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A B S T R A C T

We consider a system with 𝑛 unit-rate servers where jobs arrive according a Poisson process
with rate 𝑛𝜆 (𝜆 < 1). In the standard Power-of-𝑑 or Pod scheme with 𝑑 ≥ 2, for each incoming
job, a dispatcher samples 𝑑 servers uniformly at random and sends the incoming job to the
least loaded of the 𝑑 sampled servers. However, in practice, load comparisons may not always
be accurate. In this paper, we analyse the effects of noisy load comparisons on the performance
of the Pod scheme. To test the robustness of the Pod scheme against load comparison errors,
we assume an adversarial setting where, in the event of an error, the adversary assigns the
incoming job to the worst possible server, i.e., the server with the maximum load among the 𝑑
sampled servers. We consider two error models: load-dependent and load-independent errors. In
the load-dependent error model, the adversary has limited power in that it is able to cause an
error with probability 𝜖 ∈ [0, 1] only when the difference in the minimum and the maximum
queue lengths of the 𝑑 sampled servers is bounded by a constant threshold 𝑔 ≥ 0. For this type of
errors, we show that, in the large system limit, the benefits of the Pod scheme are retained even
if 𝑔 and 𝜖 are arbitrarily large as long as the system is heavily loaded, i.e., 𝜆 is close to 1. In the
load-independent error model, the adversary is assumed to be more powerful in that it can cause
an error with probability 𝜖 independent of the loads of the sampled servers. For this model, we
show that the performance benefits of the Pod scheme are retained only if 𝜖 ≤ 1∕𝑑; for 𝜖 > 1∕𝑑
we show that the stability region of the system reduces and the system performs poorly in
comparison to the random scheme. Our mean-field analysis uses a new approach to characterise
fixed points which neither have closed form solutions nor admit any recursion. Furthermore,
we develop a generic approach to prove tightness and stability for any state-dependent load
balancing scheme.

1. Introduction

Load balancing is a common technique used in many computing and communication systems to distribute workloads evenly
across multiple resources or servers. A popular load balancing technique used in many systems today is the Power-of-𝑑 choices or the
Pod scheme [2–5]. In the Pod scheme, an arrival is sent to the resource having the smallest load (shortest queue length) among a
subset of 𝑑 resources sampled uniformly at random from the set of all resources. The popularity of the Pod scheme stems primarily
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from the relative ease with which it can be implemented over a large number of dispatchers working in parallel to distribute the
workload among a large set of servers of size 𝑛 [6] - indeed, each dispatcher needs to independently sample only 𝑑 (≪ 𝑛) servers
and make a local comparison to dispatch an incoming request.

In their seminal works Mitzenmacher [4] and Dobrushin and Vvedenskaya [5] independently showed that when the number of
resources or servers is large and the system is operating close to its maximum capacity, the Pod scheme with 𝑑 ≥ 2 results in an
exponential reduction in the mean response time of jobs compared to the random scheme where requests are assigned uniformly at
random to resources.

However, the above result was shown to hold only when the server with the minimum load among the 𝑑 sampled servers is
always correctly identified. In real systems, however, it is not always possible to correctly identify the server with the minimum
load, especially when the loads of the sampled servers are close to each other. For example, in data centres, a delay in obtaining
the load information from servers may cause changes in the actual loads of the servers resulting in an error in comparison [7,8].
Similarly, in concurrent settings [9–11], where multiple dispatchers work in parallel, once a dispatcher decides to send its job to
a given server, multiple other dispatchers can send their jobs to the same server before the first dispatcher is able to do so. This
may result in sending the job to the server not having the minimum load. Load comparison results can also be affected by noise or
adversarial attacks potentially causing the system to become unstable [12].

Motivated by the above scenarios, recently, in the theoretical computer science community, there has been an interest in the
study of load balancing algorithms under noisy load comparisons [9–11,13]. Their focus of study is the balls and bin process in
which 𝑚 balls are sequentially placed into 𝑛 (≤ 𝑚) bins. If each ball is placed into the least loaded of 𝑑 randomly sampled bins, then
the classical results of [14,15] imply that the gap between the maximum load and the average load of the bins is log log 𝑛 + 𝑂(1)
with high probability. This gap is exponentially smaller than the gap obtained by randomly placing the balls into bins without any
comparison. To establish the robustness of the above process to noisy load comparisons, recent works [10,13] considered various
adversarial error models. One of their key findings was for the setting where the adversary is capable of returning the worst bin
when the loads of the compared bins differ by no more than a threshold value of 𝑔 ≥ 0. They showed that even in this noisy setting
the gap between the maximum and the average load of a bin remain bounded by 𝑂

(

𝑔
log 𝑔 log log 𝑛 + 𝑔

)

. This shows that, in the static
etting, where jobs come from a finite pool and do not leave the system, the benefits of comparing a small number of bins are
etained even when comparing ‘‘similarly loaded’’ bins results in an error.

The above observation naturally leads to the question whether similar results hold in the dynamic setting, where jobs form an
nfinite sequence of arrivals and each job leaves the system after being processed. To quantitatively determine the robustness of the
od scheme against worst case load comparison errors, we assume the same adversarial setting as in the static case, i.e., we assume
hat in the event of an ‘‘error’’ an incoming request is assigned to the server having the maximum load (i.e., the worst server) within
he sampled subset of 𝑑 servers. To distinguish the scenario where the power of the adversary depends on the loads of the sampled
ervers from the scenario where it does not, we consider the following two types of error (introduced more formally in Section 2).

• Load-dependent error model: In this model, the adversary is limited in that it can cause an error only when the queue lengths
of the sampled servers are ‘‘close’’ to each other, i.e., the maximum and the minimum queue lengths of the sampled servers
differ by no more than a threshold value of 𝑔 ≥ 0.

• Load-independent error model: In this model, the adversary is not limited by the loads of sampled bins — an error can occur
with a fixed probability 𝜖 independently of the loads of the sampled servers.

e study the effects of the above errors on the performance of the Pod scheme for a system composed of 𝑛 unit-rate servers where
obs with exponentially distributed sizes arrive according to a Poisson process with rate 𝑛𝜆 (𝜆 < 1).

.1. Main contributions

It is natural to expect that as the threshold parameter 𝑔 in the load-dependent error model increases, the performance of the
od scheme under this error model would deteriorate, eventually resulting in a performance poorer than the random scheme. While
his is true for light traffic (small values of 𝜆), we show that, in the heavy traffic limit (𝜆 → 1), the performance of the system
emains exponentially better than that under the random scheme for all values of 𝑔. This can be intuitively explained by the fact
hat queue-length differences in heavy traffic can quickly exceed the threshold parameter 𝑔 due to erroneous job assignments, and,
hen this occurs, the Pod scheme correctly identifies the server with the minimum queue length among the sampled subset of

ervers. Hence, in the heavy traffic, the benefits of comparing 𝑑 choices outweighs the negative impact of comparison errors. This
s analogous to the behaviour of the Pod algorithm in static setting under the same error model.

For the load-independent error model, we show that the benefits of the Pod scheme are retained only if the error probability 𝜖
atisfies 𝜖 ≤ 1∕𝑑. For 𝜖 > 1∕𝑑, we show that the system becomes unstable for arrival rates larger than 1∕𝑑𝜖 and the performance
ecomes worse than that under the random scheme. This can be intuitively explained by the fact that the random scheme can be
hought of as a modified version of the classical Pod scheme where, after uniformly sampling the subset of 𝑑 servers, the incoming
ob is assigned to any one of the sampled servers with probability 1∕𝑑. Hence, under load-independent errors, the server with the
aximum queue length is chosen more often in the Pod scheme than in the random scheme when 𝜖 > 1∕𝑑.

While the above results are intuitive, proving them rigorously, is quite challenging from a technical point of view. Below we
2

iscuss these challenges in detail and our methodological contributions in relation to them:
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• Characterising the fixed point : Characterising the performance of the Pod scheme under the error models described above
requires characterising the tail behaviour of the steady-state queue length distribution which, in turn, is approximated by
the fixed point of the corresponding mean-field process for large 𝑛. However, unlike the classical noiseless setting, the fixed
point of the mean-field does not have any closed form solution in the noisy settings. Furthermore, in the load-dependent error
model, the fixed point does not satisfy any recursion. In such cases, even the existence and uniqueness of the fixed point is not
evident. The proof of global asymptotic stability of the fixed point also becomes more challenging as it relies on an inductive
argument on the component indices. To overcome these challenges we employ a new approach that uses bounds on the decay
rate of the mean-field process and its monotonicity. These bounds also help us compare the steady-state mean response time of
jobs under the Pod scheme in the noisy settings to that under the random scheme. We believe our approach is more generally
applicable to any system where the fixed point does not admit a closed form solution or a recursion.

• Lack of a dominating system: In the noiseless setting, a coupling can be constructed between a system operating under the Pod
scheme and a system operating under the random scheme such that the later always dominates the former in terms of the
empirical queue length distribution. This dominance holds for all values of the arrival rate 𝜆 and is key to establishing the
superiority of the Pod scheme over the random scheme for all 𝜆 < 1. It is also implies the stability and tightness of queue lengths
for the system operating under the Pod scheme. However, this dominance breaks in the noisy settings. In particular, under
the load-dependent error model, the random scheme performs better than the Pod scheme for small values of 𝜆. However,
as 𝜆 increases the performance benefits of the Pod scheme becomes more prominent, eventually outperforming the random
scheme when 𝜆 is close one. The opposite holds for the load-independent case in which the Pod performs better than the
random scheme only for small values of 𝜆. Due to the dichotomy mentioned above and the lack of a uniformly dominating
system, proving stability and tightness results under the noisy settings becomes more challenging. The standard results of [16]
and the fluid limit techniques of [17] are also not applicable since a job is not always sent to the server with the minimum
load. We develop a generic framework to analyse stability and tightness for any scheme which compares the queue lengths
of multiple servers to make job assignment decisions. This framework is based on analysing the drift of suitable Lyapunov
functions with the help of job classes defined by the subset of servers chosen upon arrival.

.2. Other related works

In the last two decades, the Pod scheme has emerged as a widely used load balancing scheme due to its promising gains and
inimal overhead. It has been studied extensively under various scaling limits and traffic conditions. The mean-field scaling limit

or this scheme was first studied for exponential service time distributions in the seminal works [4,5]. Their results were later
eneralised to general service time distributions in [18,19]. The heavy traffic optimality of the Pod scheme has been established
n [20,21]. In [22], the analysis of the Pod scheme has been carried out for the case where the number of choices, 𝑑, is allowed
o depend on the system size 𝑛 and 𝑑(𝑛) = 𝜔(1). In this work, both the mean-field and Halfin–Whitt regimes are considered. In the
ean-field limit, the Pod scheme has been shown to reach the same performance as the JSQ scheme. Recently, the Pod scheme
as been analysed for different graph topologies. For example, in [23], the Pod scheme is analysed for non-bipartite graphs and
ufficient conditions on the graph sequence is obtained to match the result on complete graphs in the mean-field limit. For the
ipartite graphs, the Pod scheme and its variants have been analysed in [24,25]. In all cases, results similar to the complete graph
etting have been obtained. For heterogeneous systems, the Pod scheme has been studied in [26,27] where speed-aware versions of
he Pod scheme have been shown to yield similar performance benefits.

Recently, in the theoretical computer science community, the Pod scheme has been analysed in the context of relaxed concurrent
ata structures. Here the goal is to design data structures which allow inherently sequential computations (such as counting) to
e done concurrently using multiple threads. This results in faster computations with a small loss of accuracy. In this context, a
ulti-counter data structure which uses the power-of-two choice algorithm to update multiple counters concurrently was proposed
nd analysed in [10]. Their analysis first incorporated the effects of load comparison errors in the adversarial setting for the balls
nd bins problem. This analysis was further improved in [9]. The current paper considers the effect of such errors in the dynamic
etting.

.3. Organisation

The remainder of the paper is structured as follows. In Section 2, we introduce the system model, define load-dependent and
oad-independent error models, and describe the system state. Our main results for the Pod-(𝑔, 𝜖) and Pod-𝜖 schemes are presented
n Section 3. The mean-field analysis of the Pod-(𝑔, 𝜖) scheme is conducted in Section 5, while the analysis for the Pod-𝜖 scheme is
rovided in Section 6. Finally, we conclude the paper in Section 7.

. System model

We consider a system consisting of 𝑛 parallel servers, each with its own queue of infinite buffer size. Each server is able to
rocess jobs at unit rate. Jobs arrive according to a Poisson process with a rate 𝑛𝜆 (𝜆 < 1). Each job requires a random amount

of work, independent and exponentially distributed with unit mean. The inter-arrival times and job lengths are assumed to be
independent of each other. A job dispatcher assigns each incoming job to a queue of a server where jobs are served according to
the First-Come-First-Server (FCFS) scheduling discipline.
3
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Upon arrival of a job, the dispatcher samples 𝑑 servers uniformly at random without replacement.1 Under the classical Pod
scheme, a job is sent to the server with the minimum queue length among the 𝑑 servers selected uniformly at random. However, as
explained in the introduction, the server with the minimum queue length may not always be correctly identified. Thus, to analyse
the effect of inaccurate load comparisons on the performance of the power-of-𝑑 scheme, we consider the following two error models.
Note that in both the models ‘‘an error’’ means that an arrival is sent to the server with the maximum queue length among the 𝑑
sampled servers. This definition assumes the worst possible assignment of the incoming job as any other assignment would only
result in a better performance of the system.

2.1. Load-dependent error model

In this model, an error occurs with probability 𝜖 ∈ [0, 1] only when the difference between the maximum and the minimum queue
lengths of the sampled servers is in the range (0, 𝑔] for some constant 𝑔 ≥ 0. If this difference is strictly above 𝑔, then we assume that
no error is made, i.e., the job is sent to the server with the minimum queue length. In case of a tie, we assume that an arbitrary tie
breaking rule based on server indices is used. In subsequent sections, it will be demonstrated that the system’s performance remains
unchanged regardless of the tie-breaking rule chosen. Without loss of generality (WLOG), we assume that servers are indexed from
the index set [𝑛] = {1, 2,… , 𝑛}, and, in case of a tie, the job is sent to the server with the smaller index among the 𝑑 sampled servers.
We refer to the Pod scheme under this model of error as the Pod-(𝑔, 𝜖) scheme.

2.2. Load-independent error model

In this model, an error occurs with probability 𝜖 ∈ [0, 1] independent of the current queue lengths of the sampled servers. More
precisely, the incoming job is sent to the server having the maximum queue length among the sampled servers with probability 𝜖
and with probability 1 − 𝜖 it is sent to the server with the minimum queue length. Ties are broken in the same way as discussed
efore. For simplicity, we refer to the Pod scheme under this model of error as the Pod-𝜖 scheme.

