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Abstract
To overcome incompatibility issues, kidney patients may swap their donors. In interna-
tional kidney exchange programmes (IKEPs), countries merge their national patient–donor 
pools. We consider a recently introduced credit system. In each round, countries are given 
an initial “fair” allocation of the total number of kidney transplants. This allocation is 
adjusted by a credit function yielding a target allocation. The goal is to find a solution 
that approaches the target allocation as closely as possible, to ensure long-term stability 
of the international pool. As solutions, we use maximum matchings that lexicographically 
minimize the country deviations from the target allocation. We perform, for the first time, a 
computational study for a large number of countries. For the initial allocations we use two 
easy-to-compute solution concepts, the benefit value and the contribution value, and four 
classical but hard-to-compute concepts, the Shapley value, nucleolus, Banzhaf value and 
tau value. By using state-of-the-art software we show that the latter four concepts are now 
within reach for IKEPs of up to fifteen countries. Our experiments show that using lexico-
graphically minimal maximum matchings instead of ones that only minimize the largest 
deviation from the target allocation (as previously done) may make an IKEP up to 54% 
more balanced.

Keywords Kidney exchange · Matching game · Solution concept · Credit system · 
Simulation
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1 Introduction

For kidney patients, kidney transplantation is still the most effective treatment result-
ing in a significant longer life expectancy compared to dialysis. However, the demand 
for available kidneys has consistently exceeded supply. Moreover, a kidney transplanta-
tion might not be possible due to blood-type or tissue-type incompatibilities between a 
patient and a willing donor. The solution is to place all patient–donor pairs in one pool 
such that donors can be swapped in a cyclic manner. More formally, an �-way exchange 
involves � distinct patient–donor pairs (p1, d1),… , (p

�
, d

�
) , where for i ∈ {1,… ,� − 1} , 

donor di donates to patient pi+1 and donor d
�
 donates to patient p1 . A kidney exchange 

programme (KEP) is a centralized program where the goal is to find an optimal kidney 
exchange scheme in a pool of patient–donor pairs subject to an upper bound � on the 
cycle length.

Recently, national KEPs started to collaborate, leading to a number of international 
KEPs (IKEPs). In 2016, the first international kidney exchange took place, between Austria 
and the Czech Republic [22]. In 2018, Italy, Spain and Portugal started to collaborate [48]. 
In 2019, Scandiatransplant, an organization for sharing deceased organs among six Scandi-
navian countries, started an IKEP involving Swedish and Danish transplant centers. Even 
though overall solutions will improve, individual rationality might not be guaranteed, that 
is, individual countries could be worse off. To improve the stability of an IKEP, the follow-
ing question is therefore highly relevant:

What kind of fairness must we guarantee to ensure that all countries in an IKEP place 
all their patient–donor pairs in an international pool?

Individual rationality [5, 6] and fairness versus optimality [4, 20, 32, 46] were initially 
studied for national KEPs, in particular in the US. However, the US situation is differ-
ent from many other countries. The US has three nationwide KEPs (UNOS, APD, NKR) 
[2], and US hospitals work independently and compete with each other. Hence, US hospi-
tals tend to register only the hard-to-match patient–donor pairs to the national KEPs, while 
they try to process their easy-to-match pairs immediately. As a consequence, the aforemen-
tioned papers focused on mechanisms that give incentives for hospitals to register all their 
patient–donor pairs at the KEP. In particular, NKR (the largest nationwide KEP in the US) 
uses a credit system to incentivize hospitals to register also their easy-to-match pairs by 
giving negative credits for registering hard-to-match pairs and positive credits for register-
ing easy-to-match pairs.

1.1  Our setting

We consider IKEPs in the setting of European KEPs which are scheduled in rounds, typi-
cally once in every three months [14]. Unlike the US setting, this setting allows a search for 
optimal exchange schemes. Hence, the situation where easy-to-match patient–donor pairs 
are taken out of the pool is no longer relevant. Below we discuss existing work for the 
European setting. As we will see, the credit system proposed for the European setting [19, 
36] is different from the one used by NKR due to the different nature of the European and 
US settings.

We first note that the search for an optimal exchange scheme can be done in polynomial 
time for 2-way exchanges (matchings) but becomes NP-hard as soon as 3-way exchanges 
are permitted [1].
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Carvalho and Lodi [24] used a 2-round system for ensuring stability of IKEPs with 
2-way exchanges only: in the first round each country selects an internal matching, and 
in the second round a maximum matching is selected for the international exchanges. 
They gave a polynomial-time algorithm for computing a Nash-equilibrium that maximizes 
the total number of transplants, improving the previously known result of [23] for two 
countries.

Sun et al. [44] also considered 2-way exchanges only. They defined so-called selection 
ratios using various lower and upper target numbers of kidney transplants for each country. 
In their setting, a solution is considered to be fair if the minimal ratio across all countries 
is maximized. They also required a solution to be a maximum matching and individually 
rational. They gave theoretical results specifying which models admit solutions with all 
three properties. Moreover, they provided polynomial-time algorithms for computing such 
solutions, if they exist.

Klimentova et al. [36] introduced a credit system to incentivize the countries for col-
laborating by sharing the joint benefits in a fair way. That is, each country will be allocated 
in each round of the IKEP a “fair” target number of kidney transplants for that country. The 
differences between the actual number of transplants for a country and its target number are 
used as credits for the next round. In their simulations, they allowed 3-way exchanges for 
four countries. They considered the potential and benefit value for the initial allocations, 
which become the target allocations after the credit adjustment. Their results showed that 
using the benefit value yields slightly more balanced solutions. Biró et al. [16] compared 
the benefit value with the Shapley value. In their simulations, for three countries allowing 
3-way exchanges, they found that the Shapley value produced smaller deviations from the 
targets on average.

Biró et al. [19] considered credit-based compensation systems from a theoretical point 
of view. They only allowed for 2-way exchanges but, unlike [16, 36], with the possibility of 
having weights for representing transplant utilities. They gave a polynomial-time algorithm 
for finding a maximum matching that minimizes the largest country deviation from a target 
allocation. They also showed that the introduction of weights makes the problem NP-hard. 
In [12], the polynomial-time algorithm of [19] was generalized to a polynomial-time algo-
rithm for computing a maximum matching that lexicographically minimizes the country 
deviations from a given target allocation. In [10], the theoretical results from [12] and [19] 
are unified and extended.

1.2  Our contributions

We perform a large scale experimental study (up to 15 countries) on finding balanced 
solutions in IKEPs. Our motivation is threefold. Firstly, these days, IKEPs have a growing 
number of countries. Secondly, we aim to measure the effect of using maximum match-
ings that are lexicographically minimal. We therefore need to consider IKEPs with a large 
number of participating countries (otherwise maximum matchings that minimize the larg-
est country deviation from a target allocation will probably be lexicographically minimal). 
Thirdly, motivated by the promising results for the Shapley value [16, 36], we also wanted 
to thoroughly investigate the effect of using widely accepted solution concepts from coop-
erative game theory. That is, we model the rounds of an IKEP as so-called partitioned 
matching games, which were formally introduced in [19]. This indeed allows us to use 
well-understood solution concepts from cooperative game theory for prescribing the initial 
“fair” allocations. We define all game-theoretic notions that we need in Sect. 2.
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In Sect. 3 we explain the credit system of [12, 16, 19, 36] in our setting. Whilst [16, 36] 
allowed 3-way exchanges, we only allow 2-way exchanges just as [23, 24, 44]. Similar to 
[16, 36] we do not consider weights representing transplant utilities. We justify our setting 
as follows. We first recall that allowing 3-way exchanges [1] or weights [19] makes the 
problem of computing an optimal exchange scheme in a certain round NP-hard. With the 
current technology it is not possible to perform an experimental study on such a large scale 
as we do. Furthermore, some countries, such as France and Hungary, are legally bound 
to using only 2-way exchanges. Hence, assuming only 2-way exchanges is not unrealistic 
either. Moreover, in most of the existing KEPs, the primary objective does not involve any 
weights and is still to maximize the number of kidney transplants [15].

In Sect.  4 we describe the algorithm, called Lex-Min, that we used for computing 
maximum matchings that lexicographically minimize the country deviations from a given 
target allocation. As we will explain, this algorithm can also be used for computing maxi-
mum matchings that minimize only the largest country deviation from a given target allo-
cation. For the correctness proof and a running time analysis of the algorithm we refer to 
[12] (see also [10]).

In Sect. 5 we discuss the simulations in more detail, and in Sect. 6 we present the results 
of our simulations. As mentioned, we conduct simulations for up to even 15 countries 
in contrast to the previous studies [16, 36] for 3–4 countries. Moreover, we do this both 
for equal and varying country sizes, and for a large variety of different solution concepts. 
Namely, our target allocations are prescribed by four hard-to-compute solution concepts: 
the Shapley value, nucleolus, Banzhaf value and tau value1 and two easy-to-compute solu-
tion concepts: the aforementioned benefit value, which coincides with the Gately point if 
the latter is unique, and a natural variant of the benefit value, the contribution value.2 As 
mentioned, we define all these concepts in Sect. 2.

Our simulations show that a credit system using lexicographically minimal maximum 
matchings instead of ones that minimize only the largest country deviation from a given 
target allocation makes an IKEP up to 54% more balanced, without decreasing the over-
all number of transplants. The exact improvement depends on which solution concept is 
used. From our experiments, both the Banzhaf and Shapley value yield the best results, 
namely, on average, a deviation of up to 0.52% from the target allocation. However, the dif-
ferences between the different solution concepts are small: all the other solution concepts 
stay within 1.23% from the target allocation, and the choice for using a certain solution 
concept will be up to the policy makers of the IKEP.

