2 factor in the
Jacobian. Note that the power of µ in the combined Jacobian is given by (Ei − Ef)/2.

3.3.1 PdP3c to PdP3b

Take for example one of the toric phases of the Pseudo del Pezzo 3c model (phase B in [32]),
with superpotential

W
(B)
PdP3c

= X12X23X31 +X25X56X62 +X26X64X42 +X34X45X
2
53

+X15X
1
53X36X61 −X12X26X61 −X15X

2
53X31 −X23X36X62

−X45X56X64 −X25X
1
53X34X42 ,

(3.18)

and with tiling, quiver and toric diagram in figure 2. It is useful to list the generators of the
mesonic branch by enumerating all the chiral mesons10 in the quiver, along with their mesonic
U(1)3 charges, and organize them by their GSLM decomposition using eq. (2.13). This leads
to table 2. Many chiral mesons are F-term equivalent, so we can pick one representative
of each equivalence class and define the map ΦW as

A1 : X26X62 B2 : X31X15X
1
53 B8 : X15X56X61

B5 : X23X34X42 B1 : X45X56X64 C1 : X36X64X45X
1
53

C4 : X25X56X64X42 C2 : X36X64X45X
2
53 D3 : X25X

2
53X36X64X42

(3.19)

The affine cone over PdP3c contains two non-isolated A1 singularities. The corresponding
zig-zag deformations are triggered by differences of relevant chiral mesons in the first two
rows of table 2, which can be further corroborated by the primary decomposition of the
chiral ideal Ichiral = Igeom ∩ J1 ∩ J2,

Igeom = 〈B5 −B8, A1 −B2, C
2
2 − C1D3, C2C4 −B1D3, B1C2 −B2D3, C

2
4 −B8D3,

C1C4 −B2D3, B1C4 −B8C2, B8C1 −B2C4, B1C1 −B2C2, B
2
1 −B2C4〉

J1 = 〈D3, C2, C4, C1, B1, B5, B8〉
J2 = 〈D3, C2, C4, C1, B1, A1, B2〉 .

(3.20)

– 19 –



J
H
E
P
0
5
(
2
0
2
4
)
1
1
4

Gen. (pα) Generator (Xe) U(1)2 U(1)R
p2

2p3gs X26X62 ∼ X31X15X
1
53 ' X34X45X

1
53 (0, -1) 1.577 . . .

p2
3p

2
4fs X15X56X61 ∼ X23X34X42 (1, 0) 1.690 . . .

p1p2p3p4fgs

X12X23X31 ' X25X56X62 ' X25X
1
53X34X42 '

X34X45X
2
53 ' X12X26X61 ' X15X

1
53X36X61 '

X15X
2
53X31 ' X23X36X62 ' X45X56X64 ' X26X64X42

(0, 0) 2

p2
1p

2
2fg

2s X36X64X45X
1
53 ' X36X62X25X

1
53 ' X31X12X25X

1
53 (-1, 0) 2.309 . . .

p2
1p3p

2
4f

2gs
X23X36X64X42 ' X25X56X64X42 ' X25X

2
53X34X42 '

X15X
2
53X36X61 ' X12X23X36X61 ' X12X25X56X61

(0, 1) 2.422 . . .

p3
1p2p4f

2g2s
X36X64X45X

2
53 ' X25X

2
53X36X62 ' X12X25X

2
53X31 '

X25X
1
53X36X64X42 ' X12X25X

1
53X36X61

(-1, 1) 2.732 . . .

p4
1p

2
4f

3g2s X25X
2
53X36X64X42 ' X12X25X

2
53X36X61 (-1, 2) 3.154 . . .

Table 2. Table of generators of the mesonic moduli space for PdP3c phase B, where f =
∏2

i=1 fi,
g =

∏2
i=1 gi and s =

∏7
i=1 si (perfect matchings on figure 2). The superconformal R-charge U(1)R

can be obtained via a-maximization [67–69].

Figure 6. Lattice of the U(1)2 mesonic flavour charges of the generators of PdP3c phase B (see
table 2).

As expected, the two components associated to the ideals J1 and J2 are parameterized by
the chiral mesons that define the N = 2 fractional brane strips, which intersect the geometric
branch at B5 = B8 and A1 = B2, respectively.

Of the two relevant deformations only the most relevant (smaller Rsc) leads to a new
toric model in the IR.11 A quick inspection of the tiling in figure 5 or table 2 reveals that
we have two zig-zag deformations

Oη5 = X26X62 −X31X15X
1
53

Oη6 = X34X45X
1
53 −X26X62 ,

(3.21)

10For N = 1, this corresponds to all indecomposable paths. For N > 1 these are single trace operators.
11The deformation by the next relevant zig-zag operator Oη = X15X56X61 −X23X34X42 does not lead to a

toric IR fixed point. Nevertheless it fits into a more general picture that relates zig-zag deformations of two
toric models, see section 3.5.

– 20 –



J
H
E
P
0
5
(
2
0
2
4
)
1
1
4

which are equivalent due to chiral relations, Oη5 + Oη6 ' 0. Therefore, we can just pick
the RG flow triggered by the superpotential deformation

δW = µOη5 = µ
(
X26X62 −X31X15X

1
53

)
. (3.22)

Adding this term modifies the F-term equations, forcing the relation A1 ' B2 in the chiral
ring. The deformation lifts the component J1 and removes the A1 singularity which is
intersected by it. The chiral ring is now given by the relations I ′chiral = I ′geom ∩ J ′2, where

J ′mes = 〈B5 −B8, C2C4 −B1D3, C1C4 −B2D3, C
2
2 − C1D3, B1C2 −B2D3,

B1C1 −B2C2, B
2
1 −B2C4, C

2
4 −B8D3 + µB1C4,

B8C2 −B1C4 − µB2C4, B2C4 −B8C1 + µB1B2〉
J ′2 = 〈D3, C4, C2, C1, B2, B1〉 .

(3.23)

There is a slight abuse of notation here. While the relations hold for the choice of representa-
tives in eq. (3.19), there is a splitting in the F-term equivalence classes and the generators
of the chiral ring are now given by

B2 : X26X62 ' X1
53X34X45 ' X15X

1
53X31

B1 : X56X64X45 ' X2
53X34X45 ' X26X64X42 ' X25X56X62 '

' X15X
2
53X31 ' X25X

1
53X34X42

C4 : X25X56X64X42 ' X25X
2
53X34X42

B1 + µB2 : X23X36X62 ' X12X26X61 ' X12X23X31 ' X15X
1
53X36X61

C4 + µB1 : X23X36X64X42 ' X15X
2
53X36X61 ' X12X25X56X61

C4 + 2µB1 + µ2B2 : X12X23X36X61

(3.24)

and

C1 : X1
53X36X64X45 ' X25X

1
53X36X62 ' X12X25X

1
53X31

C2 : X2
53X36X64X45 ' X25X

2
53X36X62 ' X12X25X

2
53X31 '

' X25X
1
53X36X64X42

D3 : X25X
2
53X36X64X42

C2 + µC1 : X12X25X
1
53X36X61

D3 + µC2 : X12X25X
2
53X36X61 .

(3.25)

The generators B5 and B8 remain represented by the same quiver cycles in (3.19). Note
that, from the point of view of the PdP3c theory, the mixing of mesonic generators upon
deformation occurs in the direction of the winding number (1, 0) of the zig-zag η5. This
matches the mesonic charges of the spurionic parameter µ in the superpotential deformation
µ(A1 − B2), which determine the pattern of global symmetry breaking.12

12Indeed µ has U(1)3 charges (1, 0, 0), where the first two charges are mesonic and the last is the R-charge
under the U(1)R symmetry that assigns charge 2 to all mesonic generators. The R-charge is forgotten when
the lattice of generators is projected from Z3 to Z2 as in figure 6.
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Figure 7. (a) Lattice of U(1)2 mesonic flavour charges of the generators and (b) toric diagram
of PdP3b.

If we integrate out the massive fields X26 and X62, by imposing their F-term equations

X26 = 1
µ

(X23X36 −X25X56) , X62 = 1
µ

(X61X12 −X64X42) , (3.26)

the result is not explicitly toric, but we can make it so (up to an overall 1/µ) by the field
redefinitions

X31 7→ −
1
µ
X31 + 1

µ
X36X61 X1

53 7→
1
µ
X1

53 −
1
µ
X2

53

X45 7→
1
µ
X45 −

1
µ
X42X25

(3.27)

as described in (3.15). Using the methods described previously, we can identify the final
result as toric phase B of the cone over the Pseudo del Pezzo 3b [32], with superpotential

W
(B)
PdP3b

= X15X
1
53X31 +X34X45X

2
53 +X12X25X56X61 +X23X36X64X42

−X12X23X31 −X45X56X64 −X15X
2
53X36X61 −X25X

1
53X34X42 .

(3.28)

We can use the fast-forward method and zig-zag paths to read off the changes in the toric
diagram. The removal/reduction of the order of the non-isolated singularity is reflected
in the fact that the number of points in the side of the toric diagram orthogonal to the
zig-zag’s external (p, q)-leg is reduced by one. Consequently, the number of extremal points
in the toric diagram increases by one.

The top coherent primary component I ′mes does not manifest a U(1)3 toric symmetry like
in (3.20) but, similarly to above, we can find a redefinition that makes the toric symmetry
manifest. We can use (3.27) to construct the ring isomorphism

B1 7→
B1 − C4

µ
B2 7→

B2 − 2B1 + C4
µ2

C2 7→
C2 −D3

µ
C1 7→

C1 − 2C2 +D3
µ2

(3.29)
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Gen. (pα) Generator (Xe) U(1)2 U(1)R
p2

2p3gs X26X62 ∼ X ′13X31 ' X31X15X
1
53 ' X34X45X

1
53 (1, 0) 1.577 . . .

Table 3. Partial table of generators of the mesonic moduli space for the integrated in PdP3c phase
B model.

which is defined for µ 6= 0. Then the relations among mesonic moduli take the toric form

I ′geom = 〈B8 −B5, B
2
1 −B5C2, B1C4 −B5D3, B1B2 −B5C1, B2C4 −B5C2,

C1C4 −B1C2, C2C4 −B1D3, B2D3 −B1C2, B2C2 −B1C1, C
2
2 − C1D3〉 .

(3.30)

From the superpotential (3.28), we can find the geometric component of the moduli space
of the complex cone over PdP3b, which is isomorphic to I ′geom (as ring quotients). We can
assign U(1)2 charges to each generator consistently with the toric relations in I ′geom, obtaining
the lattice diagram in figure 7(a). Note that for geometries described by reflexive polytopes
the lattice of generators is polar dual to the toric diagram.

Zig-zag move in the brane tiling

It is also possible to obtain the final brane tiling by a graph deformation of the initial brane
tiling. This builds on [28], where it was understood that a specific degenerate move of the
vertices and edges of the tiling along a zig-zag path described the effect of a mass deformation
of Klebanov-Witten type [2]. The definition of that move required all the vertices on the
zig-zag path associated to the deformation to be trivalent. In order to apply the same move to
the more general deformations that we consider in this paper, we need to resolve the vertices
on the zig-zag path so that they become trivalent, which makes the tiling locally similar to
that of C2/Zk × C, in a neighbourhood of the zig-zag path. This is possible by integrating
in fields [70], i.e. introducing pairs of bifundamental fields with a superpotential mass term,
which upon imposing their F-term equations (or “integrating out” as in (3.14)) leads back to
the original model. In the brane tiling, this corresponds to replacing a white/black node with
a total of k + l > 3 incident edges by two white/black nodes with k + 1 and l + 1 incident
edges, connected by a 2-valent black/white node in between. We can always arrange to have
k = 2 (or l = 2) for the vertices that remain on the zig-zag path after this process, after
which the brane tiling move of [28] can be applied.

