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SUMMARY
Rapid antigen tests in the form of lateral flow devices (LFDs) allow testing of a large population for severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To reduce the variability in device interpretation,
we show the design and testing of an artifical intelligence (AI) algorithm based on machine learning. The ma-
chine learning (ML) algorithm is trained on a combination of artificially hybridized LFDs and LFD data linked to
quantitative real-time PCR results. Participants are recruited from assisted test sites (ATSs) and health care
workers undertaking self-testing, and images are analyzed using the ML algorithm. A panel of trained clini-
cians is used to resolve discrepancies. In total, 115,316 images are returned. In the ATS substudy, sensitivity
increased from 92.08% to 97.6%and specificity from 99.85% to 99.99%. In the self-read substudy, sensitivity
increased from 16.00% to 100% and specificity from 99.15% to 99.40%. An ML-based classifier of LFD re-
sults outperforms human reads in assisted testing sites and self-reading.
INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

is a betacoronavirus responsible for coronavirus disease 2019

(COVID-19).1 Assessment of the extent of infection has largely

been based on real-time polymerase chain reaction (PCR), which

identifies the virus in those with infection. However, in the UK,

antigen testing is predominantly performed in those presenting

with symptoms (whichmay represent a small fraction of those in-

fected with SARS-CoV-2) or as part of an asymptomatic testing

program.

Recent evidence has demonstrated that 17%–33% of individ-

uals are asymptomatic, and around 49% of individuals initially

defined as asymptomatic eventually develop symptoms.2 There

continues to be uncertainty regarding the extent to which

asymptomatic individuals transmit SARS-CoV-2. Viral culture

studies suggest that people with SARS-CoV-2 can become in-

fectious 1–2 days before onset of symptoms and continue to

be infectious up to 7 days thereafter and that viable virus is rela-

tively short lived.3

TheUK has adopted amultifaceted testing strategy to support

diagnostic, testing, and surveillance strategies.4–7 Asymptom-

atic testing to support entry testing has been recommended as

an effective strategy to suppress transmission but requires rapid

results.8 Frequent and serial testing of large fractions of the pop-

ulation has been highlighted as a powerful mechanism for

outbreak suppression.8

Lateral flow devices (LFDs) are relatively easy-to-use rapid

tests that can be performed in home settings by trained or lay

users or near the point of care without the need for laboratory

infrastructure or expensive equipment. There are two types of
Cell Repo
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SARS-CoV-2 LFDs: virus antigen(s) tests (which were used in

this study), which test for protein produced by the virus, and anti-

body tests (requiring blood sampling and possibly requiring

spinning down and aliquoting of plasma when they are not

compatible with whole blood), which detect one or more types

of antibodies produced by the host immune response against

the virus.

Although rapid antigen tests have lower analytical sensitivity

(i.e., require greater amounts of virus material to turn positive)

than qPCR-based tests, their ability to detect infectious individ-

uals with culturable virus is as high as for qPCR.9 Results from

analyses conducted in a city-wide testing program in late

2020, where LFT results using a device from Innova were

compared with comparable cycle threshold (Ct) levels from a

follow-up PCR test showed that a decrease in Ct level (i.e., an in-

crease in viral load) corresponded with a positive LFD.4

Compared with quantitative real-time PCR, the sensitivity of

the test has been found to be between 48.9% and 78.8% and

the specificity in excess of 99.9% in mass testing.10 Several

other LFDs from different manufacturers are in the pipeline to

be publicly released.10 The majority of LFDs are designed to

be interpreted visually, and this interpretation involves looking

at two possible horizontal lines on the device, representing the

control and the test lines. Presence of the control line assures

the user that the test has been performed correctly, and the

test line (if present) indicates that the presence of SARS-CoV-2

antigen has been detected.

A potential issue is that human eye acuity varies fromperson to

person and is subject to one’s individual characteristics, such as

sharpness of the retinal image, health and function of the retina,

and sensitivity of the interpretative faculty of the brain. In moving
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Figure 1. Flowchart of participants through the study

Voids are not shown.
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to mass testing using LFDs, there is a potential concern that has

been identified in that there is a risk of users interpreting the test

incorrectly,11 particularly when the test lines are extremely faint

because of low viral loads. As a result, positive individuals would

bemissed during testing, and there is a risk that these individuals

would contribute to a chain of transmission. As use cases

expand, these may also begin to encompass the young (espe-

cially children under 11, who should be supervised when using

the device) or very elderly individuals, whomay find it challenging

to properly interpret the results. We also expect such a system to

enable support of members of the public who are not confident in

using these devices. To help mitigate this risk, we developed a

machine learning model to interpret user-taken photos of LFDs

from the United Kingdomasymptomatic testing program.We hy-

pothesized that the AI model would demonstrate accuracy at

least equivalent to trained expert interpretation at assisted

testing sites (ATSs).

