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Abstract. The 2-dimensional Lyness map is a 5-periodic birational map of the plane which
may famously be resolved to give an automorphism of a log Calabi–Yau surface, given
by the complement of an anticanonical pentagon of (−1)-curves in a del Pezzo surface of
degree 5. This surface has many remarkable properties and, in particular, it is mirror to itself.
We construct the 3-dimensional big brother of this surface by considering the 3-dimensional
Lynessmap,which is an 8-periodic birationalmap. The varietywe obtain is a special (non-Q-
factorial) affine Fano 3-fold of type V12, and we show that it is a self-mirror log Calabi–Yau
3-fold.
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1. Introduction

1.1. The Lyness map

Definition 1.1. The d-dimensional Lyness map σd ∈ Bir(Cd) is the birational map

σd (x1, x2, . . . , xd−1, xd) =
(
x2, x3, . . . , xd ,

1+ x2 + · · · + xd
x1

)
.

By iterating σ±1d , we can consider an associated sequence of rational functions
(xi : i ∈ Z), where xi ∈ C(x1, . . . , xd) is defined inductively for i > d and i < 1
by using the d-dimensional Lyness recurrence relation

xi xd+i = 1+ xi+1 + · · · + xd+i−1, ∀i ∈ Z. (LRd )
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Low dimensional behaviour In dimensions d ≤ 3 the recurrence relation (LRd ) is
very well behaved, with two very nice and surprising properties: it is periodic, and
the sequence of rational functions (xi : i ∈ Z) possesses a Laurent phenomenon.
In other words, this sequence is actually a sequence of Laurent polynomials xi ∈
C[x±11 , . . . , x±1d ].
Higher dimensional behaviourUnfortunately, for all d ≥ 4 the recurrence relation
(LRd ) ismuchmore badly behaved, something that is also reflected in the dynamical
behaviour of σd . It is no longer periodic; nor does it have a Laurent phenomenon.
Because of this there seems to be no straightforward way of generalising the very
attractive log Calabi–Yau varieties (or their scattering diagrams) described in this
paper when d = 2 or 3.

1.2. A tale of two log Calabi–Yau varieties

The two recurrences (LR2) and (LR3) can be used to construct two affine logCalabi–
Yau varieties. The first is the famous affine del Pezzo surface of degree 5; the second
is an affine Fano 3-fold of type V12.1 As we will recall in Sect. 2, affine log Calabi–
Yau varieties (satisfying some suitable technical hypotheses) are expected to enjoy
some remarkable properties coming from mirror symmetry. In particular, there is a
conjectural involution on the set of such varieties which, for a given log Calabi–Yau
variety U , associates a mirror U �. According to a conjecture of Gross, Hacking
& Keel (cf. Conjecture 2.5), one feature of the relationship between U and U � is
that there is expected to be a special additive basis of the coordinate ring of U �,
called the basis of theta functions, whose elements correspond (roughly speaking)
to boundary divisors in compactifications of U , and vice-versa.

1.2.1. Dimension 2 and the del Pezzo surface dP5 In dimension 2 the recurrence
relation (LR2) generates a 5-periodic sequence (xi : i ∈ Z/5Z). In terms of x1 and
x2, the solution is given by

x3 = x2 + 1

x1
, x4 = x1 + x2 + 1

x1x2
and x5 = x1 + 1

x2
.

These are well-known as the five cluster variables appearing in the simplest non-
trivial cluster algebra: the cluster algebra of type A2. As we recall in Sect. 3, the
associated cluster variety is an affine surface U ⊂ A5 whose coordinate ring is
generated by x1, . . . , x5 and can be realised as the interior of the log Calabi–Yau
pair (X, D), where X ⊂ P5 is a del Pezzo surface of degree 5 and D =∑5

i=1 Di is
an anticanonical pentagon of (−1)-curves. The varietyU is known to be self-mirror
[17, Example 5.9], i.e. the mirrorU � is isomorphic toU . In terms of the conjecture
mentioned above, this mirror correspondence places the five boundary components
Di in a natural one-to-one correspondence with the five cluster variables xi .