We finish our simulations by examining a new approach for incorporating credits that 
has not been proposed in the literature before. Namely, it is also natural to let the solution 
concepts prescribe an allocation for a credit-adjusted game, where the credits are incorpo-
rated into the value function of the game directly. As explained in Sect. 3, where we intro-
duce this approach after first describing the original model, only the Banzhaf value may 
prescribe different allocations. For all the other solution concepts that we consider both the 
original and new credit system yield exactly the same target allocations. Our simulations 
show, however, that the modified Banzhaf value yields, on average, a deviation of even 
up to 0.48% from the target allocation. This is a slight improvement over the best results 
(0.52%) under the original credit system.

1 In 0.04% of our simulations, the tau value does not exist and in those cases we replace the tau value by 
the closely related benefit value.
2 Our experimental study is based on the one in [12], but we made a significant extension: we now also 
included the Banzhaf value and tau value in our simulations.
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In Sect. 7 we evaluate some other aspects of our simulations. First, we show that IKEPs 
lead to a significantly larger number of total kidney transplants than the total number of 
transplants of the KEPs of the individual countries. Second, we show that, although theo-
retically country credits may build up over time as illustrated with an example in Sect. 3, 
this situation does not happen in any of our simulations. Third, we evaluate computational 
time issues in our simulations, showing that the generation of the partitioned matching 
games is the most expensive operation in our simulations. Fourth, we evaluate a number of 
game-theoretic properties: core stability aspects, convexity and quasibalancedness. Finally, 
in Sect. 8, we give directions for future work.

2  Cooperative game theory

We model rounds of IKEPs as partitioned matching games [19]. In this section we define 
these games. We first provide relevant definitions from cooperative game theory that we 
will need in the remainder of our paper.

A (cooperative) game is a pair (N,  v), where N is a set {1,… , n} of players and 
v ∶ 2N → ℝ+ is a value function with v(�) = 0 . A coalition is a subset S ⊆ N . If 
v(N) ≥ v(S1) +… + v(Sr) for every partition (S1,… , Sr) of N, then the players have an 
incentive to form the grand coalition  N. A partitioned matching game [19] is a game 
(N, v) on an undirected graph D = (V ,E) with a positive edge weighting w and a partition 
(V1,… ,Vn) of V. For S ⊆ N , we let V(S) =

⋃
p∈S Vp . A matching M in a graph is a set of 

edges, such that no two edges in M have an end-vertex in common. The weight of M is 
w(M) =

∑
e∈M w(e) . The value v(S) of coalition S is the maximum weight of a matching in 

the subgraph of D induced by V(S). If Vp = {p} for p = 1,… , n , then we obtain the clas-
sical matching game (see, for example, [17, 27, 33, 34, 37]). We will mainly consider uni-
form matching games, that is, with w(e) = 1 for every e ∈ E . Now, v(S) becomes the maxi-
mum size of a matching in the subgraph of D induced by V(S), and in particular v(N) = � , 
where � is the size of a maximum matching in D.

The central problem in cooperative game theory is how to distribute v(N) amongst the 
players in such a way that players are not inclined to leave the grand coalition. In this con-
text, an allocation is a vector x ∈ ℝ

n with x(N) = v(N) where we write x(S) =
∑

p∈S xp for 
some set S ⊆ N ; hence, xi prescribes the part of v(N) that is allocated to player i. An alloca-
tion x is said to be an imputation if x is individual rational, that is, xp ≥ v({p}) for every 
p ∈ N . A solution concept prescribes a set of “fair” allocations for cooperative games, 
where the notion of fairness depends on context. We now provide definitions of the solu-
tion concepts that are relevant for our work.

The core of a game (N, v) consists of all allocations x ∈ ℝ
n with x(S) ≥ v(S) for every 

S ⊆ N . Core allocations offer no incentive for a group of players to leave the grand coali-
tion N and form a coalition on their own, so they ensure that N is stable. However, games 
may have an empty core.

We now define the nucleolus of a cooperative game. In order to do this we need 
more terminology. For an allocation x and a non-empty coalition S ⊊ N in a game (N, v), 
we define the excess e(S, x) ∶= x(S) − v(S) . We obtain the excess vector e(x) ∈ ℝ

2n−2 
by ordering the 2n − 2 entries in a non-decreasing sequence. The nucleolus of a game 
(N, v) is the unique allocation [41] that lexicographically maximizes e(x) over the set 
of imputations. Note that the nucleolus is not defined if the set of imputations is empty. 
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However, every partitioned matching game has a nonempty set of imputations. The 
nucleolus is a core allocation if the core is nonempty.

The Shapley value �(N, v) of a game (N, v), defined in [42], is one of the best known 
solution concepts and is defined by setting for every p ∈ N,

Unlike the nucleolus, the Shapley value does not necessarily belong to the core if the 
core is nonempty. This also holds for (partitioned) matching games (see [11] for a small 
example).

The unnormalized Banzhaf value �p(N, v) of a game (N, v) is introduced in [7] and is 
defined by setting for every p ∈ N,

Note that �p may not be an allocation (see e.g. [49]). The (normalized) Banzhaf value 
�p(N, v) of a game (N, v) rectifies this and is defined by setting for every p ∈ N,

Whenever we speak about the Banzhaf value in our paper, we will mean �(N, v).
We now define the tau value [45]. Let (N,  v) be a game. For p ∈ N , let 

bp = v(N) − v(N ⧵ {p}) be the utopia payoff for  p. This gives us a vector b ∈ ℝ
n . For 

p ∈ N and S ⊆ N , let R(S, p) ∶= v(S) −
∑

q∈S⧵{p} bq be what remains for p should the other 
players in S leave S with their utopia payoff. For p ∈ N , we let ap ∶= maxS∋p R(S, p) . 
This gives us a vector a ∈ ℝ

n . We say that (N, v) is quasibalanced if both a ≤ b (that is, 
ap ≤ bp for every p ∈ N ) and a(N) ≤ v(N) ≤ b(N) . For a quasibalanced game (N, v), the 
tau value � is defined by setting for every p ∈ N,

where � ∈ [0, 1] is determined by the condition �(N) = v(N) . Note that � is unique 
unless a = b in which case � = a . The tau value is not defined for games that are not 
quasibalanced.

In general, all the above solution concepts may require exponential time to compute, 
assuming that the input is described by an underlying (weighted) graph, as in the case of 
partitioned matching games. We now define two easy-to-compute solution concepts. To 
do this, we first define the surplus of a game (N, v) as

A game (N, v) is said to be essential if surp > 0 . Note that an essential game has more than 
one imputation. If surp = 0 , then the allocation x ∈ ℝ

n with xp = v({p}) for every p ∈ N 
is the unique imputation, whereas the set of imputations is empty if surp < 0 . As men-
tioned, partitioned matching games have a nonempty set of imputations, but they may not 

(1)𝜙p(N, v) =
∑

S⊆N�{p}

|S|!(n − |S| − 1)!

n!

(
v(S ∪ {p}) − v(S)

)
.

(2)𝜓p(N, v) ∶=
∑

S⊆N�{p}

1

2n−1

(
v(S ∪ {p}) − v(S)

)
.

(3)�p(N, v) ∶=
�p(N, v)∑
q∈N �q(N, v)

⋅ v(N).

�p ∶= �ap + (1 − �)bp,

surp = v(N) −
∑

p∈N

v({p}).
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be essential; consider, for instance, a matching game defined on a graph consisting of two 
non-adjacent vertices.

For p ∈ N we can allocate v({p}) + �p ⋅ surp for some � ∈ ℝ
n with 

∑
p∈N �p = 1 . We 

define two solution concepts that each correspond to a different �.
First, we obtain the known benefit value [36] by setting for each p ∈ N,

The benefit value is not defined if 
∑

p∈N(v(N) − v(N⧵{p}) − v({p})) = 0.
Moreover, partitioned matching games are superadditive, that is, for every two disjoint 

coalitions S and T, it holds that v(S ∪ T) ≥ v(S) + v(T) . As shown by Staudacher and Anwan-
der [43], this means that the benefit value coincides with the Gately point [31],3 as long as 
the Gately point is unique. For superadditive games, the latter holds if there exists at least 
one player p with v(N) − v(N⧵{p}) − v({p}) > 0 [43]. For superadditive games that do not 
satisfy this condition, we have for every p ∈ N that v(N) − v(N ⧵ {p}) − v({p}) = 0 , and 
thus the benefit value does not exist. Moreover, the benefit value coincides with the tau 
value when the game is convex [50], that is, for every two coalitions S and T it holds that 
v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T) . This condition implies superadditivity. However, already 
any (uniform) matching game that contains a 3-vertex path uvw as a subgraph is not convex: 
take S = {u, v} and T = {v,w} and note that v(S ∪ T) + v(S ∩ T) = 1 < 2 = v(S) + v(T).4

Second, we obtain a new solution concept, the contribution value, by setting for each 
p ∈ N,

The contribution value is not defined if 
∑

p∈N(v(N) − v(N⧵{p})) = 0 . From their defini-
tions, we note that both the benefit value and the contribution value can be computed in 
polynomial time.

Finally, we observe that there exist even small matching games for which the tau value, 
benefit value and contribution value do not to exist and for which the Gately point is not 
unique, while the set of imputations has size larger than 1. Namely, let D be the triangle 
with unit edge weights.

3  Our model

We model a KEP as follows. A compatibility graph is a directed graph  D = (V ,A) 
with an arc weighting w. Each vertex in V is a patient–donor pair. There is an arc from 
patient–donor pair  i to patient–donor pair  j if and only if the donor of pair  i is com-
patible with the patient of pair  j. The associated weight wij indicates the utility of the 

�p =
v(N) − v(N ⧵ {p}) − v({p})

∑
p∈N(v(N) − v(N ⧵ {p}) − v({p}))

.

