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Materials with negative Poisson ratio have the counter-intuitive property of expanding laterally
when they are stretched longitudinally. They are accordingly termed auxetic, from the Greek auxesis
meaning to increase. Experimental studies have demonstrated auxetic materials to have superior
material properties, compared with conventional ones. These include synclastic curvature, increased
acoustic absorption, increased resilience to material fatigue, and increased resistance to mechanical
failure. Until now, the latter observations have remained poorly understood theoretically. With this
motivation, the contributions of this work are twofold. First, we elucidate analytically the way in
which stress propagates spatially across a material following a localised plastic failure event, finding
a significantly reduced stress propagation in auxetic materials compared with conventional ones. In
this way, a plastic failure event occurring in one part of a material has a reduced tendency to trigger
knock-on plastic events in neighbouring regions. Second, via the numerical simulation of a lattice
elastoplastic model, we demonstrate a key consequence of this reduced stress propagation to be an
increased resistance to mechanical failure. This is seen not only via an increase in the externally
measured yield strain, but also via a decreased tendency for plastic damage to percolate internally
across a sample in catastrophic system-spanning clusters.

When a material is stretched longitudinally, its ratio
of lateral contraction to longitudinal stretch defines its
Poisson ratio ν. For an isotropic material in d spatial
dimensions, ν varies between +1/(d − 1) in an incom-
pressible material, for which the ratio G/K = 0, and −1
in the limit of perfect compressibility, G/K → ∞. Here
G and K are respectively the material’s shear and bulk
modulus. Materials with negative Poisson ratio have the
counter-intuitive property of expanding laterally when
stretched, and are termed auxetic [1–3] from the Greek
auxesis meaning increase. Important categories of aux-
etics include solid cellular foams [1] or honeycombs [4, 5],
microporous polymers [6, 7], composites [8, 9], some bio-
materials such as skin [10] and bone [11], and some crys-
talline materials [12, 13]. They have also been created
from random fibre networks [14], often by bond prun-
ing [15, 16], and via elastic buckling instabilities [17–20]
and origami [21]. At the level of internal micro- or meso-
scopic structuring, auxetics are often based on chiral sub-
units [22], rotating rigid sub-units [23–25], or re-entrant
sub-units with negative internal angles [26]. For reviews,
see [26–34].

Potential applications of auxetics have been pro-
posed in multiple arenas: in biomedical devices such as
stents [35], skin grafts [25] and artificial blood vessels [26];
in protective sports pads, helmets, mats and shoes [36];
in molecular sieves [9] and defouling applications [37]; in
textiles [38]; and as smart sensors [39]. Such widespread
potential uses stem from the superior mechanical prop-
erties of auxetic materials compared with conventional
ones. These include synclastic curvature [1], increased
acoustic absorption [40, 41], increased indentation resis-
tance [42, 43], increased resistance to material fatigue [44]
and – of primary concern to this work – increased resis-
tance to mechanical failure [1, 44–49].

Experimentally, the increased resistance of auxetics

to mechanical failure has been demonstrated in sev-
eral studies. In carbon nanosheets, density-normalized
sheet toughness, strength and modulus all increased at
negative Poisson ratio [45]. Auxetic Kevlar composites
showed an improved fracture toughness and a reduction
in damage area during impact testing, compared with
conventional ones [46]. An auxetic laminate in tension
required more energy to propagate a crack than its con-
ventional counterpart, with less notch sensitivity [47].
Several studies have demonstrated an enhanced failure
resistance of auxetic solid foams [1, 44, 49], with stress-
strain curves showing auxetic foams to survive to higher
strains before collapse compared with conventional ones.
In an indentation test [42], an auxetic foam yielded at
higher stress, and with a reduced area of damage.
Despite these observations, the increased mechanical

failure resistance of auxetic materials remains poorly un-
derstood theoretically. With this motivation, the key
contributions of this work are twofold. First, we elu-
cidate theoretically the way in which stress propagates
through a material, whether conventional [50] or aux-
etic, following a localised plastic event. We find a sig-
nificantly reduced stress propagation in the auxetic case,
such that a local plastic failure in one part of a material
has a reduced tendency to trigger knock-on failure events
in neighbouring regions. Second, we demonstrate an im-
portant consequence of this reduced stress propagation
to be an increased resistance to mechanical failure.