1 Recall that a Fano 3-fold of type V12 is obtained by taking the intersection of the
orthogonal Grassmannian OGr(5, 10) ⊂ P15 in its spinor embedding with a linear subspace
of codimension 7.
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(a) (b) (c)

Fig. 1. The correspondence between boundary divisors and theta functions on the mirror for
a del Pezzo surface X of degree 5, b the Fano 3-fold XP of type V12 and c the Fano 3-fold
XQ of type V16

The mirror of a complex projective Fano variety is expected to be a Landau–
Ginzburg model (V, w), i.e. a quasiprojective algebraic variety V over C equipped
with a holomorphic surjective function w : V → C, called a Landau–Ginzburg
potential. Therefore, for our log Calabi–Yau varietyU , adding the boundary divisor
D to obtain the del Pezzo surface X corresponds to decorating the mirror U � ∼= U
with a holomorphic function. In this case, summing the five cluster variables that
correspond to the components of D defines a potential w = x1 + · · · + x5 for a
Landau–Ginzburg model w : U → C which is mirror to X .

1.2.2. Dimension 3 and theFano3-fold V12 In dimension 3 the recurrence relation
(LR3) generates an 8-perodic sequence (xi : i ∈ Z/8Z). Expanding in terms of x1,
x2, x3 we have

x4 = x2 + x3 + 1

x1
x5 = (x1 + 1)(x3 + 1)+ x2

x1x2

x6 = (x1 + x2 + 1)(x2 + x3 + 1)

x1x2x3

x7 = (x1 + 1)(x3 + 1)+ x2
x2x3

and x8 = x1 + x2 + 1

x3
.

These rational functions satisfy eight relations of the form xi−1xi+2 = 1+xi+xi+1
and we observe that x1, . . . , x8 satisfy two further relations: x1x5 = x3x7 and
x2x6 = x4x8. In analogy to the dimension 2 case, we will see in Sect. 4 that the ring
generated by the eight variables x1, . . . , x8 defines an algebraic variety U ⊂ A8

which is also a kind of cluster variety (in the sense of Definition 2.6(3)). This
varietyU is the interior of a log Calabi–Yau pair (XP , DP ), where XP is a special
(non-Q-factorial) Fano 3-fold of type V12 and DP ∈ |−KX | is a boundary divisor
with ten components. Eight components are isomorphic to P2, two components are
isomorphic to P1 × P1 and they meet along their toric boundary strata according
to the polytope P shown in Fig. 1b.

Like the affine del Pezzo surface before it, we will see that this 3-fold U is
also self-mirror. However, in contrast to the two dimensional case, there is now a
problem: we have ten boundary divisors but only eight cluster variables. Moreover
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the Landau–Ginzburg model wP : U → C defined by the potential wP := x1 +
· · · + x8 does not have the right period sequence to be a mirror for a Fano 3-fold of
type V12. Instead the period sequence of wP suggests that it is a mirror to a Fano
3-fold of type V16 (cf. Sect. 4.4.1).

The explanation for this difference is that the eight P2 components of DP corre-
spond to the eight cluster variables xi , but the two P1×P1 components correspond
to two ‘missing’ cluster variables

q1 = x1x5 − 1 = (x1 + 1)(x3 + 1)

x2
and

q2 = x2x6 − 1 = (x1 + x2 + x3 + 1)(x2 + 1)

x1x3
,

which are invariants for the squared Lyness map σ 2
3 . The new variables q1 and

q2 appear in the derivation of a cluster algebra-like exchange graph for U (cf.
Sect. 4.2.2). Adjoining q1 and q2 to the ringC[XP ] corresponds to a birational map
(an unprojection in the languange of Miles Reid) mapping XP onto a 3-fold XQ