�p =
v(N) − v(N ⧵ {p})

∑
p∈N(v(N) − v(N ⧵ {p}))

.

3 The Gately point of a game (N, v) was originally defined as the point where the potential for each player 
to “disrupt” (by leaving N) is minimal. It occurs when the disruption, defined as v(N)−v(N⧵{i})−xi

x
i
−v({i})

 , is equal for 
every player i ∈ N.

4 The tau value and benefit value may also coincide for non-convex matching games: e.g. take the 4-vertex 
cycle with unit edge weights, for which the allocation x ≡ 1

2
 is both the tau and benefit value.
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transplantation. An exchange cycle is a directed cycle C in D. The weight of a cycle C is 
the sum of the weights of its arcs. An exchange scheme X is a union of pairwise vertex-
disjoint exchange cycles in D. The weight of X is the sum of the weights of its cycles.

A KEP operates in rounds. Each round has its own compatibility graph, which is 
determined by the current pool of patient–donor pairs. In each round, the goal is to find 
an exchange scheme of maximum weight, subject to a fixed exchange bound � , which is 
an upper bound on the length of the exchange cycles that may be used.

We obtain an IKEP by partitioning V into subsets V1,… ,Vn , where n is the number 
of countries involved and for p ∈ {1,… , n} , Vp is the set of patient–donor pairs of coun-
try p. The objective is still to find an exchange scheme of D that has maximum weight 
subject to the exchange bound � . In this setting, we must now in addition ensure that the 
countries accept the proposed exchange schemes.

Assumptions  As explained in Sect. 1, we set � = 2 and w ≡ 1 . As � = 2 , we can make 
D = (V ,A) undirected by adding an edge between two vertices i and j if and only if both 
(i, j) and (j, i) are in A (see Fig. 1). So, from now on, compatibility graphs are undirected 
graphs.

We now explain the recent credit system from [19, 36] for IKEPs. Let N = {1,… , n} 
be the set of countries. For some h ≥ 1 , let Dh be the compatibility graph in round h with 
country vertex sets Vh

1
,… ,Vh

n
 . Let �h be the size of a maximum matching in Dh , so 2�h 

is the maximum number of kidney transplants possible in round h. Hence, an alloca-
tion for round h is a vector xh ∈ ℝ

n with xh(N) = 2�h . That is, xh
p
 describes the share of 

xh(N) = 2�h that is allocated to country p. We can only allocate integer numbers (kid-
neys), but nevertheless we do allow allocations xh to be non-integer, as we will explain 
later.

Assume that we are given a “fair” allocation yh for round h ≥ 1 , together with a credit 
function ch ∶ N → ℝ , which satisfies

We let c1 ≡ 0 and define ch for h ≥ 2 below. For p = 1,… , n , we set xh
p
= yh

p
+ ch

p
. Then xh 

is an allocation, as yh is an allocation and 
∑

p∈N ch
p
= 0 . We call xh the target allocation for 

round h and yh the initial allocation for round h.

∑

p∈N

ch
p
= 0.

Fig. 1  A directed compatibility graph (left) which we make undirected (right). Here, M = {M} , where 
M = {i1i2, i4i5} . If V1 = {i1, i2, i3} and V2 = {i4, i5} , then s1(M) = s2(M) = 2 . That is, both countries receive 
two kidney transplants if maximum matching M is used, so all transplants are “in-house”
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We now define ch for h ≥ 2 . Let Mh be the set of all maximum matchings of Dh . Say, 
we choose a matching Mh ∈ M

h . Then the set {(i, j) ∈ E| ij ∈ Mh, j ∈ Vh
p
} consists of all 

kidney transplants in round h that involve patients in country p (with donors both from 
country p and other countries). We let sp(Mh) denote the size of this set, or equivalently 
(see Fig. 1),

We now compute a new credit function ch+1 by setting ch+1
p

= xh
p
− sp(M

h) and note that 
∑

p∈N ch+1
p

= 0 , as required. For round h + 1 , a new initial allocation  yh+1 is given. For 
p = 1,… , n , we set xh+1

p
= yh+1

p
+ ch+1

p
 and repeat the process.

Note that for every country p ∈ N and round h ≥ 2 , it holds that

so credits are in fact the accumulation of the deviations from the initial allocations. Hence, 
credits for a country can build up over time, irrespectively of our choice of initial alloca-
tions. Later in this section, we will give an explicit example where this happens. However, 
such situations did not occur in any of our simulations where we used the credit function 
(see Sect. 7.2).

We now specify our choices for the initial allocations  yh and maximum matchings 
Mh ∈ M

h.
Choosing the initial allocation y For prescribing our initial allocations we use the sin-

gleton solution concepts from Sect. 2. That is, we use four hard-to-compute solution con-
cepts: the Shapley value, nucleolus, Banzhaf value and tau value, and two easy-to-compute 
solution concepts: the benefit value and the contribution value.

We use the same solution concept consistently for all rounds but with one exception. 
Recall that a partitioned matching game may not be quasibalanced, and that in that case the 
tau value is not defined. If the game is not quasibalanced, then for our simulations involv-
ing the tau value, we use the benefit value instead.5 As we will see in Sect. 5, where we 
describe our simulations in more detail, we had to make this replacement in only 0.04% of 
our simulations.

Naturally, we could have replaced the tau value by a different solution concept. How-
ever, we chose the benefit value, as for convex games the tau and benefit values coincide. 
Moreover, they may even coincide if the game is not convex. Indeed, as we will see in 
Sect. 7.5, overall only 4.14% of the partitioned matching games in our simulations turned 
out to be convex, but in 31.6% of the non-convex cases, the tau and benefit values still 
coincided.

Finally, recall that x(N) = 2� for an allocation x, as we count the number of kidney 
transplants instead of using the maximum number � of patient–donor swaps. To resolve 
this incompatibility, we multiply the allocations prescribed by the above six solution con-
cepts by a factor of two.

Choosing the solution M For a maximum matching M ∈ M in a partitioned matching 
game (N, v) we let

sp(M
h) = |{j ∈ Vh

p
| ij ∈ Mh}|.

ch
p
=

h−1∑

t=1

(yt
p
− sp(M

t)),

5 The benefit value, and also the contribution value, may not always exist either. We kept track of this in 
our simulations, but both allocations turned out to exist for all our simulation instances.
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be the vector obtained by reordering the components |xp − sp(M)| non-increasingly. We say 
that M is lexicographically minimal for an allocation x if �(M) is lexicographically minimal 
over all matchings M ∈ M . Every lexicographically minimal matching in M is a matching 
that minimizes

but the reverse might not be true.
In our simulations, we choose in each round a maximum matching that is lexicographi-

cally minimal for the target allocation. To examine the effect of this, we will perform 
exactly the same simulations when we choose a maximum matching that only minimizes 
d1 . In Sect.  4 we present the polynomial-time algorithm for computing these maximum 
matchings. Moreover, as a baseline approach, we will do the same simulations when an 
arbitrary maximum matching is chosen.

Example. In Fig. 2, compatibility graphs for two rounds of an IKEP consisting of three 
countries is displayed, so N = {1, 2, 3}.

First assume that we use the Shapley value for the initial allocations. Let V1 = {i1} , 
V2 = {i2, i3} and V3 = {i4} in round 1. Note that M1 = {M1} with M1 = {(i1, i2), (i3, i4)} . 
So, in round 1, we need to use M1 , as M1 is the only maximum matching in this round. 
Recall that c1 = (0, 0, 0) . Then x1 = y1 =

(
2

3
,
8

3
,
2

3

)
 . Moreover, s(M1) = (1, 2, 1) and 

c2 = y1 − s(M1) = (−
1

3
,
2

3
,−

1

3
) . Hence, after round 1, all patient–donor pairs i1,… , i4 have 

been helped and leave the IKEP. Let V1 = {j1} , V2 = {j2} and V3 = {j3} in round 2. Note 
that M2 = {M2,M2

∗
} with M2 = {j1j2} and M2

∗
= {j1j3} . So, in round 2, we must choose 

between using M2 or M2
∗
 , and this choice will be determined by which maximum matching 

will be closer to the target allocation x2 . Note that y2 =
(

4

3
,
1

3
,
1

3

)
 . Hence, 

x2 = y2 + c2 = (1, 1, 0) and we must choose M2 = {(j1, j2)} , which has s(M2) = (1, 1, 0) . 
Consequently, c3 = x2 − s(M2) = (0, 0, 0).

Using, for example, the nucleolus for the initial allocations yields the same for round 1 
(as we must use M1 ). However, in round 2, y2 = (2, 0, 0) . Hence, x2 = y2 + c2 =

(
5

3
,
2

3
,−

1

3

)
 

meaning that again we must pick M2 . But now, c3 = x2 − s(M2) =
(

2

3
,−

1

3
,−

1

3

)
 . This 

means that in round 3, the nucleolus may lead to choosing a different maximum matching 
from M3 . In that case, different patient–donor pairs may leave the IKEP. Consequently, the 

�(M) = (|xp1 − sp1 (M)|,… , |xpn − spn (M)|)

d1 = max
p∈N

{|xp − sp(M)|},

Fig. 2  An example of the first two rounds of an IKEP with N = {1, 2, 3} . Round 1 is displayed on the left, 
and round 2 on the right. In this example, both rounds are the same, irrespectively of the solution concept 
that we use for the initial allocations. This is because round 1 has a unique maximum matching
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compatibility graph for round 4 may be different from the compatibility graph for round 4 
if the Shapley value had been used.