For example, in the case of PdP3c phase B in figure 5 and the zig-zag path associated to
the deformation (3.22), we only need to resolve one of the nodes in the zig-zag path, which
has the following local effect on the superpotential

X15X
1
53X36X61 7→ −X ′13X

′
31 +X15X

1
53X

′
31 +X ′13X36X61 , (3.31)

where primed fields X ′13, X ′31 have been integrated in. In the new tiling (figure 8), we see
that this introduces a new meson X ′13X31 in the “N = 2 fractional brane strip”, which is
made of massive chirals and is F-term equivalent to X31X15X

1
53 ' X34X45X

1
53 (see table 3).

This allows us to rewrite the deformation (3.22) as the superpotential mass deformation

δW ′ = µ
(
X26X62 −X ′13X31

)
. (3.32)
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Figure 8. Tiling of PdP3c phase B with integrated-in node along the deformation zig-zag (yellow),
highlighting the two possible (purple/blue) zig-zag moves that realize the deformation.

We can follow the same procedure as before and restore the U(1)3 toric symmetry by the
field redefinitions

X45 7→
1
µ
X45 −

1
µ
X42X25 , X1

53 7→
1
µ
X1

53 −
1
µ
X2

53 , (3.33)

which leads to the same superpotential as (3.28), with the relabelling X ′31 ↔ X31.
The result of the deformation and field redefinitions can be visualized in the brane tiling as

the folding of the edges involved in the deformation onto the zig-zag path η = X12X23X36X61.
To perform the move that leads to the endpoint tiling we select alternating edges of a
zig-zag path (after integrating in if necessary to ensure that all vertices are trivalent). Then,
every pair of edges directly connected to the zig-zag edge on each side are folded onto it
by identifying nodes of the same color, and consequently edges, as indicated by the arrows
in figure 8. We call this operation on the brane tiling a zig-zag move. There are two ways
to do this, which lead to equivalent results which differ by an SL(2,Z) transformation, see
figure 8 and figure 9. The zig-zag path reverses its direction (figure 9) because all the edges
that enter the mass deformation (3.32) in the brane tiling are integrated out [28]. A key
observation is the fact that the zig-zag path itself is unchanged as a cycle in the quiver,
but it reverses its winding on T2.13 Additionally, all zig-zags parallel to the one triggering
the deformation also remain unaffected.

3.3.2 Higher order non-isolated singularities

Up to this point, we established a solid example of a toric-to-toric flow triggered by a zig-zag
deformation of the form (3.3), with mesonic operators M0, M1, given by non-homotopic
paths on the immediate sides of a single zig-zag path in the brane tiling. For geometries

13This works for length 4 zig-zags and is a pattern throughout this work.
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Figure 9. Tilings and toric diagrams of PdP3b phase B, obtained by applying to the tiling of
figure 8 the zig-zag move depicted by the purple arrows (a) and blue arrows (b), keeping the original
fundamental domain fixed.

with non-isolated singularities of higher order k, we can generalize to

δW = µ
∑
i∈I
Oηi s.t.

k∑
i=0
Oηi ' 0 . (3.34)

For A1 singularities, the two possible choices for a zig-zag deformation only differ by a sign.
The deformation removes the non-isolated singularity and lifts the associated N = 2 fractional
brane component from the moduli. For A2 singularities, we may have three orientations to
choose based on the zig-zags {η0, η1, η2}, but all choices still amount to deforming along a
single operator Oηi . However, the same is not true for k > 2.

Specifically for reflexive toric geometries, there is a single example where an A3 singularity
is present: the orbifold C3/(Z4 × Z2) quotiented with action (1, 0, 3)(0, 1, 1). When a regular
D3-brane is on the locus of the A3 singularity, it can split into four N = 2 fractional
branes which individually probe the non-isolated singularity. In the worldvolume theory this
fractional brane branch is parametrized by the expectation value of four mesonic operators.
By the correspondence between zig-zag paths and superpotential deformations, we have
the relevant zig-zag operators

Oη5 = X12X21 −X34X43

Oη6 = X34X43 −X56X65

Oη7 = X56X65 −X78X87

Oη8 = X78X87 −X12X21
, (3.35)

with all conformal R-charges equal, Rsc [Oη] = 4/3. Taking any one of these operators as
the deformation δW will trigger a flow to the toric phase A of L1,3,1/Z2 (0, 1, 1, 0) (detailed
in appendix A.1.7), which is expected from effects of a single zig-zag deformation on the
initial tiling topology.

We can also trigger a double zig-zag deformation of C3/(Z4×Z2) by reversing two parallel
zig-zag paths in the tiling simultaneously. This leads to the different toric phases of PdP5
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Figure 10. Tiling of C3/(Z4 × Z2) (1, 0, 3)(0, 1, 1), with emphasis on the zig-zah paths associated to
the non-isolated A3 singularity.
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Figure 11. Brane tiling of PdP5 phase A, showcasing the zig-zag paths of the parent model in
figure 10 and the reversed zig-zag paths after the deformation.

(flows A.1.8). If we reverse two non-adjacent zig-zag paths we obtain phase A of PdP5 [32].
There are two possible combinations that lead to the same operator, up to an overall sign,

δW = µ (Oη5 +Oη7)
= µ (X12X21 −X34X43 +X56X65 −X78X87)

(3.36)

The resulting superpotential from this deformation, after integrating out massive fields,
immediately obeys the toric conditions, up to a 1/µ factor that can be removed by a
complexified R-symmetry transformation of the fields. From the original tiling, it is possible
to perform the two zig-zag moves simultaneously as zig-zag paths (and adjacent edges) do
not overlap, as described previously in figure 8. The simultaneous reflection of the zig-zag
paths of the same homology through a double deformation splits an A3-type singularity splits
into two of A1-type with associated zig-zags of opposite homology class.
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Figure 12. Zig-zag move to obtain PdP5 Phase B (b) from the integrated-in edges C3/(Z4 × Z2)
model (a).

On the other hand, if we reverse two adjacent parallel zig-zag paths we obtain phase B
of PdP5. The four possible combinations result in two possible deformations:

δW = µ (Oη5 +Oη6) = µ (X12X21 −X56X65) (3.37)

δW = µ (Oη6 +Oη7) = µ (X34X43 −X78X87) (3.38)

Contrasting with the previous deformation, PdP5 phase B still contains 2-cycles in the quiver.
After integrating the massive fields in the deformed superpotential we still need to apply
a field redefinition to these vector-like pairs in order to restore the U(1)3 toric symmetry.
For the first deformation in (3.37), we apply

X34 7→ −
1
µ
X34 +

( 1
µ
− β1

)
X31X14 + β1X36X64

X43 7→ −
1
µ
X43 +

( 1
µ
− β1

)
X45X53 + β1X42X23

X78 7→
1
µ
X78 +

(
− 1
µ
− β2

)
X72X28 + β2X75X58

X87 7→
1
µ
X87 +

(
− 1
µ
− β2

)
X86X67 + β2X81X17

, (3.39)

where the parameters β1, β2 ∈ C are free, as they cancel out in the superpotential. A similar
redefinition applies for the second case (3.38). The mesonic moduli and N = 2 fractional
branes for both deformations are isomorphic to the phase A case.

We note that for double zig-zag deformations that are adjacent in the tiling we need an
addendum to our prescription for the brane tiling move: besides requiring that the nodes on
the zig-zag are 3-valent as before, we must also ensure that adjacent edges do not overlap for
the multiple zig-zags involved in the deformation. We can do so by integrating in fields to
replace an edge in the tiling by three edges connected via bivalent nodes, as exemplified in
figure 12(a). After resolving the overlaps the same zig-zag move as before can be performed.
In particular, the result of the deformation (3.37) and the move described above results
in the tiling in figure 12(b).
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Figure 13. Brane tilings of phase A (a) and phase B (b) of L1,3,1/Z2 (0, 1, 1, 0). The two tilings are
Seiberg dual by mutating node 4.

3.4 RG flow to a non-toric geometry: from L1,3,1/Z2 to a marginal
deformation of PdP5

Another possibility for deformations is a flow triggered by a relevant zig-zag operator, which
flows not to a toric fixed point but to an exactly marginal deformation thereof. We discuss
this case since it reveals the general theory of deformations interpolating between toric
quiver gauge theories.

In the previous section, the geometry of the real cone over L1,3,1/Z2 (0, 1, 1, 0) was reached
by triggering a single zig-zag deformation of C3/(Z4 × Z2) (1, 0, 3)(0, 1, 1). This deformation
lifts one N = 2 Coulomb branch modulus, flowing to a geometry with an A2 singularity.
We have also seen that adding a pair of zig-zag operators to the orbifold superpotential
the field theory flows to PdP5, this time lifting the non-isolated A3 singularity into two
A1 singularities. We would then expect that by turning on a relevant zig-zag operator of
L1,3,1/Z2, we would be able to flow to PdP5.

The L1,3,1/Z2 model has 3 relevant zig-zag operators associated to its A2 non-isolated
singularity, with Rsc = (10− 2

√
7)/3. In the toric phase A in figure 13(a), they take the form

Oη6 = X78X87 −X14X42X23X31

Oη7 = X14X42X23X31 −X56X65

Oη8 = X56X65 −X78X87

η6 = X17X72X28X81

η7 = X36X64X45X53

η8 = X58X86X67X75

. (3.40)

The obvious first choice is the deformation Oη8 , which according to our aforementioned
zig-zag move should end up in PdP5 phase A, in figure 11. By integrating out the mas-
sive fields {X56, X65, X78, X87} and redefining {X75, X86} → {µX75, µX86}, the resulting
superpotential is

W
(A)
PdP5

+ 1
µ
O′η8 , (3.41)

where O′η8 = X17X72X28X81 − X36X64X45X53 is the operator generated by the reversed
zig-zag η8 (same), now obtained from the superpotential W (A)

PdP5
. We conclude that the
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deformation leads to an exactly marginal deformation of the PdP5 phase A brane tiling, since
all its zig-zag operators O′η have Rsc = 2 and are easily seen to be exactly marginal (e.g by
computing the single trace contribution to the superconformal index [71]). Only in the limit
µ→∞ we reach a point in the conformal manifold describing a toric SCFT. Similarly, the
relevant deformations by operators Oη6 , Oη7 also flow to a marginal deformations O′η6 , O

′
η7

of PdP5 phase B. Note that {η6, η7, η8} are the same paths before and after the deformation,
no matter which zig-zag we choose to reverse.

For L1,3,1/Z2 (0, 1, 1, 0) phase B, the zig-zag operators Oη in figure 13(b)

Oη6 = X78X87 −X12X23X31

Oη8 = X46X65X54 −X78X87
(3.42)

both trigger flows to marginal deformations of PdP5 phase C. An interesting case is the
deformation associated to the zig-zag η7

Oη7 = X12X23X31 −X46X65X54 η7 = X15X53X36X62X24X41 , (3.43)

since we were not able to apply the previous techniques to find a way to classify the endpoint
of this flow as a toric fixed point or a marginal deformation thereof. Note that, contrary
to all other deformations in L1,3,1/Z2 (0, 1, 1, 0) phase A (and all other shown above), this
zig-zag path η7 has length 6 instead of 4 due to the toric/Seiberg duality. We will see this
difference play a crucial role in the classification of zig-zag deformations.

3.5 Zig-zag deformation under mirror symmetry

Now that we have considered what happens for all possible zig-zag deformations of reflexive
models, we will make a general statement to summarize the results, and we will also present
how these are connected to the mirror geometries, more specifically, to the tilings of the
mirror curve Σ obtain by specular duality [58], making connection with the work of [29].