THEORETICAL MODEL

For definiteness, we cast much of the discussion that
follows in the language of d = 2 dimensional random fi-
bre networks. However, we anticipate the basic model
ingredients that we shall incorporate to serve as a min-
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imal model for the mechanical failure of auxetics more
generally. Indeed, we adopt a mesoscopic elastoplastic
modelling approach related to that used to study yield-
ing and flow in a broad array of amorphous solids and
complex fluids such as dense foams, emulsions, colloids,
granular materials and metallic glasses [51]. In the spirit
of these existing elastoplastic models, we coarse-grain a
solid auxetic material at the mesoscopic level of a few
bonds in a random fibre network, or a few cells in a solid
foam or honeycomb, etc. Each such mesoscopic collection
of bonds, cells, etc. is assumed large enough to allow the
definition of local strain and stress variables, and is rep-
resented as a single elastoplastic element. Local plastic
failure events at the scale of these individual elements
are then spatially coupled by elastic stress propagation
at the global continuum level.

Compared with existing elastoplastic models, ours has
two additional features. First, when any elastoplastic
element yields, it does not then reform (to model a T1
rearrangement of droplets in a flowing emulsion, say), but
permanently fails, to model a localised ‘breakage’ event in
(e.g.) a solid foam or network. Second, whereas existing
models typically consider incompressible materials, ours
is generalised to model the full range of material types
from incompressible to maximally auxetic. Indeed (in
the auxetic case), we assume auxetic behaviour both on
the mesoscopic lengthscale of the individual elastoplastic
elements, as well as on the global continuum lengthscale
over which stress propagation is computed.

On a square lattice of N ×N sites, we consider a sin-
gle elastoplastic element on each site. Site (m,n) has
position vector ri = (mx̂, nŷ), with the lattice spacing
defining our length unit. As a function of space ri and
time t, we define a strain relative to a state of undeformed
equilibrium

ϵij(ri, t) =
1
2 (∂iuj + ∂jui) , (1)

given a displacement field ui(ri, t). Associated with this
strain is an elastoplastic stress σij . At the level of linear
elasticity, we write

σij(ri, t) = 2µϵij + λϵllδij , (2)

with Lamé coefficients µ and λ. To relate these coffi-
cients to the shear and bulk moduli, G and K, we write
the stress as a sum of contributions from pure shear and
isotropic compression:

σij = 2G

(
ϵij −

1

d
ϵllδij

)
+Kϵllδij . (3)

Comparing Eqns. 2 and 3, we then identify

µ = G and λ = −2G

d
+K. (4)

The Poisson ratio

ν =
dK − 2G

d(d− 1)K + 2G
. (5)

Of the five material constants µ, λ,G,K and ν, therefore,
we need specify only two, because the other three are
determined via 4 and 5. In what follows, we work in terms
of G and ν and further set G = 1 as our stress unit. In
d = 2 dimensions, we then have µ = 1,K = (1+ν)/(1−ν)
and λ = 2ν/(1− ν).
We assume the total stress Σij(ri, t) at each lattice site

to comprise the sum of the elastoplastic contribution σij

just defined, plus a dissipative contribution of viscosity
η,

Σij(ri, t) = σij(ri, t) + 2ηDij , (6)

in which the strain rate tensor in terms of velocity vi = u̇i

is

Dij = ϵ̇ij =
1
2 (∂ivj + ∂jvi) , (7)

Force balance in the inertialess limit requires that

0i = ∂jΣij . (8)