RESULTS

Intra-reviewer accuracy
The three reviewers agreed with each other at least 94% of the

time (pairwise agreement). Reviewer 1 and reviewer 2 agreed

94.6% of the time, reviewer 1 and reviewer 3 agreed 96.4% of

the time, and reviewer 2 and reviewer 3 agreed 97.2% of the

time. Adjusting for random agreement, the three pairs have esti-

mated Cohen’s kappa values of 0.83, 0.89, and 0.92, respec-

tively, indicating very strong agreement.

When examining the samples reviewer 4 was asked to review,

agreement between reviewer 2 and reviewer 3 remained moder-

ate (kappa 0.48), but reviewer 1 agreement with reviewer 2, and

reviewer 3 was marginal (below 0.05). Reviewer 4 was in slight
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agreement with reviewer 1 (0.11), fair agreement with reviewer

2 (0.28), and moderate agreement with reviewer 3 (0.59). These

cases represented images where there was considerable diag-

nostic uncertainty because of the test (T) lines being at the

edge of detectability, and this may explain the poor correlations

when reviewer 4 was introduced. Given this, the levels of agree-

ment were consistent and reasonable, and so we concluded that

we should continue to use them for review and bring in reviewer 4

when needed to resolve a conflict.

Substudy 1
There were 59,164 images submitted (Figure 1) via the ATSs and

used in this analysis. There were 2,388 images that were labeled

as invalid and rejected; had the algorithm been in production

mode, these users would have been asked to take another photo

to improve image quality, leaving 56,776 valid images.

Taking the ATS user label as reference (i.e., the trained opera-

tor’s classification of the test), the estimated specificity and

sensitivity were 99.85% and 92.08%, respectively (Table 1).

The void accuracy was 56.67%, and the overall accuracy of

the algorithm was estimated at 99.67%. The multiclass area un-

der the receiver operating characteristic curve (AUROC) value

was 0.98. A representative selection of imaged LFDs are shown

in Figure 2.

The next step was to re-evaluate the ‘‘ground truth’’ whereby

discrepancies identified between the AI algorithm and the ATS

operators were arbitrated by the reviewer clinicians to create a

‘‘most trusted result’’ as outlined above. There were 13 cases

where absolute majority or agreement with the fourth reviewer

was reached. Two of those cases had an ATS label of negative;

two reviewers labeled them as positive, and so did reviewer 4.

These cases were deemed to be positive. There were 10 cases



Table 1. Confusion matrix for cases that passed QC, showing

ATS and MagnifEye labels (substudy 1)

MagnifEye label

Positive Negative Void

ATS label (Original

not clinically assessed)

Positive 93 8 0

Negative 85 56,463 67

Void 1 25 34

95% confidence interval (CI)

Sensitivity 92.08% 84.99–96.52%

Specificity 99.85% 99.81%–99.88%

Positive predictive value 52.25% 46.75–57.69%

Negative predictive value 99.99% 99.97–99.99%

Void accuracy

Accuracy 99.84% 99.80–99.87%

Figure 2. Representative LFDs for positives, negatives, and Voids

(A–C) Representative LFDs for (A) positives, (B) negatives, and (C) voids. For

each row, columns (1–5) represent different lighting and angulated and focus

conditions to represent a selection of real-world samples.
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read as negative by the ATS operatives; the AI algorithm’s clas-

sification was positive, two reviewers labeled the test results as

positive, but one reviewer labeled those as negative. After further

inspection, a faint line was visible in most of the images, and

these were truly edge cases; however, the two reviewers that

labeled these cases as positive were the most consistent

throughout the process, so we chose to take their majority

(2 of 3) view and label these cases as positive. One case was

classified as negative by the AI algorithm, positive by ATS, pos-

itive by two reviewers, unable to be classified by one reviewer,

and void by the fourth reviewer. The test was ultimately classified

as positive. After further inspection, this was a casewhere the full

test could not be seen in the image, and it did not meet quality

control; this is what led reviewer 4 to classify it as void. Because

it did not fail the automated quality control, the case was kept.

There were 3 cases the AI algorithm read as negative and the

human reviewer vote was positive, with the ATS label also pos-

itive. Two reviewers labeled them as positive, one reviewer

labeled them as negative, and reviewer 4 as positive. These

cases were taken to be positive. There was a fourth case the

AI algorithm read as negative, the ATS as positive, one reviewer

was unable to classify, one returned positive, one returned nega-

tive, and the fourth returned void. Because the ‘‘ground truth’’

could not be established, the case was removed from the overall

analysis.

The reviewers checked all positive and void cases where the

ATS and the AI algorithm agreed, and the reviewers returned

an absolute majority for all. They also checked a sample of nega-

tive cases where the ATS and the AI algorithm agreed (n = 568);

full majority was returned in 566 cases and a simple majority in

the remaining 2 cases. We took the remaining cases where there

was agreement between the algorithm and ATS on negatives to

be correctly classified.

After resolution of discrepancies (Table 2), comparing the

ground truth with the ATS labels, the estimated specificity was

greater than 99.9%, and sensitivity was 97.6%. Void detection

accuracy was 83.67% (requiring further improvement), and

further analysis needs to be undertaken. Overall accuracy was

99.78%. The bootstrapped 95% confidence interval for the

sensitivity was 94.44%–100%, which meets the criteria estab-
lished for this study. The multiclass AUROC was close to 1.0.