In the previous section and in appendix A, we studied all possible deformations by
zig-zag operators Oη of toric quiver gauge theories associated to reflexive toric diagrams,
with emphasis on relevant and exactly marginal deformations. The common threads we
found can be summarized as follows:

• Whenever the zig-zag η generating a relevant Oη had length 4, we could relate the defor-
mation of the given toric quiver gauge theory (Q,W ) with quiver Q and superpotential
W , to another toric model (Q′,W ′) in this class (or an exactly marginal deformation
thereof).14

• The zig-zag η is reversed in the endpoint model (Q′,W ′), and is described by the same
closed path in the quiver. However, the latter is a coincidence of length 4 zig-zags. If
we consider PdP3c/Z2 by extending the tiling in figure 8 along the zig-zag, the brane
tiling move still reverses the zig-zag, but leads to a different cycle η′ in Q′.

14Recall that for the deformation (3.43) of L1,3,1/Z2 (0, 1, 1, 0) phase B, associated to a zig-zag path of
length 6, we could not match the result to a zig-zag marginal deformation of a toric phase for PdP5, as
expected from phase A results, though we were able to match the deformed geometries on the two sides.

– 29 –



J
H
E
P
0
5
(
2
0
2
4
)
1
1
4

• Deforming a UV toric model (Q,W ) by a relevant zig-zag operator Oη triggers an RG
flow that approaches another toric model (Q′,W ′) in the IR from an irrelevant/marginal
direction O′η′ . For example, in the previously discussed deformation of PdP3c phase B
for the choice of zig-zag path η5 = X12X23X36X61 = η′5, we can find field redefinitions
such that

WPdP(B)
3c

+ µOη5 −−−−−−−−−−−−−−−−−−−→
X31 7→− 1

µ
X31+X36X61

X23 7→µX23 , X61 7→µX61

WPdP(B)
3b

+ 1
µ
O′η′5 (3.44)

We were able to find additional field redefinitions resulting in the toric fixed point
in (3.27) because the zig-zag operator O′η′5 = X15X

2
53X31 −X25X56X64X42 ' 0 under

the IR F-terms. In contrast, if the reversed zig-zag path is parallel to another zig-
zag path, signalling a non-isolated singularity of the IR geometry, as in section 3.4,
the deformation O′η′ is non-trivial in the chiral ring and cannot be absorbed by a
field redefinition.

In order to relate to the mirror (or specular dual) geometry, the first key insight is that
the zig-zag path η that triggers the flow must be of length 4. Under specular duality, a
zig-zag path ηi becomes the boundary of a face in the tiling representing the gauge group
U(N)i, and vice-versa. Thus, from the perspective of the specular dual, we need to consider
operations that “reverse” the cycle associated to square faces. This operation is exactly the
toric-Seiberg duality on the node U(N)i. Therefore, it is natural to expect that the specular
dual of the UV toric fixed point is toric-Seiberg dual to the specular dual to the IR toric
fixed point of the zig-zag flow. Indeed this was first proposed in [29],15 where the quiver
obtained by specular duality was dubbed twin quiver, and mutations of (generalized) toric
polytopes were related to mutations of twin quivers.16 This is depicted in the bottom half of
figure 14. The main contribution of this paper is to complete figure 14 by adding the top half:
in the special case where the two geometries are toric (not generalized toric) and the reversed
zig-zag path has length 4, we give a systematic prescription for finding the deformations of the
superpotential that relate the two toric models (Q,W ) and (Q′,W ′). We have checked that
this expectation is correct for the brane tilings associated to reflexive polygons (and more,
see [24]). We also note that the zig-zag deformation operators Oη which play a crucial role
in our story do not map to gauge invariant mesonic (single trace) operators in the twin (or
specular dual) models. This is perhaps unsurprising, since specular duality is not a quantum
field theory duality, but rather a duality of graphs, which swaps mesonic symmetries with
(hidden or anomalous) baryonic symmetries of twin models [58].17

The deformation parameter µ can be viewed as the inhomogeneous coordinate of a
base P1, over which we fibre a quiver with deformed superpotential. The two toric models

15This point was also realized independently by JS.
16From the perspective of [29], reversing a zig-zag path of length ` > 4 corresponds to a Seiberg duality of

SU(N) gauge group with Nf = N`/2 flavours, resulting in a dual gauge group SU(N(`/2− 1)) of higher rank.
Finding the twin model of this Seiberg dualized twin, which presumably describes the µ→∞ limit of our
zig-zag deformation, is an important open problem.

17At best, one could relate the mesonic deformation operator Oη to a baryonic operator in the twin model
with SU gauge groups (this operator would not be gauge invariant with U gauge groups). However, the two
operators in the twin models would have very different dimensions at large N .
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(Q,W )

(Q,W + µ
∑
i∈IOηi)

(Q̂, Ŵ )

(Q′,W ′)

(
Q′,W ′ + 1

µ

∑
i∈IO′η′i

)

(Q̂′, Ŵ ′)

Zig-zag def.

Field redefinitions

Zig-zag def.

Specular

Toric-Seiberg on U(N)i∈I

Specular

Figure 14. Diagram representing the connection between length 4 zig-zag deformations and Seiberg
duality on the specular dual models.

correspond to the two poles. Each zig-zag deformation of a toric model describes how the
fibre varies over a patch of P1, which excludes the other pole. On the overlap of the two
patches, we can find field redefinitions relating the two deformed quivers and superpotentials:
these are the transition functions for the fibre.

In this paper we considered relevant zig-zag deformations of UV toric models and matched
them to trivial/irrelevant/marginal zig-zag deformations of IR toric models, so there is a
clear RG-flow direction. It turns out however that figure 14 describes more generally 1-
parameter families of deformations relating a pair of toric models, with no reference to
an RG flow direction. This structure and the underlying geometry will be explored in a
companion paper [25].

The relation to specular duality and (toric) Seiberg duality which was appreciated in [29]
also explains why triggering different or multiple zig-zag deformations associated the same
non-isolated singularity may lead to different models. Take for example the reflexive model
C3/(Z4 × Z2) (1, 0, 3)(0, 1, 1), which is specular dual to model PdP5 phase D. This geometry
has a non-isolated A3 singularity, as manifested by the 4 zig-zag paths with the same winding
in its brane tiling. The specular dual of these zig-zags are represented by 4 square polygons
symmetrically placed around an octagon in PdP5 phase D, also shown in figure 15(b). The
symmetry of PdP5 (D) tiling means that no matter the C3/(Z4 × Z2) zig-zag deformation
chosen, the model flows to L131/Z2 phase A, since PdP5 phase D is connected to phase C by
a single toric-Seiberg duality, which in turn is specular dual to L131/Z2 phase A (figure 15(a)).
On the other hand, double deformations of C3/(Z4 × Z2) flow to either of the 2 specular
self-dual phases of PdP5, depending on the pair of zig-zag operators that trigger the flow: the
pairs {η5, η7}, {η6, η8} flow to phase A, while {η5, η6}, {η6, η7}, {η7, η8}, {η8, η5} flow to
phase B. By the argument above, the split among the possible pairs occurs because applying
toric-Seiberg dualities on opposite squares faces in the octagon in figure 15(a) leads to a
different tiling from the brane tiling resulting from dualizing adjacent square faces.

Additionally, the flows from L1,3,1/Z2 (0, 1, 1, 0) to marginal deformations of PdP5 can
also be understood using figure 15(a). Listing the possible paths from these two geometries

L1,3,1/Z2 (A)
spec.−−−−−→ PdP5 (C) Seib.−−−−−→ PdP5 (A)

spec.−−−−−→PdP5 (A)
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PdP5 (A) PdP5 (B)

PdP5 (C)

PdP5 (D)

L131/Z2 (A)

L131/Z2 (B)
C3/(Z4 × Z2)

(a)

7

1

4

7

8

4

8

2

6 7

1

2

3

4

5

6 7

8

4

5 8

6

5

6

5(b)

Figure 15. (a) Graph with toric-Seiberg dualities (solid black edges) and specular dualites (dashed
red edges) of G = 8 reflexive models. (b) Brane tiling of PdP5 phase D, specular dual to the model
C3/(Z4 × Z2) (1, 0, 3)(0, 1, 1).

L1,3,1/Z2 (A)
spec.−−−−−→ PdP5 (C) Seib.−−−−−→ PdP5 (B)

spec.−−−−−→PdP5 (B)

L1,3,1/Z2 (B)
spec.−−−−−→L1,3,1/Z2 (B) Seib.−−−−−→L1,3,1/Z2 (A)

spec.−−−−−→PdP5 (C) (3.45)

we see these correspond exactly to all the possible flows in the previous section (and ap-
pendix A.2.1).

4 Zig-zag deformation and resolutions

In this section we study the interplay between the zig-zag deformations discussed previously
and crepant resolutions Ỹ of singular Calabi-Yau cones Y.

4.1 Minimal GLSM

A four-dimensional N = 1 quiver gauge theory with abelian gauge group G, quiver Q and
superpotential W is the low energy worldvolume description of a regular D3-brane probing
the cone Y. Resolutions of the singular cone can be viewed as fibres Ỹ in the master space

F = {(Xe)e | ∂W = 0} . (4.1)

Algebraically, Y is fully reproduced by the moduli space of the abelian gauge theory with
G = U(1)G. Similarly, resolving the cone Ỹ corresponds to turning on Fayet-Iliopoulos terms
in the action. The FI parameters affect D-term equations, leading to non-zero levels for
the moment map µ : F → g∗ ∼= (C×)G

µi(X) =
∑
e

die|Xe|2 , (4.2)
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p1 . . . pc FI

U(1)Fi (QF )1
i . . . (QF )ci 0

U(1)Dj (QD)1
j . . . (QD)cj ξj

Table 4. Description of the D-terms for the GLSM associated to a toric model.

px1 . . . px` FI

U(1)a Q1
a . . . Q`a ζa(ξ)

Table 5. Minimal GLSM, with one p.m. variable per lattice point in ∆. The resolution parameter
ζa(ξ) control the Kähler volumes of a basis of holomorphic 2-cycles, which depend linearly on the FI
parameters in each open string Kähler chamber.

where die = δi,s(e) − δi,t(e) is the incidence matrix of the quiver Q. The Kähler quotient
description of the moduli space M(Q,W ; ξ)K is thus given by18

F
//
ξ
G ≡ µ−1(ξ)

/
G . (4.3)

For toric quiver gauge theories, we can exploit dimer model technology and perfect
matchings. We can introduce a GLSM (2.13) with no superpotential, that trivializes the
F-term equations ∂W = 0. Since this description is redundant it comes at a cost of extra
D-term equations of a spurious U(1)c−G−2 gauge symmetry, with charges QF defined in (2.15).
These additional gauge symmetries do not have FI parameters as they only serve as connection
between the GLSM and the toric variety. Similarly, in the basis of perfect matchings {pα},
we can obtain the charges QD from the incidence matrix using (2.17). We can group all
the D-terms as in table 4. Each perfect matching pα corresponds to a point in the toric
diagram ∆ of the singular Y. Multiple perfect matchings are associated to non-extremal
points in ∆. It is possible to eliminate some of the pα in the D-term equations such that
exactly one variable remains per point in ∆. Because all perfect matchings appear in the
D-terms as linear combinations of |pα|2, each choice of a single p.m. per point in the toric
diagram determines an open string Kähler chamber in FI parameter space [64]. Conversely, a
generic choice of FI parameters ξ falls in the interior of a Kähler chamber, which determines
a p.m. variable for each point in the toric diagram.

In order to visualize the Kähler chambers of a toric model let us look at the example
of the pseudo del Pezzo 1 (Y = C3

/
Z4 (1, 1, 2)) model, with superpotential

W = X13X
1
34X

2
41 +X24X

1
41X

2
12 +X31X

1
12X

2
23 +X42X

1
23X

2
34

−X13X
2
34X

1
41 −X24X

2
41X

1
12 −X31X

2
12X

1
23 −X42X

2
23X

1
34 .