So far, we have considered only a linear elastic solid in
tandem with a linear dissipative stress. We now incorpo-
rate plasticity, which naturally also introduces nonlinear-
ity. To do so, we assume that when any element’s elas-
tic energy E = 1

2σijϵij exceeds a threshold Ey, it yields
plastically on the stochastic timescale τ0 = 1 (setting our
time unit). We set Ey = G/2 = 1/2 (in our units), such
that elements fail at a typical shear strain O(1). The
element’s elastic coefficients µ and λ (and so also G and
K) are then set to zero for all subsequent times, such
that the element has permanently failed, capturing a lo-
cal breakage event in our fibre network example. Over a
timescale set by η divided by the elastic constants, stress
then propagates to recover force balance.
In setting Ey = G/2 = 1/2, we have chosen the lo-

cal yield energy Ey to scale in proportion to the shear
modulus G rather than the bulk modulus K. This is
because we are investigating a material’s toughness to
imposed changes in shape (shear strain) rather than im-
posed volumetric compression (bulk strain). Indeed, this
is the regime relevant to most applications in both na-
ture and technology: stents, bones, blood vessels, tex-
tiles, protective pads, helmets etc. typically suffer bend-
ing, shearing or stretching (shape changes) in practical
usage [25, 26, 35, 36, 38], rather than imposed overall
bulk volumetric changes, consistent with the classifica-
tion of fracture modes I-III (opening, in-plane shear and
out-of-plane shear) in fracture mechanics [52].
Were we to have made the alternative choice, setting

Ey proportional to K and exploring the auxetic regime
of small K/G, this would correspond to a material with
a very small ratio Ey/G. Such a material would be very
stiff against changes in shape, in having a large shear
modulus G; but also very weak to changes in shape, in
having a small yield energy Ey. Such very stiff, very weak
materials would fail at tiny shear strains, even in the ab-
sence of any stress propagation and associated spatially
cooperative plasticity and fracture propagation.
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Indeed, when considering the underlying mesoscopic
structure of conventional versus auxetic solids – solid
foam cells with positive versus negative internal angles
respectively, for example – we recognise that the energy
scale of local plastic failure events will be set in both cases
by the energy involved in locally breaking this mesoscopic
structure. For the pedagogically illustrative case of a 2D
foam, for example, such events involve breaking the fil-
aments that constitute the foam’s cell boundaries. The
energy cost of breaking these filaments is expected to be
largely independent of the sign of the cell’s internal an-
gles (their failure happens at the microscopic lengthscale
of the filament cross section, smaller than the mesoscopic
scale of the cells that the filaments form), and is there-
fore the same for both conventional and auxetic materi-
als. Accordingly, we indeed assume that the energy scale
Ey for local mesoscopic failure events remains O(1) even
as the auxetic limit is approached, K → 0.
Details of our numerical algorithm used to simulate

this model are given in the methods section below.

SAMPLE PREPARATION AND SHEAR
PROTOCOL

The importance of initial sample preparation or an-
nealing and disorder to the failure properties of amor-
phous materials when they are subsequently deformed
is increasingly being appreciated. Typically, materials
with initially narrower (less disordered) distributions of
local strains show more brittle and less ductile failure
behaviour, at fixed sample size.

To model a material’s initial state, we note that any
element’s elastic energy can be written as the sum of
shear and compressional contributions:

E = G
(
ϵijϵij − 1

2ϵ
2
ll

)
+ 1

2Kϵ2ll =
1
2G (a− b)

2
+ 1

2K (a+ b) ,
(9)

in which we have set ϵ11 = a, ϵ22 = b and ϵ12 = ϵ21 = 0
in the diagonal frame of the element’s local strain ten-
sor. For simplicity we assume that µ and λ (and so also
G and K) are initially uniform across a freshly prepared
sample, the same for all elements, prior to any later el-
emental failure events when the sample is sheared. We
further assume energy equipartition between shear and
extension, such that:

1

2
G(a− b)2 =

1

2
K(a+ b)2 ≡ 1

2
Gl20, (10)

in which overline denotes averaging over all elements on
the lattice. To initialise the elemental strains, therefore,
we choose each element’s value of a− b (resp. a+ b) from
a Gaussian of variance l20 (resp. Gl20/K), which defines
the standard deviation of initial local strains l0. Lower
l0 corresponds to a less disordered (or better annealed)
sample initially. We then rotate each element’s strain
tensor through a random angle to give its strain tensor
in the xy frame of the lattice, before evolving the system
to a steady force balanced state.
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FIG. 1. Elastic stress response to a unit source plastic shear
stress relaxation sxy = S = −1 at the origin x = y = 0. Left:
elastic shear stress along the centreline y = 0. Middle: neg-
ative of the elastic shear stress along the diagonal x = y,
with r =

√
2x. Right: negative of the elastic normal stress

−σxx = −σyy along the diagonal. (σxx = σyy = 0 along
the centreline.) Poisson ratio ν = 0.9999, 0.8, 0.6, 0.4 · · · −
0.6,−0.8,−0.9,−0.99,−0.999,−0.9999 in curves with peak
heights downwards in each panel. Lattice size N2 = 20482.

A global shear of slow rate γ̇ ≪ 1 is then imposed for
all subsequent times t > 0 (defining our origin of time),
giving an affine contributionDxy = Dyx = γ̇ to the strain
rate tensor, with Lees-Edwards periodic boundary condi-
tions. Any element then loads elastically as a function of
increasing time t, partly via this affine contribution, and
partly via the elastic propagation of stress from plastic
events that occur elsewhere in the sample, as considered
in the next section, until the element itself finally yields
plastically.
To map out phase behaviour in full generality – as a

function of both the degree of initial sample disorder, as
characterised by l0, and the degree of which the material
is auxetic, as characterised by ν – we assume that l0 and
ν can be prescribed independently of each other.

REDUCED STRESS PROPAGATION IN
AUXETIC MATERIALS

Following Eshelby [53], Picard et al. [50] considered
the global elastic propagation of stress following a sin-
gle local plastic event in an incompressible linear elas-
tic material with a homogeneous shear modulus µ. The
relevant Green’s function is the Oseen tensor OI

ij =
1

µk2 (δij − k̂ik̂j), in Fourier space. (We use superscript

I to denote incompressible.) Here we generalise Picard’s
calculation to the full range of material types from in-
compressible, ν = +1, to maximally auxetic, ν = −1+,
by considering the elastic propagation of stress following
a local plastic event in a linearly elastic material with
generalised, but still spatially homogeneous, Lamé coef-
ficients µ and λ.
Note, however, that in the full elastoplastic model as

described in the previous section, and numerically simu-
lated in subsequent sections, after the plastic yielding of
an element at any lattice site, µ and λ are set to zero at
that site for all subsequent times, to model the perma-
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nent breaking of that element. Accordingly, any subse-
quent plastic events occur in a medium where µ and λ
are actually heterogeneous. The calculation outlined in
this section thus only strictly applies to the propagation
of stress following the first local plastic event in a freshly
prepared material. Nonetheless, it should provide a rea-
sonable guide to the early stages of material yielding,
when few local failure events have yet occurred.

Once the material has reached a new state of force
balance, with the propagated elastic stress balancing the
localised plastic stress source, which we denote sij , the
total stress σij = 2µϵij +λϵllδij −sij obeys the condition
of force balance

0i = ∂jσij = 2µ∂jϵij + λ∂jϵllδij − ∂jsij . (11)

Substituting into this the expression for strain from
Eqn. 1, and transforming from real to Fourier space
ri → ki, we obtain

−ikjsij = µ(kikjuj + k2jui) + λkikjuj . (12)

Rearranging gives the elastic displacement response

ui = −Oijfj , (13)

to the stress source sij and corresponding force fi =
ikjsij . The propagation tensor

Oij = − 1
2 (1 + ν)OI

ij − 1
2 (1− ν)OA

ij , (14)

in which

OI
ij =

1

µk2
(δij − k̂ik̂j) and OA

ij =
1

µk2
δij . (15)

For an incompressible material ν → 1, this recovers

Picard’s result Oij = OI
ij = 1

µk2 (δij − k̂ik̂j). For a

maximally auxetic material, ν → −1+, we instead have
Oij = OA

ij =
1

µk2 δij , with superscript A denoting auxetic.