We now return to our remark regarding the possible accumulation of credits, as for 
every country p ∈ N and round h ≥ 2 , it holds that ch

p
=
∑h−1

t=1
(yt

p
− sp(M

t)) . Suppose that 
round 3 and every future round looks exactly the same as round 2, and suppose that the 
nucleolus is used as the target allocation. Then, ch

i1
= ch−1

i1
+ 1 for h ≥ 3 . This is clearly not 

desirable. We monitor whether this situation happens in our simulations. However, as men-
tioned, we did not see this kind of behaviour occur (see Sect. 7.2). ⋄

Alternative credit system A new approach, which preserves superadditivity and convex-
ity, is to define for some round h in an IKEP the credit-adjusted game vh with

for every S ⊆ N . For solution concepts that are covariant (under strategic equivalence), 
i.e., that prescribe the same set of allocations both for (N, v) and for (N, �v + �) for every 
𝛾 > 0 and every � ∈ ℝ

n , this credit based system works in exactly the same way as before. 
All solution concepts that we consider have this property except for one: the (normalized) 
Banzhaf value. Therefore, in order to research whether this alternative way of incorporat-
ing credits improves the stability of an IKEP, we only have to perform an extra set of simu-
lations for the (normalized) Banzhaf value.

4  Computing a lexicographically minimal maximum matching

Let (N, v) be a partitioned matching game with a set V of patient–donor pairs. Let M be 
the set of maximum matchings in the corresponding compatibility graph D, and let x be an 
allocation. In this section we will give our algorithm Lex-Min that we use for comput-
ing a maximum matching from M that is lexicographically minimal for x. This algorithm 
computes for a partitioned matching game (N, v) and allocation x, strictly decreasing values 
d1,… , dt for some integer t ≥ 1 , and returns a matching M ∈ M that is lexicographically 
minimal for x. For computing d1,… , dt , the algorithm calls the polynomial-time algorithm 
provided by the following lemma from [12] (see also [10]).

Lemma 1 ([12]) Given a partitioned matching game (N, v) on a graph G = (V ,E) with a 
positive edge weighting w and and partition V of V, and intervals I1,… , In , it is possible in 
O(|V|3)-time to decide if there exists a matching M ∈ M with sp(M) ∈ Ip for p = 1,… , n , 
and to find such a matching (if it exists).

Lex-Min
input: a partitioned matching game (N, v) and an allocation x
output: a matching M ∈ M that is lexicographically minimal for x.
Step 1 Compute the smallest number d1 ≥ 0 such that there exists a matching M ∈ M 

with |xp − sp(M)| ≤ d1 for all p ∈ N.
Step 2 Compute a minimal set N1 ⊆ N (with respect to set inclusion) such that there 

exists a matching M ∈ M with

v
h
(S) = vh(S) +

∑

p∈S

ch
p
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Step 3 Proceed in a similar way for t ≥ 1:

– while N1 ∪⋯ ∪ Nt ≠ N do

• t ← t + 1.
• dt ← smallest d such that there exists a matching M ∈ M with 

• Nt ← inclusion minimal subset of N ⧵ (N1 ∪⋯ ∪ Nt−1) such that there exists a matching 
M ∈ M with 

Step 4 Return a matching M ∈ M with |xp − sp(M)| = dj for all p ∈ Nj and all j ∈ {1,… , t}.
We say that the countries in a set N⧵(N1 ∪⋯ ∪ Nt−1) are unfinished and that a country is 

finished when it is placed in some Nt . Note that Lex-Min terminates as soon as all coun-
tries are finished. For a correctness proof and running time analysis of 

⌢

Le x-Min we refer 
to [12] (see also [10]).

Theorem 1 ([12]) The Lex-Min algorithm is correct and runs in O(n|V|3 log |V|) time for 
a partitioned matching game (N, v) with an allocation x.

Note that Lex-Min can also be used for computing a maximum matching M that mini-
mizes the maximum deviation d1 from an allocation x and as such does not need to be lexi-
cographically minimal.

5  Simulations details

In this section we describe our simulations in detail. Our goals are 

1. to examine the benefits of using Lex-Min instead of taking a maximum matching that 
minimizes the largest country deviation d1 from the target allocation x or just an arbitrary 
matching,

2. to test the effect of several (sophisticated) solution concepts.

We therefore perform simulations for a large number of countries, as we explain below. 
Moreover, we do this in the following two settings where: 

|xp − sp(M)| = d
1

for all p ∈ N
1

|xp − sp(M)| < d
1

for all p ∈ N ⧵ N
1
.

|xp − sp(M)| = dj for all p ∈ Nj, j ≤ t − 1

|xp − sp(M)| ≤ dt for all p ∈ N ⧵ (N1 ∪⋯ ∪ Nt−1).

|xp − sp(M)| = dj for all p ∈ Nj, j ≤ t − 1

|xp − sp(M)| = dt for all p ∈ Nt

|xp − sp(M)| < dt for all p ∈ N ⧵ (N1 ∪⋯ ∪ Nt).
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 (i) countries all have the same size, and
 (ii) countries have three different sizes with ratio small:medium:large=1:2:3.

Simulation instances We first consider setting (i) which is when all countries have the same 
size. Using the generator [39]6 we obtain 100 compatibility graphs D1,… ,D100 , each with 
roughly 2000 vertices.7

For every i ∈ {1,… , 100} we do as follows. For every n ∈ {4,… , 15} , we perform 
simulations for n countries. We first partition V(Di) into n arbitrary sets Vi,1,… ,Vi,n that 
are all of the same size 2000/n (subject to rounding), so Vi,p corresponds to the set of 
patient–donor pairs of country p.

For round  1, we construct a compatibility graph  D1
i
 as a subgraph of Di of size 

roughly 500. So, a quarter of the patient–donor pairs will enter the program in round 1. The 
remaining patient–donor pairs of Di will be added as vertices to the compatibility graph 
randomly, by a uniform distribution between the remaining rounds. Starting with D1

i
(n) we 

run a 6-year IKEP with quarterly matching rounds, that is, a simulation that consists of 24 
rounds in total. In this way we obtain 24 compatibility graphs D1

i
(n),… ,D24

i
(n).

Let Mj

i
(n) be the maximum matching that we compute for Dj

i
(n) . If j ≤ 23 , then we 

construct Dj+1

i
(n) as follows. First, we remove the vertices that are matched by Mj

i
(n) ; the 

corresponding patient–donor pairs have been helped. If j ≥ 4 , then we also remove those 
vertices from Dj

i
(n) that are not in Mj

i
(n) but that do belong to Dj−3

i
(n) . This is because in 

real life, patients may seek for alternative treatment or may have deceased after being in the 
KEP for a year. Finally, we add the vertices that correspond to the patient–donor pairs that 
were assigned, in advance of the simulation, to enter the program in round  j + 1.

A (24-round) simulation instance consists of the data needed to generate a graph D1
i
(n) 

and its successors D2
i
(n),… ,D24

i
(n) , together with specifications for the initial allocation y 

and maximum matching M to be used in each round. Our code for obtaining the simulation 
instances is available in GitHub repository [9], along with the data from [39] describing 
the compatibility graphs and the seeds used for the randomization.

For setting (ii), where country sizes are varying, we use the same 100 compatibility 
graphs D1,… ,D100 as before and do exactly the same except that we impose different 
restrictions on the sizes of the countries. Namely, we partition each V(Di) into n arbitrary 
sets Vi,1,… ,Vi,n , such that approximately n/3 are small, that is, have size roughly 1000/n 
(subject to rounding); approximately n/3 are medium, that is, have size roughly 2000/n; 
and approximately n/3 are large, that is, have size roughly 3000/n (three times as large as 
small).

We now discuss how we computed the initial allocations and maximum matchings.
Initial allocations Recall from Sect. 3 that for the initial allocations y we use the Shap-

ley value, nucleolus, Banzhaf value, tau value, the benefit value and the contribution value. 
Recall also from Sect. 3 that when y is the tau value, we will replace the tau value by the 
benefit value if the corresponding partitioned matching game is not quasibalanced. Hence, 
strictly speaking we use a hybrid tau value, but we only need to make this replacement in 
0.04% of the games overall; see Table 4 in Sect. 7.5.

6 This is an updated version of [47], a data generator which is commonly used in experimental studies (see 
e.g. [21, 25, 35, 38]) but nowadays (e.g. in [26]) it is replaced by [39].
7 We set D1,… ,D100 to have size 2000 to be able to go up to n = 15 . Initially, we did a simulation with a 
size of 1000 for up to n = 10 and found similar results. Hence, we believe our choice of 2000 is robust.
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Let (N, v) be a partitioned matching game defined on some compatibility graph Dj

i
(n) 

with n countries. For a coalition of countries S ⊆ N , v(S) is the size of a maximum match-
ing in the subgraph of Dj

i
(n) induced by the vertices of the countries of S. We compute 

the size of a maximum matching in such a subgraph efficiently, using the package of [28]. 
The contribution value and benefit value can now be efficiently computed, using their 
definitions.

For the Shapley value and Banzhaf value, we were still able to implement a naive (brute 
force) approach relying directly on (1) (see also Table 2 of Sect. 7.3). For the tau value, 
we first need to compute the vectors a and b. Only b can be computed efficiently, but for 
computing a we were also still able to use a naive approach that relies directly on its defi-
nition. However, a naive approach for computing the nucleolus of a partitioned matching 
games is not possible for the high number of countries we consider. We therefore use the 
Lexicographical Descent method of [13], which is the state-of-the-art method in nucleolus 
computation.8

Solutions As mentioned, we aim to examine the benefits of using maximum matchings 
prescribed by Lex-Min over arbitrary matchings or maximum matchings that minimize 
the maximum deviation d1 from the target allocation. For computing an arbitrary maxi-
mum matching we use one given to us by the package of [28]. For computing a maximum 
matching that minimizes only d1 it suffices to perform only the first step of Lex-Min.