ψ : XP ⊂ P8
(x0:x1:···:x8) ��� XQ ⊂ P10

(x0:x1:···:x8:q1:q2)

which blows up and then contracts the two (non-Cartier)Weil divisors in the bound-
ary of XP corresponding to q1 and q2. This extends to a birational map of pairs
ψ : (XP , DP ) ��� (XQ, DQ), where XQ is a degenerate Fano 3-fold of type V16
and DQ is an anticanonical boundary divisor with eight P1×P1 components meet-
ing according to the polytope Q displayed in Fig. 1c.

Finally, summing the ten cluster variables that generate the coordinate ring of
XQ gives a potential wQ := x1+· · ·+ x8+q1+q2 for a Landau–Ginzburg model
wQ : U → Cwith the correct period sequence to be mirror to a Fano 3-fold of type
V12. Thus in this example the Landau–Ginzburg model (U, wP ) is mirror to the
Fano variety XQ and the Landau–Ginzburg model (U, wQ) is mirror to the Fano
variety XP .

1.2.3. Generalising Borisov–Batyrev duality We note that the two polytopes P
and Q appearing in Fig. 1 are combinatorially dual to one another. We will go one
step further and interpret them as dual reflexive polytopes in the tropicalisation of
U , a self-dual integral affine manifold with singularities, which we denote by NU .
This duality can then be generalised for any pair of dual reflexive polytopes in NU

and is the analogue of Borisov–Batyrev duality in the ordinary toric setting.

1.3. Summary

1.3.1. Contents In Sect. 2 we give a brief overview of mirror symmetry for log
Calabi–Yau varieties, which is intended as motivational context for the rest of the
paper. In particular we explain how to construct the tropicalisation NU of a log
Calabi–Yau variety U which is an integral affine manifold with singularities. We
explain how to construct polytopes inside this space NU and how they can be
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dualised to give polytopes in NV , a dual integral affine manifold with singularities
corresponding to the mirror log Calabi–Yau variety V = U �.

In Sect. 3 we discuss the well-known affine del Pezzo surface U of degree 5
related to the 2-dimensional Lyness recurrence (LR2). In particular we describe the
cluster structure onU , the tropicalisation NU andwe show that NU is self-dual as an
integral affine manifold with singularities. We then give some examples of mirror
symmetry for pairs of reflexive polygons in NU . In Sect. 4 we repeat all of this to
do a similar analysis for the affine 3-fold of type V12 related to the 3-dimensional
Lyness recurrence (LR3).

1.3.2. The significance of being self-mirror Assuming the Strominger–Yau–
Zaslow conjecture, a log Calabi–Yau variety U and its mirror U � are fibred by
dual Lagrangian tori. Since real 2-tori are self-dual, every log Calabi–Yau surface
is diffeomorphic to its mirror, and thus the fact that the affine del Pezzo surface
U = X\D of Sect. 1.2.1 is self-mirror is not that surprising. In fact, all maxi-
mal positive log Calabi–Yau surfaces are deformation equivalent to their mirror
[22]. However, for a higher dimensional log Calabi–Yau variety to be self-mirror
is unusual, and even in dimension 3 not many examples are known. Thus, from
the point of view of mirror symmetry, the log Calabi–Yau 3-fold that we study in
Sect. 4 is very special.

2. Mirror symmetry and log Calabi–Yau varieties

This section is intended as a motivational context for the rest of the paper and as
such we refer the reader to [14,17] for more detailed accounts.

2.1. Log Calabi–Yau varieties

Definition 2.1. A log Calabi–Yau pair is a pair (X, D) consisting of a smooth
complex projective variety X and a reduced effective integral anticanonical divisor
D ∈ |−KX |with simple normal crossings.2 We call the interior of a log Calabi–Yau
pair U = X\D a log Calabi–Yau variety.