At intermediate ν we have a linear interpolation between
these two limiting cases.

The associated strain and stress fields are then ob-
tained by substituting this result for ui into Eqns. 1
and 2. For any deformation protocol in which shear
stresses dominate, of particular interest is the elastic
shear stress response σxy to a plastic shear stress source
sij = S(δixδjy + δiyδjx) localised at the origin in real
space. In Fourier space this is given by

σxy = S

[
1− 2(1 + ν)

k2xk
2
y

k4

]
. (16)

This quantity is plotted in real space along the cen-
treline y = 0 and diagonal x = y in the left and middle
panels of Fig. 1. In the incompressible limit, ν = 1, we
recover Picard’s result, with a stress propagator that is
quadrupolar in angle and decays with distance as ∼ 1/r2.
In important contrast, as ν decreases towards the maxi-
mally auxetic limit ν = −1+, the quadrupolar 1/r2 con-
tribution decreases linearly to zero: in a fully auxetic

0 0.5 1 1.5 2
γ

0

0.2

0.4

0.6

0.8

1

Σ ******

FIG. 2. Shear stress versus shear strain for Poisson ratio
values ν = 0.99, 0.00,−0.90,−0.99,−0.999,−0.9999 in curves
left to right. Strain rate γ̇ = 10−3, lattice size N2 = 5122,
standard deviation of initial strain values l0 = 0.025, timestep
α = 0.003. Each curve represents a single run, with no aver-
aging over random number seed. Yield strains γ∗ indicated
by asterisks.

material, a local plastic relaxation of shear stress has
only a local consequence at the site where relaxation oc-
curred, with no propagation across the material. Indeed,
the maximum value in each panel of Fig. 1 decreases lin-
early to zero as ν → −1. The normal stress component
σxx = σyy is shown along the diagonal x = y in the right
panel of Fig. 1. (It is zero along the centreline.)

INCREASED FAILURE TOUGHNESS OF
AUXETIC MATERIALS

In the previous section, we considered analytically
the elastic propagation of stress following a single local
plastic relaxation event in a material with homogeneous
Lamé coefficients. We now numerically simulate our full
elastoplastic model in which all N × N elastoplastic el-
ements interact. Each element now experiences affine
loading at the imposed shear rate γ̇, additional elastic
deformation as a result of stress propagation from the
plastic failure of elements elsewhere in the sample, and
its own eventual local plastic failure. As noted above,
once any element fails, its Lamé coefficients are set to
zero and the material’s elastic constants become hetero-
geneous.
Fig. 2 shows the shear stress Σxy ≡ Σ as a function

of the globally imposed shear strain γ = γ̇t, for a well
prepared sample with a small standard deviation of ini-
tial strains. Curves left to right correspond to decreasing
values of the Poisson ratio ν. The leftmost curve is for a
nearly incompressible material and the rightmost curve
is for an almost maximally auxetic material. As can be
seen, in moving from the incompressible to auxetic case,
the strain at which failure occurs increases: i.e., the ma-
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FIG. 3. Yield strain as a function of Poisson ratio ν. Curves
downwards correspond to increasing values of the standard
deviation of initial strain values l0 = 0.025, 0.050 · · · 0.250.
Each data point is averaged over runs performed at ten differ-
ent values of the random number seed. Strain rate γ̇ = 10−3,
lattice size N2 = 5122, timestep α = 0.003.