We implemented Lex-Min as follows (for the exact computer code and an explana-
tory pseudocode, see our GitHub repository [9]). Instead of a binary search for finding a 
deviation dt , we performed a greedy search for simplicity. We gradually try to decrease 
the deviations of the countries in a greedy way, starting with the ones that have the largest 
deviation. We maintain a set of countries already finished, which initially is the empty set. 
In every iteration we take one of the unfinished countries, say country p, with the largest 
deviation �p = |xp − sp(M)| , where M ∈ M is the last maximum matching we computed. 
We then try to decrease this deviation without allowing a deviation of another unfinished 
country to increase above �p . If no decrease is possible, then we fix country p and move to 
the next unfinished country with the largest deviation. If a decrease is possible, then we 
consider the newly found maximum matching and repeat the process. That is, we consider 
again a country (possibly country p) with the largest deviation.

We briefly discuss the running time of the greedy variant of Lex-min. In each itera-
tion, either we finish a country, or we shrink the deviation interval of a country by an inte-
ger step. Therefore, the number of iterations is upper bounded by the number n of coun-
tries plus the sum of the upper integer part of the initial deviations, which is O(|V|). As an 
application of Lemma 1 takes O(|V|3) time, the total running time is O((|V| + n)|V|3) . This 
running time can be worse than the running time of the binary search version, which is 
O(n|V|3 log |V|) by Theorem 1, as n log(|V|) may be smaller than |V| + n . However, for the 
instances in our simulations the difference in running time appeared to be negligible.

Finally, as the Lex-Min algorithm uses Lemma 1 as a subroutine, we needed to imple-
ment the polynomial-time algorithm provided by Lemma  1 as well, see [12] for a brief 
description of this algorithm, or [10] for a full description. As explained in [12] (see also 

8 Lexicographical descent breaks down the computation of the nucleolus into O(n) linear programs (LPs), 
which still have exponential size, but can be easier handled, through the solution of small dual relaxations 
combined with easily generated primal feasible starting points. The run time is still exponential, but in this 
way we are able to deal with significantly larger problem instances than in previous approaches.
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[10]), applying Lemma 1 requires solving a maximum weight perfect matching problem. In 
order to do the latter efficiently, we again used the package of [28].

Credit system We aim to distinguish between the effect of Lex-min and the effect of c, 
and also to distinguish between the effect of Lex-min over choosing a maximum match-
ing that minimizes d1 or an arbitrary matching (our baseline). Note that in the latter case, 
using the credit function c is meaningless, as in each round we pick an arbitrary maximum 
matching, independently from what happened in the previous round. Hence, we run the 
same simulations for the following five scenarios, where y is prescribed by one of the fol-
lowing six solution concepts: the Shapley value, nucleolus, Banzhaf value, tau value, ben-
efit value and contribution value. 

1. arbitary: M is an arbitrary maximum matching (one computed by the package of [28])
2. d1: M is a maximum matching that minimizes d1 and x = y.
3. d1+c: M is a maximum matching that minimizes d1 and x = y + c.
4. lexmin: M is the maximum matching returned by Lex-Min and x = y.
5. lexmin+c: M is the maximum matching returned by Lex-Min and x = y + c.

Additionally, we evaluate the effect of taking credit-adjusted games instead of setting 
x = y + c . As explained in Sect. 3, this effect can only be measured by taking the Banzhaf 
value as the initial allocation y for the credit-adjusted games (for all the other solution con-
cepts, we obtain the same outcomes). Hence, this leads to two more scenarios: 

6. d1 : M is a maximum matching that minimizes d1 and x = y.
7. lexmin  : M is the maximum matching returned by Lex-Min and x = y.

Hence, in total, we run the same set of simulations for 30 + 2 = 32 different combinations 
of scenarios and initial allocations.

Computational environment and scale We ran all simulations on a desktop PC with 
AMD Ryzen 9 5950X 3.4 GHz CPU and 128 GB of RAM, running on Windows 10 OS 
and C++ implementation in Visual Studio. Our code [9] uses the open-source code [8] of 
the Lexicographical Descent method for computing the nucleolus. The scale of our experi-
ments for IKEPs is unprecedented: our total number of 24-round simulation instances is 
equal to 2 × 27 × 12 × 100 = 64800 , namely, two different settings (same or varying coun-
try sizes), 27 combinations of scenarios and initial allocations, twelve country sizes n; and 
100 initial compatibility graphs Di.

Evaluation measures To measure balancedness we do as follows. After the 24 rounds of 
a single instance, we will have a total initial allocation y∗ , which is defined as the sum of 
the 24 initial allocations, and a maximum matching M∗ , which is the union of the chosen 
matchings in each of the 24 rounds. Note that the total number of kidney transplants is 
2|M∗| . We now define the total relative deviation as

Recall that for each triple that consists of a country set size, choice of initial allocation 
and choice of scenario, we run 100 instances. We take the average of the 100 relative total 
deviations. This gives us the average total relative deviation.

Apart from using the average total relative deviation as our evaluation measure, we also 
took the maximum relative deviation, which is defined as

∑
p∈N �y∗

p
− sp(M

∗)�
2�M∗�

.



 Autonomous Agents and Multi-Agent Systems           (2024) 38:18 

1 3

   18  Page 16 of 41

leading to the average maximum relative deviation as our second evaluation measure.

6  Main results

In Fig. 3 we display the main results for the situation where all countries have the same 
size and when we use the average total relative deviation as our evaluation measure. As 
expected, using an arbitrary maximum matching in each round makes the kidney exchange 
scheme significantly more unbalanced, with average total relative deviations above 13.8% 
for all initial allocations y.

From Fig.  3 we can compute the relative improvement of lexmin+c over d1+c. For 
example, for n = 15 , this percentage is (2.05 − 0.97)∕2.05 = 52.49% for the tau value, 
whereas for the other solution concepts it is 45.5% (nucleolus); 44% (benefit value); 41% 
(contribution value); 40% (Shapley value); and 40% (Banzhaf value). Considering the aver-
age improvement over n = 4,… , 15 yields percentages of 37% (tau value); 36% (nucleo-
lus); 31% (benefit value); 30% (Shapley value); 27% (Banzhaf value); and 24% (contribu-
tion value).

From Fig. 3 we can also compare lexmin+c with lexmin, and d1+c with d1. We see that 
using c has a substantial effect. Whilst lexmin ensures that allocations stay close to the tar-
get allocations, the role of c is to keep the deviations small and to guarantee fairness for the 
participating countries over a long time period.

Our main conclusion from Fig. 3 is that using lexmin+c yields the lowest average total 
relative deviation for all six initial allocations y, with larger differences when the number 
of countries is growing. In Fig. 4 we displayed the six lexmin+c graphs of Fig. 3 in one plot 
in order to compare them with each other. As mentioned, the choice for initial allocation is 
up to the policy makers of the IKEP. However, from Fig. 4 we see that the Shapley value 
and the Banzhaf value in the lexmin+c scenario consistently provides the smallest devia-
tions from the target allocations (0.52% for n = 15 ), while the contribution value for n ≤ 12 
and the nucleolus for n ≥ 13 perform the worst. The latter result is perhaps somewhat sur-
prising given the sophisticated nature of the nucleolus.

We now turn to the Banzhaf value for the credit-adjusted games, which we denote 
as the Banzhaf* value. Recall that choosing any of the other solution concepts as initial 
allocation will lead to the same results as for the original games, an only for the Banzhaf 
value the two different credit systems may give different results. Figure 5 shows that the 
latter is indeed the case. It displays the lexmin+c graphs for the Shapley value and (orig-
inal) Banzhaf value from Fig.  3 and compares them with the lexmin+c graph for the 
Banzhaf* value. Figure 6 does the same for the three d1+c graphs. Both figures show 
that the Banzhaf* value behaves better than the Shapley value and Banzhaf value; how-
ever the differences are very small (at most 0.04% for lexmin+c and 0.19% for d1+c).

If we use our second evaluation measure, the average maximum relative deviation, then 
we obtain similar results and can draw the same conclusions; we refer to Appendix 1 for 
the corresponding figures.

We now turn to the situation of varying country sizes and perform the same simula-
tions as before. We can draw exactly the same conclusions with different percentages (and 
therefore do not perform additional simulations for varying country sizes). That is, from 

maxp∈N |y∗
p
− sp(M

∗)|
2|M∗|

,
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Fig. 3  Average total relative deviations for the situation where all countries have the same size. The number 
of countries n is ranging from 4 to 15. The figures on the right side zoom in on the figures from the left side 
by removing the results for the arbitrary matching scenario
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Fig.  7 we see that using an arbitrary maximum matching in each round makes the kid-
ney exchange scheme significantly more unbalanced, with average total relative deviations 
above 8.15% for all initial allocations y. Moreover, from Fig. 7 we can also compute the 
relative improvement of lexmin+c over d1+c. For example, for n = 15 , this percentage is 
(1.13 − 2.45)∕2.45 = 54% for the nucleolus, whereas for the other solution concepts it is 
53% (contribution value); 49% (tau value); 48% (benefit value); 46% (Banzhaf value); and 
38% (Shapley value). Considering the average improvement over n = 4,… , 15 now yields 
percentages of 44% (contribution value); 41% (nucleolus); 35% (tau value); 32% (benefit 
value); 25% (Shapley value); and 25% (Banzhaf value). Compare lexmin+c with lexmin, 

Fig. 4  Displaying the six lexmin+c graphs of Fig. 3 in one plot

Fig. 5  Comparing the lexmin+c graphs for the Shapley value and Banzhaf value from Fig. 3 with the one 
for the Banzhaf* value (same country sizes)
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and d1+c with d1, we see again that using c has a substantial effect. Our main conclu-
sion from Fig. 7 is again that using lexmin+c yields the lowest average total relative devia-
tion for all six initial allocations y, with larger differences when the number of countries 
is growing. However, from Fig.  8 we see again that the Shapley value and the Banzhaf 
value in the lexmin+c scenario consistently provides the smallest deviations from the target 
allocations (0.55% and 0.54% for n = 15 ), while the contribution value for n ≤ 13 and the 
nucleolus for n ≥ 14 perform the worst.