.3. System state and notations

To analyse the system under the schemes discussed above, we first introduce Markovian state descriptors of the system. We use
wo Markovian state descriptors. First, we define the queue-length vector at time 𝑡 ≥ 0 as

𝐐(𝑛)(𝑡) = (𝑄(𝑛)
𝑘 (𝑡), 𝑘 ∈ [𝑛]),

where 𝑄(𝑛)
𝑘 (𝑡) denotes the queue length of the 𝑘th server. Second, we define the tail measure on the queue lengths at time 𝑡 as

𝐱(𝑛)(𝑡) = (𝑥(𝑛)𝑖 (𝑡), 𝑖 ≥ 1),

where 𝑥(𝑛)𝑖 (𝑡) denotes the fraction of servers with at least 𝑖 jobs at time 𝑡. For completeness, we set 𝑥(𝑛)𝑖 (𝑡) = 1 for all 𝑖 ≤ 0 and all 𝑡 ≥ 0.
rom the Poisson arrival and the exponential job size assumption it is clear that both 𝐐(𝑛) = (𝐐(𝑛)(𝑡), 𝑡 ≥ 0) and 𝐱(𝑛) = (𝐱(𝑛)(𝑡), 𝑡 ≥ 0)

are Markov processes. When the system is stable, we denote by 𝜋𝑛 the unique invariant measure of the process 𝐱(𝑛) and we use
𝐱(𝑛)(∞) and 𝐐(𝑛)(∞) to denote the steady-state values of the processes 𝐱(𝑛) and 𝐐(𝑛), respectively. As the load balancing scheme does
not distinguish between servers, we have

P(𝑄(𝑛)
𝑖 (𝑡) ≥ 𝑘) = E[1

(

𝑄(𝑛)
𝑖 (𝑡) ≥ 𝑘

)

] = (1∕𝑛)
∑

𝑖∈[𝑛]
E[1

(

𝑄(𝑛)
𝑖 (𝑡) ≥ 𝑘

)

] = E[𝑥(𝑛)𝑘 ],

for each 𝑖 ∈ [𝑛] and each 𝑡 ∈ [0,∞]. To define the state space of the process 𝐱(𝑛), we first define the space ̄ as

̄ ≜ {𝐱 = (𝑥𝑖) ∶ 𝑥0 = 1, 1 ≥ 𝑥𝑖 ≥ 𝑥𝑖+1 ≥ 0,∀𝑖 ≥ 1}.

Note that the space ̄ is compact under the norm defined as

‖𝐱‖ = sup
𝑖∈Z+

|𝑥𝑖|
𝑖 + 1

, 𝐱 ∈ ̄ .

he process 𝐐(𝑛) takes values in Z𝑛
+ and the process 𝐱(𝑛) takes values in the space  (𝑛) defined as

 (𝑛) ≜ {𝐱 ∈ ̄ ∶ 𝑛𝑥𝑖 ∈ Z+ ∀𝑖 ≥ 1}.

We further define the space  as follows

 ≜ {𝐱 ∈ ̄ ∶ ‖𝐱‖1 < ∞},

where the 𝓁1-norm, denoted by ‖⋅‖1, is defined as ‖𝐱‖1 ≜
∑

𝑖≥1 |𝑥𝑖| for any 𝐱 ∈  .

1 The asymptotic performance does not depend on whether servers are chosen with or without replacement. However, the stability of the system does depend
4

n the way servers are sampled. All our results are stated for the case where servers are sampled without replacement.



Performance Evaluation 164 (2024) 102408S. Bhambay et al.
Fig. 1. Mean response time of jobs under the Po2-(𝑔, 𝜖) scheme as a function of arrival rate 𝜆 for 𝜖 = 0.4, 𝑔 = 100. For the simulations we set the number of
arrival to be 107.

3. Main results and insights

In this section, we summarise our main results and discuss their consequences. Our first result characterises the stability region
for each of the two schemes discussed before.

Theorem 1 (Stability).

(i) For any 𝑔 ∈ R+, 𝜖 ∈ [0, 1], and 𝑑 ≥ 2 the system under the Pod-(𝑔, 𝜖) scheme is stable (i.e., the process 𝐱(𝑛) is positive recurrent) if
and only if 𝜆 < 1. Furthermore, for 𝜆 < 1, the steady-state average queue length per server is bounded above as

E𝜋𝑛 [𝑄
(𝑛)
𝑖 (∞)] = E𝜋𝑛

[

∑

𝑖≥1
𝑥(𝑛)𝑖 (∞)

]

≤
(1 + 𝑔1(𝜖 > 1∕𝑑))𝜆

1 − 𝜆
. (1)

(ii) For any 𝜖 ∈ [0, 1] and 𝑑 ≥ 2, the system under the Pod-𝜖 scheme is stable, if and only if 𝜆 < min
(

1, 1
𝑑𝜖

)

. Furthermore, for
𝜆 < min(1, 1∕𝑑𝜖), the steady state average queue length per server is bounded above as

E𝜋𝑛 [𝑄
(𝑛)
𝑖 (∞)] = E𝜋𝑛

[

∑

𝑖≥1
𝑥(𝑛)𝑖 (∞)

]

≤ 𝜆
1 − max(1, 𝑑𝜖)𝜆

. (2)

The proof of the above theorem is given in Section 4. The theorem implies that the Pod-(𝑔, 𝜖) scheme achieves the maximal
stability region for all values of 𝑔 and 𝜖. In contrast, for the Pod-𝜖 scheme, the maximal stability region is achieved only when
𝜖 ≤ 1∕𝑑; for 𝜖 > 1∕𝑑, the stability region shrinks to 𝜆 < 1∕𝑑𝜖. This can be intuitively explained as follows: For the Pod-(𝑔, 𝜖) scheme,
whenever the queue length difference between any two servers in the sampled subset of servers exceeds the threshold 𝑔, the incoming
job is assigned to the server with the minimum queue length within the subset. This prohibits the queue length differences to grow
too large, thereby stabilising the system even for large values of 𝜆. However, for the Pod-𝜖 scheme with 𝜖 > 1∕𝑑, the probability
with which the server with the maximum queue length is selected exceeds 1∕𝑑 which is the probability of selecting the same server
if the random scheme were used instead. As a result, for 𝜖 > 1∕𝑑, the Pod-𝜖 scheme performs poorly in comparison to the random
scheme and looses some of the stability region.

In addition to the stability regions, the above theorem provides uniform (in the system size 𝑛) bounds on the steady-state
mean queue length per server for each scheme. These uniform bounds are crucial in establishing the tightness of the stationary
measures and justifying interchange of the limits in lim𝑛→∞ lim𝑡→∞ 𝐱(𝑛)(𝑡) = lim𝑡→∞ lim𝑛→∞ 𝐱(𝑛)(𝑡), which shows that the mean-field
approximation of the steady-state behaviour of the finite system is asymptotically exact.

The bounds in (1) and (2) also help us to compare the performance of the Pod-(𝑔, 𝜖) and the Pod-𝜖 schemes to that of the random
scheme. For example, when 𝜖 ≤ 1∕𝑑, both the upper bounds reduce to 𝜆∕(1 − 𝜆) which is the steady-state average queue length per
server under the random scheme. This shows that, under both models of error, the Pod scheme performs better than the random
scheme when the error probability 𝜖 ≤ 1∕𝑑. This is intuitive, since, for 𝜖 ≤ 1∕𝑑, the probability with which the server with the
minimum queue length is chosen from the sampled subset of 𝑑 servers is higher than the probability with which the same server
would be chosen if the random assignment scheme were used. For 𝜖 > 1∕𝑑, however, the bounds in (1) and (2) become higher than
𝜆∕(1 − 𝜆) indicating that the schemes may perform poorly in comparison to the random scheme.

This is numerically verified in Figs. 1 and 2 for the Po2-(𝑔, 𝜖) scheme and in Fig. 3 for the Po2-𝜖 scheme. In each of these figures,
we plot the steady-state mean response time of jobs as a function of the normalised arrival rate 𝜆. From Figs. 1 and 3, we observe
that both the schemes outperform the random scheme when 𝜖 ≤ 1∕2. For 𝜖 > 1∕2, however, the Po2-𝜖 scheme becomes unstable for
5
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Fig. 2. Mean response time of jobs under the Po2-(𝑔, 𝜖) scheme and the random scheme as a function of arrival rate 𝜆 for 𝜖 = 0.8, 𝑔 = 100. For the simulations
we set the number of arrival to be 107.

Fig. 3. Comparison of the Po2-𝜖 scheme for 𝜖 ∈ {0.2, 0.4, 0.6, 0.8} with the random scheme. We set 𝑛 = 200 and the number of arrival to be 107.

𝜆 ≥ 1∕2𝜖 and its performance becomes poorer than that of the random scheme for all 𝜆 < 1. For the Po2-(𝑔, 𝜖) scheme, we observe
from Fig. 2 that the system is stable for all 𝜆 < 1 even when 𝜖 > 1∕2. However, for 𝜖 > 1∕2, we observe that the performance of
the Po2-(𝑔, 𝜖) scheme is superior to that of the random scheme only when 𝜆 is close to one; for low traffic, the random scheme may
outperform the Po2-(𝑔, 𝜖) scheme. The loss of uniform stochastic dominance by the random scheme means that the usual approach
of proving stability and uniform bounds via coupling will not work here. Instead, we use drifts of suitable Lyapunov functions to
prove our results. Our approach is generic and can be used for any scheme where queue lengths of multiple servers are compared
to dispatch the incoming jobs.

Our next result characterises the behaviour of the Pod-(𝑔, 𝜖) scheme as the system size becomes large, i.e., 𝑛 → ∞. We show that
the dynamics of the system can be characterised by a system of ordinary differential equations (ODEs) in this limit and the fixed
point of this system characterises the steady-state performance of the system in the limit. Moreover, we characterise the steady-state
performance of the limiting system by comparing it with that under the random scheme.

Theorem 2 (Pod-(𝑔, 𝜖)).

(i) (Mean-Field Limit): Let 𝑔 ∈ R+, 𝜖 ∈ [0, 1], 𝑑 ≥ 2, and assume 𝐱(𝑛)(0) ∈  (𝑛) for each 𝑛 and 𝐱(𝑛)(0)
𝑎.𝑠
→ 𝐮 ∈  under 𝓁1 as 𝑛 → ∞.

Then, for each 𝑇 ≥ 0, we have

sup
𝑡∈[0,𝑇 ]

‖

‖

‖

𝐱(𝑛)(𝑡) − 𝐱(𝑡)‖‖
‖1

𝑎.𝑠
→ 0

where 𝐱 = (𝐱(𝑡) = (𝑥𝑖(𝑡), 𝑖 ≥ 1), 𝑡 ≥ 0) satisfies 𝐱(0) = 𝐮 and for 𝑡 ≥ 0 and 𝑖 ≥ 1

𝑥̇𝑖(𝑡) = 𝐺𝑖(𝐱(𝑡)) ≜ 𝜆𝑝𝑖−1(𝐱(𝑡)) − (𝑥𝑖(𝑡) − 𝑥𝑖+1(𝑡)). (3)

Here for each 𝑖 ≥ 1, 𝐺𝑖 is the 𝑖th component of the function 𝐆 = (𝐺𝑖, 𝑖 ≥ 1) ∶  → R∞ and, for 𝐱 ∈  , 𝑝𝑖−1(𝐱) is defined as

𝑝 (𝐱) = 𝑥𝑑 − 𝑥𝑑 + 𝜖
[

(𝑥 − 𝑥 )𝑑 − (𝑥 − 𝑥 )𝑑
6

𝑖−1 𝑖−1 𝑖 𝑖−𝑔−1 𝑖 𝑖−1 𝑖+𝑔
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+(𝑥𝑖 − 𝑥𝑖+𝑔)𝑑 − (𝑥𝑖−1−𝑔 − 𝑥𝑖−1)𝑑
]

. (4)

(ii) (Mean-Field Steady State Behaviour): For 𝑔 ∈ R+, 𝜖 ∈ [0, 1], 𝑑 ≥ 2, and 𝜆 < 1, there exists a unique 𝐱∗ ∈  such that, 𝐆(𝐱∗) = 𝟎.
In addition, 𝐱∗ satisfies

𝑥∗1 = 𝜆 (5)

𝑥∗𝑘 = 𝜆
[

(𝑥∗𝑘−1)
𝑑 + 𝜖

𝑘+𝑔−1
∑

𝑖=𝑘
(𝑥∗𝑖−1−𝑔 − 𝑥∗𝑖 )

𝑑 − 𝜖
𝑘+𝑔
∑

𝑖=𝑘
(𝑥∗𝑖−1−𝑔 − 𝑥∗𝑖−1)

𝑑
]

, for 𝑘 ≥ 2. (6)

Moreover, any solution 𝐱(𝑡) of (3) with 𝐱(0) ∈  converges to 𝐱∗ in 𝓁1 as 𝑡 → ∞. Therefore, the sequence (𝜋𝑛)𝑛≥1 converges weakly
to the Dirac measure 𝛿𝐱∗ concentrated on 𝐱∗ as 𝑛 → ∞.

(iii) (Heavy-Traffic Limit): Furthermore, in the heavy traffic as 𝜆 → 1 for 𝑑 ≥ 2, we have

lim sup𝜆→1−
𝑇 𝑔,𝜖
𝑑 (𝜆)

log(𝑇1(𝜆))
≤ 𝑔 + 1

log(𝑑)
, (7)

where 𝑇 𝑔,𝜖
𝑑 (𝜆) = (1∕𝜆)

∑

𝑖≥1 𝑥
∗
𝑖 is the steady state limiting (as 𝑛 → ∞) average response time of jobs under the Pod-(𝑔, 𝜖) scheme and

𝑇1(𝜆) = 1∕(1 − 𝜆) is the steady state average response time of jobs under the random scheme.

Hence, the process 𝐱, defined in Theorem 2. (i), characterises the dynamics of the system in the limit as 𝑛 → ∞. This will be
eferred to as the mean-field limit of the system or the mean-field process. In Section 5, we prove the mean-field limit of the Pod-(𝑔, 𝜖)
cheme and its properties. The evolution of 𝐱, described in (3), can be explained as follows. For the 𝑛th system, the component 𝑥(𝑛)𝑖 (𝑡)
ncreases by 1∕𝑛 when a job joins a server with queue length exactly 𝑖−1. The rate at which this happens is 𝑛𝜆𝑝𝑖−1(𝐱), where 𝑝𝑖−1(𝐱),
or 𝐱 ∈  , is the probability that an arrival joins a server with queue-length 𝑖 − 1 when the system is in state 𝐱. The expression of
𝑖−1(𝐱) in (4) can be obtained as follows. Under the Pod-(𝑔, 𝜖) scheme, a job joins a server with queue length 𝑖−1 under the following
cenarios:

• At least one of the 𝑑 sampled servers is of queue length exactly 𝑖− 1, at least one of the remaining sampled server is of queue
length greater than or equals to 𝑖+𝑔, and all other remaining sampled servers have queue lengths in the range {𝑖,… , 𝑖 + 𝑔 − 1}.
In this case, with probability 1 the job joins the server with queue length 𝑖 − 1 and the overall probability of this event is

𝑑−1
∑

𝑘=1

𝑑−𝑘
∑

𝑚=1

(

𝑑
𝑘

)(

𝑑 − 𝑘
𝑚

)

(𝑥𝑖−1 − 𝑥𝑖)𝑘𝑥𝑚𝑖+𝑔(𝑥𝑖 − 𝑥𝑖+𝑔)𝑑−(𝑘+𝑚).