(4.4)

18For ξ a regular value of µ. More generally, if G is non-abelian, one has to quotient by the co-adjoint
stabilizer at the level ξ, given by Gξ = {g ∈ G |Ad∗g(ξ) = ξ}.
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p1 p2 p3 f1 f2 s1 s2 s3 s4 FI
U(1)F1 −1 −1 −1 1 0 0 1 0 1 0
U(1)F2 0 −1 0 −1 0 1 0 1 0 0
U(1)F3 −1 0 −1 1 1 0 0 0 0 0
U(1)D1 −1 −1 −1 1 0 1 1 0 0 ξ1

U(1)D2 0 0 0 0 0 −1 1 0 0 ξ2

U(1)D3 0 1 0 1 0 −1 −1 0 0 ξ3

U(1)D4 1 0 1 −2 0 1 −1 0 0 ξ4

Table 6. Table encoding D-term equations of the GLSM and toric diagram of PdP1.

The perfect matchings are

p1 = {X1
12, X

1
23, X

1
34, X

1
41}

p2 = {X13, X24, X31, X42}
p3 = {X2

12, X
2
23, X

2
34, X

2
41}

f1 = {X1
12, X

2
12, X

1
34, X

2
34}

f2 = {X1
23, X

2
23, X

1
41, X

2
41}

s1 = {X1
12, X

2
12, X13, X42}

s2 = {X13, X
1
23, X

2
23, X24}

s3 = {X24, X31, X
1
34, X

2
34}

s4 = {X31, X
1
41, X

2
41, X42}

(4.5)

and their associated perfect matching variables are shown in the toric diagram in table 6.
From this we can extract the perfect matching matrix P and rewrite the bifundamentals in
terms of the GLSM fields {pα}, so that all F-term equations hold. From the perfect matching
matrix and D-terms of the toric model we obtain (recall eqs. (2.15) and (2.17)) a GLSM
with charges and FI parameters given in table 6.

The GLSM fields associated to extremal points on the toric diagram are unique by
consistency. We can eliminate those and obtain D-terms with the remaining fields of higher
multiplicity. In the PdP1 case, we have

|s2|2 − |s1|2 = ξ2 |s3|2 − |s2|2 = ξ3 |s4|2 − |s3|2 = ξ4 (4.6)
|f2|2 − |f1|2 = ξ4 + ξ2 (4.7)

subject to the condition ξ1 + ξ2 + ξ3 + ξ4 = 0, coming from the decoupled center-of-mass U(1).
From these D-terms, we can choose p.m. variables (p(-1,0), p(0,0)) for the points (−1, 0), (0, 0)
to obtain the conditions that define the corresponding open string Kähler chamber. For
example, the choice p(-1,0) = f1 requires that ξ2 + ξ4 ≥ 0, because in that case f2 can be
solved for in terms of f1, while p(0,0) = s1 requires ξ2 ≥ 0 ∧ ξ2 + ξ3 ≥ 0 ∧ ξ2 + ξ3 + ξ4 ≥ 0.
By repeating this process for all choices of perfect matching variables, we obtain conditions
that divide the FI parameter space R3 into 8 polyhedral cones that intersect at the origin
ξ = 0. This particular example allows us to visualize open string Kähler chambers using
the stereographic projection (figure 16).

Eliminating the redundant D-term equations and GLSM fields using eqs. (4.6) and (4.7)
onto the original D-terms in table 6 we obtain the minimal GLSM in table 7, by fixing the
same U(1) charges for all Kähler chambers.
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-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Figure 16. Region plot of open string Kähler chambers for PdP1, using stereographic projection of
(ξ1, ξ2, ξ3). Swatch legend shows the resolution parameters (ζ1, ζ2) as piecewise linear functions of the
FI parameters for each of the choices of (p(-1,0), p(0,0)).

p(-1,-1) p(1,0) p(-1,1) p(-1,0) p(0,0) FI

U(1)1 0 1 0 1 −2 ζ1(ξ)
U(1)2 1 0 1 −2 0 ζ2(ξ)

Table 7. Minimal GLSM for PdP1, with ζa(ξ) given in figure 16.

The singularity C3
/
Z4 (1, 1, 2) is a fairly simple example that allows visualization of the

Kähler chambers, but it misses the complication of compatibility of the Kähler chambers
with different triangulations of the toric diagram. We will describe an elegant and more
systematic way of obtaining these wedge regions in the FI parameter space, using the fact
that Kähler chambers stem from the quiver Q and modules of a path subalgebra of CQ.

4.2 Kähler chambers from θ-stability

The stability condition for the orbits of the complexified gauge group GC needed to construct
a given resolution divides the moduli space of resolutions into chambers as before. We
now construct the possible open string Kähler chambers from the perspective of quiver
representations of a quiver Q, with path relations encoded in the superpotential W .
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Through the Kempf-Ness theorem, the Kähler quotient (4.3) is related to the moduli
space of quiver representations computed via the GIT quotient,

M(Q,W ; ξ)K =M(Q,W ; θ)GIT , for ξ = θ ∈ ZG . (4.8)

Following results of appendix B.3, closed points of M(Q,W ; θ)GIT are in correspondence
with semistable representations of the quiver Q. We are interested in the representation space
Rep(Q, α) with dimension vector α = 1G = (1, . . . , 1). For a given θ ∈ RG, a representation
V of Q with nonzero dimension vector α is called θ-semistable if θ · α = 0 and for any
proper subrepresentation W ⊂ V , with dimension vector β = dimW , we have θ · β ≤ 0.
We say that V is θ-stable if under the previous assumptions θ · β < 0 for any nontrivial
proper subrepresentation W ⊂ V .

A choice of Kähler chamber K corresponds to a choice of a perfect matching for each
point x in the toric diagram ∆, denoted by Kx. We can restrict to the exceptional divisor
for this resolution by vanishing the corresponding field in the GLSM, thus setting Xe = 0
for all Xe ∈ Kx. We define the subquiver QKx as the quiver Q with edges not in the perfect
matching Kx, {e ∈ Q1 |Xe /∈ Kx}. A representation V of QKx with dimension α is also
a subrepresentation of the quiver Q, with

Xe = 0 ∀Xe ∈ Kx . (4.9)

The intersection of the θ-semistability19 conditions for a general module in all the subquiver
representation spaces Rep(Qp, α), p ∈ K, defines the region of compatibility in the resolutions
space, ξ = θ, for the chamber K. More concretely, we can write this as

R(K) =
⋂
x∈∆
R(QKx) (4.10)

with

R(Q) =
{
ξ ∈ RG

∣∣∣ ξ · dim V ≤ 0, ξ · α = 0, ∀V ∈ Rep(Q, α)
}
. (4.11)

Take the example of PdP1 in section 4.1. For the choice (f(-1,0), s(0,0)) = (f1, s1), we obtain
the subquivers in figure 17. Quiver subrepresentations correspond to quiver subdiagrams
which are invariant under outward flow. For example, the subquiver Qf1 has a single proper
subrepresentation with dimension β = (1, 0, 1, 0). Qs1 has proper subrepresentations with
dimensions β ∈ {(1, 0, 1, 1), (1, 0, 0, 1), (1, 0, 0, 0)}. Together with 0 = α · ξ = ξ1 + ξ2 + ξ3 + ξ4,
the semistability conditions become ξ2 + ξ4 ≥ 0 and ξ2 ≥ 0 ∧ ξ2 + ξ3 ≥ 0 ∧ ξ2 + ξ3 + ξ4 ≥ 0
respectively, matching the result obtained above.

4.3 (p, q)-webs, 2-cycles and zig-zags

A crepant resolution of a toric Calabi-Yau singularity Y to Ỹ consists of a “blow-up” of
multiple P1. There are only a few ways to resolve the singularity consistently with the toric
structure. Each toric crepant (partial) resolution is encoded in a (p, q)-web diagram.

19Note that saturating the θ-semistability lands us on the boundary between multiple open string Kähler
chambers. Thus, full resolutions are obtain by considering θ-stability.
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(a) Q{f1 } (b) Q{s1 }

Figure 17. Subquivers of PdP1 obtained by deleting edges from the perfect matching of the chamber
(f(-1,0), s(0,0)) = (f1, s1).

(p, q)-webs are a geometric representation of 5-brane configurations in type IIB string
theory, which engineer 5-dimensional field theories. In this context, we are allowed to
create bound states of D5-branes and NS5-branes, which we assign charges (1, 0) and (0, 1)
respectively. If the 5-branes worldvolumes share 4 + 1 dimensions, in order to preserve eight
supercharges the remaining worldvolume directions form segments in a 2d plane (x, y) oriented
according to the brane charges, i.e. ∆x+ i∆y ‖ p+ τq for the axio-dilaton τ = C0 + ie−φ of
type IIB string theory. As is customary, we depict all web diagrams at τ = i, so that D5/NS5
pure states align with the horizontal/vertical axis: the effect of changing τ is to perform a
general linear transformation in the (x, y) plane. The balance of forces require RR-NSNS
charge conservation at each vertex: if all fivebranes are incoming,∑

i

(pi, qi) = (0, 0) . (4.12)

The toric Calabi-Yau 3-folds studied in this paper are affine toric varieties given by a
complex cone over a compact toric surface. The mesonic toric action U(1)2 ⊂ U(1)3 acts
naturally on a torus fibre T2 over the complex plane. The (p, q)-web associated to this
geometry is a given by a set of segments and vertices, in which one or both S1 in the fibration
shrink to a point, respectively. Resolving a toric singularity corresponds to blowing up a point
and replacing it by a P1, i.e. replacing a vertex in the (p, q)-web by a segment (with S1 fibre).

Given a complete triangulation of the toric diagram of Y , we can construct a consistent
(p, q)-web of a fully resolved toric singularity. Every unit triangle in the triangulation of the
toric diagram is dual to a 3-valent vertex in the (p, q)-web, in such a way that every connected
line is perpendicular to the triangle edges, which automatically satisfy eq. (4.12). Edges of
the boundary of the toric diagram are dual to the semi-infinite external legs of the web, and
represent non-compact holomorphic 2-cycles. Internal edges are dual to finite segments in
the web, which represent holomorphic 2-cycles with a finite volume.

The volume of holomorphic 2-cycles can be quickly computed from the GLSM. Recall
that a toric Calabi-Yau 3-fold has a collection of toric divisors Dpα , defined by setting

pα = 0 (4.13)
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in the GLSM in table 4. Toric curves, which are P1, arise as transverse intersection of two
toric divisors. The volume of a holomorphic 2-cycle C = Dpα · Dpβ ∈ H2(Y,Z) is

vol(C) =
ˆ
C
ω =
ˆ
Ỹ

PD(Dpα) ∧ PD(Dpβ ) ∧ ω , (4.14)

where PD(Dpα) is the Poincaré dual in H2(Ỹ,Z) to the divisor Dpα and ω is the Kähler form.
The result is a positive linear combination of the resolution parameters. By setting to zero
the variables in the GLSM associated to the intersecting divisors, pα = pβ = 0, from a linear
combination of the D-term equations of the GLSM we can obtain an equation

|pN |2 + |pS |2 = vol(C) , (4.15)

where the GLSM fields pN , pS vanish on the toric divisors that intersect C at the poles.
For any triangulation T∆ of the toric diagram, we can find the tuples (pα, pβ , pN , pS)

associated to each internal edge. Furthermore, the positivity condition
ˆ
C
ω ≥ 0 , (4.16)

for all the holomorphic 2-cycles for a given fully resolved singularity Ỹ, gives us the com-
patibility conditions for the associated triangulated toric diagram T∆, which are a set of
inequalities for the FI parameters in the GLSM. The quiver representation machinery also
allows us to quickly obtain these regions in FI parameter space. A triangulation T∆ is
compatible with an open string Kähler chamber K if the semistability condition for all
subquivers QKx,Ky and QKx , defined by

R(T∆,K) =
⋂

(x,y)∈T∆

R(QKx,Ky) ∩R(K) (4.17)

results in a region of codimension 0, where R(K) and R(Q) are defined in eq. (4.10)
and (4.11). The union of all R(T∆,K) for all open string Kähler chambers K is equivalent
to the positivity conditions (4.16) for the effective curves.