The number of true positives identified increased from 93 (iden-

tified by the trained ATS operators) to 123 (identified by the AI al-

gorithm and confirmed by clinical reviewers).

The AI algorithm’s ability to correctly detect voids needs

improvement because there are still 58 cases labeled as void

by the algorithm that were labeled as negative by the reviewers.

After closer inspection, we observed that the majority of cases

were negative tests that were upside down. Mitigation will be

possible by improving the quality control stages and the instruc-

tions to the user. We suggest that the next step in quality control

development would be to include better rotation rejection or the

ability to rotate the device more than 30�. We assessed the cali-

bration of the model by use of the Brier score. This was low at

0.018, indicating good model calibration (closer to 0 represents
Cell Reports Medicine 3, 100784, October 18, 2022 3



Table 3. Confusionmatrix showing the user-submitted result and

the AI read (substudy 2)

MagnifEye label

Positive Negative Void

User read positive 2 12 0

negative 265 32,736 248

void 0 8 8

95% CI

Sensitivity 14.29% 1.78%–42.81%

Specificity 99.20% 99.09%–99.29%

Positive predictive value 0.75% 0.09%–2.68%

Negative predictive value 99.96% 99.94–99.98%

Void accuracy

Accuracy

Table 2. Confusion matrix showing the ‘‘ground truth’’ and

MagnifEye labels (substudy 1)

MagnifEye label

Positive Negative Void

Ground truth

(clinically assessed)

Positive 123 3 0

Negative 54 56,488 58

void 2 6 41

95% CI

Sensitivity 97.6% 93.20%–99.51%

Specificity 99.95% 99.93%–99.98%

Positive predictive value 69.5% 63.53–74.86%

Negative predictive value 99.9% 99.98–100.0%

Void accuracy 83.7%

Accuracy 99.7%

The table has one less case where the ground truth could not be estab-

lished and has been removed.
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a better calibration of the model.). When utilizing the quality con-

trol measures implemented in the MagnifEye software, the

observed Brier score reduced to 0.013.

Substudy 2
We received 50,999 valid cases from National Health Service

(NHS) users (Figure 1), with 3,757 submissions deemed invalid

in cases that were labeled as positive or void by the user or the

AI algorithm. These and all other cases where there was

disagreement between the user and the AI algorithm, as well

as a sample of negatives (n = 464), were reviewed.

The number of positive cases was too small for an accurate

estimate, but specificity and sensitivity were high (greater than

99%). We investigated the 279 cases misidentified as positive

by the AI algorithm, and themajority had potential quality-related

issues, including shadows where the positive line would have

been or unsuitable backgrounds. At least 5 devices seemed to

be damaged by the user (e.g., leakage) or contaminated. The

number of identified true positives increased from 4 (Table 3)

to 36 (Table 4) when moving from the user read to the AI algo-

rithm (Table 5).

We also investigated the returned confidence levels and

anomaly scores for these cases and voids. We found that most

were borderline, and, had rejection thresholds been more strin-

gent for positive cases, the user would have been asked to

retake a more appropriate photo in a production setting. There

is a clear case for further improvements to the front end and in-

structions passed to the user to help reduce the number of fail-

ures because of incorrectly oriented tests (e.g., upside down),

shadows, and low-resolution images.

Missing data
Only one image was removed from substudy 1, where the

‘‘ground truth’’ could not be established even after including a

fourth reviewer, the chief investigator. Its inclusion as a false

negative or a false positive would not have substantially affected

the estimates of sensitivity and specificity.

As already described, the MagnifEye software tool includes

automated quality control measures. In substudy 1, 59,164 im-
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ages were submitted, and 2,388 were classified as invalid,

most as a consequence of low-quality or rotated images. The re-

maining 56,776 images were considered valid and were then

classified as positive, negative, or void.

In substudy 2, 51,001 images were submitted. Of those, 3,757

were classified as invalid. Two cases were incomplete, and the

user reads were not recorded, and/or the user journeys were

not completed appropriately; these two cases were excluded.

It was not possible to establish ‘‘ground truth’’ for one case

because all reviewers reported different responses, and the

case was also excluded from the analysis.

DISCUSSION

We carried out one of the world’s first diagnostic accuracy

studies of a machine learning-based image reader embedded

in a national health service reporting platform using a web inter-

face to read the results of LFD tests taken by untrained partic-

ipants in an asymptomatic population. A recent publication has

utilized AI software in a dedicated reader with trained opera-

tives to interpret HIV LFDs, demonstrating reasonable sensi-

tivity and specificity,12 differing from this study because the

MagnifEye algorithm was deployed ‘‘into the wild’’ with a

non-trained user base. We demonstrated that the novel AI algo-

rithm, implemented in the MagnifEye software tool, performs

well using Innova LFDs, with high sensitivity (97.9%) and spec-

ificity (>99.9%) in the ATS setting, and, when used in a self-test

setting, sensitivity and specificity exceeded 99%. We hypothe-

size that the very substantial increase in testing accuracy is a

direct result of the AI algorithm correctly classifying LFD results

better than their human reads, especially for marginal cases

with faint T lines. More importantly, at the low population prev-

alence seen in this asymptomatic testing study, the observed

positive and negative predictive values produced by the AI al-

gorithm are high enough to be utilized for routine use. The pos-

itive predictive value of greater than 65% in each cohort seems

at first examination to be lower than what would be sensible for

a population diagnostic test; however, with a low population

prevalence of positivity because of use in an asymptomatic

population where this would always be the case, the positive



Table 4. Confusion matrix showing the ‘‘ground truth’’ result and

the AI read (substudy 2)