A log Calabi–Yau variety U is naturally equipped with a nonvanishing holo-
morphic volume form �U in the following way. The boundary divisor D = div sX
is cut out by a section sX ∈ H0(X,−KX ) so, after restricting to U , we get the
volume form �U = (sX |U )−1 ∈ H0(U, KU ) which has simple poles along the
components of D. Since �U is only determined up to rescaling by a constant, we
may assume that �U is normalised so that

∫
γ

�U = 1, where γ is the class of the

2 The smoothness and simple normal crossings assumptions are made purely for sim-
plicity. More generally one could consider (X, D) to be a pair with Q-factorial divisorial
log terminal singularities (although we note that the ‘natural’ compactification of the 3-fold
cluster variety appearing in Sect. 4 is not Q-factorial).
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real n-torus which expected to be the fibre in the SYZ fibration.3 The natural frame-
work within which we would now like to work is the category of log Calabi–Yau
varieties and volume preserving birational maps, i.e. birational maps φ : U ��� V
such that φ∗�V = �U .

Example 2.2. The prototypical example of a log Calabi–Yau variety is the algebraic
torus TN = C× ⊗Z N associated to a lattice N ∼= Zd . The volume form on TN is
given by �TN = (2π i)−d dz1

z1
∧ · · · ∧ dzd

zd
. There are two dual lattices associated

to TN : the cocharacter lattice N , whose points correspond to divisorial valuations
along toric boundary divisors, and the character lattice M = Hom(N ,Z), whose
points m ∈ M correspond to monomial functions zm = zm1

1 . . . zmd
d on TN =

SpecC[M]. These monomials form a natural additive basis for the coordinate ring
of TN .

Note that the roles of the two lattices N andM are interchangedwhenwe replace
the torusTN by its dual (or ‘mirror’) torusTM . A key idea ofGross, Hacking&Keel
is that one can introduce an object that serves as a generalisation of the cocharacter
lattice for an arbitrary log Calabi–Yau variety.

Definition 2.3. Given a log Calabi–Yau variety U with volume form �U , the set
of integral tropical points of U is given by

NU (Z) = {divisorial valuations ν : C(U )\{0} → Z such that ν(�U ) < 0} ∪ {0}.
The set NU (Z) is more commonly referred to as U trop(Z) in the literature,

but our notation is chosen to emphasise the fact that NU (Z) is supposed to be a
generalisation of the cocharacter lattice N whenU = TN . Indeed, as a set we have
that NTN (Z) = N .

2.1.1. The conjecture of Gross, Hacking & Keel Gross, Hacking & Keel have
conjectured that an analogue for the character lattice also exists for U , which gen-
eralises the duality enjoyed by tori to pairs of mirror log Calabi–Yau varieties.
Before stating their conjecture we need to introduce two technical hypotheses.

Definition 2.4. Let (X, D) be a d-dimensional log Calabi–Yau pair with interior
U = X\D. We callU positive if D supports an ample divisor and we say thatU has
maximal boundary if D contains a 0-stratum (i.e. a point at which d components
of D meet transversely).

From now on we will assume that all log Calabi–Yau varieties are positive and
have maximal boundary. The assumption that U is positive is useful because it
implies that U is affine. The maximal boundary condition is introduced to ensure
that the set of integral tropical points NU (Z) is as big as possible. In Sect. 2.3.1
we will realise NU (Z) as the set of integral points in a real affine manifold with
singularities NU . In general, the dimension of NU will be equal to the codimension
of the smallest stratum of D.