Take, for example, the complex cone over the del Pezzo 1 surface, with toric diagram
∆ = conv{(−1, 0), (1,−1), (0, 1), (−1, 1)}. Using p.m. variables from the brane tiling in
figure 18(a), we find a GLSM with D-term equations

|p1|2 + |p2|2 + |p3|2 − |s1|2 − |s3|2 − |s4|2 = 0
|p2|2 + |p4|2 − |s2|2 − |s3|2 = 0

|s1|2 − |s3|2 = ξ1

|s3|2 − |s4|2 = ξ2

|s2|2 − |s1|2 = ξ3

|s4|2 − |s2|2 = ξ4

(4.18)

This model has four open string Kähler chambers, corresponding to the choice of perfect
matching variable for the internal point in the toric diagram, Ki = {si}, 1 ≤ i ≤ 4.
Triangulations of the toric diagram are associated to two complete resolutions, represented
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(b)

Figure 18. (a) Brane tiling of dP1, with each edge labelled with perfect matchings it belongs to. (b)
Toric diagram of dP1.

along with their dual (p, q)-webs in figure 19. The triangulations can be defined by the single
internal segment where a flop transition is possible, thus we have T (1)

∆ = {((−1, 0), (0, 1))}
and T (2)

∆ = {((0, 0), (−1, 1))}. For definiteness, let’s choose the Kähler chamber such that
p(0,0) = s3, for which we obtain

R({s3}) = {ξ1 ≥ 0, ξ2 ≤ 0, ξ1 + ξ3 ≥ 0} . (4.19)

After eliminating the redundant p.m. variables, we obtain the minimal GLSM

|p4|2 + |s3|2 − |p1|2 − |p3|2 = ξ2 + ξ3 ,

|p2|2 + |p4|2 − 2|s3|2 = ξ1 + ξ3
(4.20)

that describes the geometry. In this FI parameter region, we can obtain the holomorphic
2-cycles Dpα · Dpβ , where Dp is the toric divisor associated to the GLSM fields p, by setting
pα = pβ = 0 in the D-term equations of the GLSM. For the resolution associated with T (1)

∆ ,
which describes a finite size P2 intersecting P1, the holomorphic 2-cycles have volumes

vol(Dp1 · Ds3) = vol(Dp3 · Ds3) = vol(Dp2 · Ds3) = ξ1 − ξ2 ,

vol(Dp1 · Dp3) = ξ2 + ξ3 .
(4.21)

On the other hand, for the resolution associated with T (2)
∆ , which has a finite size dP1,

vol(Dp2 · Ds3) = ξ1 − ξ2 ,

vol(Dp4 · Ds3) = −ξ2 − ξ3 ,

vol(Dp1 · Ds3) = vol(Dp3 · Ds3) = ξ1 + ξ3 .

(4.22)
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(a) T (1)
∆ (b) T (2)

∆

Figure 19. (p, q)-webs associated to the two resolutions of the complex cone over dP1, related
by a flop transition (at ζ ′

2 = −ζ2 = 0). For the choice of p(0,0) = s3, we have ζ1 = ξ1 − ξ2 and
ζ2 = −ζ ′

2 = ξ2 + ξ3.

In the chamber R({s3}), the parameter ξ2 + ξ3 can be positive/negative and its sign
determines two resolutions in figure 19, related by the flop transition

Dp1 · Dp3 ↔ Dp4 · Ds3 . (4.23)

If ξ2 + ξ3 > 0, we lie on the resolution T
(1)
∆ , otherwise for ξ2 + ξ3 < 0 we land in T

(2)
∆ ,

consistently with the positivity conditions of the volumes of Dp1 ·Dp3 and Dp4 ·Ds3 respectively.
If ξ2 + ξ3 = 0 the singularity is not fully resolved. Note that for the curve Dp1 · Ds3 , either
(pN , pS) = (p2, p3) or (p2, p4), since |p4|2 − |p3|2 = ξ2 + ξ3 for p1 = s3 = 0. A similar result
holds for Dp3 · Ds3 . Compatibility conditions of the resolution T (1)

∆ with the Kähler chamber
K = {s3} can be directly obtained from the θ-stability of representation of Qp1,p3 , from which
we have the proper subrepresentation with dimension vector (0, 1, 1, 0). For the subquiver
Qp4,s3 , we have the complementary dimension vector (1, 0, 0, 1). These determine

R(T (1)
∆ , {s3}) = {ξ2 + ξ3 ≥ 0} ∩ R({s3}) ,

R(T (2)
∆ , {s3}) = {ξ2 + ξ3 ≤ 0} ∩ R({s3}) .

(4.24)

Semi-infinite legs of fivebrane webs are related to zig-zag paths in the tiling, by matching
(p, q) charges with homology classes (up to SL(2,Z)). Moreover, by taking successive pairwise
counterclockwise differences of perfect matchings pi − pi+1 along the boundary of ∆, we
can reconstruct the zig-zag using edges Xe alternating from the matchings pi and pi+1
with opposite orientation.20 For isolated toric singularities, these ordered pairs of external
matchings are in one-to-one correspondence to the zig-zag paths [22, 41, 72]. The case of
non-isolated singularities is more interesting, since the corresponding toric diagrams have
external perfect matchings of higher multiplicity.

20Edges present in the both pi and pi+1 will cancel, so only Xe in the symmetric difference of the matching
sets will form the path.
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(a)

(b)

Figure 20. Brane tiling and toric diagram for C3/Z6 (1, 2, 3), highlighting the three parallel zig-zag
paths associated to the A2 singularity.

For instance, the complex cone over pseudo del Pezzo 3a (Y = C3
/
Z6 (1, 2, 3)) has an

A2 singularity, as signalled by the length 3 side in its toric diagram, see figure 20. The PdP3a
theory flows to another toric quiver gauge theory by the deformation associated to any of
the parallel zig-zag paths normal to the side:

η4 = X12X25X56X61 : {p3 − g1, g2 − f1, g3 − f2, f3 − p1}
η5 = X24X46X63X32 : {p3 − g2, g1 − f1, g3 − f3, f2 − p1}
η6 = X13X35X54X41 : {p3 − g3, g1 − f2, g2 − f3, f1 − p1}

(4.25)

We can infer the p.m. differences in (4.25) from the perfect matching submatrix (4.26) for
the relevant matchings and bifundamentals:

X12 X13 X24 X25 X32 X35 X41 X46 X54 X56 X61 X63
p3 0 1 0 1 1 0 0 1 1 0 1 0
g1 1 1 0 0 1 0 0 1 1 1 0 0
g2 0 1 1 1 0 0 0 0 1 0 1 1
g3 0 0 0 1 1 1 1 1 0 0 1 0
f1 1 1 1 0 0 0 0 0 1 1 0 1
f2 1 0 0 0 1 1 1 1 0 1 0 0
f3 0 0 1 1 0 1 1 0 0 0 1 1
p1 1 0 1 0 0 1 1 0 0 1 0 1


(4.26)

For non-isolated singularities, the multiplicity of external non-extremal perfect matchings
leads to multiple successive boundary pairs that construct the same zig-zag path. A choice of
Kähler chamber fixes the perfect matching variables for each lattice point in ∆ and selects
unique boundary pairs. However, some chambers do not have compatible resolutions. For
incompatible chambers, we may have multiple differences pi − pi+1 which give rise to the
same path or one which describes a disconnected set of paths in the brane tiling. In the
example above, zig-zag paths cannot be constructed by differences of boundary matchings
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Figure 21. Regions formed by the stability of reps. of Qgi , Qfj , Qgi,fj in the PdP3a quiver.

when any of the pairs (g3, f1), (g2, f2), (g1, f3) are chosen for the points (−1,−1), (−1, 0) ∈ ∆.
This is consistent with the fact that the open string Kähler chambers

{g3, f1, hi, sj} , {g2, f2, hi, sj} , {g1, f3, hi, sj} , (4.27)

for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 6, are incompatible with all five possible triangulations of
figure 20(b). We can visualize the region of resolution parameters in which the p.m.s of an
Ak singularity side are compatible as the total space of a fibration, with the fibre given by
the perfect matchings. In particular, for PdP3a we can represent the regions and boundaries
in a plane (see figure 21).

Using the data from the GLSM and subquiver representation stability, we obtain the
volumes of 2-cycles in terms of FI parameters and associate external legs of the fivebrane
web to zig-zag paths in the brane tiling, and hence chiral operators in the gauge theory.
Geometrically, we can apply the zig-zag deformation to the quiver gauge theory with FI
parameters, therefore it should be possible to map Kähler chambers between UV and IR
toric models. We analyze this problem next.

4.4 Zig-zag deformation as a Hanany-Witten move

We have seen that for a zig-zag deformation Oη associated to a zig-zag path η of length 4,
the deformed UV toric theory flows to another toric gauge theory in the IR, which has η
reversed relative to the original brane tiling. The UV geometry has at least one non-isolated
Ak singularity, k ≥ 1, meaning that the tiling has k+ 1 parallel zig-zags of the same homology
(p, q). At the IR endpoint of the deformation, each reversed zig-zag has homology (−p,−q).
The other parallel zig-zag paths are unaffected in the tiling, while some of the other zig-zag
paths are rearranged and have different homology, as seen by comparing figure 2 and figure 9.

Translating the zig-zag move in the brane tiling to the (p, q)-web suggests that the
deformation is described by a Hanany-Witten move for a 7-brane on which the 5-brane
associated to the deformation zig-zag ends.21 Indeed, an external (p, q) fivebrane can
terminate on a [p, q]7-brane, which is a point in the plane of the fivebrane web [73]. By
using SL(2,Z), we can assume without loss of generality that the external legs associated

21We thank Michele Del Zotto for this suggestion.
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to the relevant parallel zig-zags are D5-branes with charge (−1, 0). We can now end one
of the aforementioned D5-branes on a D7-brane, which we then move along the line of the
D5-brane, until it ends on the opposite side of the (p, q) web diagram. This corresponds
to reversing the orientation of the zig-zag path.

Every time the D7 (or [1, 0]7) brane crosses an (r, s)5-brane, by the Hanany-Witten
effect a number |s| of (1, 0)5-branes are created, which are suspended between the crossed
5-brane and the D7-brane. For the reflexive geometries studied in this paper, reversing the
D7-brane horizontally to the opposite side has it cross exactly two fivebranes with NSNS
charge |s| = 1: the first HW transition annihilates the original (−1, 0)5-brane, while the
second HW transition creates a new (1, 0)5-brane. We then can take the limit of the 7-brane
going to infinity in the opposite direction to recover a new toric geometry.22 We will provide
precise evidence that the resulting fivebrane web describes the fully resolved toric geometry
obtained at the endpoint of the Klebanov-Witten deformation.

The 7-brane sources an SL(2,Z) monodromy which affects the rest of the web. We
can take the monodromy cut to extend from the 7-brane to infinity along the line of the
5-brane we attached it to. As we slide the 7-brane to the opposite end of the line, we
also need to rotate the monodromy cut by ±180 degrees to the opposite side, so that the
cut disappears when the 7-brane goes to infinity in the opposite direction. Every time the
monodromy cut of a [p, q]7-brane crosses a 5-brane, the charge of the 5-brane is acted upon
by the SL(2,Z) monodromy matrix

Mp,q =
(

1− pq p2

−q2 1 + pq

)
. (4.28)

If the branch cut is moved counterclockwise then we apply Mp,q to the affected segments,
otherwise we act with M−1

p,q moving the cut clockwise. Rotating the monodromy cut by 180
degrees clockwise or counterclockwise and sending the 7-brane to infinity, the two resulting
(p, q)-webs are equivalent up to an SL(2,Z) transformation. This matches exactly the choice
of tiling move in figure 8 for the zig-zag of homology (0, 1), which results either in figure 9(a)
(clockwise) or figure 9(b) (anticlockwise). Similarly to the zig-zag deformation, parallel
D5-branes of the same charge as the (p, q) 7-brane are unaffected by the monodromy.