MagnifEye label

Positive Negative Void

Ground truth

(clinically assessed)

positive 30 0 1

negative 236 32,750 222

void 0 5 10

95% CI

Sensitivity 100% 90.26%–100%

Specificity 99.28% 99.19%–99.37%223

Positive predictive value 11.28% 7.74–15.71%

Negative predictive value 100%

Void accuracy 66.67%

Accuracy 98.60% 98.47%–98.73%

Table 5. Confusion matrix showing the ‘‘ground truth’’ result and

the user read (substudy 2, excluding invalid images)

User read

Positive Negative Void

Ground truth

(clinically assessed)

positive 2 12 0

negative 29 33,193 2

void 0 3 13

95% CI

Sensitivity 6.45% 0.79%–21.42%

Specificity 99.96% 99.94%–99.98%

Positive predictive value 14.29% 0.18%–42.81%

Negative predictive value 99.91% 99.87%–99.94%

Void accuracy 81.25% 54.35%–95.95%

Accuracy 99.86% 99.82%–99.90%
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predictive value (PPV) of this test is comparable with other pop-

ulation studies on PCR. However, with a large population, a

disadvantage of this system is that, even with an extremely

low false positive rate, additional tests will be detected as being

incorrectly positive given the size of the population studied;

however, the false positive rate observed is still less than the

human ‘‘lay’’ read. Diagnostic test development is a fine bal-

ance between overcalling and undercalling, and because of

the serious consequences of missing a case of SARS-CoV-2,

we made the decision to set the parameters of the algorithm

so that positivity is overcalled. This is also inflated because of

the low population prevalence of SARS-CoV-2 in the study, a

direct reflection of the fact that, in all asymptomatic diagnostic

studies of SARS-CoV-2 to date, the prevalence has been be-

tween 0.1% and 1%, which means that the false positive rate

is artificially high. In a higher-prevalence population, this false

positive rate would be significantly lower.

We found that the system correctly identified positive and

negative results that had been visually classified by users as

being the opposite, meaning that the AI algorithm could provide

the ground truth with accuracy beyond a human reader and

therefore could reduce the documented false positive and false

negative rates seen with the LFD tests, which are in part due to

user read error. This was validated by the external validation

panel of four clinicians we utilized for this program. Because

the AI algorithm performs identically on an identical image, its

consistency is another advantage. A further advantage is that

the processing time of the MagnifEye software is below 2 s

(typically 0.5 s), even at peak load (500 tests analyzed per sec-

ond), meaning a result can be returned rapidly to the end user.

The MagnifEye software successfully detected low viral loads

that human readers failed to mark as positive. MagnifEye has

the potential to assist users who are uncertain about reading

LFDs in the testing journey by returning to them an accurate

and reproducible classification result. We made a decision to

use an expert panel of readers as ground truth rather than a

molecular ground truth such as quantitative real-time PCR

because the dynamic range of detection of these tests is

different, and our study set out to measure the accuracy of de-

tecting bands on the test, not to specifically detect the pres-

ence of SARS-CoV-2 infection accurately.
A weakness of the AI algorithm is the need for a reasonable-

quality image to be taken for it to read the result accurately. In

our study, a reasonable percentage (4.5%) of the images were

rejected for not meeting the specifications required to pass

quality control, meaning the user would have needed to take

the image again. This stringent quality control (QC) has the

advantage of ensuring that only good-quality images are taken

but may lead to user fatigue or non-compliance with the

algorithm if they find it difficult to take good-quality images.

Anecdotally, we found a very small amount of totally unsuitable

images (extremely small test in image, bright reflections or se-

vere shadows, non-white light, blurry or very dark images),

which suggested that more training or visual aids would be of

benefit to end users to ensure consistency in the image acqui-

sition process. Another potential issue is access to this technol-

ogy in disadvantaged groups (elderly, homeless, refugees) or

those without a smartphone. A particularly difficult group to

reach with LFDs are users from socioeconomic groups CDE,4

however, the Office of National Statistics has demonstrated

that these groups have smartphone access with groups AB,

suggesting that this algorithm could potentially improve acces-

sibility for this hard-to-reach group.13

We carried out this pilot study in two scenarios; the first in

assisted test centers, where a standardized protocol was

used to take the image, and the second in self-test settings,

where healthcare workers took the images themselves. We

found no difference in rejection rates between the two groups,

suggesting that each was equally proficient at taking images,

and we also found high levels of sensitivity and specificity in

both scenarios. The AI algorithm in the MagnifEye software

tool may be generalizable to other use cases, such as school

testing and testing for members of the general public, but this

pilot study did not specifically assess these groups, and so a

period of testing may be required for these groups.