• At least one of the sampled servers is of queue length 𝑖−1 and all other remaining sampled servers have queue lengths in the
range {𝑖 − 1 − 𝑔,… , 𝑖 − 2}. The probability of this event is ∑𝑑

𝑘=1
(𝑑
𝑘

)

(𝑥𝑖−1 − 𝑥𝑖)𝑘(𝑥𝑖−1−𝑔 − 𝑥𝑖−1)𝑑−𝑘, and, in this case, the server
with queue length 𝑖 − 1 is selected with probability 𝜖.

• At least one of the sampled servers is of queue length 𝑖 − 1 and all other remaining sampled servers have queue lengths in
the range {𝑖 + 1,… , 𝑖 − 1 + 𝑔}. This event occurs with probability ∑𝑑

𝑘=1
(𝑑
𝑘

)

(𝑥𝑖−1 − 𝑥𝑖)𝑘(𝑥𝑖 − 𝑥𝑖+𝑔)𝑑−𝑘 and, in this case, the server
with queue length 𝑖 − 1 is selected with probability (1 − 𝜖).

ombining all the above probabilities, we obtain the expression for 𝑝𝑖−1(𝐱). Clearly, the expression of 𝑝𝑖−1(𝐱) is independent of
he tie-breaking rule used. Hence, the performance of the system does not depend on the choice of tie-breaking rule. Finally, the
omponent 𝑥(𝑛)𝑖 (𝑡) decreases by 1∕𝑛 when a job leaves a server with queue length 𝑖 and this occurs with rate 𝑛(𝑥𝑖 − 𝑥𝑖+1). Hence, the
otal expected rate of change (drift) in the component 𝑥(𝑛)𝑖 (𝑡) is given by 𝐺𝑖(𝐱(𝑛)(𝑡)) = 𝑝𝑖−1(𝐱(𝑛)(𝑡)) − (𝑥(𝑛)𝑖 (𝑡) − 𝑥(𝑛)𝑖+1(𝑡)). In the limit as
→ ∞, this becomes the rate of change of 𝑥𝑖(𝑡).

In part (ii) of Theorem 2, we show that, as 𝑡 → ∞, the mean-field process 𝐱 converges in 𝓁1 to the unique point 𝐱∗ ∈  at
hich 𝐆(𝐱∗) = 𝟎. This point 𝐱∗ is referred to as the fixed point of the mean-field since starting at this point the mean-field remains
t this point at all times. Since by part (i) we have 𝐱(𝑛)(𝑡) → 𝐱(𝑡) almost surely for each 𝑡 ≥ 0, the convergence to the fixed point
mplies lim𝑡→∞ lim𝑛→∞ 𝐱(𝑛)(𝑡) = lim𝑛→∞ lim𝑡→∞ 𝐱(𝑛)(𝑡) = 𝐱∗, which, in turn, means that the fixed point 𝐱∗ characterises the steady-state
ehaviour of the system in the limit as 𝑛 → ∞. In particular, lim𝑛→∞ P(𝑄(𝑛)

𝑖 (∞) ≥ 𝑘) = 𝑥∗𝑘, i.e., 𝑥∗𝑘 denotes the limiting tail probability
hat a server has at least 𝑘 jobs in its queue at steady-state. In Fig. 4, we plot 𝑥∗𝑘 as a function of 𝑘 for the Pod-(𝑔, 𝜖) scheme, the
lassical Pod scheme and the random scheme. We observe that the rate at which the 𝑥∗𝑘 decreases with 𝑘 for the Pod-(𝑔, 𝜖) scheme
s slower than that for the Pod scheme, but is higher than the same for the random scheme. We later show that this rate of decay is,
n fact, super-exponential. This is the reason for obtaining an exponentially smaller mean response time of jobs under the Pod-(𝑔, 𝜖)
cheme compared to that under the random scheme.

In Theorem 2.(iii) we compare the steady-state mean response time of jobs under the Pod-(𝑔, 𝜖) scheme to that under the random
cheme when the traffic is high (i.e., 𝜆 → 1). Note that (7) implies that 𝑇 𝑔,𝜖

𝑑 (𝜆) = 𝑂(log 𝑇1(𝜆)) as 𝜆 → 1. Furthermore, by the previous
art of the theorem, the steady-state mean response time of the jobs under the Pod-(𝑔, 𝜖) scheme converges as 𝑛 → ∞ to 𝑇 𝑔,𝜖

𝑑 (𝜆).
ence, this result shows that, when the system is heavily loaded, the mean response time of jobs under the Pod-(𝑔, 𝜖) scheme is
xponentially smaller than that under the random scheme. This is also verified in Fig. 2 for 𝜖 = 0.8, 𝑑 = 2 and 𝑔 = 100. Note that for
uch high error rates, the mean response time of jobs under the Pod-(𝑔, 𝜖) policy can be larger than that under the random scheme
7

or low values of 𝜆. However, when 𝜆 is close to its maximum value 1, the Pod-(𝑔, 𝜖) scheme performs exponentially better than
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Fig. 4. The fraction of servers with at least 𝑘 jobs under the Pod-(𝑔, 𝜖) scheme as a function of 𝑘. For simulations we set arrival rate 𝜆 = 0.9, 𝜖 = 0.7, 𝑑 = 3 and
𝑔 = 5.

the random scheme for all values of 𝑔 and 𝜖. This implies that the advantage of having additional 𝑑 − 1 choices in the Pod scheme
outweighs the negative impact the comparison errors when the traffic is high.

Remark 1. We observe from Figs. 1 and 2, that the accuracy of the mean-field approximation for the Pod-(𝑔, 𝜖) scheme deteriorates
as 𝜆 approaches the critical value of one. As pointed out in [28], this is due to high variance of the stochastic system near the
critical load. However, we note that the mean-field derived in Theorem 2 is asymptotically exact. Hence, the results of Theorem 2
are accurate for all sufficiently large 𝑛.

The main difficulty in proving Theorem 2 is that the fixed point 𝐱∗ cannot be found in closed form. This is because each
component 𝑥∗𝑘 in (6) depends not only on the previous components but also on the next 𝑔 components. This makes it hard to
characterise the fixed point; indeed, even the existence of such 𝐱∗ in 𝑆 is not evident. This also makes proving the global stability
difficult as it uses induction on the component index 𝑘. To overcome these difficulties, we use the monotonicity of the mean-field
and uniform bounds on its tails. We believe that this new approach is generally applicable to similar systems where the fixed point
cannot be found in closed form.

Similar to Theorem 2, our final result characterises the performance of the Pod-𝜖 scheme in the limit as 𝑛 → ∞.

Theorem 3 (Pod-𝜖).

(i) (Mean-Field Limit): Let 𝜖 ∈ [0, 1], 𝑑 ≥ 2 and assume 𝐱(𝑛)(0) ∈  (𝑛) for each 𝑛 and 𝐱(𝑛)(0)
𝑎.𝑠
→ 𝐮 ∈  under 𝓁1 as 𝑛 → ∞. Then, for

each 𝑇 ≥ 0, we have

sup
𝑡∈[0,𝑇 ]

‖

‖

‖

𝐱(𝑛)(𝑡) − 𝐱(𝑡)‖‖
‖1

𝑎.𝑠
→ 0

where 𝐱 = (𝐱(𝑡) = (𝑥𝑖(𝑡), 𝑖 ≥ 1), 𝑡 ≥ 0) satisfies 𝐱(0) = 𝐮 and for 𝑡 ≥ 0 and 𝑖 ≥ 1

𝑥̇𝑖(𝑡) = 𝐹𝑖(𝐱(𝑡)) ≜ 𝜆𝑝𝑖−1(𝐱(𝑡)) − (𝑥𝑖(𝑡) − 𝑥𝑖+1(𝑡)). (8)

Here for each 𝑖 ≥ 1, 𝐹𝑖 is the 𝑖th component of the function 𝐅 = (𝐹𝑖, 𝑖 ≥ 1) ∶  → R∞ and, for 𝐱 ∈  , 𝑝𝑖−1(𝐱) is defined as

𝑝𝑖−1(𝐱) = (1 − 𝜖)(𝑥𝑑𝑖−1 − 𝑥𝑑𝑖 ) + 𝜖((1 − 𝑥𝑖)𝑑 − (1 − 𝑥𝑖−1)𝑑 ). (9)

We refer to the process 𝐱 as the mean-field limit of the sequence (𝐱(𝑛))𝑛≥1.
(ii) (Mean-Field Steady State Behaviour): For 𝜖 ∈ [0, 1], 𝑑 ≥ 2, and 𝜆 < min( 1

𝑑𝜖 , 1), there exits 𝐱
∗ ∈  such that, if 𝐱(0) = 𝐱∗, then

𝐱(𝑡) = 𝐱∗ for all 𝑡 ≥ 0. Furthermore, 𝐱∗ satisfies the following recursion for all 𝑘 ≥ 2

𝑥∗1 = 𝜆, 𝑥∗𝑘 = 𝜆
[

(1 − 𝜖)(𝑥∗𝑘−1)
𝑑 + 𝜖(1 − (1 − 𝑥∗𝑘−1)

𝑑 )
]

. (10)

Moreover, any solution 𝐱(𝑡) of (8) with 𝐱(0) ∈  converges to 𝐱∗ in 𝓁1, i.e., ‖𝐱(𝑡) − 𝐱∗‖1 → 0 as 𝑡 → ∞. The above results imply that
the sequence (𝜋𝑛)𝑛 converges weakly to the Dirac measure 𝜋∗ = 𝛿𝐱∗ concentrated on 𝐱∗ as 𝑛 → ∞.

(iii) (Heavy-Traffic Limit): For 𝜖 ≤ 1∕𝑑, 𝑑 ≥ 2 and 𝜆 < 1, we have

lim sup
𝜆→1−

𝑇 𝜖
𝑑 (𝜆)

log(𝑇1(𝜆))
≤ 1

log(𝑑 − 𝑑𝜖(𝑑 − 1))
, (11)

where 𝑇 𝜖(𝜆) =
∑∞

𝑘=1 𝑥
∗
𝑘 is the limiting (as 𝑛 → ∞) steady state average response time of jobs under the Pod-𝜖 scheme.
8

𝑑 𝜆
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The proof of above theorem is deferred till Section 6. In parts (i) and (ii) of Theorem 3, we characterise the mean-field limit 𝐱
and its fixed point 𝐱∗ under the Pod-𝜖 scheme. As before, we show that the fixed point is unique and globally asymptotically stable.
In the last part (part (iii)) of Theorem 3, we compare the mean response time of jobs under the Pod-𝜖 scheme to that under the
random scheme in the limit as 𝑛 → ∞. Our result indicates that when 𝑛 is large and 𝜆 is close to 1, the steady state mean response
time of jobs under the Pod-𝜖 scheme satisfies 𝑇 𝜖

𝑑 (𝜆) = 𝑂(log 𝑇1(𝜆)). This means that an exponential reduction in the steady state mean
response time is achieved as long as 𝜖 ≤ 1∕𝑑. Hence, the Pod-𝜖 scheme retains the benefits of the Pod scheme as long as 𝜖 ≤ 1∕𝑑.

Remark 2. It is important to note that the Pod-𝜖 scheme is a special case of the Pod-(𝑔, 𝜖) scheme when 𝑔 = ∞. Moreover, we can
ecover the mean-field limit of the Pod-𝜖 scheme, as given in (8), by taking 𝑔 → ∞ in the mean-field limit of the Pod-(𝑔, 𝜖) scheme

stated in (3). However, a separate analysis is required for the Pod-𝜖 scheme because the results of the Pod-(𝑔, 𝜖) scheme necessitate
that 𝑔 be finite. In particular, the uniform bound established in Proposition 8 becomes trivial when 𝑔 = ∞.

4. Stability and uniform bounds

In this section, we derive the stability regions and the uniform bounds stated in Theorem 1. To do so, we use drifts of appropriate
Lyapunov functions. We first develop a general framework to analyse any load balancing scheme that compares the queue lengths
of 𝑑 uniformly sampled servers to dispatch every job. We then apply this generic framework to the schemes studied in this paper.
Note that it is easy to generalise our framework further to the case where the sampling of the servers is not done uniformly.