3 Explicitly, fixing local coordinates z1, . . . , zn in the neighbourhood of a 0-stratum p ∈
D ⊂ X so that D = V(z1 . . . zn), then γ = {(z1, . . . , zn) : |z1| = · · · = |zn | = ε}
for 0 < ε 
 1. This gives a well-defined class [γ ] ∈ Hn(X,C), and the fact that it is
independent of the choice of p follows from [21, Theorem 10].
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Conjecture 2.5. ([12, Conjecture 0.6], cf. [14,17]) Given a positive logCalabi–Yau
variety U with maximal boundary, then there exists a mirror positive log Calabi–
Yau variety V with maximal boundary whose coordinate ringC[V ] has an additive
basis

BV = {ϑn ∈ C[V ] : n ∈ NU (Z)}
parameterised by the integral tropical points of U . The elements of this basis are
called the theta functions of V and are canonically determined up to multiplication
by scalars. The multiplication rule for theta functions ϑaϑb =∑c∈NU

αabcϑc has
structure constants αabc which can be obtained as certain counts of rational curves
in U .

Without fixing a complexified Kähler form on U , the mirror variety V is not
expected to be unique. Indeed, since changing the choice of complexified Kähler
form on U corresponds to changing the complex structure on V , the variety V
should appear as a fibre in a deformation family of mirrors to U . On this level,
mirror symmetry is then an involution in the sense that the mirror of V is a family
of log Calabi–Yau varieties deformation equivalent to U . If U and V are a pair
of mirror log Calabi–Yau varieties as in the statement of the conjecture then let us
writeMU (Z) := NV (Z) andMV (Z) := NU (Z) (indicating that NV (Z) is supposed
to be a generalisation of the character lattice for U , and vice-versa).

2.2. Cluster varieties

2.2.1. Toricmodels Wecan create new examples of logCalabi–Yau varieties from
a given log Calabi–Yau pair (X, D) by considering volume preserving blowups of
X .

Definition 2.6. Consider a log Calabi–Yau pair (X, D)with boundary divisor D =∑k
i=1 Di and interior U = X\D.

1. A toric blowup of (X, D) is a blowup of X along a stratum of D. A nontoric
blowup of (X, D) is a blowup of X along a smooth subvariety Z ⊂ X of
codimension 2, where Z is contained in one of the boundary components Z ⊂
Di and meets the other components of D transversely.

2. We call a log Calabi–Yau pair (X, D) a toric model for U if there exists a
map π : (X, D) → (T, B) to a toric pair (T, B) where π is a composition of
nontoric blowups.

3. We call U a (generalised) cluster variety if it has a toric model.

We use the terminology ‘generalised cluster variety’ since the more commonly
accepted definition of a cluster variety (cf. [17, Definition 3.1]) imposes a second
condition: in addition to the toric model π : (X, D) → (T, B), the variety U is
required to have a nondegenerate holomorphic 2-form σ ∈ H0

(
X,�2

X (log D)
)
.

The existence of this 2-form σ imposes a very strong condition on types of centre
Z ⊂ T that can be blown up by π . In particular it forces Z =⋃k

i=1 Zi to be a union
of hypertori. If we let N and M be the (co)character lattices of the torus T = T \B,
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then a hypertorus is a subvariety of T of the form Zi = V(zmi + λi ) ⊂ Bni , where
λi ∈ C× is some coefficient (usually assumed to be chosen generically), ni ∈ N
determines the boundary divisor Bni ⊂ T containing Zi and mi ∈ n⊥i ⊂ M . Thus
the centres Zi are determined by pairs (ni ,mi ) ∈ N × M . The advantage of this
more restrictive situation is that there is a very simple candidate for the mirror to
U , called the Fock–Goncharov dual of U : for each i = 1, . . . , k we simply swap
the roles of ni ∈ N and mi ∈ M to obtain a ‘mirror’ toric model.

Nevertheless, as we will soon see, the cluster algebra-like combinatorics of
seeds and mutation can be used to describe any log Calabi–Yau variety with a toric
model, and do not rely on the 2-form σ . This fact has led Corti to suggest that this
should be the ‘true’ definition of a cluster variety.