terial’s mechanical failure resistance increases.
To quantify this, we define the yield strain γ∗ for any

sample as the strain at which the stress falls half way
from its peak value to its eventual value at the maximum
strain simulated, γ = 2.0. For each curve in Fig. 2, this
yield strain γ∗ is indicated by an asterisk. This quan-
tity γ∗ is then plotted as a function of Poisson ratio ν
for several different levels of disorder in the initial strain
distribution in Fig. 3. For well annealed samples, with
a small standard deviation of initial local strain values
l0 (top curve), the yield strain increases monotonically
in moving from the incompressible case ν = 1.0 towards
the maximally auxetic limit, ν = −1.0+. In contrast,
for initially disordered samples with a large standard de-
viation of initial local strains (bottom curve), the yield
strain first increases with decreasing ν, then decreases,
before increasing again as the auxetic limit is approached,
ν → −1+. We return to comment further on this non-
monotonic dependence below.

So far, we have discussed the macroscopically mea-
sured mechanical shear stress signal, and the correspond-
ing macroscopic yield strain γ∗. Perhaps more important
than these macroscopic measures, however, is the spatial
patterning of plastic damage that accumulates internally
as a function of position across the material. To investi-
gate this, we plot in Fig. 4 snapshots showing the sites
that have undergone local plastic yielding by the time
the yield strain γ∗ is reached. Snapshots are shown on a
grid of values of Poisson ratio ν (left to right) and initial
strain disorder l0 (bottom to top).
For each pairing of values of ν and l0, we identify in

red the largest areal cluster of adjacently failed sites, and
shall denote the number of sites in this cluster by A.
(Before identifying clusters, we in fact coarse grain each

site with its immediately adjacent neighbours. We do so
because successive plastic yielding events can often jump
by two sites due to the propagator being roughly equal
between the first and second sites adjacent to a local
failure.) For each such largest cluster, we then identify
in cyan the longest linear array of adjacently failed sites
(after coarse graining by one, as just described), either
along x or y or the diagonal x = y or x = −y. We denote
the number of failed sites along this line by l. For each
such longest line, we further define an angular variable θ,
which adopts the value 1 if the line is along either x or
y (each case being equally likely, due to the quadrupolar
nature of the stress propagator), and a value 0 if the
line is along x = y or x = −y (each again equally likely
for the same reason). Each of these three measures –
the areal size A of the largest plastic cluster at yield, its
longest linear length l, and orientation θ – is plotted as
a function of Poisson ratio in Fig. 5, for several different
levels of disorder in the initial strain distribution.

Taking Figs. 5 and 4 together, several observations are
notable. First, for incompressible materials ν → 1 (right
of Fig. 4), and for materials with only a low level of disor-
der in the initial local strain distribution (bottom row),
clusters of local plasticity percolate across the sample
in uninterrupted lines along x or y. For incompressible
samples that have instead a greater degree of local strain
disorder initially (top right snapshots), such clusters still
percolate along x or y, but do so in a slightly more dif-
fuse and disordered way. Such behaviour has indeed been
observed for different levels of initial sample annealing
previously in incompressible systems, albeit in the case
where elastoplastic elements reform after failure [54, 55].
Either case corresponds to macroscopic material failure,
with a line of plastic damage that percolates across the
sample. This percolation arises from the spatial stress
propagation considered in the previous section: when an
element yields at any site, sites that are nearby along x
and y suffer increased loading, and fail in turn.

As we move leftwards across Fig. 4 and the Poisson ra-
tio decreases from its value ν = 1 for an incompressible
material, towards the limit of a perfectly auxetic mate-
rial, ν → −1+, the size of the largest cluster of plastically
failed sites decreases towards zero (top and middle panels
of Fig. 5). This is true regardless of the level of disorder
in the initial strain distribution and is consistent with
our analytical calculation of the stress propagator above:
in the auxetic limit ν → −1+, there is no spatial propa-
gation of stress and a local plastic failure at any site has
no consequence any for other site within the material.
Spatially correlated cracks of plasticity therefore cannot
form. For ν values close to the auxetic limit −1+, al-
though a material may still be judged to have yielded
according to the fall in the externally measured stress
signal, any internal plastic damage is dispersed diffusely
across the material in small microcracks, without catas-
trophic macroscopic failure.