The MagnifEye automated LFD reader, in this diagnostic

test study, has been demonstrated to work at a level consis-

tent with accurate performance in a live clinical environment,

processing millions of images a day, allowing rapid, consis-

tent, and accurate feedback of test results to the end user

and recording by central government. MagnifEye allows
Cell Reports Medicine 3, 100784, October 18, 2022 5
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standardization of test reporting, increasing confidence in LFD

testing, reducing user error, and increasing the overall accu-

racy of an AI LFD program. Although the impact of SARS-

CoV-2 has been markedly reduced through vaccination,

many parts of the world have limited access to this. Evolution

of the virus has led to subsequent waves and the need for

rapid deployment of measures of infection control, in which

this reader can play a useful role.

Limitations of the study
The major limitation of this study is that it only considers inter-

pretation of LFDs by the human reader. The accuracy of these

devices in detection of SARS-CoV-2 has other important deter-

minants, including the viral load, type of device used, and com-

petency of the user in performing the test according to manu-

facturer’s instructions.

CONSORTIA

The members of the LFD AI Consortium are Andrew D. Beggs,

Camila C.S. Caiado, Mark Branigan, Paul Lewis-Borman, Nishali

Patel, Tom Fowler, Anna Dijkstra, Piotr Chudzik, Paria Yousefi,

Avelino Javer, Bram Van Meurs, Lionel Tarassenko, Benjamin

Irving, Celina Whalley, Neeraj Lal, Helen Robbins, Elaine Leung,

Lennard Lee, and Robert Banathy.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Algorithm details

B Participants

d METHOD DETAILS

B Study design

B Image capture

B Resolution of discrepancies & intra-observer reliability

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Sample size

B Calculation of accuracy

d ADDITIONAL RESOURCES

B Study registration

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xcrm.2022.100784.

ACKNOWLEDGMENTS

The study was funded by NHS Test and Trace. A.D.B. is funded by an CRUK

Advanced Clinician Scientist Award (C31641/A23923). The funder had input

into design and conduct but not reporting of the study.
6 Cell Reports Medicine 3, 100784, October 18, 2022
AUTHOR CONTRIBUTIONS

Study conception and design A.D.B. and the LFD AI Consortium; algorithmic

design and implementation, the LFD AI Consortium; laboratory work: A.D.B.

and the LFD AI Consortium; statistical analysis, A.D.B. and the LFD AI Con-

sortium; writing of the manuscript, A.D.B. and the LFD AI Consortium. All au-

thors had access to the data presented in the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

INCLUSION AND DIVERSITY

Weworked to ensure gender balance in the recruitment of human subjects.We

worked to ensure ethnic or other types of diversity in the recruitment of human

subjects. We worked to ensure that the study questionnaires were prepared in

an inclusive way. One or more of the authors of this paper self-identifies as an

underrepresented ethnic minority in science. One or more of the authors of this

paper self-identifies as living with a disability.

Received: April 24, 2022

Revised: June 25, 2022

Accepted: September 22, 2022

Published: October 18, 2022

REFERENCES

1. Zhang, J.J., Dong, X., Cao, Y.Y., Yuan, Y.D., Yang, Y.B., Yan, Y.Q., Akdis,

C.A., and Gao, Y.D. (2020). Clinical characteristics of 140 patients infected

with SARS-CoV-2 in Wuhan, China. Allergy 75, 1730–1741. https://doi.

org/10.1111/all.14238.

2. Cevik, M., Tate, M., Lloyd, O., Maraolo, A.E., Schafers, J., and Ho, A.

(2021). SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics,

duration of viral shedding, and infectiousness: a systematic review and

meta-analysis. Lancet. Microbe 2, e13–e22. https://doi.org/10.1016/

S2666-5247(20)30172-5.

3. La Scola, B., Le Bideau, M., Andreani, J., Hoang, V.T., Grimaldier, C., Col-

son, P., Gautret, P., and Raoult, D. (2020). Viral RNA load as determined by

cell culture as a management tool for discharge of SARS-CoV-2 patients

from infectious disease wards. Eur. J. Clin. Microbiol. Infect. Dis. 39,

1059–1061. https://doi.org/10.1007/s10096-020-03913-9.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

X-ray inactivated SARS-CoV-2

(England strain 1)

UK Health Security Agency,

Porton Down, U.K.

https://www.gov.uk/government/

organisations/uk-health-security-agency

Critical commercial assays

Innova type A,B,C and D Lateral Flow

Devices for detection of SARS-CoV-2

Innova Medical Group,

Pasadena, California, U.SA.

https://innovamedgroup.com/

innova-rapid-antigen-test/

Deposited data

Algorithm training methodology This paper https://data.mendeley.com/

datasets/hj9hmywh9c/1

Software and algorithms

MagnifEYE algorithm Sensyne Plc https://www.sensynehealth.com/

magnifeye This algorithm is not publicly

available due to it being sold for commercial

use and undergoing intellectual property

protection. Details of the training and

validation of the algorithm are available

here: https://data.mendeley.com/

datasets/hj9hmywh9c/1
RESOURCE AVAILABILITY

Lead contact
Andrew Beggs (a.beggs@bham.ac.uk).