Remark 2.7. Thename ‘generalised cluster variety’ is not ideal, since there aremany
other proposals for a ‘generalised cluster variety’ appearing in the literature. Of
these, it is perhaps closest in spirit to the definition of a Laurent phenomenon alge-
bra given byLamandPylyavskyy [23]. Translated into our language, a Laurent phe-
nomenon algebra is essentially the coordinate ring of a d-dimensional log Calabi–
Yau variety with a toric model given by blowing up d centres Zi ⊂ Hi ⊂ Ad , one
in each of the coordinate hyperplanes Hi of Ad .

2.2.2. Mutations A toric model π : (X, D) → (T, B) for U is determined by a
set of centres

S = {Zi ⊂ T : i = 1, . . . , k}
which comprise the locus Z = ⋃k

i=1 Zi blown up by π . Note that the choice of
toric model for U is not uniquely determined by the set S, since we can modify
our chosen pairs (X, D) and (T, B) by compatible choices of toric blowups or
blowdowns. However the set S does specify a unique torus TS := T \B and a
volume preserving embedding jS := (π−1)|TS : TS ↪→ U . (This inclusion of the
torus TS intoU is the geometric manifestation of the Laurent phenomenon forU .)

Similarly to the (strict) cluster case described above, we can represent each
component of Z in the form Zi = Z(ni , fi ) := V( fi ) ⊂ Bni , where ni ∈ N is a
primitive vector4 and fi ∈ C[n⊥i ∩ M] is a Laurent polynomial. The difference is
now that fi is not constrained to be simply binomial.

Definition 2.8. 1. We call the set S a seed for U and the torus embedding
jS : TS ↪→ U a cluster torus chart of U .

2. Given a pair (n, f ), which represents a centre Z = Z(n, f ) in the boundary of
a toric compactification of a torus T, we define the mutation along Z to be the
birational map μ(n, f ) : T ��� T of the form μ∗(n, f )(z

m) = f −〈n,m〉zm .

Example 2.9. The geometry of a mutation μ = μ(n, f ) is described by Gross et
al. [14, 3.1]. In particular, they show that μ can be viewed as a kind of elementary

4 If we wanted to, we could extend the definition of Z(ni , fi ) to allow arbitrary ni ∈ N
by considering nonreduced centres Z(ni , fi ) = V( f ri ) ⊂ Bn′i , where r ≥ 1 and ni = rn′i
for a primitive vector n′i ∈ N .
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transformation of P1-bundles. Indeed, by blowing up if necessary, we can arrange
for T to contain the two boundary divisors B+ := Bn and B− := B−n and then
consider the toric subvariety T0 ∼=

(
P1 × (C×)d−1

) ⊂ T consisting of the big
open torus T and the relative interior of B+ and B−. Let Z+ = Z(n, f ) and let
E− := V( f ) ⊂ T0. Then they show that the extension of μ to a birational map
μ : T0 ��� T0 is resolved by blowing up the locus Z+ ⊂ B+ and contracting the
strict transform of the divisor E− to the locus Z− = Z(−n, f ) ⊂ B−.

B+ B−

Z+ E−

B+ B−

E+ E− B+ B−

Z−E+

BlZ+ BlZ−

Changing coordinates so that n = (1, 0, . . . , 0), then μ can be assumed to be of
the form

μ∗(z1, z2, . . . , zd) =
(
f (z2, . . . , zd)

−1z1, z2, . . . , zd
)

.

It is convenient to introduce z′1 = z−11 f (z2, . . . , zd) and to distinguish the domain
and codomain of μ : T ��� T′ so that T = (C×)dz1,z2,...,zd , T

′ = (C×)dz′1,z2,...,zd
and μ∗(z′1, z2, . . . , zd) =

(
z−11 , z2, . . . , zd

)
. However note that this map is vol-

ume negating, in the sense that μ∗�T′ = −�T, so the torus T′ should be con-
sidered to come equipped with the negative of its standard volume form. Now
U = BlZ+T0\ (B+ ∪ B−) is the affine variety

U = V
(
z1z

′
1 − f (z2, . . . , zd)

) ⊂ A2
z1,z′1

× (C×)d−1z2,...,zd

and this is covered, up to the complement of a subset � = V(z1, z2, f ) ⊂ U of
codimension two inU , by the two torus chartsT,T′ ↪→ U which are glued together
by μ. The locus � ⊂ U not covered by the two torus charts is the intersection of
the two divisors � = E+ ∩ E−, although since U is normal and affine we have
that U = Spec H0(U\�,OU\�), so these two charts provide enough information
to recover U .