It is straightforward to see that zig-zag deformations which relate fully resolvable toric
geometries with a single exceptional divisor can be generalized to non-reflexive toric geometries
if and only if the lattice width w of the toric diagram normal to the (p, q) 5-brane being
reversed is exactly 2.23 Infinite families of these deformations have already been verified,
for example from (C2/Zn × C)/Z2 to L1,n−1,1/Z2, for all n ≥ 2 [28], and more examples
will be provided in [24].

We can show that the Hanany-Witten move is consistent with the quiver gauge theory
analysis for the regions R(T∆,K), defined in eq. (4.17), of the field theories involved in the

22It is natural to interpret the position of the 7-brane along the line of the 5-branes as a monotonic function
of |µ| which tends to ∓∞ at the two ends of the line (for example, log |µ|). We will derive this fact and
elaborate on the precise relation in [25].

23If w > 2, at the endpoint of the Hanany-Witten move the D7 brane would become attached to w − 1 > 1
coincident D5 branes, leading to a toric geometry with frozen resolutions, which is described by a generalized
toric diagram (or polytope) [30, 31, 74]. We will study those situations in a companion paper [25].
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⊗ ⊗ ⊗ ⊗

Figure 22. Hanany-Witten move mapping resolution T∆ of PdP3a to T ′(2)
∆ of PdP3c. 5-branes are

in black, 7-branes are in blue, and monodromy cuts in dashed red. Volumes of holomorphic cycles ζa

are superimposed.

⊗ ⊗ ⊗ ⊗

Figure 23. Hanany-Witten move mapping resolution T∆ of PdP3a to T ′(1)
∆ of PdP3c. Volumes of

holomorphic cycles ζa are superimposed.

zig-zag deformation. In figures 22 and 23, we have (p, q)-webs associated to the triangulated
toric diagram T∆ in which and we perform a Hanany-Witten move for two different parallel
5-branes. The resulting (p, q)-webs are dual to the triangulated toric diagrams T (1)

∆′ or T (2)
∆′

of PdP3c, as expected.

For any open string Kähler chamber, we know exactly which zig-zag path corresponds to
which semi-infinite 5-brane. We can therefore identify which 5-brane we need to reverse to
match the zig-zag deformation. The result of the Hanany-Witten move can then be compared
with resolved geometry obtained from the quiver gauge theory analysis.

In the first move represented in figure 23, there exist multiple pairs of open string Kähler
chambers K(1)

1 ,K
(1)
2 such that the chosen zig-zag η corresponds to either of the top two
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parallel 5-branes. As a result,

R




⋃
R



 = R



 . (4.29)

For example, for the reversal of η4 = X12X25X56X61 in PdP3a (µ → 0), see (A.7), the
two regions

R (T∆, {g1, f1, h2, s2}) = {ξ3 ≤ 0, ξ1 ≤ 0, ξ2 + ξ5 ≥ 0, ξ1 + ξ3 + ξ4 ≥ 0, ξ1 + ξ3 + ξ4 + ξ5 ≤ 0}
R (T∆, {g2, f1, h2, s2}) = {ξ3 ≤ 0, ξ1 ≤ 0, ξ2 + ξ5 ≥ 0, ξ5 ≤ 0, ξ1 + ξ3 + ξ4 + ξ5 ≥ 0}

(4.30)

join into the single region

R
(
T

(1)
∆′ , {f

′
2, g
′
1, s
′
2}
)

= {ξ5 ≤ 0, ξ3 ≤ 0, ξ1 ≤ 0, ξ2 + ξ5 ≥ 0, ξ1 + ξ3 + ξ4 ≥ 0} , (4.31)

for phase A of PdP3c (µ→∞). In these subregions, the volumes of 2-cycles (see figures 22
and 23) can be written as

ζ1 = −ξ1

ζ2 = ξ2 − ξ3 + ξ5

ζ3 = −ξ5 + min (0, ξ1 + ξ3 + ξ4 + ξ5)
ζ4 = |ξ1 + ξ3 + ξ4 + ξ5|

(4.32)

The intersection between the two regions in eq. (4.30) corresponds to the θ-stability conditions
for subquiver Qg1,g2 , which is when the volume ζ4(ξ) vanishes, or equivalently when the
two parallel 5-branes coincide.

In general, each resolution partitions the k parallel external legs of the nonisolated Ak−1
singularity into groups of k1, . . . , km parallel 5-branes. Moving a parallel 5-brane from a
given partition to another requires a flop transition, thus moving us to another triangulation.
For a given resolution T∆, we have

ka⋃
i=1
R
(
T∆,K

(a)
i

)
= R

(
T

(a)
∆′ ,K

′(a)
)

for a ∈ {1, . . . ,m} , (4.33)

for T (a)
∆′ and K ′(a) triangulations and open string Kähler chambers of the µ→∞ geometry.

The move represented in figure 22 is when the zig-zag corresponds to an external leg in a
ka = 1 partition, in which case

R



 = R



 . (4.34)

Using the technology of quiver representation theory, we have been able to map the
various open string Kähler chambers of any two (pseudo-)del Pezzo theories related by a
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zig-zag deformation, listed in appendix A and figure 1. For readers interested in the details,
a pdf document entitled “Kähler chamber mapping of PdP3a to PdP3c phase A” is available
in the supplementary material attached to this paper. Fixing the zig-zag η and mapping
regions R(T∆,K) and volumes ζa from both models, we have verified that the (resolution
of) the final toric geometry is precisely the one dual to the (p, q)-web obtained by reversing
the external leg associated to η.
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A Details of the zig-zag deformations

In this appendix we collect details of the zig-zag deformations of UV toric models and the
field redefinitions needed to obtain new toric models in the IR. We describe the deformations
δW of toric superpotentials by a (or multiple) revelant zig-zag operator Oη, which flow into
a toric model or a marginal deformation of one. We divide these into appendix A.1 and
appendix A.2. Each subsection is titled “X to Y”. Futhermore, when different toric phases
are involved these are also pointed out.

A.1 Deformations to toric models

The deformations listed here include only the relevant steps, which are fully described in
section 3.3. In each subsection, describing the deformation between 2 specific geometries,
we include the original starting superpotential W . Additionally, each deformation is in a
unique equation block with:

1) The deformation δW = µ
∑
i∈I Oηi , associated to one or more zig-zag paths ηi.

2) The non-trivial field redefinitions of the type in eq. (3.15), if any. Some redefinitions
include free parameters βi ∈ C, which do not affect the final result.

3) The toric superpotential W ′ representing the IR theory.

The redefinition in item 2 is for the superpotential W + δW , after integrating out massive
fields using the F-terms (3.13).

A.1.1 PdP1, C3
/
Z4 (1, 1, 2) to F0, C/Z2 (1, 1, 1, 1)

W = X13X
1
34X

2
41 +X24X

1
41X

2
12 +X31X

1
12X

2
23 +X42X

1
23X

2
34

−X13X
2
34X

1
41 −X24X

2
41X

1
12 −X31X

2
12X

1
23 −X42X

2
23X

1
34 (A.1)
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δW = µ (X13X31 −X24X42)

W ′ = X1
12X

2
23X

2
34X

1
41 +X2

12X
1
23X

1
34X

2
41 −X1

12X
1
23X

2
34X

2
41 −X2

12X
2
23X

1
34X

1
41

= −εabεcdXa
12X

b
23X

c
34X

d
41 (A.2)

A.1.2 PdP2 to dP2

W = X12X
1
25X

2
51 +X14X42X21 +X53X32X

2
25 +X13X34X45X

1
51

−X12X
2
25X

1
51 −X13X32X21 −X14X45X

2
51 −X34X42X

1
25X53 (A.3)

δW = µ (X12X21 −X34X45X53)

X45 7→ + 1
µ
X45 −

1
µ
X42X

1
25 X53 7→ −

1
µ
X53 + 1

µ
X1

51X13

W ′ = X34X45X53 +X13X32X
1
25X

2
51 +X14X42X

2
25X

1
51

−X14X45X
2
51 −X32X

2
25X53 −X13X34X42X

1
25X

1
51 (A.4)

A.1.3 PdP3a, C3
/
Z6 (1, 2, 3) to PdP3c, SPP/Z2 (0, 1, 1, 1)

Phase A to phase A

W = X12X26X61 +X13X35X51 +X15X54X41 +X24X43X32

+X25X56X62 +X34X46X63 −X12X25X51 −X13X34X41

−X15X56X61 −X24X46X62 −X26X63X32 −X35X54X43 (A.5)

δW = µ (X15X51 −X34X43)

X26 7→ −
1
µ
X26 +

( 1
µ
− β1

)
X24X46 + β1X25X56

X62 7→ −
1
µ
X62 +

( 1
µ
− β1

)
X61X12 + β1X63X32

W ′ = X24X46X62 +X26X63X32 +X12X25X54X41 +X13X35X56X61

−X12X26X61 −X25X56X62 −X13X32X24X41 −X35X54X46X63 (A.6)

δW = µ (X26X62 −X15X51)

X34 7→ −
1
µ
X34 +

( 1
µ
− β1

)
X32X24 + β1X35X54

X43 7→ −
1
µ
X43 +

( 1
µ
− β1

)
X41X14 + β1X46X63

W ′ = X13X34X41 +X35X54X43 +X12X24X46X61 +X25X56X63X32

−X24X43X32 −X34X46X63 −X12X25X54X41 −X13X35X56X61 (A.7)
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A.1.4 PdP3c, SPP/Z2 (0, 1, 1, 1) to PdP3b

Phase A to phase A

W = X25X56X62 +X36X65X53 +X13X34X45X51 +X16X64X42X21

−X16X65X51 −X45X56X64 −X13X36X62X21 −X25X53X34X42 (A.8)

δW = µ (X16X62X21 −X34X45X53)

X16 7→ −
1
µ
X16 + 1

µ
X13X36 X62 7→

1
µ
X62 −

1
µ
X64X42

X53 7→ −
1
µ
X53 + 1

µ
X51X13 X45 7→

1
µ
X45 −

1
µ
X42X25

W ′ = X16X65X51 +X25X56X62 +X34X45X53 +X13X36X64X42X21

−X16X62X21 −X36X65X53 −X45X56X64 −X13X34X42X25X51 (A.9)

Phase B to phase B

W = X12X23X31 +X25X56X62 +X26X64X42 +X34X45X
2
53

+X15X
1
53X36X61 −X12X26X61 −X15X

2
53X31 −X23X36X62

−X45X56X64 −X25X
1
53X34X42 (A.10)

δW = µ
(
X26X62 −X15X

1
53X31

)
X31 7→ −

1
µ
X31 + 1

µ
X36X61 X1

53 7→
1
µ
X1

53 −
1
µ
X2

53

X45 7→
1
µ
X45 −

1
µ
X42X25

W ′ = X15X
1
53X31 +X34X45X

2
53 +X12X25X56X61 +X23X36X64X42

−X12X23X31 −X45X56X64 −X15X
2
53X36X61 −X25X

1
53X34X42 (A.11)

A.1.5 PdP3b to dP3

Phase A to phase A

W = X12X26X61 +X14X42X21 +X25X53X32 +X13X34X46X65X51

−X12X25X51 −X13X32X21 −X14X46X61 −X26X65X53X34X42 (A.12)

δW = µ (X12X21 −X34X46X65X53)