Materials availability
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Andrew

Beggs (a.beggs@bham.ac.uk).

Data and code availability
Images used in this study consist of potentially personally identifiable information and are available on completion of a signed data

agreement with the Department of Health and Social Care via the lead contact. The algorithm itself is current undergoing intellectual

property protection and on completion of this further details can be released on reasonable request. Any additional information

required to reanalyze the data reported in this paper is available from the lead contact upon request. Details of algorithmic training

are available here: Mendeley Data: https://data.mendeley.com/datasets/hj9hmywh9c/1 (key resources table).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Algorithm details
The algorithmwas trained (details of trainingmethodology available at: https://data.mendeley.com/datasets/hj9hmywh9c/1) on a set

of photos from an artificially constructed set of LFDs that were hybridised with a known viral load of X-ray inactivated SARS-CoV-2

(England strain 1), at viral loads of 10000,1000,100,10 and 1 PFU/mL diluted at a 1:1 ratio of virus to LFD manufacturer (Innova) sup-

plied dilution buffer (Ct values shown in Table S1). The LFDs consisted of a variety of cartridge shapes and these LFDs were then

photographed using several devices (iPhones, Android phones) across a range of photographic conditions (light, dark, blurred,

angled < 30 degrees, with plain and newsprint backgrounds) using standard device photographic settings to simulate the real world.

Further validation and training of the algorithm was then undertaken using a set of LFD photos that were linked using a standardised

app to RT-qPCR swab results taken at the same time as the LFD swab and underwent RT-qPCR using the ThermoFisher TaqPath

SARS-CoV-2 kit.4

The AI LFD read uses a cascade of machine learning and image analysis methods to read the LFD and provide a quality control of

the input. The algorithmwas implemented in PyTorch and consists of networks which localise the region of interest; detect objects of
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interest; classify the objects of interest, using a series of subnetworks. In total there are 68 layers in themodel. The LFD read algorithm

uses a deep learning approachwith a convolutional andmultiscale network to identify the LFD read area and then interpret the control

and test lines within the read area. The algorithm classifies the test as one of three categories: positivewhen the two lines are present;

negativewhen only a control line is present; and voidwhen no control line is present. This classification includes a score output by the

final sigmoid layer of the network (range 0–1) which we call the ‘‘confidence score’’. The approach also includes a number of quality

control (QC) measures aimed to reducemisclassifications from poorly acquired photos, for instance photos which are dark, blurry, or

where the test in the image is extremely small. In addition to these QC measures, a deep autoencoder network is trained to learn a

representation of a normal test. The more a new test deviates in appearance from the training examples (blur, lighting, pen markings,

damage and decolouration of the test) the higher the anomaly score. These QC measures were reinforced for false positives, due to

the skew between the number of positive and negative cases in real world testing scenarios. These mitigations include the use of a

General Adversarial Network for identification of anomalies in the test read area (using the premise that, when presented with an im-

age considerably different than that which it was trained upon, it will be unable to reconstruct the algorithm properly), further image

quality measures and a minimum confidence threshold for the AI algorithm’s classifications. These algorithms were also imple-

mented in Pytorch. When one or more QC measures are activated, an inconclusive result is returned to the user and in production

the user will be requested to retake the photo. Together, the AI classification algorithm and QC measures form the core of the

MagnifEyeTM software tool. Deployment in production is based on an Azure architecture using Kubernetes with NVIDIA Tesla

V100 GPUs.

In both sub-studies, MagnifEye’s interpretation (positive, negative, void or inconclusive) was then passed to a results database

where it was logged alongside the test subject’s own asserted result. When a void result was observed (no control line, showing

the test had failed), the study participant was instructed to take another test with a new test kit. Study subjects then were asked

to take a picture of the void test before proceeding with a new test.

The AI interpreted result was not returned to the user during either sub-study, but instead analysed and kept as evidence to assess

the accuracy of the algorithm reading against the reported outcome by the lay user (sub study 2) and trained operator (sub study 1).

The current quality control (QC) steps lead to an automatic rejection of 18.5% of cases. Examples of reasons for automated

rejection include incorrect test device, discolouration of the test read area, plastic covering the test, rotation and incorrect scale,

or shadowing on the test read area interfering with the read (Figure S1). In the 18.5% of the cases for which the QC algorithms reject

the type of images shown above, the user is asked to retake the photo to have a chance of improving its quality and hence its likeli-

hood of not being rejected by the QC algorithms.

Participants
The study was undertaken within Asymptomatic Testing Sites (ATSs, Sub study 1) and in NHS primary care staff, and Adult Social

Care staff, visiting professionals and visitors (sub study 2) throughout the UK. ATS were swabbing centres based in the community

used for testing of community participants for COVID-19. The sites chosen for this study did not overlap with those used to train the

model.