Turning now to the credit-adjusted games and the Banzhaf* value, the situation with 
only the Banzhaf value producing different results among the tested allocations, and 
only in scenarios lexmin+c and d1+c (since without credits the games are the same), 
naturally remains the same. However, as shown in Figs.  9 and 10, the behaviour of 
Banzhaf* value differs under the varying country sizes, in one part performing slightly 
worse than the Shapley value and the original Banzhaf value for n ≤ 14 (the differences 
are again very small: within 0.08% and 0.11% for lexmin+c and d1+c respectively), 
but outperforming both for n = 15 , by at most 0.05% for lexmin+c and 0.3% for d1+c.

If we use the average maximum relative deviation instead of the average total rela-
tive deviation, then again we obtain similar results and can draw the same conclusions; 
see again Appendix 1 for the corresponding figures.

7  Evaluation of further aspects

In this section we evaluate some other aspects of our simulations. Given that the results 
of our simulations for varying countries were similar to the results of our simulations 
for same country sizes, we only evaluated these aspects for the situation, in which all 
countries have the same size.

Fig. 6  Comparing the d1+c graphs for the Shapley value and Banzhaf value from Fig. 3 with the one for 
the Banzhaf* value (same country sizes)
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Fig. 7  Average total relative deviations for the situation where the countries vary in size. The number of 
countries n is ranging from 4 to 15. The figures on the right side zoom in on the figures from the left side by 
removing the results for the arbitrary matching scenario
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7.1  No cooperation

It is a natural question to what extent cooperation between countries helps. Table  1 
shows that cooperation leads to a significantly larger number of total kidney transplants 
than non-cooperation. This is especially the case when more and more countries are 
participating in the IKEP. In particular, Table 1 shows that a gain of 2.86 times as many 
kidney transplants can be obtained in the case where the number of countries is  15. 
Hence, Table 1 provides strong evidence for forming large IKEPs.

We also note the following. Theoretically, a change in scenario may result in a 
change in maximum matching size (total number of kidney transplants). However, 
Table 1 shows that these differences turn out to be negligible (between 0.01% and 0.1% 
on average).

7.2  Credit accumulation

In Sect.  3, we gave a theoretical example where credits build up over time for a cer-
tain country and are essentially meaningless. However, this behaviour did not happen 
in any of our 24-round simulations. We performed for every number n of countries with 
n ∈ {4,… , 15} , a refined analysis, just to verify if such behaviour could be expected if 
the number of rounds is larger than 24.

First recall that for a single instance, ch
p
= xh

p
− yh

p
 and also that ch

p
=
∑h−1

t=1
(yt

p
− sp(M

t)) 
for country p and round h ≥ 2 . That is, credits are the difference between the initial and 
target allocations in each round, as well as the accumulation of the deviations from the 
initial allocations. The latter is the accumulation we would like to avoid from happen-
ing by using the credit function c. In order to assess credit accumulation over time, we 
define the average accumulated deviation at round h as the average of 

∑
p∈N �ch

p
� over the 

100 instances corresponding to a certain scenario and choice of initial allocation.

Fig. 8  Displaying the six lexmin+c graphs of Fig. 7 in one plot
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In Fig.  11 we show the results of our analysis. The results displayed are only for 
n = 15 , as the figures for n ∈ {4,… , 14} turned out to be very similar. As Fig. 11 shows, 
the behaviour of credit accumulation is similar for each choice of initial allocation  y. 
Moreover, as expected, the average total deviation is clearly accumulating over time 
if arbitrary maximum matchings are chosen as solutions (see the left side figures of 
Fig. 11). Under lexmin and d1 there is still accumulation. However the credit system is 

Fig. 9  Comparing the lexmin+c graphs for the Shapley value and Banzhaf value from Fig. 3 with the one 
for the Banzhaf* value (varying country sizes)

Fig. 10  Comparing the d1+c graphs for the Shapley value and Banzhaf value from Fig. 3 with the one for 
the Banzhaf* value (varying country sizes)
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indeed successfully mitigating against this effect, as the plots for lexmin+c and d1+c 
show (see the right side figures of Fig. 11). In particular, there is no indication that this 
behaviour will change if the number of rounds is larger than 24.

7.3  Computational time

We refer to Table 2 for an overview of various computational times by our simulations. 
We note that Lex-min computes at most n − 1 di-values, and in our experiments we 
actually found instances where dn−1 was computed even for n = 10 . However, Table 2 
shows that using lexicographically minimal maximum matchings instead of ones that 
only minimize the largest deviation d1 from the target allocation does not require a sig-
nificant amount of additional computation time. It can also be noticed from Table  2 
that, as expected, computing the Shapley value and the nucleolus is more expensive 
than computing the contribution value and the benefit value, especially as the number 
of countries n is growing. Finally, we see from Table 2 that the game generation, that 
is, computing the 2n values v(S), becomes by far the most expensive part when n is 
growing.

7.4  Coalitional stability

In order to assess the long-term coalitional stability of an IKEP, we turn our focus towards 
the core of the accumulated partitioned matching games. These games are obtained by 
summing up the 24 partitioned matching games of each of the 24 rounds of a simulation 
instance. That is, the accumulated partitioned matching game (N, v) is obtained from the 
partitioned matching games (N, vh) on compatibility graphs Dh for h = 1,… , 24 by setting 
v =

∑24

h=1
vh . We define the accumulated initial allocation as y =

∑24

h=1
yh and the accumu-

lated solution as the accumulated number of kidney transplants s =
∑24

h=1
s(Mh) , where Mh 

is the chosen matching in round h.
All the accumulated partitioned matching games in our simulation had a nonempty core. 

Moreover, all accumulated initial allocations and accumulated solutions turned out to be 
in the core, except for a few rare cases of accumulated solutions under the arbitrary sce-
nario. For comparison, we evaluate how far away both the accumulated initial allocations 
and accumulated solutions are from violating a core inequality in the accumulated parti-
tioned matching game. We do this by taking the radius of the largest ball that can be fit 
into the core with its center being an accumulated initial allocation, or accumulated solu-
tion, respectively.9 Unsurprisingly, this radius is decreasing as the number of countries is 
increasing. Moreover, the distance of violating a core allocation is practically the same, 
independently of the chosen scenario. We refer to Tables 5 and 6 in Appendix 2 for details 
and to Table 3 for a summary obtained from these two tables by averaging over the number 
of countries for the lexmin+c scenario.

From Table 3 we see a high and similar level of stability for all choice of initial alloca-
tions. Although the Shapley and Banzhaf values provide consistently the smallest devia-
tions (see Fig.  4), Table  3 shows that the tau value (highest), the benefit value and the 

9 The allocations with the largest radius form the least core of the game, which we do not attempt to find.
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Table 1  For n = 4,… , 15 , the improvement on the average number of kidney transplants if cooperation is 
allowed

Allocations & scenarios/Countries 4 5 6 7 8 9
Without cooperation 1124.28 974.56 850.60 759.40 687.28 628.92

 Shapley value
lexmin+c 108.6% 125.3% 143.1% 159.7% 175.8% 191.7%
lexmin 108.6% 125.3% 143.1% 159.7% 175.9% 191.6%
d1+c 108.7% 125.3% 143.0% 159.6% 176.0% 191.4%
d1 108.7% 125.3% 143.1% 159.7% 175.8% 191.6%
Arbitrary matching 108.5% 125.2% 142.9% 159.5% 175.7% 191.5%
 Nucleolus
lexmin+c 108.7% 125.4% 143.1% 159.5% 175.8% 191.6%
lexmin 108.6% 125.4% 143.1% 159.6% 175.9% 191.6%
d1+c 108.7% 125.4% 142.9% 159.7% 175.9% 191.5%
d1 108.6% 125.4% 143.1% 159.7% 175.9% 191.6%
Arbitrary matching 108.5% 125.2% 142.9% 159.5% 175.7% 191.5%
 Banzhaf
lexmin+c 108.7% 125.3% 143.0% 159.8% 175.8% 191.7%
lexmin 108.6% 125.2% 143.0% 159.7% 175.9% 191.6%
d1+c 108.7% 125.3% 143.0% 159.6% 175.9% 191.9%
d1 108.5% 125.2% 143.0% 159.8% 175.9% 191.7%
Arbitrary matching 108.5% 125.2% 142.9% 159.5% 175.7% 191.5%
 tau
lexmin+c 108.7% 125.4% 142.9% 159.7% 176.0% 191.7%
lexmin 108.6% 125.3% 143.1% 159.7% 175.8% 191.6%
d1+c 108.6% 125.4% 143.1% 159.7% 175.9% 191.7%
d1 108.7% 125.4% 143.0% 159.8% 176.0% 191.8%
Arbitrary matching 108.5% 125.2% 142.9% 159.5% 175.7% 191.5%
 Benefit value
lexmin+c 108.6% 125.4% 143.0% 159.7% 176.0% 191.7%
lexmin 108.6% 125.5% 142.9% 159.7% 176.0% 191.7%
d1+c 108.7% 125.4% 143.1% 159.7% 175.9% 191.9%
d1 108.6% 125.3% 143.1% 159.7% 175.9% 191.6%
Arbitrary matching 108.5% 125.2% 142.9% 159.5% 175.7% 191.5%
 Contribution value
lexmin+c 108.6% 125.4% 143.1% 159.6% 176.0% 191.6%
lexmin 108.6% 125.4% 143.0% 159.7% 175.9% 191.8%
d1+c 108.7% 125.3% 143.1% 159.7% 175.9% 191.6%
d1 108.6% 125.3% 143.0% 159.6% 176.2% 191.8%