For any function 𝑉 ∶ Z𝑛
+ → [0,∞), the drift of 𝐷𝐐𝑛𝑉 is defined as the expected rate of change in the value of the function along

he trajectory of the process 𝐐𝑛 given the current state. More precisely,

𝐷𝐐(𝑛)𝑉 (𝐐) =
𝑛
∑

𝑖=1
[𝑟+,𝑛𝑖 (𝐐)(𝑉 (𝐐 + 𝐞(𝑛)𝑖 ) − 𝑉 (𝐐))

+𝑟−,𝑛𝑖 (𝐐)(𝑉 (𝐐 − 𝐞(𝑛)𝑖 ) − 𝑉 (𝐐))], (12)

where 𝐞(𝑛)𝑖 denotes the 𝑛-dimensional unit vector with one in the 𝑖th position; 𝑟±,𝑛𝑖 (𝐐) are the transition rates from the state 𝐐 to the
states 𝐐 ± 𝐞(𝑛)𝑖 . According to the Foster–Lyapunov theorem (Proposition D.3 of [29]), to prove the stability or positive recurrence
of the process 𝐐(𝑛), it is sufficient to show the existence of at least one function 𝑉 ∶ Z𝑛

+ → [0,∞) such that 𝑉 (𝐐) → ∞ when
‖𝐐‖1 → ∞ and 𝐷𝐐𝑛𝑉 (𝐐) < 0 for all states 𝐐 lying outside a compact subset of the state-space. To further obtain uniform bounds
on the stationary queue lengths, we use Proposition 1 of [30] which states that E𝜋𝑛 [𝐷𝐐(𝑛)𝑉 (𝐐(∞))] ≥ 0 if 𝐷𝐐(𝑛)𝑉 (𝐐) is uniformly
bounded for all states 𝐐 ∈ Z𝑛

+.
To compute the drift of any function 𝑉 using (12), we first need the transition rates 𝑟±,𝑛𝑖 . Clearly, the rate of departure from the

𝑖th server is given by 𝑟−,𝑛𝑖 (𝐐) = 1
(

𝑄𝑖 > 0
)

. For any scheme which compares the states of 𝑑 servers to dispatch the job to one of the
servers, we define the class of an arrival as the subset of 𝑑 servers sampled at the arrival instant. Let  denote the collection of all
such classes. Since || =

(𝑛
𝑑

)

and a job is equally likely to belong to one of these classes, the arrival rate of any class 𝑐 ∈  is 𝑛𝜆∕
(𝑛
𝑑

)

.
Hence, we can write the rate of arrival to the 𝑖th server as

𝑟+,𝑛𝑖 (𝐐) = 𝑛𝜆
(𝑛
𝑑

)

∑

𝑐∈∶𝑖∈𝑐
𝑝(𝑖; 𝑐,𝐐), (13)

where 𝑝(𝑖; 𝑐,𝐐) is the probability that a class 𝑐 arrival joins server 𝑖 when the system is in state 𝐐. Note that the probability 𝑝(𝑖; 𝑐,𝐐)
depends on the load balancing scheme used by the dispatcher. The exact expression of 𝑝(𝑖; 𝑐,𝐐) for each scheme is given later, but
it is important to note that ∑𝑖∈𝑐 𝑝(𝑖; 𝑐,𝐐) = 1 since a class 𝑐 job joins one of the servers in class 𝑐 with probability 1. For any class
𝑐 ∈  and a given state 𝐐, we define 𝑖min

𝑐 (𝐐) to be the index of the server with the minimum queue length after breaking the ties.
Moreover, we define 𝑖max

𝑐 (𝐐) to be the index of server with maximum queue length after resolving ties in class 𝑐. We also denote

𝑚(𝑐,𝐐) = 𝑄𝑖max
𝑐 (𝐐) −𝑄𝑖min

𝑐 (𝐐), (14)

or any class 𝑐 ∈  and a given state 𝐐.
Now, for the Lyapunov function 𝑉 ∶ Z𝑛

+ → [0,∞) defined as

𝑉 (𝐐) =
𝑛
∑

𝑖=1
𝑄2

𝑖 ,

he drift given in (12) simplifies to

𝐷𝐐(𝑛)𝑉 (𝐐) =
𝑛
∑

𝑖=1
{2[𝑟+,𝑛𝑖 (𝐐) − 𝑟−,𝑛𝑘 (𝐐)]𝑄𝑖 + [𝑟+,𝑛𝑖 (𝐐) + 𝑟−,𝑛𝑖 (𝐐)]},

which upon further simplification gives

𝐷𝐐(𝑛)𝑉 (𝐐) = 2
𝑛
∑

𝑟+,𝑛𝑖 (𝐐)𝑄𝑖 − 2
∑

𝑄𝑖 + 𝑛𝜆 + 𝐵(𝐐), (15)
9

𝑖=1 𝑖∈[𝑛]
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where 𝐵(𝐐) =
∑

𝑖∈[𝑛] 1
(

𝑄𝑖 > 0
)

represents the number of busy servers when system is in state 𝐐. In the above, we have used the
facts 𝑟−,𝑛𝑖 (𝐐) = 1

(

𝑄𝑖 > 0
)

and ∑

𝑖∈[𝑛] 𝑟
+,𝑛
𝑖 (𝐐) = 𝑛𝜆. Moreover, using (13), the first term in the expression of the drift can be written as

𝑛
∑

𝑖=1
𝑟+,𝑛𝑖 (𝐐)𝑄𝑖 =

𝑛𝜆
(𝑛
𝑑

)

𝑛
∑

𝑖=1

∑

𝑐∈|𝑖∈𝑐
𝑄𝑖𝑝(𝑖; 𝑐,𝐐)

= 𝑛𝜆
(𝑛
𝑑

)

∑

𝑐∈

∑

𝑖∈𝑐
𝑄𝑖𝑝(𝑖; 𝑐,𝐐). (16)

Thus, to obtain the stability region and the uniform bound on steady-state queue length, we need to obtain upper bounds on
∑

𝑖∈𝑐 𝑄𝑖𝑝(𝑖; 𝑐,𝐐) for each scheme.

.1. Pod-(𝑔, 𝜖) scheme

For the Pod-(𝑔, 𝜖) scheme, the probability 𝑝(𝑖; 𝑐,𝐐) for any class 𝑐 ∈  is given by

𝑝(𝑖; 𝑐,𝐐) = 1(𝑖 ∈ 𝑐)
[

1
(

𝑚(𝑐,𝐐) ≥ 𝑔 + 1, 𝑖 = 𝑖min
𝑐 (𝐐)

)

+

1
(

𝑖 = 𝑖min
𝑐 (𝐐), 𝑚(𝑐,𝐐) = 0

)

+(1 − 𝜖)1
(

𝑚(𝑐,𝐐) ∈ (0, 𝑔], 𝑖 = 𝑖min
𝑐 (𝐐)

)

+𝜖1
(

𝑚(𝑐,𝐐) ∈ (0, 𝑔], 𝑖 = 𝑖max
𝑐 (𝐐)

)

]

. (17)

Using the above expression, we obtain the following bound for Pod-(𝑔, 𝜖) scheme.

Lemma 4. For 𝑔 ∈ R+, 𝜖 ∈ [0, 1], 𝑑 ≥ 2 and for any class 𝑐 ∈ , under the Pod-(𝑔, 𝜖) scheme, we have
∑

𝑖∈𝑐
𝑄𝑖𝑝(𝑖; 𝑐,𝐐) ≤

∑

𝑖∈𝑐 𝑄𝑖

𝑑
+ 𝑔1(𝜖 > 1∕𝑑). (18)

Proof. To prove the lemma, we first observe that for any 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑑 , with 𝑤1 ≥ 1∕𝑑 and 𝑤𝑖 ≤ 1∕𝑑 for all 𝑖 ∈ {2,… , 𝑑},
𝑤𝑖 ≥ 0 for all 𝑖 ∈ [𝑑], and ∑𝑑

𝑖=1 𝑤𝑖 = 1 we have
𝑑
∑

𝑖=1
𝑎𝑖𝑤𝑖 ≤

∑𝑑
𝑖=1 𝑎𝑖
𝑑

. (19)

The result of the lemma is direct when 𝑚(𝑐,𝐐) = 0. So, we consider the case 𝑚(𝑐,𝐐) > 0. For 𝜖 ≤ 1∕𝑑, using (17) and 𝑚(𝑐,𝐐) > 0,
e have

𝑝(𝑖min
𝑐 (𝐐); 𝑐,𝐐) = 1(𝑚(𝑐,𝐐) ≥ 𝑔 + 1)

+(1 − 𝜖)1(𝑚(𝑐,𝐐) ∈ (0, 𝑔]) ≥ 1
𝑑
1(𝑚(𝑐,𝐐) ≥ 𝑔 + 1)

+ 1
𝑑
1(𝑚(𝑐,𝐐) ∈ (0, 𝑔]) = 1

𝑑
,

nd 𝑝(𝑖max
𝑐 (𝐐); 𝑐,𝐐) = 𝜖1(𝑚(𝑐,𝐐) ∈ (0, 𝑔]) ≤ 1∕𝑑. Moreover, we have 𝑝(𝑖; 𝑐,𝐐) = 0 for all 𝑖 ∈ 𝑐 and 𝑖 ∉ {𝑖min

𝑐 (𝐐), 𝑖max
𝑐 (𝐐)}. Therefore,

using (19), we have
∑

𝑖∈𝑐
𝑄𝑖𝑝(𝑖; 𝑐,𝐐) ≤

∑

𝑖∈𝑐 𝑄𝑖

𝑑
.

Next, for 𝜖 > 1∕𝑑, we note from (17) and 𝑚(𝑐,𝐐) > 0 that

𝑄𝑖min
𝑐 (𝐐)𝑝(𝑖

min
𝑐 (𝐐); 𝑐,𝐐) =

𝑄𝑖min
𝑐 (𝐐) (1(𝑚(𝑐,𝐐) ≥ 𝑔 + 1) + (1 − 𝜖)1(𝑚(𝑐,𝐐) ∈ (0, 𝑔]))

= 𝑄𝑖min
𝑐 (𝐐) ((1 − 𝜖) + 𝜖1(𝑚(𝑐,𝐐) ≥ 𝑔 + 1)) ,

which gives

𝑄𝑖min
𝑐 (𝐐)𝑝(𝑖

min
𝑐 (𝐐); 𝑐,𝐐) +𝑄𝑖max

𝑐 (𝐐)𝑝(𝑖max
𝑐 (𝐐); 𝑐,𝐐)

= 𝑄𝑖min
𝑐 (𝐐) ((1 − 𝜖) + 𝜖1(𝑚(𝑐,𝐐) ≥ 𝑔 + 1))

+𝑄𝑖max
𝑐 (𝐐)𝜖1(𝑚(𝑐,𝐐) ∈ (0, 𝑔]).

Therefore, using

𝑄𝑖max
𝑐 (𝐐)1(𝑚(𝑐,𝐐) ∈ (0, 𝑔])
10

≤ (𝑔 +𝑄𝑖min
𝑐 (𝐐))1(𝑚(𝑐,𝐐) ∈ (0, 𝑔])
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H

≤ (𝑔 +
∑

𝑖∈𝑐
𝑄𝑖∕𝑑)1(𝑚(𝑐,𝐐) ∈ (0, 𝑔]),

and 𝑄𝑖min
𝑐 (𝐐) <

∑

𝑖∈𝑐 𝑄𝑖∕𝑑 + 𝑔 in the above, we obtain

∑

𝑖∈𝑐
𝑄𝑖𝑝(𝑖; 𝑐,𝐐) ≤ 𝑔 +

∑

𝑖∈𝑐 𝑄𝑖

𝑑
.

This completes the proof. ■

Proof of Theorem 1.(i). Using the bound of Lemma 4, the RHS of (16) can be bounded as
𝑛
∑

𝑖=1
𝑟+,𝑛𝑖 (𝐐)𝑄𝑖 ≤

𝑛𝜆
(𝑛
𝑑

)

∑

𝑐∈

{
∑

𝑖∈𝑐 𝑄𝑖

𝑑
+ 𝑔1(𝜖 > 1∕𝑑)

}

= 𝑛𝜆
(𝑛
𝑑

)

⎛

⎜

⎜

⎝

(𝑛−1
𝑑−1

)

𝑑
∑

𝑖∈[𝑛]
𝑄𝑖 + 𝑔1(𝜖 > 1∕𝑑)

(

𝑛
𝑑

)

⎞

⎟

⎟

⎠

= 𝜆
∑

𝑖∈[𝑛]
𝑄𝑖 + 𝑛𝜆𝑔1(𝜖 > 1∕𝑑) (20)

Therefore, using (20) in (15), we can upper bound the drift 𝐷𝐐(𝑛)𝑉 (𝐐) for the Pod-(𝑔, 𝜖) scheme as

𝐷𝐐(𝑛)𝑉 (𝐐) ≤ 2(𝜆 − 1)
𝑛
∑

𝑖=1
𝑄𝑖 + 2𝑛𝜆𝑔1

(

𝜖 > 1
𝑑

)

+ 𝑛𝜆 + 𝐵(𝐐). (21)

Now, since 𝐵(𝐐) ≤ 𝑛 and 𝜆 < 1, the drift 𝐷𝐐(𝑛)𝑉 (𝐐) is strictly negative whenever ∑

𝑖∈[𝑛] 𝑄𝑖 > 𝑛(𝜆(2 𝑔1(𝜖 > 1∕𝑑) + 1) + 1)∕2(1 − 𝜆),
nd is bounded above by 𝑛(𝜆(2 𝑔1(𝜖 > 1∕𝑑) + 1) + 1), otherwise. This shows that the system under the Pod-(𝑔, 𝜖) scheme is stable for
ll 𝜆 < 1. The necessity of this condition for stability can be established easily by showing that the drift of the Lyapunov function
1(𝐐) =

∑

𝑖∈[𝑛] 𝑄𝑖 is always non-negative when 𝜆 ≥ 1.
To prove (1), recall from the previous paragraph that 𝐷𝐐(𝑛)𝑉 (𝐐) is uniformly bounded by 𝑛(𝜆(2 𝑔1(𝜖 > 1∕𝑑) + 1) + 1) for all
∈ Z𝑛

+. This implies that E𝜋𝑛

[

𝐷𝐐(𝑛)𝑉 (𝐐(𝑛)(∞))
]

≥ 0. Therefore, taking expectation of (21) and using the rate conservation equation
𝜋𝑛 [𝐵(𝐐)] = 𝑛𝜆 (which holds in steady-state), we obtain

𝑛𝜆(1 + 𝑔1(𝜖 > 1∕𝑑))
(1 − 𝜆)

≥ E𝜋𝑛

[

∑

𝑖∈[𝑛]
𝑄(𝑛)

𝑖 (∞)

]

= 𝑛E𝜋𝑛

[

𝑄(𝑛)
𝑖 (∞)

]

,

here last equality follows due to the exchangeability of 𝜋𝑛. ■

.2. Pod-𝜖 scheme

For the Pod-𝜖 scheme, 𝑝(𝑖; 𝑐,𝐐) for any class 𝑐 ∈  is given by

𝑝(𝑖; 𝑐,𝐐) = 1(𝑖 ∈ 𝑐)
[

(1 − 𝜖)1
(

𝑚(𝑐,𝐐) > 0, 𝑖 = 𝑖min
𝑐 (𝐐)

)

+1
(

𝑖 = 𝑖min
𝑐 (𝐐), 𝑚(𝑐,𝐐) = 0

)

+𝜖1
(

𝑚(𝑐,𝐐) > 0, 𝑖 = 𝑖max
𝑐 (𝐐)

)

]

. (22)

Using the expression above, we obtain the following bound.