X53 7→ −
1
µ
X53 + 1

µ
X51X13 X46 7→

1
µ
X46 −

1
µ
X42X26

W ′ = X13X32X26X61 +X14X42X25X51 +X34X46X65X53

−X14X46X61 −X25X53X32 −X13X34X42X26X65X51 (A.13)
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Phase B to phase B

W = X53X32X
2
25 +X56X62X

1
25 +X13X34X45X51 +X16X64X42X21

−X13X32X21 −X45X56X64 −X16X62X
2
25X51 −X34X42X

1
25X53 (A.14)

δW = µ (X12X21 −X34X46X65X53)

X53 7→ −
1
µ
X53 + 1

µ
X51X13 X45 7→

1
µ
X45 −

1
µ
X42X

1
25

X21 7→ −
1
µ
X21 + 1

µ
X2

25X51 X62 7→
1
µ
X62 −

1
µ
X64X42

W ′ = X13X32X21 +X34X45X53 +X56X62X
1
25 +X16X64X42X

2
25X51

−X16X62X21 −X45X56X64 −X53X32X
2
25 −X13X34X42X

1
25X51 (A.15)

Phase C to phase C

W = X13X35X51 +X16X
2
62X21 +X24X43X

2
32 +X53X

1
32X

2
25

+X46X
1
62X

1
25X54 −X13X

1
32X21 −X24X46X

2
62 −X35X54X43

−X53X
2
32X

1
25 −X16X

1
62X

2
25X51 (A.16)

δW = µ (X12X21 −X34X46X65X53)

X21 7→
1
µ
X21 −

1
µ
X2

25X51 X1
62 7→ −

1
µ
X1

62 + 1
µ
X2

62

X24 7→ −
1
µ
X24 + 1

µ
X1

25X54

W ′ = X16X
1
62X21 +X24X46X

2
62 +X13X

2
32X

1
25X51 +X43X

1
32X

2
25X54

−X13X
1
32X21 −X24X43X

2
32 −X16X

2
62X

2
25X51 −X46X

1
62X

1
25X54 (A.17)

A.1.6 PdP4b to PdP4a

W = X16X67X71 +X17X72X21 +X25X56X62 +X26X64X42

+X37X75X53 +X13X34X45X51 −X13X37X71 −X16X62X21

−X17X75X51 −X26X67X72 −X45X56X64 −X25X53X34X42 (A.18)

Phase A to phase A

δW = µ (X17X71 −X26X62)

X45 7→ −
1
µ
X45 + 1

µ
X42X25 X53 7→ −

1
µ
X53 + 1

µ
X51X13

W ′ = X45X56X64 +X13X37X72X21 +X16X67X75X51 +X25X53X34X42

−X37X75X53 −X13X34X45X51 −X16X64X42X21 −X25X56X67X72 (A.19)
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Phase A to phase B

δW = µ (X26X62 −X34X45X53)

X45 7→
1
µ
X45 −

1
µ
X42X25 X53 7→ −

1
µ
X53 + 1

µ
X51X13

X17 7→ −
1
µ
X17 +

( 1
µ
− β1

)
X13X37 + β1X16X67

X71 7→ −
1
µ
X71 +

( 1
µ
− β1

)
X72X21 + β1X75X51

W ′ = X13X37X71 +X17X75X51 +X34X45X53 +X16X64X42X21

+X25X56X67X72 −X16X67X71 −X17X72X21 −X37X75X53

−X45X56X64 −X13X34X42X25X51 (A.20)

δW = µ (X17X71 −X34X45X53)

X45 7→
1
µ
X45 −

1
µ
X42X25 X53 7→ −

1
µ
X53 + 1

µ
X51X13

X26 7→
1
µ
X26 +

(
− 1
µ
− β1

)
X21X16 + β1X25X56

X62 7→
1
µ
X62 +

(
− 1
µ
− β1

)
X64X42 + β1X67X72

W ′ = X25X56X62 +X26X64X42 +X34X45X53 +X13X37X72X21

+X16X67X75X51 −X16X62X21 −X26X67X72 −X37X75X53

−X45X56X64 −X13X34X42X25X51 (A.21)

A.1.7 C3
/

(Z4 × Z2) (1, 0, 3)(0, 1, 1) to L1,3,1
/
Z2 (0, 1, 1, 1)

Phase A to phase A

W = X12X28X81 +X14X43X31 +X17X72X21 +X23X34X42

+X36X65X53 +X45X56X64 +X58X87X75 +X67X78X86

−X12X23X31 −X14X42X21 −X17X78X81 −X28X87X72

−X34X45X53 −X36X64X43 −X56X67X75 −X58X86X65 (A.22)

δW = µ (X12X21 −X34X43)

X56 7→
1
µ
X56 +

(
− 1
µ
− β1

)
X58X86 + β1X53X36

X65 7→
1
µ
X65 +

(
− 1
µ
− β1

)
X64X45 + β1X67X75

X78 7→
1
µ
X78 +

(
− 1
µ
− β2

)
X72X28 + β2X75X58

X87 7→
1
µ
X87 +

(
− 1
µ
− β2

)
X86X67 + β2X81X17
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W ′ = X36X65X53 +X45X56X64 +X58X87X75 +X67X78X86

+X14X42X28X81 +X17X72X23X31 −X17X78X81 −X28X87X72

−X56X67X75 −X58X86X65 −X14X45X53X31 −X23X36X64X42 (A.23)

δW = µ (X34X43 −X54X43)

X12 7→
1
µ
X12 +

(
− 1
µ
− β1

)
X17X72 + β1X14X42

X21 7→
1
µ
X21 +

(
− 1
µ
− β1

)
X23X31 + β1X28X81

X78 7→
1
µ
X78 +

(
− 1
µ
− β2

)
X75X58 + β2X72X28

X87 7→
1
µ
X87 +

(
− 1
µ
− β2

)
X81X17 + β2X86X67

W ′ = X12X28X81 +X17X72X21 +X58X87X75 +X67X78X86

+X14X45X53X31 +X23X36X64X42 −X12X23X31 −X14X42X21

−X17X78X81 −X28X87X72 −X36X67X75X53 −X45X58X86X64 (A.24)

δW = µ (X56X65 −X78X87)

X12 7→
1
µ
X12 +

(
− 1
µ
− β1

)
X14X42 + β1X17X72

X21 7→
1
µ
X21 +

(
− 1
µ
− β1

)
X28X81 + β1X23X31

X34 7→
1
µ
X34 +

(
− 1
µ
− β2

)
X31X14 + β2X36X64

X43 7→
1
µ
X43 +

(
− 1
µ
− β2

)
X45X53 + β2X42X23

W ′ = X12X28X81 +X14X43X31 +X17X72X21 +X23X34X42

+X36X67X75X53 +X45X58X86X64 −X12X23X31 −X14X42X21

−X34X45X53 −X36X64X43 −X17X75X58X81 −X28X86X67X72 (A.25)

δW = µ (X78X87 −X12X21)

X34 7→
1
µ
X34 +

(
− 1
µ
− β1

)
X36X64 + β1X31X14

X43 7→
1
µ
X43 +

(
− 1
µ
− β1

)
X42X23 + β1X45X53

X56 7→
1
µ
X56 +

(
− 1
µ
− β2

)
X53X36 + β2X58X86

X65 7→
1
µ
X65 +

(
− 1
µ
− β2

)
X67X75 + β2X64X45
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W ′ = X14X43X31 +X23X34X42 +X36X65X53 +X45X56X64

+X17X75X58X81 +X28X86X67X72 −X34X45X53 −X36X64X43

−X56X67X75 −X58X86X65 −X14X42X28X81 −X17X72X23X31 (A.26)

A.1.8 C3
/

(Z4 × Z2) (1, 0, 3)(0, 1, 1) to PdP5, C/Z2 × Z2 (1, 0, 0, 1)(0, 1, 1, 0)

W = X12X28X81 +X14X43X31 +X17X72X21 +X23X34X42

+X36X65X53 +X45X56X64 +X58X87X75 +X67X78X86

−X12X23X31 −X14X42X21 −X17X78X81 −X28X87X72

−X34X45X53 −X36X64X43 −X56X67X75 −X58X86X65 (A.27)

Phase A to phase A

δW = µ (X12X21 −X34X43 +X56X65 −X78X87)

W ′ = X14X42X28X81 +X17X72X23X31 +X36X67X75X53

+X45X58X86X64 −X14X45X53X31 −X17X75X58X81

−X23X36X64X42 −X28X86X67X72 (A.28)

Phase A to phase B

δW = µ (X12X21 −X56X65)

X34 7→ −
1
µ
X34 +

( 1
µ
− β1

)
X31X14 + β1X36X64

X43 7→ −
1
µ
X43 +

( 1
µ
− β1

)
X45X53 + β1X42X23

X78 7→
1
µ
X78 +

(
− 1
µ
− β2

)
X72X28 + β2X75X58

X87 7→
1
µ
X87 +

(
− 1
µ
− β2

)
X86X67 + β2X81X17

W ′ = X34X45X53 +X36X64X43 +X58X87X75 +X67X78X86

+X14X42X28X81 +X17X72X23X31 −X14X43X31 −X17X78X81

−X23X34X42 −X28X87X72 −X36X67X75X53 −X45X58X86X64 (A.29)

δW = µ (X34X43 −X78X87)

X12 7→
1
µ
X12 +

(
− 1
µ
− β1

)
X14X42 + β1X17X72

X21 7→
1
µ
X21 +

(
− 1
µ
− β1

)
X28X81 + β1X23X31

X56 7→ −
1
µ
X56 +

( 1
µ
− β2

)
X53X36 + β2X58X86

X65 7→ −
1
µ
X65 +

( 1
µ
− β2

)
X67X75 + β2X64X45
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W ′ = X12X28X81 +X17X72X21 +X56X67X75 +X58X86X65

+X14X45X53X31 +X23X36X64X42 −X12X23X31 −X14X42X21

−X36X65X53 −X45X56X64 −X17X75X58X81 −X28X86X67X72 (A.30)

A.2 Deformations to marginal deformations of toric models

Listed here are relevant zig-zag deformations of toric models for which the endpoint of the RG
flow is not toric. Instead, the IR models in this section are described by a toric superpotential
plus an exactly marginal zig-zag deformation. In each subsection, we present the original
toric superpotential W . Each deformation is in a unique equation block with:

1) The deformation δW = µOη, associated to a zig-zag path η.

2) The field redefinitions of the type in eq. (3.15), if any.

3) The superpotential W ′ representing the IR theory, which is of the form W ′toric + 1
µO
′
η′ ,

where Rsc
[
O′η′

]
= 2. The superpotential W ′toric defines a brane tiling model, and O′η′

corresponds to the zig-zag operator of W ′toric for the reversed zig-zag path η′.