Participants were included in the study if they were:

d Willing to participate in the study

d Aged 18 years or above or adolescents aged 12–17 (self-test and report with adult supervision) or children under 12 (should be

tested and reported by an adult)

d Without any common COVID-19 symptoms

d Able (in the Investigators’ opinion) and willing to comply with all study requirements

Participants were excluded from the study if they did not agree with privacy statement, had any common COVID-19 symptoms or

any other significant disease or disorder which, in the opinion of the Investigator, may either put the participants at risk because of

participation in the study, or may influence the result of the study, or the participant’s ability to participate in the study.

Recruitment occurred between 12th - 31st March 2021. A total of 59,164 images were returned for sub-study 1 and 58,667 images

for sub-study 2. For sub-studies 1 and 2, user age ranges across all cohorts were 16–80 years, representing all gender identities. For

Sub-study 2, demographic data for 40,108 (n = 50,999) users was reported. Users aged 41 to 50 years old accounted for 22.67% of

cases, followed by 51–60 (20.45%), and 31–40 (17.99%). The over 60s accounted for less than 6% of users, and under 30s for just

under 12%. Very few voids were reported and the age distribution of the users submitting them was not statistically significant; how-

ever, when looking at the distribution of invalid images (I.e., images rejected byMagnifEye for not meeting one or more quality control

measures) overall, 7.37% of images submitted were rejected. The images submitted by under 30s are statistically (p < 0.001) less

likely to be rejected (6.0%), and the proportion increases with age at 6.18% for 31–40s, 6.77% for 41–50s, 8.86% for 51–60s,

11.30% for 61–70s, and 14.94% for over 70s.

Users that identified as female made up 67.70% (31,508) of all cases, while 10.95% (5,584) identified as male, with the remainder

not declaring a gender. Male users were slightly more likely to submit invalid images (8.33%) than female users (7.28%). Where

ethnicity was declared, users ranged across 23 different ethnicities. No statistically significant differences have been identified

across different ethnicity groupings. Similarly, no significant differences were detected across use cases. Geographic spread was
Cell Reports Medicine 3, 100784, October 18, 2022 e2
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largely dependent on the number of Asymptomatic Test Sites, NHS trusts and Care Homes that participate in the study and were

representative of all United Kingdom regions. Although a sub study on usability was carried out, it did not specifically aim to under-

stand the utility of the reader for assisting those who may have difficulty interpreting the result as so is not reported here.

METHOD DETAILS

Study design
Data collection was conducted according to a pre-planned protocol before the reference and index tests were performed. The refer-

ence test was defined as a visual inspection of an LFD by a trained member of staff within an asymptomatic testing site (ATS) or as a

self-read by a participant. The index test was defined as the resulting photo of the lateral flow device taken either by the self-test

participant or ATS user, that was uploaded to a web-based portal to be read by the machine learning algorithm.

This observational prospective study consisted of two sub studies, the first (Sub study 1) being a diagnostic performance evalu-

ation study and the second (Sub study 2) being both a diagnostic performance evaluation study and also a human factors and us-

ability performance study. Both were carried out in March 2021 and participants were recruited as a convenience series.

Ethical approval was sought from the Public Health England Research Ethics committee, who confirmed that the study was

exempt from ethical approval, as the study was purely observational with the AI result not being returned to the user.

Image capture
Sub-study 1: Images were captured at Asymptomatic Test Sites (ATSs). A COVID-19 antigen test using Innova LFDwas performed as

per manufacturer’s IFU, then the trained operative supervising the LFD read the test results, took a photo of the completed test using

a standardised device and entered/uploaded their interpretation of the result using an NHSD web service as per written instructions.

The pictures of completed tests were taken at the point at which the result was interpreted/decided.

Sub-study 2: Participants were invited to take images on their ownmobile devices (such as iOS or Android smartphone or internet-

enabled tablet) and upload these images using the NHSD web service. Study participants self-tested themselves using an Innova

LFD as per manufacturer’s instructions for use (IFU). Pictures of completed tests were taken at the point at which the result is inter-

preted as per manufacturer’s IFU. This was tested in user research and participants were advised that they should take the test,

perform another activity for 30 minutes (as per the manufacturers IFU) and then come back to take their photograph. At this point

the user entered their interpretation of the result.

Index test (AI read) results were then compared with reference standard (ATS operator’s read) results. The result recorded at the

ATS by the trained operative was regarded as the ‘ground truth’ against which the AI result can be compared in the analysis phase. All

positives and voids (ATS read or AI read), all discrepancies (where there was conflict between ATS and AI read excluding invalids, i.e.

photos that did not meet the minimum photo criteria), and a sample of negatives were then reviewed by an independent clinical team

providing further readings of the images whilst being unaware of the reason they were providing this read. These additional readings

were referred for statistical analysis and comprised the final ‘ground truth’ for comparison against the AI read. The same process was

carried out for self-reported images.

Resolution of discrepancies & intra-observer reliability
During this study, data was collected from three (B, C and D) different variations (cartridge shape) of Innova devices. In addition to the

manually read and AI generated results, a third-party independent inspection by a trained expert clinician was performed for a subset

of images to create a ‘most trusted’ result against which the sensitivity and specificity of the AI read can bemeasured to demonstrate

the effectiveness of the AI algorithm, showing that it is ‘at least as good as the average user read’. This was performed for both sub-

studies.