Lemma 5. For 𝜖 ∈ [0, 1], 𝑑 ≥ 2 and for any class 𝑐 ∈ , under the Pod-𝜖, scheme we have
∑

𝑖∈𝑐
𝑄𝑖𝑝(𝑖; 𝑐,𝐐) ≤ max(1∕𝑑, 𝜖)

∑

𝑖∈𝑐
𝑄𝑖. (23)

Proof. For 𝑚(𝑐,𝐐) = 0 the above inequality follows directly. Consider 𝑚(𝑐,𝐐) > 0. For 𝜖 ≤ 1∕𝑑, using (22) we have 𝑝(𝑖min
𝑐 (𝐐); 𝑐,𝐐) =

(1 − 𝜖) ≥ 1∕𝑑 and 𝑝(𝑖max
𝑐 (𝐐); 𝑐,𝐐) = 𝜖 ≤ 1∕𝑑. Therefore, from (19), it follows that ∑

𝑖∈𝑐 𝑄𝑖𝑝(𝑖; 𝑐,𝐐) ≤
∑

𝑖∈𝑐 𝑄𝑖∕𝑑. When 𝜖 > 1∕𝑑, for
(𝑐,𝐐) > 0, we can write

∑

𝑖∈𝑐
𝑄𝑖𝑝(𝑖; 𝑐,𝐐) = 𝑄𝑖min

𝑐 (𝐐)(1 − 𝜖) +𝑄𝑖max
𝑐 (𝐐)𝜖

≤ 𝜖(𝑄𝑖max
𝑐 (𝐐) +𝑄𝑖min

𝑐 (𝐐)) ≤ 𝜖
∑

𝑖∈𝑐
𝑄𝑖.
11

ence, the proof is complete. ■
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Proof of Theorem 1.(ii). Using the bound of Lemma 5, the RHS of (16) can be bounded as
𝑛
∑

𝑖=1
𝑟+,𝑛𝑖 (𝐐)𝑄𝑖 ≤

𝑛𝜆
(𝑛
𝑑

)

∑

𝑐∈

∑

𝑖∈𝑐
𝑄𝑖 max(1∕𝑑, 𝜖)

= 𝜆max(1, 𝑑𝜖)
∑

𝑖∈[𝑛]
𝑄𝑖 (24)

herefore, using (24) in (15), we upper-bound the drift 𝐷𝐐(𝑛)𝑉 (𝐐) for the Pod-𝜖 scheme as

𝐷𝐐(𝑛)𝑉 (𝐐) ≤ 2(𝜆max(1, 𝑑𝜖) − 1)
∑

𝑖∈[𝑛]
𝑄𝑖 + 𝑛𝜆 + 𝐵(𝐐). (25)

Since 𝐵(𝐐) ≤ 𝑛, the above implies that, for 𝜆 < min(1, 1∕𝑑𝜖), the drift is strictly negative whenever ∑𝑖∈[𝑛] 𝑄𝑖 > 𝑛(𝜆+1)∕(1−𝜆max(1, 𝑑𝜖)).
This shows that the system under Pod-𝜖 scheme is stable for all 𝜆 < min(1, 1∕𝑑𝜖). Furthermore, since sup𝐐∈Z𝑛

+
𝐷𝐐(𝑛)𝑉 (𝐐) ≤ 𝑛(𝜆 + 1),

using E𝜋𝑛

[

𝐷𝐐(𝑛)𝑉 (𝐐(𝑛)(∞))
]

≥ 0, we obtain

𝑛𝜆
(1 − 𝜆max(1, 𝑑𝜖))

≥ E𝜋𝑛

[

∑

𝑖∈[𝑛]
𝑄(𝑛)

𝑖 (∞)

]

= 𝑛E𝜋𝑛

[

𝑄(𝑛)
𝑖 (∞)

]

,

hich proves (2).
Next we prove that for 𝜆 ≥ min(1, 1

𝑑𝜖 ) the system is unstable. For 𝜖 ≤ 1∕𝑑 and 𝜆 ≥ 1, the process 𝐐(𝑛) is not positive recurrent.
This follows using the same argument as used in the stability proof of the Pod-(𝑔, 𝜖) scheme. Now, for 𝜖 > 1∕𝑑 and 𝑑𝜆𝜖 > 1, we
consider the Lyapunov function

𝑉2(𝐐) = 𝑄𝑖∗(𝐐),

where 𝑖∗(𝐐) = argmax𝑖∈[𝑛] 𝑄𝑖 and 𝑖∗(𝐐) is the minimum such index. Using (12), the drift of the function 𝑉2(𝐐) can be written as

𝐷𝐐(𝑛)𝑉2(𝐐) =
(

𝑟+,𝑛𝑖∗(𝐐)(𝐐) − 1
(

𝑄𝑖∗(𝐐) > 0
)

)

≥
(

𝑟+,𝑛𝑖∗(𝐐)(𝐐) − 1
)

.

From (13), we have

𝑟+,𝑛𝑖∗(𝐐)(𝐐) = 𝑛𝜆
(𝑛
𝑑

)

∑

𝑐∈|𝑖∗(𝐐)∈𝑐
𝑝(𝑖∗(𝐐); 𝑐,𝐐)

≥ 𝑛𝜆
(𝑛
𝑑

)

∑

𝑐∈|𝑖∗(𝐐)∈𝑐
𝜖 = 𝑑𝜖𝜆.

where the inequality follows from (22) since 𝑄𝑖∗(𝐐) ≥ 𝑄𝑗 for any 𝑗 ∈ [𝑛] and 𝑖∗(𝐐) is the minimum such index. Hence, 𝐷𝐐(𝑛)𝑉2(𝐐) ≥
𝑑𝜖𝜆−1 ≥ 0 for all 𝐐 ∈ Z𝑛

+. Furthermore, since 𝐷𝐐(𝑛)𝑉2(𝐐) ≤ 𝑛𝜆, the result follows from the Foster–Lyapunov criterion for transience
and null recurrence (Theorem 3.3.10 of [31]). ■

5. Mean-field analysis of the Pod-(𝒈, 𝝐) scheme

In this section, we prove the main results for the Pod-(𝑔, 𝜖) scheme stated in Theorem 2.

5.1. Mean-field limit of the Pod-(𝑔, 𝜖) scheme

First, we establish the mean-field limit of the Pod-(𝑔, 𝜖) scheme (Theorem 2.(i)) for any 𝑔 ∈ R+, 𝜖 ∈ [0, 1], and 𝑑 ≥ 2. Note that
under the Pod-(𝑔, 𝜖) scheme, the rate of transition of the process 𝐱(𝑛) from state 𝐱 ∈  (𝑛) to state 𝐲 ∈  (𝑛) is given by

𝑟(𝑛)𝐱,𝐲 =

{

𝑛𝜆𝑝𝑖−1(𝐱), if 𝐲 = 𝐱 + 𝐞𝑖∕𝑛
𝑛(𝑥𝑖 − 𝑥𝑖+1), if 𝐲 = 𝐱 − 𝐞𝑖∕𝑛,

∀𝑖 ≥ 1, (26)

here 𝑝𝑖−1(𝐱) is as defined in (4) and 𝐞𝑖 is the 𝑖th unit vector in R∞. Clearly, the above rates satisfy the transition structure for a
ensity-dependent jump Markov chain [4,32]. Furthermore, it is easy to verify that ∑

𝑦∈𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝑆 𝑟(𝑛)𝐱,𝐲 < 𝑛(𝜆 + 1) for all 𝑥 ∈  and the
unction 𝐆 ∶  → R∞ is Lipschitz under the 𝓁1-norm with a Lipschitz constant of 𝐿𝜖

𝜆 = 𝜆(8𝑑𝜖 +2𝑑) + 2 (proved in Lemma 6). Hence,
using the Kurtz’s theorem for density-dependent jump Markov processes [[33], Chapter 8], we obtain the desired result.

Lemma 6. The function 𝐆(𝐱) is Lipschitz under the 𝓁1 norm with constant 𝐿𝜖
𝜆 = 𝜆(8𝑑𝜖 + 2𝑑) + 2.

Proof. Let 𝐱, 𝐲 ∈  . Then we have

𝐆(𝐱) −𝐆(𝐲)
12

‖ ‖1
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=
∑

𝑖≥1
|𝜆𝑝𝑖−1(𝐱) − (𝑥𝑖 − 𝑥𝑖+1) − 𝜆𝑝𝑖−1(𝐲) + (𝑦𝑖 − 𝑦𝑖+1)|

≤ 𝜆
∑

𝑖≥1
|𝑝𝑖−1(𝐱) − 𝑝𝑖−1(𝐲)| + 2 ‖𝐱 − 𝐲‖1 . (27)

Now from (4), using the triangle inequality we can write for any 𝐱, 𝐲 ∈ 

|𝑝𝑖−1(𝐱) − 𝑝𝑖−1(𝐲)| ≤ 𝜖
{

|(𝑥𝑖 − 𝑥𝑖+𝑔)𝑑 − (𝑦𝑖 − 𝑦𝑖+𝑔)𝑑 |

+|(𝑥𝑖−1−𝑔 − 𝑥𝑖)𝑑 − (𝑦𝑖−1−𝑔 − 𝑦𝑖)𝑑 | + |(𝑦𝑖−1 − 𝑦𝑖+𝑔)𝑑 − (𝑥𝑖−1 − 𝑥𝑖+𝑔)𝑑 |

+|(𝑦𝑖−1−𝑔 − 𝑦𝑖−1)𝑑 − (𝑥𝑖−1−𝑔 − 𝑥𝑖−1)𝑑 |
}

+|𝑥𝑑𝑖−1 − 𝑦𝑑𝑖−1| + |𝑦𝑑𝑖 − 𝑥𝑑𝑖 |.

sing 𝑎𝑑 − 𝑐𝑑 = (𝑎 − 𝑐)(𝑎𝑑−1 +⋯ + 𝑐𝑑−1) ≤ 𝑑(𝑎 − 𝑐) for 0 ≤ 𝑎, 𝑐 ≤ 1 and summing for all 𝑖 ≥ 1 in the above expression, we can write
∑

𝑖≥1
|𝑝𝑖−1(𝐱) − 𝑝𝑖−1(𝐲)| ≤ (8𝑑𝜖 + 2𝑑) ‖𝐱 − 𝐲‖1 . (28)

ence, the result follows from (27) and (28). ■

.2. Mean-field steady state behaviour for the Pod-(𝑔, 𝜖) scheme

We now turn to the proof of Theorem 2.(ii) which shows that the mean-field process 𝐱 given by (3) has a unique fixed point 𝐱∗
atisfying (5) and (6). Moreover, we show that the fixed point 𝐱∗ is globally stable, i.e., all trajectories of the mean-field process 𝐱
tarting in  converges to 𝐱∗.

For any 𝐮 ∈  , let 𝐱(𝑡,𝐮) denote the trajectory of the mean-field process starting at state 𝐮. Further, define 𝑣𝑘(𝑡,𝐮) =
∑

𝑖≥𝑘 𝑥𝑖(𝑡,𝐮)
nd 𝑣𝑘(𝐮) =

∑

𝑖≥𝑘 𝑢𝑖 for each 𝑘 ≥ 1. When the context is clear, we shall drop the dependence of the trajectory on the initial state 𝐮
nd on the time 𝑡.

emma 7. Let 𝑔 ∈ R+, 𝜖 ∈ [0, 1], 𝑑 ≥ 2. The following statements hold for the process 𝐱 defined in Theorem 2.

1. If 𝐮 ∈  , then, for any 𝑡 ≥ 0, we have 𝐱(𝑡,𝐮) ∈  .
2. For any 𝐮,𝐮′ ∈  satisfying 𝐮 ≤ 𝐮′ we have 𝐱(𝑡,𝐮) ≤ 𝐱(𝑡,𝐮′) for all 𝑡 ≥ 0, where the inequality ≤ is understood component-wise.

roof. We first note from (3) and (4) that

𝑥̇𝑖 ≤ 𝜆𝑝𝑖−1(𝐱) ≤ 𝜆[𝑥𝑑𝑖−1 + 𝜖𝑥𝑑𝑖−1−𝑔 + 𝜖𝑥𝑑𝑖 ]

≤ 𝜆(1 + 2𝜖)𝑥𝑑𝑖−1−𝑔 ≤ 𝑀𝜆,𝜖𝑥𝑖−1−𝑔 ,

here 𝑀𝜆,𝜖 = 𝜆(1 + 2𝜖). This implies that for each 𝑖 ≥ 1 we have

𝑥𝑖(𝑡) ≤ 𝑥𝑖(0) +𝑀𝜆,𝜖 ∫

𝑡

0
𝑥𝑖−1−𝑔(𝑠)𝑑𝑠.

sing the above recursively for each 𝑖 ≥ 1, we obtain

𝑥𝑖(𝑡) ≤ 𝑥𝑖(0) +
𝑖−𝑔−1
∑

𝑘=0
𝑥𝑘(0)

(𝑀𝜆,𝜖𝑡)𝑖−𝑔−𝑘

(𝑖 − 𝑔 − 𝑘)!
. (29)

Summing the above for all 𝑖 ≥ 1 we obtain

𝑣1(𝐱(𝑡)) ≤ (𝑔 + 1 + 𝑣1(𝐱(0))) exp(𝑀𝜆,𝜖𝑡).

This shows that if 𝑣1(𝐱(0)) < ∞, then 𝑣1(𝐱(𝑡)) < ∞ for all 𝑡, thus establishing the first part of the lemma.
For the second part, we note from (3) and (4) that

𝜕𝐺𝑖(𝐱)
𝜕𝑥𝑖−1

= 𝜆
[

𝑑
{

𝑥𝑑−1𝑖−1 − 𝜖(𝑥𝑖−1 − 𝑥𝑖+𝑔)𝑑−1
}

+

𝜖𝑑(𝑥𝑖−1−𝑔 − 𝑥𝑖−1)𝑑−1
]

≥ 0.

It is also easy to verify that 𝜕𝐺𝑖(𝐱)
𝜕𝑥𝑖+𝑔

, 𝜕𝐺𝑖(𝐱)
𝜕𝑥𝑖−𝑔−1

, and 𝜕𝐺𝑖(𝐱)
𝜕𝑥𝑖+1

are non-negative. Hence, for each 𝑖 ≥ 1, 𝐺𝑖(𝐱) = 𝜆𝑝𝑖−1(𝐱) − (𝑥𝑖 − 𝑥𝑖+1) is
on-decreasing with respect to all 𝑥𝑘, 𝑘 ≠ 𝑖. Now the result follows from Theorem 5.3 of [34]. ■

The second property stated in Lemma 7 is called the quasi-monotonicity of the process 𝐱. This property ensures that if the
ean-field process starts from the idle initial state, i.e., if 𝐱(0) = 𝐞0 = (1, 0, 0,…), then it is monotonically non-decreasing in time,

.e.,
13

𝐱(𝑡1, 𝐞0) ≤ 𝐱(𝑡2, 𝐞0), 0 ≤ 𝑡1 ≤ 𝑡2 < ∞. (30)
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This follows because the state 𝐞0 is dominated by any other state in  . In particular, 𝐞0 ≤ 𝐱(𝑡2− 𝑡1, 𝐞0). Hence, by quasi-monotonicity,
e have 𝐱(𝑡1, 𝐞0) ≤ 𝐱(𝑡1, 𝐱(𝑡2 − 𝑡1, 𝐞0)) = 𝐱(𝑡2, 𝐞0).