Just as the size of the largest cluster of local plasticity
decreases with decreasing Poisson ratio, its angular ori-
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FIG. 4. State snapshots showing the sites that have plastically failed by the time the yield strain γ∗ is attained. Poisson
ratio ν = −0.80,−0.60,−0.40,−0.20, 0.00, 0.20, 0.40, 0.60, 0.80 in columns left to right. Standard deviation of initial local strain
values l0 = 0.050, 0.150, 0.250 in rows from bottom to top. Any site that has failed is shown in either black, red or cyan. Red
dots indicate the sites that belong to the largest areal cluster of adjacent sites to have failed. Cyan lines indicate the sites
within each largest areal cluster that belong to the longest linear array of adjacent sites to have failed, either along x or y or
the diagonal x = y or x = −y. Black dots indicate sites that have failed but do not belong to the largest cluster.

entation also changes. For an incompressible material,
ν → 1, the largest cluster of adjacent plastic events is al-

0

0.05

0.1

L/N2

0

0.5

1

l/N

-1 -0.5 0 0.5 1
ν

0

0.5

1

θ

FIG. 5. Top: areal size of the largest cluster of adjacently
failed sites at yield. Middle: linear length of the longest line
of adjacently failed sites at yield, either along x or y or x = y
or x = −y. Bottom: orientation of this longest line, with
1 corresponding to cracks along x or y, and 0 corresponding
cracks along x = y or x = −y. Each quantity is plotted as
a function of the Poisson ratio ν. The standard deviation of
initial strain values l0 = 0.025, 0.050 · · · 0.250 in black, red,
green, blue, yellow, brown, grey, violent, cyan and magenta
curves respectively. Each data point is averaged over runs
performed at ten different values of the random number seed.
Strain rate γ̇ = 10−3, lattice size N2 = 5122, timestep α =
0.003.

ways either along x or y. In contrast, for materials close
to the auxetic limit, ν → −1+, the clusters instead prop-
agate diagonally along x = y or x = −y. This is seen
in Fig. 4, moving leftward along each row, and via the
dependence of θ on ν in Fig. 5 (bottom).

DISCUSSION

We have studied theoretically the increased mechanical
failure resistance of auxetic materials compared with con-
ventional ones. Indeed, in a conventional incompressible
amorphous material, an initially localised microscopic
plastic event causes a propagation of stress that then
triggers knock-on failure events in neighbouring regions
of the material. This in turn leads to a runaway insta-
bility, with a spatio-temporal cooperation of many such
events on large lengthscales (recall Fig. 4 for materials
with high Poisson ratio ν) and a rapid drop in stress
(recall Fig. 2 for high ν). This sudden brittle material
failure and fracture has been the focus of intense study
in conventional amorphous materials [54, 56–60].

In this work, in contrast, we have shown analytically
that the propagation of stress following a localised plas-
tic event is reduced with decreasing Poisson ratio ν,
with no non-local stress propagation in the auxetic limit
ν → −1+. By numerically simulating a simple lattice
elastoplastic model that couples many elastoplastic ele-
ments together, we further showed that this reduced spa-
tial stress propagation leads to an increased mechanical
failure resistance in auxetic materials, as characterised
both by an increased macroscopic strain at which yield-
ing occurs, and a decreased clustering of plastic failure
events across a material.