The individuals chosen to undertake the assessment were three medical doctors with at least 5 years post qualification experience

of working in a GCP compliant laboratory environment and interpreting test data. Initially, these independent readers underwent a

qualification process. These doctors were trained by being provided with a sample of 50 images of laboratory produced LFD results

where viral load was standardised for each LFD, and acted as ground truth. The results of the training images were known as these

had been created by the Chief Investigator for the purposes of training the AI algorithm to recognise positive samples at differing

strengths. The images selected were both positive and negative, plus a sample of voided cassettes. These were then blind read

and the results returned to a project manager who compared each reading against the known result. Readers were only signed

off as suitable if they correctly matched all images with the ground truth. If the reviewers’ agreement was absolute (3 out of 3), we

took their interpretation to be the ‘‘ground truth’’. In marginal cases where the reviewers disagreed fully or only had 2 out of 3 votes

in cases where a positive could be present, a fourth reviewer was recruited (the Chief Investigator) to make a final decision.

The samples reviewed by the independent inspectors fell into 3 categories:

- Firstly, all samples where there was a discrepancy between the AI result and the result reported by the test subjects;

- Secondly, all samples where either the AI algorithm or the test subject returned a positive or void (but not where MagnifEye re-

turned an inconclusive, defined as when the photo failed to meet one or more of the predefined QC measures)
e3 Cell Reports Medicine 3, 100784, October 18, 2022
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- Thirdly, a random sample (1% of total) of images of negative results where there was consensus between the human and the AI

algorithm). For Sub-Study 1 data, the sample of negatives was taken across the whole set independent of submission data

(n = 568). For Sub-Study 2, 1% of the daily submissions with negative agreement were reviewed (n = 376).

Assessment took place via interpretation of the submitted image of the test subject’s LFD. Each inspector individually assessed the

image and recorded their interpretation of the result against the unique image identifier. The individual assessments were subse-

quently compared to determine a consensus amongst the inspectors and a final ‘third party review’ data point was recorded against

the unique image identifier. A majority decision (two out of three reviewers concurred) view was taken as ‘‘ground truth’’. We chose

this metric as ground truth rather than an orthogonal test such as real time PCR, as the primary outcome of this study was to under-

stand the accuracy of the reader, rather to ascertain the accuracy of LFD against PCR, which have been shown to have different

dynamic ranges of detection.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sample size
Prevalence of the SARS-CoV-2 virus at the time of this study (March 2021) was low. We calculated that we would need at least 50k

samples (based on 0.2%prevalence of SARS-CoV-2 infection) before we could observe a reasonable number of positive samples (at

least 100) in order to produce a good estimate of the algorithm’s sensitivity. Based on the initial training and internal validation of the

algorithm, observed sensitivity and specificity were expected to be 95% or above during external validation with at most 1% error.

For sub-study 1, the dataset extracted contained 56,776 valid images with 93 reported positives and later 126 confirmed positives

which we found to be adequate to provide an accurate estimate of the relevant quantities.

Had the number of positives in the initial sample been too small to result in a useful estimate of the confidence interval of sensitivity,

a Bayesian sequential sampling approach had been planned using a Rao-Blackwell approach to produce an unbiased estimator.14,15

The initial focus was on estimating the Area Under the Receiver Operating Characteristic Curve (AUROC). Since specificity was

likely to be high, we aimed for an operating point on the AUROC to be sufficiently sensitive to positives to ensure a minimum sensi-

tivity of 95%. We used bootstrap to assess the variation of the AUROC and derive confidence intervals for the metric but also for

specificity and sensitivity. Once the confidence intervals for these measures were small enough or show signs of convergence,

we reassessed the study and determined that no further sampling was necessary. We also observed and noted the Brier score

for this model. If we noted substantial deviation from what is considered appropriate (0 to 0.25), we reassessed the model for over-

fitting and tried to identify other deviations that could have led to issues with discrimination. This tool was used for monitoring

purposes only. In order to assess cross-entropy loss, we used the log loss approach tomonitor the discrepancy between the positive

or negative label (from the trained reviewers) and the algorithm result. We did not expect themodel to be perfect (log-loss of 0), but we

used this approach to identify when and if the model was possibly confidently wrong and used key findings to issue recommenda-

tions to improve quality control.

Calculation of accuracy
Diagnostic accuracy assessment was assessed with the standard metrics. We defined the index test as an automated analysis of

clinical data by the AI-basedMagnifEye software, and analysis of trained operator test results was used as a reference test. Relevant

metrics with reliability within 95% of the confidence interval were calculated. We pre-specified a minimum sensitivity of greater than

95% and a specificity as close as possible to 100% for the AI algorithm classification to be deemed satisfactory.

ADDITIONAL RESOURCES

Study registration
This study is registered with the ISRCTN registry (reference number ISRCTN30075312) and further details can be found here: https://

www.isrctn.com/ISRCTN30075312?q=ISRCTN30075312.
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