Furthermore, Lemma 7 guarantees that if 𝐱(0) ∈  then 𝐱(𝑡) ∈  for all 𝑡 ≥ 0. Hence, by adding (3) for all 𝑖 ≥ 𝑘 and using the
act that ‖𝑥(𝑡)‖1 < ∞ gives

𝑣̇𝑘(𝑡) = 𝜆
[

𝑥𝑑𝑘−1(𝑡) + 𝜖
𝑘+𝑔−1
∑

𝑖=𝑘

[

(𝑥𝑖−1−𝑔(𝑡) − 𝑥𝑖(𝑡))𝑑 −

(𝑥𝑖−𝑔(𝑡) − 𝑥𝑖(𝑡))𝑑
]

− 𝜖(𝑥𝑘−1−𝑔(𝑡) − 𝑥𝑘−1(𝑡))𝑑
]

− 𝑥𝑘(𝑡). (31)

Expanding (𝑥𝑖−1−𝑔(𝑡) − 𝑥𝑖(𝑡))𝑑 − (𝑥𝑖−𝑔(𝑡) − 𝑥𝑖(𝑡))𝑑 in the above expression we get

𝑣̇𝑘(𝑡) = 𝜆
[

𝑥𝑑𝑘−1(𝑡) + 𝜖
𝑘+𝑔−1
∑

𝑖=𝑘

[

(𝑥𝑖−𝑔−1(𝑡) − 𝑥𝑖−𝑔(𝑡))

𝑑
∑

𝑗=1
(𝑥𝑖−1−𝑔(𝑡) − 𝑥𝑖(𝑡))𝑑−𝑗 (𝑥𝑖−𝑔(𝑡) − 𝑥𝑖(𝑡))𝑗−1

]

−𝜖(𝑥𝑘−1−𝑔(𝑡) − 𝑥𝑘−1(𝑡))𝑑
]

− 𝑥𝑘(𝑡).

Furthermore, using the fact that 𝑥𝑖−1−𝑔(𝑡) − 𝑥𝑖(𝑡) ≤ 𝑥𝑖−1−𝑔(𝑡) and 𝑥𝑖−𝑔(𝑡) − 𝑥𝑖(𝑡) ≤ 𝑥𝑖−𝑔(𝑡) in the above expression, we get the following
bound

𝑣̇𝑘(𝑡) ≤ 𝜆
[

𝑥𝑑𝑘−1(𝑡) + 𝜖
𝑘+𝑔−1
∑

𝑖=𝑘
(𝑥𝑑𝑖−1−𝑔(𝑡) − 𝑥𝑑𝑖−𝑔(𝑡)) − 𝜖(𝑥𝑘−𝑔−1 − 𝑥𝑘−1)𝑑

]

− 𝑥𝑘(𝑡),

=
[

𝑥𝑑𝑘−1(𝑡) + 𝜖(𝑥𝑑𝑘−1−𝑔(𝑡) − 𝑥𝑑𝑘−1(𝑡)) − 𝜖(𝑥𝑘−𝑔−1(𝑡) − 𝑥𝑘−1(𝑡))𝑑
]

− 𝑥𝑘(𝑡),

≤ 𝜆
[

(1 − 𝜖)𝑥𝑑𝑘−1(𝑡) + 𝜖𝑥𝑑𝑘−1−𝑔(𝑡)
]

− 𝑥𝑘(𝑡),

≤ 𝜆𝑥𝑑𝑘−1−𝑔(𝑡) − 𝑥𝑘(𝑡), (32)

here the last inequality follows by using 𝑥𝑘−1−𝑔 ≥ 𝑥𝑘−1.
Existence of the Fixed Point 𝐱∗: To prove the existence of the fixed point 𝐱∗ satisfying (5) and (6), we first show that ‖

‖

𝐱(𝑡, 𝐞0)‖‖1
emains uniformly bounded for all 𝑡 ≥ 0. Note that this is a stronger result than ‖

‖

𝐱(𝑡, 𝐞0)‖‖1 < ∞ for each 𝑡 ≥ 0 which has already
een established in Lemma 7.

roposition 8. For 𝑔 ∈ R+, 𝜆 < 1, 𝑑 ≥ 2 let 𝐳∗ ∈  be defined as 𝑧∗𝑖 = 1 for all 𝑖 ≤ 0 and 𝑧∗𝑖 = 𝜆(𝑧∗𝑖−1−𝑔)
𝑑 for all 𝑖 ≥ 1. Then, we have

(𝑡, 𝐞0) ≤ 𝐳∗ for all 𝑡 ≥ 0 which implies that

‖

‖

𝐱(𝑡, 𝐞0)‖‖1 ≤ ‖

‖

𝐳∗‖
‖1 = (𝑔 + 1)

∑

𝑖≥1
𝜆

𝑑𝑖−1
𝑑−1 , ∀𝑡 ≥ 0. (33)

Proof. Let 𝐱(0) = 𝐞0 ≤ 𝐳∗. Then, from (30) we have 𝑥̇𝑘(𝑡) ≥ 0 for all 𝑘 ≥ 1 and for all 𝑡 ≥ 0. This further implies that
̇ 𝑘(𝑡) =

∑

𝑖≥𝑘 𝑥̇𝑖(𝑡) ≥ 0,∀𝑘 ≥ 1,∀𝑡 ≥ 0. Since 𝐱(0) ≤ 𝐳∗, for 𝐱(𝑡) > 𝐳∗ for some 𝑡 there must exist 𝑡∗ < 𝑡 such that 𝑥𝑙(𝑡∗) = 𝑧∗𝑙 and
𝑥̇𝑙(𝑡∗) > 0 for some 𝑙 ≥ 1. Let 𝑚 be the smallest component where the above two conditions are satisfied. Then, substituting 𝑘 = 𝑚
in (32), we obtain

𝑣̇𝑚(𝑡∗) ≤ 𝜆𝑥𝑑𝑚−1−𝑔(𝑡∗) − 𝑥𝑚(𝑡∗) = 𝜆𝑥𝑑𝑚−1−𝑔(𝑡∗) − 𝑧∗𝑚
= 𝜆(𝑥𝑑𝑚−1−𝑔(𝑡∗) − (𝑧∗𝑚−1−𝑔)

𝑑 )

≤ 0,

where the last inequality follows from the definition of 𝑚. Since we already know that 𝑣̇𝑚(𝑡∗) ≥ 0, the above inequality implies
̇𝑚(𝑡∗) = 0. Hence, 𝑥̇𝑚(𝑡∗) = 𝑣̇𝑚(𝑡∗) − 𝑣̇𝑚+1(𝑡∗) = −𝑣̇𝑚+1(𝑡∗) ≤ 0 which contradicts the fact that 𝑥̇𝑚(𝑡∗) > 0. ■

Lemma 9. Given 𝑔 ∈ R+, 𝜆 < 1, there exists 𝐱∗ ∈  such that

‖

‖

𝐱(𝑡, 𝐞0) − 𝐱∗‖
‖1 → 0, 𝑡 → ∞, (34)

and 𝐆(𝐱∗) = 𝟎. Furthermore, 𝐱∗ satisfies (5) and (6).

Proof. Since 𝑥𝑖(𝑡, 𝐞0) ∈ [0, 1] for each 𝑖 and all 𝑡 ≥ 0 and 𝑥𝑖(𝑡, 𝐞0) is monotonically non-decreasing in time we must have 𝑥𝑖(𝑡) → 𝑥∗𝑖
as 𝑡 → ∞ for each 𝑖 ≥ 1 for some 𝐱∗ = (𝑥∗𝑖 ) ∈ ̄ .

We first show that the component-wise limit 𝑥∗ defined above is also the 𝓁1 limit of 𝐱(𝑡, 𝐞0) which will also imply that 𝐱∗ ∈  . To
how this, we note from Proposition 8 that the uniform bound on ∑

𝑥 (𝑡, 𝐞 ) in (33) implies by dominated convergence theorem
14

𝑖≥1 𝑖 0
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lim
𝑡→∞

‖𝐱(𝑡)‖1 =
∑

𝑖≥1
lim
𝑡→∞

𝑥𝑖(𝑡) =
∑

𝑖≥1
𝑥∗𝑖 = ‖

‖

𝐱∗‖
‖1 ≤ (𝑔 + 1)

∑

𝑖≥
𝜆

𝑑𝑖−1
𝑑−1 .

This shows that ‖
‖

𝐱(𝑡, 𝐞0) − 𝐱∗‖
‖1 → 0 as 𝑡 → ∞, and 𝐱∗ ∈  .

It now remains to show that 𝐆(𝐱∗) = 0. Note that the convergence of 𝐱(𝑡) → 𝐱∗ in 𝓁1 as 𝑡 → ∞, and the monotonicity of 𝐱(𝑡)
mply that for any 𝛿 > 0 there exists a 𝑡𝛿 > 0 such that for all 𝑡 ≥ 𝑡𝛿 we have

𝛿 ≥ ‖𝐱(𝑡 + ℎ) − 𝐱(𝑡)‖1 ≥ 𝑥𝑖(𝑡 + ℎ) − 𝑥𝑖(𝑡)

= ∫

𝑡+ℎ

𝑡
𝐺𝑖(𝐱(𝑠))𝑑𝑠 ≥ ℎ𝐺𝑖(𝐱(𝑡∗ℎ)),∀𝑖 ≥ 1,∀ℎ ≥ 0,

here 𝑡∗ℎ ∈ [𝑡, 𝑡+ℎ] is the time at which the continuous function 𝐺𝑖(𝐱(𝑠)) attains its minimum value in the compact interval [𝑡, 𝑡+ℎ].
herefore, we have

𝐺𝑖(𝐱(𝑡∗ℎ)) ≤
𝛿
ℎ
, 𝑖 ≥ 1. (35)

ow we can write

𝐺𝑖(𝐱∗) = 𝐺𝑖(𝐱∗) − 𝐺𝑖(𝐱(𝑡∗ℎ)) + 𝐺𝑖(𝐱(𝑡∗ℎ))

≤ ‖

‖

‖

𝐆(𝐱∗) −𝐆(𝐱(𝑡∗ℎ))
‖

‖

‖1
+ 𝐺𝑖(𝐱(𝑡∗ℎ)) (36)

≤ 𝐿𝜖
𝜆𝛿 +

𝛿
ℎ
, (37)

where for the second inequality we use and the fact that the function 𝐆 is Lipschitz with constant 𝐿𝜖
𝜆 and (35). Note that the above

inequality is true for any 𝛿 > 0. Therefore, by fixing ℎ > 0 and letting 𝛿 → 0 we have 𝐺𝑖(𝐱∗) = 0 for all 𝑖 ≥ 1. Hence, 𝐆(𝐱∗) = 0.
inally, we obtain (5) by using ∑

𝑖≥1 𝐺𝑖(𝐱∗) = 0 and (6) by using ∑

𝑖≥𝑘 𝐺𝑖(𝐱∗) = 0. ■

Global Stability and Uniqueness of the Fixed Point 𝐱∗: Now we prove that for any 𝐮 ∈  , 𝐱(𝑡,𝐮) converges to 𝐱∗ as 𝑡 → ∞ in
1, where 𝑥∗ is the limit of 𝐱(𝑡, 𝐞0) as defined in Lemma 9. By Proposition 8 and the dominated convergence theorem, it suffices to
stablish this convergence component-wise. Furthermore, it is sufficient to consider initial points 𝐮 ≤ 𝐱∗ and 𝐮 ≥ 𝑥∗ since, by the
uasi-monotonicity of 𝐱, we have 𝐱(𝑡,min(𝐮, 𝐱∗)) ≤ 𝐱(𝑡,𝐮) ≤ 𝐱(𝑡,max(𝐮, 𝐱∗)), where the min and the max are taken component-wise.

Consider the case when 𝐱(0) = 𝐮 ≤ 𝐱∗. Since 𝐮 ≥ 𝐞0, by the quasi-monotonicity of 𝐱, we have 𝐱(𝑡, 𝐞0) ≤ 𝐱(𝑡,𝐮) ≤ 𝐱∗,∀𝑡 ≥ 0. Hence,
by Lemma 9, we have 𝐱(𝑡,𝐮) → 𝐱∗ since 𝐱(𝑡, 𝐞0) → 𝐱∗.

Next we consider the case where 𝐱(0) = 𝐮 ≥ 𝐱∗. We first show that 𝑣𝑘(𝑡,𝐮) remains uniformly bounded for all 𝑡 ≥ 0 and for all
𝑘 ≥ 1. From quasi-monotonicity of 𝐱 it follows that 𝐱(𝑡,𝐮) ≥ 𝐱∗ for all 𝑡 ≥ 0. This implies, in particular, that 𝑥1(𝑡,𝐮) ≥ 𝑥∗1 = 𝜆. Hence,
from (31) for 𝑘 = 1, we have 𝑣̇1(𝑡, 𝐱(0)) = 𝜆 − 𝑥1(𝑡,𝐮) ≤ 0. This implies that 0 ≤ 𝑣𝑘(𝑡,𝐮) ≤ 𝑣1(𝑡,𝐮) ≤ 𝑣1(𝐮) for all 𝑡 ≥ 0 and all 𝑘 ≥ 1.

We shall now establish the convergence 𝑥𝑖(𝑡,𝐮) → 𝑥∗𝑖 for all 𝑖 ≥ 1 by showing

∫

∞

0
(𝑥𝑖(𝑡,𝐮) − 𝑥∗𝑖 )𝑑𝑡 < 𝐶𝑖, (38)

where 𝐶𝑖 > 0 is a finite constant for each 𝑖 ≥ 1. To prove (38), we use induction on 𝑖. For 𝑖 = 1, using (5) we have

∫

𝜏

0
(𝑥1(𝑡,𝐮) − 𝑥∗1)𝑑𝑡 = ∫

𝜏

0
(𝑥1(𝑡,𝐮) − 𝜆)𝑑𝑡

= 𝑣1(𝐮) − 𝑣1(𝜏,𝐮) ≤ 𝑣1(𝐮),

where the second equality follows from (31) for 𝑘 = 1 and the inequality follows as 𝑣1(𝑡,𝐮) is uniformly bounded in 𝑡. Since the
RHS is independent of 𝜏, the integral on the left hand side must be by bounded 𝑣1(𝐮) as 𝜏 → ∞. This shows the base case of the
induction.

Now assume that (38) is true for all 𝑖 ≤ 𝐿 − 1. For 𝑖 = 𝐿, using (31) and (6), we have

∫

𝜏

0
(𝑥𝐿(𝑡) − 𝑥∗𝐿)𝑑𝑡 = 𝑣𝐿(𝐮) − 𝑣𝐿(𝜏,𝐮) + 𝜆∫

𝜏

0
(𝑥𝑑𝐿−1(𝑡) − (𝑥∗𝐿−1)

𝑑 )𝑑𝑡

+𝜆𝜖 ∫

𝜏

0

[

(𝑥∗𝐿−1−𝑔 − 𝑥∗𝐿−1)
𝑑 − (𝑥𝐿−1−𝑔(𝑡) − 𝑥𝐿−1(𝑡))𝑑

]

𝑑𝑡

+𝜖𝜆∫

𝜏

0

𝐿+𝑔−1
∑

𝑖=𝐿

[

(𝑥𝑖−1−𝑔(𝑡) − 𝑥𝑖(𝑡))𝑑 − (𝑥∗𝑖−1−𝑔 − 𝑥∗𝑖 )
𝑑
]

𝑑𝑡

+𝜖𝜆∫

𝜏

0

𝐿+𝑔−1
∑

𝑖=𝐿

[

(𝑥∗𝑖−𝑔 − 𝑥∗𝑖 )
𝑑 − (𝑥𝑖−𝑔(𝑡) − 𝑥𝑖(𝑡))𝑑

]

𝑑𝑡. (39)

Using the uniform boundedness of 𝑣𝐿(𝑡,𝐮) in 𝑡, we can upper bound the term 𝑣𝐿(𝐮) − 𝑣𝐿(𝜏,𝐮) by 𝑣𝐿(𝐮). To complete the proof, we
shall now bound each integral term appearing on the RHS. Note that using 𝑎𝑑 − 𝑏𝑑 expansion for 0 ≤ 𝑎, 𝑏 ≤ 1 and 𝐱(𝑡) ≥ 𝐱∗, we have
following inequalities

𝑥𝑑𝐿−1(𝑡) − (𝑥∗𝐿−1)
𝑑 =(𝑥𝐿−1(𝑡) − 𝑥∗𝐿−1)

𝑑
∑

𝑥𝑑−𝑗𝐿−1(𝑡)(𝑥
∗
𝐿−1)

𝑗−1
15

𝑗=1
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≤ 𝑑(𝑥𝐿−1(𝑡) − 𝑥∗𝐿−1),

(𝑥∗𝐿−1−𝑔 − 𝑥∗𝐿−1)
𝑑 − (𝑥𝐿−1−𝑔(𝑡) − 𝑥𝐿−1(𝑡))𝑑 ≤ 𝑑(𝑥𝐿−1(𝑡) − 𝑥∗𝐿−1).