Allocations 
& scenarios/
Countries

10 11 12 13 14 15

Without coop-
eration

583.84 538.68 497.72 474.92 440.52 421.88

 Shapley value
lexmin+c 209.4% 224.0% 240.6% 253.5% 270.4% 286.3%
lexmin 209.5% 224.1% 240.4% 253.3% 270.3% 286.0%
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For example, if n = 4 , y is the Shapley value and the scenario is lexmin+c, then the average number of kid-
ney transplants changes from 1124.28 (no cooperation) to 1.086 × 1124.28 = 1220.97

Table 1  (continued)

Allocations 
& scenarios/
Countries

10 11 12 13 14 15

Without coop-
eration

583.84 538.68 497.72 474.92 440.52 421.88

d1+c 209.3% 224.2% 240.6% 253.1% 270.0% 286.3%
d1 209.2% 224.3% 240.5% 253.2% 270.0% 286.0%
Arbitrary 

matching
209.2% 224.0% 240.2% 253.2% 270.1% 285.7%

 Nucleolus
lexmin+c 209.2% 224.3% 240.6% 253.3% 270.1% 286.2%
lexmin 209.3% 224.3% 240.6% 253.3% 270.2% 286.2%
d1+c 209.3% 224.2% 240.4% 253.6% 270.4% 286.2%
d1 209.4% 224.2% 240.5% 253.6% 270.3% 286.4%
Arbitrary 

matching
209.2% 224.0% 240.2% 253.2% 270.1% 285.7%

 Banzhaf
lexmin+c 209.3% 224.5% 240.4% 253.3% 270.1% 286.2%
lexmin 209.1% 224.3% 240.5% 253.0% 270.0% 285.9%
d1+c 209.3% 224.5% 240.6% 253.2% 270.2% 286.3%
d1 209.4% 224.2% 240.5% 253.1% 270.3% 286.1%
Arbitrary 

matching
209.2% 224.0% 240.2% 253.2% 270.1% 285.7%

 tau
lexmin+c 209.4% 224.2% 240.5% 253.5% 270.5% 286.2%
lexmin 209.7% 224.4% 240.7% 253.5% 270.3% 286.4%
d1+c 209.5% 224.5% 240.7% 253.7% 270.4% 286.3%
d1 209.6% 224.4% 240.7% 253.4% 270.3% 286.2%
Arbitrary 

matching
209.2% 224.0% 240.2% 253.2% 270.1% 285.7%

 Benefit value
lexmin+c 209.6% 224.1% 240.6% 253.2% 270.4% 286.2%
lexmin 209.4% 224.4% 240.6% 253.7% 270.3% 286.3%
d1+c 209.4% 224.3% 240.6% 253.7% 270.1% 286.2%
d1 209.4% 224.4% 240.7% 253.7% 270.3% 286.1%
Arbitrary 

matching
209.2% 224.0% 240.2% 253.2% 270.1% 285.7%

 Contribution value
lexmin+c 209.4% 224.2% 240.6% 253.3% 270.3% 286.3%
lexmin 209.5% 224.2% 240.5% 253.4% 270.2% 286.2%
d1+c 209.6% 224.3% 240.5% 253.4% 270.2% 286.1%
d1 209.4% 224.2% 240.5% 253.6% 270.4% 286.0%
Arbitrary 

matching
209.2% 224.0% 240.2% 253.2% 270.1% 285.7%
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Fig. 11  The average accumulated deviation over the 24 rounds when the number of countries n = 15 . The 
right side of the figure is taken from the left side after omitting the additional scenario where arbitrary 
maximum matchings are chosen
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nucleolus provide higher levels of coalitional stability not only for the accumulated initial 
allocations, but also for the accumulated solutions.

7.5  Convexity and quasibalancedness

Recall that the tau value is only defined if the game is quasibalanced and that we 
replaced the tau value by the benefit value if the tau value is not defined. We also recall 
that tau value and benefit value coincide when the game is convex. Table 4 provides jus-
tification for this replacement.

8  Conclusions

Our simulations showed that using maximum matchings that are lexicographically mini-
mal with respect to the country deviations from target allocations leads to a significant 
improvement for IKEPs. Moreover, they showed that this improvement is even more sig-
nificant when the number of countries is large. This is relevant, as IKEPs, such as Euro-
transplant, are under development and others, such as Scandiatransplant, are expected to 
grow.

Both lexicographically minimal maximum matchings and maximum matchings that 
only minimize the maximum deviation d1 can be computed in polynomial time. In prac-
tice one might expect that the latter can still be computed faster. However, our simula-
tions showed that computing them instead of maximum matchings that only minimize 
the maximum deviation indeed does not require any significant additional computa-
tional time (see Sect. 7.3).

A challenging part of our project was to compute the nucleolus of partitioned match-
ing games consisting of up to fifteen countries. For this we used the state-of-the-art 
Lexicographical Descent method of [13].

Future research All the above findings for 2-way exchange cycles are also interesting 
to research for a setting with �-way exchange cycles for � ≥ 3 . The previous experimen-
tal studies [16, 36] for � = 3 only considered 3–4 countries. To do meaningful experi-
ments for a large number of countries, a new practical approach is required to deal with 

Table 3  Average distances, over n ranging from 4 to 15, of accumulated initial allocations (first row) and 
accumulated solutions from violating a core inequality of the accumulated partitioned matching games 
under the lexmin+c scenario

For example, by using the Shapley value as the initial allocation, every coalition of countries on average has 
at least 50.39 more kidney transplants by participating in the IKEP than they would be able to achieve on 
their own

Shapley Nucleolus Banzhaf tau Benefit Contribution Banzhaf*

Accumulated 
initial 
allocation

50.46 53.34 50.08 53.62 53.40 48.15 49.74

Accumulated 
solution

50.39 53.10 50.03 53.43 53.19 48.13 48.39
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the computational hardness of computing optimal solutions (recall the aforementioned NP-
hard result of [1] for the case where � ≥ 3).

We also plan to consider directed compatibility graphs with weights w(i, j) on the arcs 
(i,  j) representing the utility of transplant  (i,  j). Computing a maximum-weight solution 
that minimizes the weighted country deviation d1 now becomes NP-hard [19]. However, 
we could still consider the set of maximum-size solutions as our set M instead of the set 
of maximum-weight solutions. We can then find a maximum-weight matching that lexico-
graphically minimizes the original country deviations |xp − sp(M)| . The main challenge is 
to set weights w(i, j) appropriately, since optimization policies may vary widely in national 
KEPs. In Europe, maximizing the number of transplants is the first objective (as in our 
setting). However, further scores are based on different objectives, such as improving the 
quality of the transplants, easing the complexity of the logistics or giving priority to highly 
sensitized patients; see [15] for further details.

Appendix 1: Average maximum relative deviations

We refer to Figs. 12, 13, 14, 15, 16, 17, 18 and 19 as the counterparts of the figures in 
Sect. 6 where we use the average maximum relative deviation as evaluation measure instead 
of the average total relative deviation.

Table 4  The first column refers 
to number of countries

The second, third and fourth columns give, respectively, the percent-
age of non-quasibalanced games; percentage of convex games; and 
percentage of non-convex games with tau and benefit values for the 
initial allocations coinciding. The percentages of games are taken over 
all rounds, all initial allocations and all scenarios. The percentages of 
games in the last row are taken over all rounds, all initial allocations, 
all scenarios and all numbers of countries

n Not quasi-bal-
anced (%)

Convex (%) Not convex, 
tau = benefit (%)

4 0 36.7 55.3
5 0.0167 9 60
6 0 2.2 51.5
7 0 0.9 45
8 0 0.4 38.9
9 0.025 0.3 32.2
10 0.008 0.1 27.9
11 0.05 0 22.9
12 0.083 0.1 18.3
13 0.15 0.1 14.8
14 0.05 0 12.9
15 0.1 0 11.2
Total 0.04 4.14 31.6
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Fig. 12  Average maximum relative deviations for the situation where all countries have the same size. The number 
of countries n is ranging from 4 to 15. The figures on the right side zoom in on the figures from the left side by 
removing the results for the arbitrary matching scenario
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Fig. 13  Displaying the four lexmin+c graphs of Fig. 12 in one plot

Fig. 14  Comparing the lexmin+c graphs for the Shapley value and Banzhaf value from Fig. 12 with the one 
for the Banzhaf* value (same country sizes)
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Fig. 15  Comparing the d1+c graphs for the Shapley value and Banzhaf value from Fig. 12 with the one for 
the Banzhaf* value (same country sizes)
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Fig. 16  Average maximum relative deviations for the situation where the countries vary in size. The num-
ber of countries n is ranging from 4 to 15. The figures on the right side zoom in on the figures from the left 
side by removing the results for the arbitrary matching scenario
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Fig. 17  Displaying the four lexmin+c graphs of Fig. 16 in one plotlabelfig7var

Fig. 18  Comparing the lexmin+c graphs for the Shapley value and Banzhaf value from Fig. 16 with the one 
for the Banzhaf* value (varying country sizes)
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Appendix 2: Coalitional stability

Tables 5 and 6 show the average distances of accumulated initial allocations and accumu-
lated number of transplants, respectively, from violating a core inequality.