A.2.1 L1,3,1
/
Z2 (0, 1, 1, 1) to PdP5, C/Z2 × Z2 (1, 0, 0, 1)(0, 1, 1, 0)

Phase A to phase A

W = X17X78X81 +X18X83X31 +X27X73X32 +X37X75X53

+X14X45X56X61 +X24X48X86X62 −X14X48X81 −X17X73X31

−X18X86X61 −X37X78X83 −X24X45X53X32 −X27X75X56X62 (A.31)

δW = µ (X37X73 −X18X81)

X17 7→ µX17

X83 7→ µX83

W ′ = X14X45X56X61 +X17X75X53X31 +X24X48X86X62 +X27X78X83X32

−X14X48X83X31 −X17X78X86X61 −X24X45X53X32 −X27X75X56X62

+ 1
µ

(X14X48X86X61 −X27X75X53X32) (A.32)

Phase A to phase B

W = X17X78X81 +X18X83X31 +X27X73X32 +X37X75X53

+X14X45X56X61 +X24X48X86X62 −X14X48X81 −X17X73X31

−X18X86X61 −X37X78X83 −X24X45X53X32 −X27X75X56X62 (A.33)

δW = µ (X18X81 −X24X45X56X62)

X61 7→ µX61

X48 7→ µX48
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W ′ = X24X46X62 +X27X73X32 +X37X75X53 +X45X56X64

+X14X48X83X31 +X17X78X86X61 −X14X46X61 −X17X73X31

−X37X78X83 −X48X86X64 −X24X45X53X32 −X27X75X56X62

+ 1
µ

(X46X64 −X17X78X83X31) (A.34)

Phase B to phase C

W = X17X78X81 +X18X83X31 +X23X34X42 +X26X67X72 +X37X75X53

+X48X86X64 +X14X45X56X61 −X14X48X81 −X18X86X61 −X26X64X42

−X34X45X53 −X37X78X83 −X56X67X75 −X17X72X23X31 (A.35)

δW = µ (X18X81 −X45X56X64)

X14 7→ µX14

X86 7→ µX86

X64 7→
1
µ
X64 +X61X14

W ′ = X23X34X42 +X26X67X72 +X37X75X53 +X45X56X64

+X14X48X83X31 +X17X78X86X61 −X34X45X53 −X37X78X83

−X48X86X64 −X56X67X75 −X14X42X26X61 −X17X72X23X31

+ 1
µ

(X26X64X42 −X17X78X83X31) (A.36)

B Moduli spaces from quiver representations

B.1 Quiver representations and path algebras

A quiver Q [75] is a multidigraph, a directed graph where multiple edges between two vertices
and loops are allowed. The data defining the quiver Q consists of a set of vertices V, a set
of edges E , and two mappings s, t : E → V defined as the “source” and “tail” of an edge
(defined in section 2.1). Formally, Q is the ordered tuple (V, E , s, t).

A representation V of a quiver Q is a collection of C-vector spaces {Vi}i∈V and a collection
of linear maps {φe : Vt(e) → Vs(e)}e∈E . A finite-dimensional representation V has a dimension
vector α ∈ (Zn≥0)G, where αi = dim Vi. We denote the set of representations of Q with
dimension vector α by Rep(Q;α).

Many of the notions of linear algebra can be extended to quiver representations. In
particular, given two representations V = ({Vi}i∈V , {φe}e∈E) andW = ({Wi}i∈V , {ψe}e∈E), a
morphism between quiver representations f : S → R is a collection of linear maps fi : Wi → Vi
such that fs(e) ψe = φe ft(e) for all edges e ∈ E . Two representations V and W are isomorphic
if f is bijective. A subrepresentation W ⊂ V of a representation of Q consists of subspaces
Wi ⊂ Vi and arrows {ψe}e∈E such that φe|Wt(e) = ψe. In this case, we can find an injective
morphism f between representations.

– 54 –



J
H
E
P
0
5
(
2
0
2
4
)
1
1
4

For 4d N = 1 quiver gauge theories, we can view Rep(Q;α) as the C-valued affine
space (Vi ∼= Cαi),

Rep(Q, α) ∼=
∏
e∈E

Hom
(
Cαt(e) ,Cαs(e)

)
, (B.1)

where points represent VEVs of the chiral bifundamentals {Xe}e∈E . The complexified gauge
group G(α) = ∏

i∈V GL(αi,C) produces a natural group action on V ∈ Rep(Q, α),

g · V = {gt(e)φe g−1
s(e) | e ∈ E} , (B.2)

for g = (gi) ∈ G(α). Orbits of G(α) are isomorphism classes of quiver representations.
To include the F-term equations that describe the singular geometry of Y it is simpler

to look at quiver path algebra and its subalgebras. The quiver path algebra CQ is an
associative C-algebra with elements up for all paths p = e1e2 . . . e` in the quiver Q and
a multiplication rule

upuq =

upq t(p) = s(q)
0 otherwise

. (B.3)

For each vertex i ∈ V there is a trivial path (no arrow) denoted by pi such that s(pi) = t(pi) = i,
with algebra element ui ≡ upi . The identity element of the path algebra is 1Q = ∑

i∈V ui.
The abelian category of representations of Q is the same as the category of modules over

the path algebra, CQ-Mod, i.e. the category of finite dimensional representations of CQ. For
a quiver representation V , a path p = e1 . . . e` defines a linear map φp : Vt(e) → Vs(e), given by
φp = φe1 φe2 . . . φe` . Thus, we can trivially define a CQ-module structure on⊕i∈V Vi, meaning

upv =

φp(v) v ∈ Vt(p)
0 otherwise

. (B.4)

On the other hand, if V is a CQ-module, we can define the vector subspaces Vi = uiV , since
the trivial path elements ui are idempotent and act as a projection. Additionally, for each
edge e ∈ E we can define field expectations φe : Vt(e) → Vs(e) as φe(v) = uev. Therefore,
({Vi}, {φe}) is a representation of Q.

The F-term equations come into play in the form of the path subalgebra

A = CQ
/〈
∂XW |{ue}

〉
, (B.5)

i.e. we quotient the path algebra CQ by the (Jacobian) ideal generated by open paths relations
in the quiver of the form upi = uqi for two open paths pi, qi in the quiver, provided by the
F-terms. From the same equivalency established above, the representations in Rep(Q;α)
associated to A-modules form a closed G(α)-invariant subvariety that we can denote by ZA(α).

B.2 Kempf-Ness theorem and the Proj GIT quotient

We would like to construct the moduli space as a quotient of a G-action, that relates to the
Kähler reduction for a nonzero level ξ [64, 75]. For that we need to use the Proj GIT quotient
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description of a variety, which can be physically interpreted as the VEVs of chiral superfields
that obey the F-term conditions, modded out by the action of the complexified gauge group.
We consider the abelian U(1)G quiver, so we take the subspaces dimensions as αi = 1 for
all 1 ≤ i ≤ G in the previous description. The reductive group G(α) acting on an affine
algebraic variety Z ≡ ZA(α) is the complexified gauge group GC = (C×)G. We can extend
the group action on the line bundle Z × C using a character χθ : GC 7→ C× by

GC × (Z × C)→ Z × C
g · (z, t) 7→ (g · z, χθ(g) t)

, with χθ(g) =
G∏
i=1

(gi)−θi . (B.6)

Note that θ ∈ ZG ∼= Hom
(
(C×)G,C×

)
. In the algebra of polynomial functions of the line

bundle, C[Z×C], the group acts as g ·f(z, t) = f(g−1 ·z, χθ(g)−1 t), which can be rewritten as

g · f(z, t) = g ·
∑
n≥0

fn(z)tn =
∑
n≥0

fn(g−1 · z)χθ(g)−n tn . (B.7)

Thus, for f to be GC-invariant, we must have g · fn = χθ(g)n fn for all n. We call such
functions fn ∈ C[Z] as χnθ -semi-invariants, which defines a Zn≥0-grading on the ring of
polynomials of the fiber bundle

R = C[Z × C]GC(θ) =
⊕
n≥0

C[Z]χnθ , (B.8)

where C[Z]χnθ is a ring of semi-invariants.
The moduli space of quiver representationsM(Q,W ; θ)GIT is then defined as the Proj

GIT quotient

Z//χθ GC = ProjC[Z × C]GC(θ) (B.9)

The closed points of ProjR, for a graded algebra R = ⊕
n≥0Rn, are naturally in correspon-

dence with the homogeneous (under the induced grading) maximal ideals that do not contain
the irrelevant ideal R+ = ⊕

n>0Rn. This quotient is connected with the previously defined
Kähler quotient (reduction) through the Kempf-Ness theorem

M(Q,W ; ξ)K =M(Q,W ; θ)GIT , for ξ = θ ∈ ZG . (B.10)

Note that, while the Kähler quotient is defined for real levels of the moment map, in the
GIT quotient the space of characters that produces the Zn≥0-grading in the ring of regular
functions in the line bundle of quiver representations is equivalent to ZG.

B.3 Stability of moduli of quiver representations

There is a way to understand the closed points of Z//χθ GC instead of looking at ideals of
C[Z × C]GC(θ), using the idea of χθ-semistability [75, 76]. A point z ∈ Z is χθ-semistable if
for some n > 0 there exists a nonvanishing semi-invariant f ∈ C[Z]χnθ such that z ∈ Zf ≡
{w ∈ Z | f(w) 6= 0}. Thus, the set of all χθ-semistable points are defined as

Zss
χθ

=
⋃

f∈R+

{z ∈ Z | f(z) 6= 0} . (B.11)

– 56 –



J
H
E
P
0
5
(
2
0
2
4
)
1
1
4

If, in addition, Zf is closed under the action of GC and the stabilizer (GC)z is finite, then
we say that z is χθ-stable.

Two points in z1, z2 ∈ Zss
χθ

are S-equivalent if and only if the intersection of the closure
of the GC-orbits is nonempty in the set of semistable points, meaning that GC · z1 ∩ GC · z2 ∩
Zss
χθ
6= ∅. For each point in z ∈ Z, we can define a maximal ideal Iz = {f ∈ R | f(z) = 0},

and in particular if z is χθ-semistable then Iz is also homogeneous and does not contain
the irrelevant ideal R+. Moreover, we have that Iz1 = Iz2 for two S-equivalent points z1, z2.
Therefore, the GIT quotient Z//χθ GC is a variety whose points are in natural bijection with
the S-equivalence classes of χθ-semistable points of Z.

We would like to better understand the characters and one-parameter subgroups of
G(α). A character χ is an element of Hom(G(α),C×), while one-parameter subgroups
λ ∈ Hom(C×, G(α)). We can define the inner-product

〈·, ·〉 : Hom(C×, G(α))×Hom(G(α),C×)→ Z (B.12)

This is possible since the composition of the two elements χ ◦ λ ∈ Hom(C×,C×), which is
group-isomorphic to Z via the map tn 7→ n. We can use this to simplify the criterion for
semistability, which is where the Hilbert-Mumford criterion comes in.

Let G(α) be the reductive group acting on the affine variety X . A point x ∈ X is
χ-semistable if and only if for any one-parameter subgroup λ such that limt→∞ λ(t) · x exists
we have 〈λ, χ〉 ≥ 0. If the inequality is strict for any nontrivial such λ, then x is χ-stable.
For unframed quivers like the ones we focus on, each point of Rep(Q, α) has a nontrivial
subgroup Γ ∼= C× contained in its stabilizer, corresponding to the complexification of the
trivially acting diagonal gauge U(1). Therefore, we must include the condition that χ(Γ) = 1
in the semistability condition.

Since G(α) = ∏
i∈V GL(αi,C), a character χ can be written as a product ∏i∈V χi, where

χi = det−θi is a character of GL(αi,C) for some θi ∈ Z. For simplicity, we fixed αi = 1,
meaning that we can write χ(t1, . . . , tG) = ∏G

i=1(ti)−θi . Similarly, a one-parameter subgroup
must be of the form λ(t) = (tβ1 , . . . , tβG), for β ∈ ZG. So the Hilbert-Mumford criterion
can be simply be written as

〈λ, χ〉 ≥ 0 ⇔ θ · β ≤ 0 . (B.13)

Note that χ(Γ) = 1 requires χ to be a character of PG(α). This is equivalent to θ · α = 0.
Given the Hilbert-Mumford criterion, we can define θ-(semi)stability. Given θ ∈ RG, a

representation V of the quiver Q with (nonzero) dimension vector α is called θ-semistable if
θ · α = 0 and for any subrepresentation W ⊂ V with dimension vector β we have θ · β ≤ 0.
We say that V is θ-stable if under the previous assumptions θ · β < 0 for any nontrivial
proper subrepresentation W ⊂ V with dimension vector β.

These results can be tied together with a theorem by King [76]. Let Q be a quiver, and
let θ ∈ Z. Let α ∈ Z≥0 be a dimension vector such that θ · α = 0. Then, any V ∈ Rep(Q, α)
is χθ-semistable (resp. χθ-stable) if and only if V is θ-semistable (resp. θ-stable).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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