Therefore, using the above inequalities and by the induction hypothesis, the integrals in the second and the third terms on the RHS
of (39) can be easily bounded by 𝑑𝐶𝐿−1. It now remains to bound the integrals in the last two terms. It is important to note that
the last two terms of (39) contain 𝑥𝑖(𝑡) and 𝑥∗𝑖 for 𝑖 ∈ {𝐿,𝐿 + 1,… , 𝐿 + 𝑔 − 1} for which the induction hypothesis does not apply.
We note that by monotonicity we have 𝑥𝑖(𝑡) ≥ 𝑥∗𝑖 for all 𝑖 ≥ 1. Therefore, using 𝑎𝑑 − 𝑏𝑑 expansion we can bound the third integral
of (39) as

∫

𝜏

0

𝐿+𝑔−1
∑

𝑖=𝐿

[

(𝑥𝑖−1−𝑔(𝑡) − 𝑥𝑖(𝑡))𝑑 − (𝑥∗𝑖−1−𝑔 − 𝑥∗𝑖 )
𝑑
]

𝑑𝑡 ≤

𝑑 ∫

𝜏

0

𝐿+𝑔−1
∑

𝑖=𝐿
(𝑥𝑖−1−𝑔(𝑡) − 𝑥∗𝑖−1−𝑔)𝑑𝑡 − ∫

𝜏

0

[

𝐿+𝑔−1
∑

𝑖=𝐿
(𝑥𝑖(𝑡) − 𝑥∗𝑖 )

×
𝑑
∑

𝑗=1
(𝑥∗𝑖−1−𝑔 − 𝑥∗𝑖 )

𝑑−𝑗 (𝑥𝑖−1−𝑔(𝑡) − 𝑥𝑖(𝑡))𝑗−1
]

𝑑𝑡. (40)

Moreover, using the induction hypothesis, the first term on the RHS of the above inequality is bounded by 𝑑
∑𝐿+𝑔−1

𝑖=𝐿 𝐶𝑖−1−𝑔 . Similarly,
we can write the last integral of (39) as

∫

𝜏

0

𝐿+𝑔−1
∑

𝑖=𝐿

[

(𝑥∗𝑖−𝑔 − 𝑥∗𝑖 )
𝑑 − (𝑥𝑖−𝑔(𝑡) − 𝑥𝑖(𝑡))𝑑

]

𝑑𝑡 =

∫

𝜏

0

[

𝐿+𝑔−1
∑

𝑖=𝐿
(𝑥∗𝑖−𝑔 − 𝑥𝑖−𝑔(𝑡))

𝑑
∑

𝑗=1

[

(𝑥∗𝑖−𝑔 − 𝑥∗𝑖 )
𝑑−𝑗

×(𝑥𝑖−𝑔(𝑡) − 𝑥𝑖(𝑡))𝑗−1
]]

𝑑𝑡

+∫

𝜏

0

[

𝐿+𝑔−1
∑

𝑖=𝐿
(𝑥𝑖(𝑡) − 𝑥∗𝑖 )

𝑑
∑

𝑗=1
(𝑥∗𝑖−𝑔 − 𝑥∗𝑖 )

𝑑−𝑗

×(𝑥𝑖−𝑔(𝑡) − 𝑥𝑖(𝑡))𝑗−1
]

𝑑𝑡. (41)

Note that the first term on the RHS of (41) is negative for all 𝑖 ∈ {𝐿,𝐿+ 1,… , 𝐿+ 𝑔 − 1} due to monotonicity. Combining (40) and
(41), we can bound the last two integrals of (39) as

𝑑
𝐿+𝑔−1
∑

𝑖=𝐿
𝐶𝑖−1−𝑔 + ∫

𝜏

0

𝐿+𝑔−1
∑

𝑖=𝐿
(𝑥𝑖(𝑡) − 𝑥∗𝑖 )

𝑑
∑

𝑗=1

[

(𝑥∗𝑖−𝑔 − 𝑥∗𝑖 )
𝑑−𝑗

×(𝑥𝑖−𝑔(𝑡) − 𝑥𝑖(𝑡))𝑗−1 − (𝑥∗𝑖−1−𝑔 − 𝑥∗𝑖 )
𝑑−𝑗

×(𝑥𝑖−1−𝑔(𝑡) − 𝑥𝑖(𝑡))𝑗−1
]

𝑑𝑡 ≤ 𝑑
𝐿+𝑔−1
∑

𝑖=𝐿
𝐶𝑖−1−𝑔 ,

here the inequality follows as (𝑥∗𝑖−𝑔 −𝑥∗𝑖 )
𝑑−𝑗 (𝑥𝑖−𝑔(𝑡)−𝑥𝑖(𝑡))𝑗−1−(𝑥∗𝑖−1−𝑔 −𝑥∗𝑖 )

𝑑−𝑗 (𝑥𝑖−1−𝑔(𝑡)−𝑥𝑖(𝑡))𝑗−1 ≤ 0, for all 𝑗 ∈ [𝑑]. This completes
he proof of global stability of 𝐱∗. Since all the trajectories converge to 𝐱∗, it must be the unique solution of 𝐆(𝐲) = 𝟎 since starting
rom any other 𝐲 ≠ 𝐱∗, satisfying 𝐆(𝐲) = 0, the trajectory remains at 𝐲 which contradicts the global stability of 𝐱∗.
Limit Interchange: Note that Theorem 1.(i), implies that 𝜋𝑛() = 1,∀𝑛. Therefore, we have 𝜋𝑛(̄) = 1 for all 𝑛. Since, the

pace ̄ is compact, by Prohorov’s theorem the sequence (𝜋𝑛)𝑛 must converge weakly to the limit 𝜋∗ with 𝜋∗(̄) = 1. Furthermore,
ince by (1), E𝜋𝑛

[

∑

𝑖≥1 𝑥
(𝑛)
𝑖 (∞)

]

is uniformly bounded in 𝑛, we have 𝜋∗() = 1. Now we prove that the measure 𝜋∗ is the stationary
easure of the mean-field process 𝐱 defined in (3). We know that (𝜋𝑛)𝑛 ⇒ 𝜋∗ and the space  is separable. Therefore, the Skorokhod’s
epresentation Theorem implies that 𝐱(𝑛)(0)

𝑎.𝑠
→ 𝐱(0). Moreover, if we start the process 𝐱(𝑛)(0) ∼ 𝜋𝑛, then 𝐱(𝑛)(𝑡) ∼ 𝜋𝑛 for all 𝑡 ≥ 0. Hence,

rom Theorem 2.(i) it follows that 𝐱(𝑡) ∼ 𝜋∗ for all 𝑡 ≥ 0. This proves that 𝜋∗ is indeed the stationary measure for the mean-field
rocess 𝐱. Now from the global stability of the fixed point 𝐱∗, it follows immediately that the stationary measure 𝜋∗ is unique and
s equal to 𝛿𝐱∗ . This completes the proof of limit interchange.

.3. Heavy traffic limit for the Pod-(𝑔, 𝜖) scheme

In last we prove Theorem 2.(iii). Note that from Lemma 9, we know 𝐱(𝑡, 𝐞0) converges to 𝐱∗ as 𝑡 → ∞ in 𝓁1 and from Proposition 8
e have

‖

‖

𝐱(𝑡, 𝐞0)‖‖1 ≤ (𝑔 + 1)
∑

𝑖≥1
𝜆

𝑑𝑖−1
𝑑−1 ,

for all 𝑡 ≥ 0. Therefore, we can write ‖𝐱∗‖1 ≤ (𝑔 + 1)
∑

𝑖≥1 𝜆
𝑑𝑖−1
𝑑−1 . Hence, dividing the above inequality both side with − log(1 − 𝜆),

taking limit 𝜆 → 1−, we obtain the bound given in (7).
16
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6. Mean-field analysis of the Pod-𝝐 scheme

In this section we prove the main result for the Pod-𝜖 scheme stated in Theorem 3.

6.1. Mean-field limit of the Pod-𝜖 scheme

We first establish the mean-field limit of the Pod-𝜖 policy given in Theorem 3-(i). First note that the rate of transitions of the
rocess 𝐱(𝑛) from 𝐱 ∈  (𝑛) to 𝐲 ∈  (𝑛) is given by

𝑞(𝑛)𝐱,𝐲 =

{

𝑛𝜆𝑝𝑖−1(𝐱), if 𝐲 = 𝐱 + 𝐞𝑖∕𝑛
𝑛(𝑥𝑖 − 𝑥𝑖+1), if 𝐲 = 𝐱 − 𝐞𝑖∕𝑛,

∀𝑖 ≥ 1, (42)

where 𝑝𝑖−1(𝐱) = (1 − 𝜖)(𝑥𝑑𝑖−1 − 𝑥𝑑𝑖 ) + 𝜖((1 − 𝑥𝑖)𝑑 − (1 − 𝑥𝑖−1)𝑑 ) is the probability that an arrival joins a server of queue length 𝑖− 1. The
mean-field limit of the Pod-𝜖 scheme is proved using the similar argument as shown for the Pod-(𝑔, 𝜖) scheme. First we show that
the function 𝐅(𝐱) for 𝐱 ∈  defined in (8) is Lipschitz under 𝓁1-norm.

Lemma 10. The function 𝐅(𝐱) is Lipschitz with constant 2𝑑𝜆 + 2.

Proof. Let 𝐱, 𝐲 ∈  . Then we have

‖𝐅(𝐱) − 𝐅(𝐲)‖1 =
∑

𝑖≥1
|𝜆𝑝𝑖−1(𝐱) − (𝑥𝑖 − 𝑥𝑖+1) − 𝜆𝑝𝑖−1(𝐲) + (𝑦𝑖 − 𝑦𝑖+1)|

≤ 𝜆
∑

𝑖≥1
|𝑝𝑖−1(𝐱) − 𝑝𝑖−1(𝐲)| + 2 ‖𝐱 − 𝐲‖1

≤ 2𝑑𝜆 ‖𝐱 − 𝐲‖1 + 2 ‖𝐱 − 𝐲‖1
= (2𝑑𝜆 + 2) ‖𝐱 − 𝐲‖1 ,

here the second inequality follows using 𝑎𝑑 − 𝑐𝑑 = (𝑎 − 𝑐)(𝑎𝑑−1 + ⋯ + 𝑐𝑑−1) ≤ 𝑑(𝑎 − 𝑐) for 0 ≤ 𝑎, 𝑐 ≤ 1. This completes the
roof. ■

Furthermore, from (42) it is clear that the rate at which the jumps occur in 𝐱(𝑛) is bounded everywhere that is
∑

𝐲∈
𝑞(𝑛)𝐱,𝐲 < 𝑛(𝜆 + 1), ∀ 𝐱 ∈  . (43)

Therefore, using Lemma 10 and from (43) we conclude that the conditions of Kurtz’s Theorem are satisfied. Hence, we have

lim
𝑛→∞

sup
𝑡≤𝑢

‖

‖

‖

𝐱(𝑛)(𝑢) − 𝐱(𝑢)‖‖
‖1

= 0, 𝑎.𝑠.

This completes the proof.

6.2. Mean-field steady state behaviour for the Pod-𝜖 scheme

In this section we prove Theorem 3.(ii), which shows that the differential equations defined in (8) has a unique fixed point 𝐱∗
and it follows the recursion defined in (10). Moreover, we prove that the fixed point 𝐱∗ is globally stable and finally establish the
interchange of limits.

For 𝐮 ∈  , we define 𝑣𝑘(𝑡,𝐮) =
∑

𝑖≥𝑘 𝑥𝑖(𝑡,𝐮) and 𝑣𝑘(𝐮) =
∑

𝑖≥𝑘 𝑢𝑖 for each 𝑘 ≥ 1.

Lemma 11. Let 𝜖 ∈ [0, 1], 𝑑 ≥ 2. The following statements hold for the process 𝐱 defined in Theorem 3.

1. If 𝐮 ∈  , then, for any 𝑡 ≥ 0, we have 𝐱(𝑡,𝐮) ∈  .
2. For any 𝐮,𝐮′ ∈  satisfying 𝐮 ≤ 𝐮′ we have 𝐱(𝑡,𝐮) ≤ 𝐱(𝑡,𝐮′) for all 𝑡 ≥ 0, where the inequality ≤ is understood component-wise.

Proof. From (8) and (9), we can write

𝑥̇𝑖 ≤ 𝜆𝑝𝑖−1(𝐱) ≤ 𝜆[(1 − 𝜖)(𝑥𝑑𝑖−1 − 𝑥𝑑𝑖 ) + 𝑑𝜖𝑥𝑖−1]

≤ 𝜆(1 + (𝑑 − 1)𝜖)𝑥𝑖−1 = 𝑀𝜆,𝜖𝑥𝑖−1,

where 𝑀𝜆,𝜖 = 𝜆(1 + (𝑑 − 1)𝜖). Therefore, for each 𝑖 ≥ 1 we have

𝑥𝑖(𝑡) ≤ 𝑥𝑖(0) +𝑀𝜆,𝜖 ∫

𝑡

0
𝑥𝑖−1(𝑠)𝑑𝑠.

Hence, using the above recursively for each 𝑖 ≥ 1, we obtain

𝑥𝑖(𝑡) ≤ 𝑥𝑖(0) +
𝑖−1
∑

𝑥𝑘(0)
(𝑀𝜆,𝜖𝑡)𝑖−𝑘 .
17

𝑘=0 (𝑖 − 𝑘)!
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Summing the above for all 𝑖 ≥ 1 we obtain 𝑣1(𝐱(𝑡)) ≤ (1 + 𝑣1(𝐱(0))) exp(𝑀𝜆,𝜖𝑡). Therefore, if 𝑣1(𝐱(0)) < ∞, then 𝑣1(𝐱(𝑡)) < ∞ for all 𝑡.
This completes the proof of first part.