As noted above, this increased resistance of auxet-
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ics to mechanical failure has been demonstrated in ex-
perimental studies in several different classes of aux-
etic materials [1, 42, 44–47, 49]. Typical negative Pois-
son ratios achieved experimentally range from around
−0.15 for laminates [47], −0.20 for carbon nanotube
sheets [45], −0.54 for auxetics obtained by elastic buck-
ling [17], −0.60 for those obtained by bond pruning of
random networks [16] to −0.7 for flexible polymer foams
and −0.8 for metal foams [42, 49]. In apparent contra-
diction, however, the fracture energy of metallic glasses
was found to decrease with decreasing Poisson ratio in
Refs. [61, 62]. It should be noted, however, that only
positive (non-auxetic) values of Poisson ratio pertained
in those materials. Future work is nonetheless warranted
to resolve this apparent contradiction.

This work has also revealed a change in orientation of
clusters of plasticity as the Poisson ratio decreases, from
cracks along x or y in incompressible materials to diago-
nal cracks along x = y or x = −y in auxetic ones. (Recall
Fig. 4.) This can be understood by recalling that cracks
form via a plastically yielding site giving a stress pertur-
bation dσxy to its neighbours, and so on in a repeating
way across the lattice. When any element at some ori-
gin site indeed yields, it relaxes all its stress components,
both shear and normal. The spatially propagated dσxy

that results from the relaxation of shear stress at this
origin site has already been considered in Eqn. 16: it is
quadrupolar, dominating along the horizontal and verti-
cal axes to give the patterns of cracking seen for larger
ν values in Fig. 4. This term however scales as 1 + ν
and becomes small in the auxetic limit ν → −1. For
the smallest (most negative) ν in Fig. 4, the spatially
propagated dσxy instead predominantly stems from the
relaxation of normal stress at the origin site. Consider-
ing a normal stress source sij in Eqns. 11 to 15, it is
easily shown that the propagated stress dσxy is largest
along the diagonals, consistent with the diagonal cracks
observed for the smaller values of ν in Fig. 4.

Preliminary observations suggest that the same com-
petition between shear and normal stresses underpins the
non-monotonic dependence of yield strain on Poisson ra-
tio for samples with a high degree of disorder in the initial
distribution of local strains. Future work should study
these phenomena more fully. Indeed, in the crossover

regime between the two different dominant cluster orien-
tations (along x or y; or along x = y or x = −y), increas-
ingly intricate clusters of plasticity are seen in Fig. 4, with
competing branches in the different orientations. A care-
ful study with increasing system size would be warranted,
to establish whether infinitely branched fractal clusters
may arise in some regimes of Poisson ratio. Given the
potentially increasing importance of normal stresses at
low values of the Poisson ratio, it would also be interest-
ing to consider different possible constitutive models of
normal vs shear stresses.

NUMERICAL METHODS

On each site of a d = 2 dimensional N × N lattice,
we initialise a single elastoplastic element as described
in the section ‘sample preparation’ in the main text. We
then use a time-stepping algorithm to shear the material,
as follows. At each timestep, we execute three sub-steps.
The first comprises an elastic update, in which the elasto-
plastic shear strain of each element is incremented by
the affine shear rate multiplied by the timestep, and the
change in shear strain used to compute the correspond-
ing change in shear stress via linear elasticity with the
appropriate Lamé coefficients. The second substep com-
prises a plastic update, in which each element is tested for
whether it exceeds the threshold for local plastic yielding.
Any element that does is then yielded with a probabil-
ity given by the timestep divided by the time constant
τ0. When any element yields, its Lamé coefficients are
set to zero. The elastoplastic stress field is then recalcu-
lated. In the third sub-step, the elastoplastic stress field
is transformed to Fourier space, using periodic boundary
conditions, and the non-affine velocity field is calculated
via equations 6 to 8. From this non-affine velocity field
the non-affine strain rate field is calculated and multi-
plied by the time-step to give the non-affine strain up-
date, which is added to the elastoplastic strain. At each
step, the numerical timestep is set adaptively via a scale
factor α divided by the maximum dynamical rate in the
system.
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