Fig. 19  Comparing the d1+c graphs for the Shapley value and Banzhaf value from Fig. 16 with the one for 
the Banzhaf* value (varying country sizes)
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Table 5  Average distance of accumulated initial allocations from violating a core inequality of the accumu-
lated partitioned matching games for the six initial allocations, the four scenarios and the twelve country set 
sizes as well as total average over all country set sizes

Allocations & policies 4 5 6 7 8 9

 Shapley
lexmin+c 105.25 85.64 70.31 59.65 51.39 44.60
lexmin 106.08 85.29 69.95 59.25 51.54 44.70
d1+c 106.12 85.84 69.93 59.29 52.06 45.21
d1 106.15 85.09 70.03 59.46 51.30 44.58
 Nucleolus
lexmin+c 108.84 88.40 73.63 62.84 54.48 47.92
lexmin 108.40 88.39 73.81 63.19 54.84 48.03
d1+c 108.68 88.79 73.76 63.03 54.00 48.44
d1 108.34 88.33 73.96 63.52 54.57 47.86
 Banzhaf
lexmin+c 105.08 84.88 68.95 59.31 50.22 43.86
lexmin 105.38 84.75 69.68 58.83 50.50 43.49
d1+c 104.72 83.75 69.43 58.87 50.78 43.74
d1 105.43 84.72 69.67 59.21 50.93 43.79
Arbitrary 105.20 84.46 68.22 58.13 50.59 43.04
 tau
lexmin+c 107.78 87.52 72.96 61.84 54.17 48.15
lexmin 107.21 87.48 73.17 62.18 54.29 48.01
d1+c 107.34 87.61 72.84 62.15 54.21 48.06
d1 107.08 87.42 73.12 62.30 54.30 48.20
Arbitrary 106.72 86.75 71.83 60.87 53.90 46.79
 Benefit
lexmin+c 107.45 87.47 73.18 62.11 54.62 48.21
lexmin 107.43 87.32 72.52 61.57 54.11 47.93
d1+c 107.37 87.55 72.60 61.90 54.67 47.87
d1 106.95 87.52 72.56 61.40 54.58 48.28
 Contribution
lexmin+c 101.26 81.72 67.48 55.60 48.95 42.44
lexmin 101.69 81.48 66.79 56.16 49.17 42.85
d1+c 101.43 81.10 66.52 55.89 49.00 42.30
d1 101.98 81.12 66.53 56.31 49.40 42.66

Allocations & policies 10 11 12 13 14 15 Total

 Shapley
lexmin+c 40.43 35.65 32.31 28.78 26.86 24.71 50.46
lexmin 40.99 35.60 32.42 28.75 27.13 24.21 50.49
d1+c 40.04 35.44 32.19 28.72 26.69 24.13 50.47
d1 40.57 36.01 32.01 29.07 26.76 24.35 50.45
 Nucleolus
lexmin+c 43.85 38.55 34.49 31.22 29.01 26.81 53.34
lexmin 43.43 38.52 34.37 31.34 29.31 26.64 53.36
d1+c 43.55 38.30 34.26 31.42 29.06 26.80 53.34
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Table 5  (continued)

Allocations & policies 10 11 12 13 14 15 Total

d1 43.77 38.37 34.12 31.43 29.00 26.80 53.34
 Banzhaf
lexmin+c 39.70 35.09 30.64 27.49 26.05 23.53 50.08
lexmin 38.93 35.47 31.04 27.88 25.74 23.03 50.11
d1+c 39.07 34.94 31.53 27.54 26.02 23.14 49.98
d1 39.62 35.08 30.87 27.58 26.03 23.15 50.21
Arbitrary 39.63 34.27 30.25 27.42 25.72 23.11 49.73
 tau
lexmin+c 43.38 38.77 34.81 32.06 29.54 26.97 53.62
lexmin 43.53 38.62 34.73 31.89 29.61 27.21 53.63
d1+c 43.56 38.46 34.90 31.67 29.50 27.16 53.58
d1 43.57 38.83 34.76 31.72 29.67 26.85 53.60
Arbitrary 42.99 37.44 33.72 31.17 28.87 26.47 52.79
 Benefit
lexmin+c 43.66 38.87 35.25 32.07 30.03 27.92 53.40
lexmin 43.21 38.65 35.06 32.29 30.01 27.71 53.15
d1+c 43.36 38.83 35.19 32.46 29.86 27.79 53.29
d1 43.13 38.92 34.95 32.30 29.81 27.71 53.18
 Contribution
lexmin+c 38.69 33.61 31.07 27.72 26.09 23.13 48.15
lexmin 38.47 33.69 30.90 28.04 25.88 23.43 48.21
d1+c 38.49 33.66 30.83 27.62 26.06 23.16 48.01
d1 38.61 33.76 30.94 27.72 26.22 23.21 48.21
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Table 6  Average distance of accumulated number of transplants from violating a core inequality of the 
accumulated partitioned matching games for the six initial allocations, the four scenarios and the sanity 
check of arbitrary matching, for the 12 country set sizes as well as total average over all country set sizes

Allocations & policies 4 5 6 7 8 9

 Shapley
lexmin+c 105.24 85.58 70.22 59.57 51.37 44.55
lexmin 105.79 84.85 69.60 58.51 50.77 43.77
d1+c 106.17 85.84 69.98 59.32 51.98 45.06
d1 105.83 84.61 69.69 58.88 50.36 43.22
Arbitrary 47.92 35.98 29.64 22.49 19.99 14.50
 Nucleolus
lexmin+c 108.75 88.27 73.37 62.59 54.28 47.60
lexmin 107.19 86.75 72.14 61.53 52.39 46.01
d1+c 108.64 88.66 73.72 62.80 53.76 48.08
d1 106.94 86.64 71.98 60.43 52.31 44.02
Arbitrary 47.92 35.98 29.64 22.49 19.99 14.50
 Banzhaf
lexmin+c 105.02 84.82 68.91 59.24 50.16 43.8
lexmin 105.01 84.43 69.20 58.21 49.89 42.78
d1+c 104.82 83.82 69.33 58.85 50.76 43.61
d1 105.02 84.30 69.05 58.52 50.19 43.12
Arbitrary 47.92 35.98 29.65 22.51 20.09 14.81
 tau
lexmin+c 107.7 87.55 72.8 61.59 54.02 47.76
lexmin 106.62 86.35 71.97 60.87 52.81 46.09
d1+c 107.35 87.51 72.77 62.03 53.87 47.82
d1 106.52 86.2 71.66 60.39 52.06 45.62
Arbitrary 47.92 35.98 29.65 22.51 20.09 14.81
 Benefit
lexmin+c 107.48 87.39 73.02 61.88 54.39 47.99
lexmin 107.03 86.29 71.51 60.26 52.36 46.17
d1+c 107.32 87.50 72.55 61.76 54.53 47.52
d1 106.37 86.66 71.23 59.91 52.67 46.03
Arbitrary 47.92 35.98 29.64 22.49 19.99 14.50
 Contribution
lexmin+c 101.15 81.79 67.55 55.62 48.85 42.31
lexmin 102.06 82.25 66.94 56.30 49.76 42.49
d1+c 101.57 81.20 66.79 55.84 49.25 42.33
d1 102.38 81.24 66.72 56.17 49.50 42.19

Allocations & policies 10 11 12 13 14 15 Total

 Shapley
lexmin+c 40.39 35.55 32.19 28.74 26.68 24.60 50.39
lexmin 39.89 34.58 31.43 27.68 25.99 23.10 49.66
d1+c 39.90 35.33 32.08 28.58 26.48 24.07 50.40
d1 39.53 34.76 30.70 27.50 25.27 22.93 49.44
Arbitrary 13.81 11.19 8.11 7.23 7.52 6.79 18.76
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Table 6  (continued)

Allocations & policies 10 11 12 13 14 15 Total

 Nucleolus
lexmin+c 43.65 38.22 34.28 31.06 28.79 26.36 53.10
lexmin 41.46 36.29 32.43 28.96 27.07 24.37 51.38
d1+c 43.01 37.65 33.48 30.56 28.13 25.69 52.85
d1 40.48 34.94 30.74 27.60 25.14 23.40 50.38
Arbitrary 13.81 11.19 8.11 7.23 7.52 6.79 18.76
 Banzhaf
lexmin+c 39.66 35.04 30.57 27.45 25.99 23.49 50.03
lexmin 38.17 34.96 30.43 27.03 24.84 22.4 49.51
d1+c 38.99 34.94 31.43 27.35 25.89 23.15 49.94
d1 38.64 34.02 29.8 26.24 24.74 22.17 49.34
Arbitrary 14.47 11.46 8.80 8.00 7.96 7.29 19.47
 tau
lexmin+c 43.3 38.53 34.47 31.84 29.21 26.73 53.43
lexmin 41.65 36.61 32.96 29.66 27.6 25 52.01
d1+c 42.91 37.85 34.14 30.64 28.76 26.24 53.10
d1 40.47 35.39 31.73 28.31 26.29 22.99 51.09
Arbitrary 14.47 11.46 8.80 8.00 7.96 7.29 19.47
 Benefit
lexmin+c 43.45 38.59 34.94 31.82 29.69 27.58 53.19
lexmin 41.22 36.78 32.63 30.09 27.68 25.14 51.43
d1+c 42.91 38.54 34.56 31.85 29.26 26.85 52.93
d1 40.33 36.12 31.98 28.82 26.68 24.39 50.93
Arbitrary 13.81 11.19 8.11 7.23 7.52 6.79 18.76
 Contribution
lexmin+c 38.71 33.73 31.11 27.58 25.98 23.18 48.13
lexmin 38.57 33.79 30.45 27.63 25.57 23.24 48.25
d1+c 38.40 33.48 30.41 27.44 25.95 23.15 47.98
d1 37.57 33.59 29.87 26.90 24.57 22.33 47.75
Arbitrary 13.81 11.19 8.11 7.23 7.52 6.79 18.76
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