To prove second part we need to show that 𝑥𝑖(𝑡)
𝑑𝑡 is non-decreasing in 𝑥𝑗 (𝑡) for all 𝑗 ≠ 𝑖. We know from (8) that

𝑑𝑥𝑖(𝑡)
𝑑𝑡

= 𝜆
[

(1 − 𝜖)(𝑥𝑑𝑖−1(𝑡) − 𝑥𝑑𝑖 (𝑡)) +

𝜖((1 − 𝑥𝑖(𝑡))𝑑 − (1 − 𝑥𝑖−1(𝑡))𝑑 )
]

− (𝑥𝑖(𝑡) − 𝑥𝑖+1(𝑡)).

herefore, it is clear that the above expression is non-decreasing with 𝑥𝑖+1(𝑡). Note that the partial derivative of the above expression
ith respect to 𝑥𝑖−1(𝑡) component is 𝑑(1 − 𝜖)𝑥𝑑−1𝑖−1 (𝑡) + 𝑑𝜖(1 − 𝑥𝑖−1(𝑡))𝑑−1, which clearly positive for 𝜖 ∈ [0, 1]. Hence, 𝑑𝑥𝑖(𝑡)

𝑑𝑡 is also
non-decreasing with 𝑥𝑖−1(𝑡). ■

Fixed Point: For fixed point 𝐱∗ we need to equate (8) to 0 and get

𝜆
[

(1 − 𝜖)((𝑥∗𝑖−1)
𝑑 − (𝑥∗𝑖 )

𝑑 ) + 𝜖((1 − 𝑥∗𝑖 )
𝑑 − (1 − 𝑥∗𝑖−1)

𝑑 )
]

= 𝑥∗𝑖 − 𝑥∗𝑖+1, 𝑖 ≥ 1. (44)

Summing (44) for all 𝑖 ≥ 1 we get 𝑥∗1 = 𝜆. Moreover, summing (44) for all 𝑖 ≥ 𝑘 we obtain

𝑥∗𝑘 = 𝜆 lim
𝑚→∞

𝑘+𝑚
∑

𝑖=𝑘
𝑝𝑖−1(𝐱∗)

= 𝜆
[

(1 − 𝜖)(𝑥∗𝑘−1)
𝑑 + 𝜖(1 − (1 − 𝑥∗𝑘−1)

𝑑 )
]

, ∀𝑘 ≥ 2,

where the second equality follows as lim𝑚→∞ 𝑥∗𝑚+𝑘 = 0.
Global Stability: To prove global stability of the fixed point 𝐱∗, we use the monotonicity of the mean-field process 𝐱 shown in

Lemma 11.
Note that Lemma 11 guarantees that if 𝐱(0) ∈ 𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝑆 then 𝐱(𝑡) ∈  for all 𝑡 ≥ 0. Hence, by adding (8) for all 𝑖 ≥ 𝑘 and using

the fact that ‖𝑥(𝑡)‖1 < ∞ gives

𝑣̇𝑘(𝑡,𝐮) = 𝜆
[

(1 − 𝜖)𝑥𝑑𝑘−1(𝑡,𝐮) + 𝜖(1 − (1 − 𝑥𝑘−1(𝑡,𝐮))𝑑 )
]

− 𝑥𝑘(𝑡,𝐮) (45)

Specifically, for 𝑘 = 1 we have

𝑣̇1(𝑡,𝐮) = 𝜆 − 𝑥1(𝑡,𝐮). (46)

Now from the monotonicity property (Lemma 11) of the mean-field process 𝐱 we have for any 𝐱(0) ∈  and 𝑡 ≥ 0

𝐱(𝑡,min(𝐱(0), 𝐱∗)) ≤ 𝐱(𝑡, 𝐱(0)) ≤ 𝐱(𝑡,max(𝐱(0), 𝐱∗)), (47)

where min(𝐮, 𝐯) with 𝐮, 𝐯 ∈  is defined by taking the component-wise minimum. From (47) it is clear that to prove global stability
it is enough to prove convergence 𝐱(𝑡, 𝐱(0)) → 𝐱∗ holds for initial states satisfying either of the following two conditions: (i) 𝐱(0) ≥ 𝐱∗

and (ii) 𝐱(0) ≤ 𝐱∗.
To prove convergence holds for above two initial conditions we first show that for any solution 𝐱(⋅, 𝐱(0)) ∈  , 𝑣𝑘(𝑡, 𝐱(0)) is

uniformly bounded in 𝑡 for all 𝑘 ≥ 1. Consider the case when 𝐱(0) ≥ 𝐱∗. From Lemma 11 it follows that for 𝐱(0) ≥ 𝐱∗, we have
𝐱(𝑡, 𝐱(0)) ≥ 𝐱∗ for all 𝑡 ≥ 0. Therefore, we can write

𝑥1(𝑡, 𝐱(0)) ≥ 𝑥∗1 = 𝜆,

where the last equality follows from (10). Hence, from (46) we have 𝑑𝑣1(𝑡,𝐱(0))
𝑑𝑡 ≤ 0 from which it follows that 0 ≤ 𝑣1(𝑡, 𝐱(0)) ≤ 𝑣1(𝐱(0))

for all 𝑡 ≥ 0. Since the sequence
(

𝑣𝑘(𝑡, 𝐱(0))
)

𝑘≥1 is non-increasing, we have 0 ≤ 𝑣𝑘(𝑡, 𝐱(0)) ≤ 𝑣1(𝐱(0)) for all 𝑘 ≥ 1 and for all 𝑡 ≥ 0.
his proves that 𝑣𝑘(𝑡, 𝐱(0)) is uniformly bounded in 𝑡 for each 𝑘 ≥ 1 if 𝐱(0) ≥ 𝐱∗. Now consider the case 𝐱(0) ≤ 𝐱∗. From Lemma 11

t follows that for 𝐱(0) ≤ 𝐱∗, we have 𝐱(𝑡, 𝐱(0)) ≤ 𝐱∗ for all 𝑡 ≥ 0. Therefore, we have 𝑣1(𝑡, 𝐱(0)) ≤ 𝑣1(𝐱∗) for all 𝑡 ≥ 0. This shows that
he component 𝑣𝑘(𝑡, 𝐱(0)) is uniformly bounded in 𝑡 for each 𝑘 ≥ 1 for 𝐱(0) ≤ 𝐱∗.

Since 𝑣𝑘(𝑡, 𝐱(0)) is uniformly bounded in 𝑡, the convergence 𝑥𝑖(𝑡, 𝐱(0)) → 𝑥∗𝑖 for all 𝑖 ≥ 1 will follow from

∫

∞

0
(𝑥𝑖(𝑡, 𝐱(0)) − 𝑥∗𝑖 )𝑑𝑡 < ∞, ∀𝑖 ≥ 1, (48)

or the case 𝐱(0) ≥ 𝐱∗ and from

∫

∞

0
(𝑥∗𝑖 − 𝑥𝑖(𝑡, 𝐱(0)))𝑑𝑡 < ∞, 𝑖 ≥ 1, (49)

or the case 𝐱(0) ≤ 𝐱∗. We now prove (48) to show convergence for the case 𝐱(0) ≥ 𝐱∗; the proof of other case follows similarly.
18
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We will use induction starting with 𝑖 = 1. We can write (48) for 𝑖 = 1 as

∫

𝜏

0
(𝑥1(𝑡, 𝐱(0)) − 𝑥∗1)𝑑𝑡 = ∫

𝜏

0
(𝑥1(𝑡, 𝐱(0)) − 𝜆)

= −∫

𝜏

0

𝑑𝑣1(𝑡, 𝐱(0))
𝑑𝑡

𝑑𝑡

= 𝑣1(𝐱(0)) − 𝑣1(𝜏, 𝐱(0))
≤ 𝑣1(𝐱(0)),

where the second equality follows from (46) and the inequality follows as 𝑣1(𝑡, 𝐱(0)) is uniformly bounded in 𝑡. Observe that the
right hand side is bounded by a constant for all 𝜏, the integral on the left hand side must converge as 𝜏 → ∞. This shows that
𝑥1(𝑡, 𝐱(0)) → 𝑥∗1 as 𝑡 → ∞. Now assume that (48) is true for all 𝑖 ≤ 𝐿 − 1. For 𝑖 = 𝐿 we can write (48) as

∫

𝜏

0
(𝑥𝐿(𝑡, 𝐱(0)) − 𝑥∗𝐿)𝑑𝑡 = ∫

𝜏

0

[−𝑑𝑣𝐿(𝑡, 𝐱(0))
𝑑𝑡

+ 𝜆
{

(1 − 𝜖)𝑥𝑑𝐿−1(𝑡, 𝐱(0)) + 𝜖(1 − (1 − 𝑥𝐿−1(𝑡, 𝐱(0)))𝑑 )
}

− 𝜆(1 − 𝜖)(𝑥∗𝐿−1)
𝑑 − 𝜆𝜖(1 − (1 − 𝑥∗𝐿−1)

𝑑 )
]

𝑑𝑡,

= 𝑣𝐿(𝐱(0)) − 𝑣𝐿(𝜏, 𝐱(0)) + ∫

𝜏

0

[

𝜆(1 − 𝜖)(𝑥𝑑𝐿−1(𝑡, 𝐱(0))

− (𝑥∗𝐿−1)
𝑑 ) + 𝜆𝜖

{

(1 − 𝑥𝐿−1(𝑡, 𝐱(0)))𝑑 − (1 − 𝑥∗𝐿−1)
𝑑}

]

𝑑𝑡,

≤ 𝑣𝐿(𝐱(0)) + ∫

𝜏

0
𝜆
[

𝑑(1 − 𝜖)(𝑥𝐿−1(𝑡, 𝐱(0)) − (𝑥∗𝐿−1))
]

𝑑𝑡

+ ∫

𝜏

0
𝜆
[

𝑑𝜖(𝑥𝐿−1(𝑡, 𝐱(0)) − 𝑥∗𝐿−1)
]

𝑑𝑡,

where the first equality follows from (45) for 𝑘 = 𝐿 and from (10) for 𝑘 = 𝐿. Moreover, the inequality follows as 𝑣𝐿(𝑡, 𝐱(0)) is
uniformly bounded in 𝑡 and using 𝑎𝑑 − 𝑏𝑑 expansion for 0 ≤ 𝑎, 𝑏 ≤ 1. Furthermore, by the induction hypothesis, the last two integral
on the right hand side of above inequality converges as 𝜏 → ∞. Hence, the integral on the left hand side also must converge as
required.

Limit Interchange: We know from Theorem 1.(ii) that for 𝜖 ∈ [0, 1], 𝑑 ≥ 2 and 𝜆 < min(1, 1∕𝑑𝜖) we have

E𝜋𝑛

[

∑

𝑖≥1
𝑥𝑛𝑖 (∞)

]

≤ 𝜆
1 − max(1, 𝑑𝜖)𝜆

.

Therefore, using the global stability result and the process convergence result of the Pod-𝜖 scheme, the limit interchange follows
using similar argument as proved for the Pod-(𝑔, 𝜖) scheme.

6.3. Heavy-traffic limit of the Pod-𝜖 scheme

In this section we prove Theorem 3.(iii), which computes the ratio of the average response time of jobs under the Pod-𝜖 scheme
with the logarithmic of average response time of jobs under the random scheme as 𝜆 → 1. We first bound the recursion given in (10)
for 𝑘 ≥ 1 as

𝑥∗𝑘 = 𝜆
[

(1 − 𝜖)(𝑥∗𝑘−1)
𝑑 + 𝜖(1 − (1 − 𝑥∗𝑘−1)

𝑑 )
]

= 𝜆

[

(1 − 𝜖)(𝑥∗𝑘−1)
𝑑 + 𝜖

{

𝑥∗𝑘−1

(

1 +
𝑑
∑

𝑗=2
(1 − 𝑥∗𝑘−1)

𝑗−1

)}]

≤ 𝜆
[

(1 − 𝜖)(𝑥∗𝑘−1)
𝑑 + 𝜖

{

𝑥∗𝑘−1(1 + (𝑑 − 1)(1 − 𝑥∗𝑘−1))
}]

= 𝜆
[

(1 − 𝜖)(𝑥∗𝑘−1)
𝑑 + 𝜖𝑑𝑥∗𝑘−1 − (𝑑 − 1)𝜖(𝑥∗𝑘−1)

2]

≤ 𝜆
[

(1 − 𝜖)(𝑥∗𝑘−1)
𝑑 + 𝜖𝑑𝑥∗𝑘−1 − (𝑑 − 1)𝜖(𝑥∗𝑘−1)

𝑑]

= 𝜆
[

(1 − 𝑑𝜖)(𝑥∗𝑘−1)
𝑑 + 𝜖𝑑𝑥∗𝑘−1

]

,

where the first inequality follows as (1 − 𝑥∗𝑘−1)
𝑗−1 ≤ (1 − 𝑥∗𝑘−1) and the second inequality follows as (𝑥∗𝑘−1)

2 ≥ (𝑥∗𝑘−1)
𝑑 . Therefore, we

an write

𝑥∗𝑘 ≤ 𝑇𝜆,𝜖(𝑥∗𝑘−1) = 𝜆
2
∑

𝑖=1
𝑎𝑖(𝑥∗𝑘−1)

𝑑𝑖 , ∀𝑘 ≥ 1, (50)
19

here 𝑎1 = (1 − 𝑑𝜖), 𝑎2 = 𝑑𝜖, 𝑑1 = 𝑑, and 𝑑2 = 1. Hence, the result now follows from Theorem 4.5 of [35].
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7. Conclusion and future works

In this paper, we analysed the effects of load comparison errors on the performance of the Pod scheme. We considered two
odels of error. For the load-dependent error model, we showed that the Pod scheme retains its benefits over the random scheme

n the heavy traffic limit 𝜆 → 1 for all values of 𝑔 and 𝜖. For the load-independent error model, we have shown that the Pod scheme
etains its benefits over the random scheme only if the probability of error 𝜖 ≤ 1∕𝑑. We introduced a general framework using
yapunov functions to prove stability and uniform bounds for our schemes. We also use a new approach to establish the mean-field
imit results as the fixed point does not admit a recursive solution.

There are many interesting directions for further research. We have analysed the performance of the Pod-(𝑔, 𝜖) scheme assuming
to be constant independent of 𝑛. It will be interesting to see the effect of varying 𝑔 as a function of 𝑛. Another direction is to study

he effects of delay in receiving the queue length information at the dispatcher. A more explicit delay dependent error model can
e considered. Here, the challenge will be to analyse the effect of the delay on the performance of the Pod scheme. Establishing
he validity of refined mean-field approximations for the error models is also a challenging research direction as it requires the
xponential stability of the fixed points.
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