Mutating a seed Example 2.9 gives a complete description of the cluster structure
for a log Calabi–Yau variety U which is determined by a seed S = {Z(n, f )}
with only one centre. In particular there are two cluster torus charts TS = T and
TS′ = T′ where S′ is the seed S = {Z(−n, f )}, and the mutation μ : TS ��� TS′
provides the transition map between them.

In general, for a seed with several centres S = {Zi = Z(ni , fi ) : i ∈ 1, . . . , k}
we can consider applying a mutation μi = μ(ni , fi ) for each i ∈ {1, . . . , k}. For a
given i , we can define a new seed μi S, such that the mutation becomes a map of
cluster torus charts μi : TS ��� Tμi S . To do this, extend μ to a birational map of
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projective toric varieties μ : (T, B) ��� (T ′, B ′). The mutated seed is the set of
centres μi S = {μi Z j : j ∈ 1, . . . k}, such that

μi Z j =
{
Z(−ni , fi ) j = i
CZ j T

′ j �= i

where CZ j T
′ = μi (ηZ j ) denotes the centre of Z j on T ′ (the closure of the image

of the generic point ηZ j under μi ). As μi is volume preserving, it follows that
CZ j T

′ is contained in the boundary of T ′ and is guaranteed to have the form
μi Z j = Z(n′j , f ′j ) for some n′j ∈ N and f ′j ∈ C[n′j ∩ M].
The exchange graph of U The exchange graph forU is the k-regular graph whose
set of vertices is the set of seeds forU and whose set of edges is given bymutations.
An atlas of torus charts for U We can think of the set of seeds forU as giving an
atlas of cluster torus charts jS : TS ↪→ U which can be glued together by transition
maps which are the mutations. By [14, Proposition 2.4], from any initial seed S we
can consider the scheme

U 0 = TS ∪
k⋃

i=1
Tμi S

obtained by gluing all the cluster tori which are one mutation away from S. In
general there are some issues with this construction. In particular, U 0 may not be
separated if two centres have nonempty intersection Zi ∩ Z j �= ∅. However, if
all of the centres Zi are disjoint then the maps jμi S : Tμi S ↪→ U glue to give an
embedding j : U 0 ↪→ U , which covers U up to a set � = U\U 0 of codimension
at least 2 [14, Lemma 3.5]. If U is positive (and hence affine) then we have U =
Spec H0(U 0,OU0) as in Example 2.9.

2.2.3. Examples It is natural to wonder whether there is a more explicit combi-
natorial formula describing the effect of a mutation μi on the set of pairs (n j , f j )
that define the other centres Z j = Z(n j , f j ) in the seed, as there is in the ordi-
nary cluster case [14, Equation 2.3]. Unfortunately, at this level of generality the
mutations are somewhat more complicated to keep track of, and the location of the
centre μi Z j depends crucially on the exact form of fi and f j . It is natural to hope
that if Z j ⊂ Bn j , then μi Z j ⊂ μi Bn j , i.e. that Z j remains in the same boundary
component after the mutation. However this is not necessarily the case. We give a
couple of examples to see the kind of difficulties that can occur.

Definition 2.10. Consider a seed S = {Z1, . . . , Zk}, a choice of mutation μi and a
centre Z j with j �= i . We say that Z j makes an unexpected jump ifμi Z j �⊂ μi Bn j .

Example 2.11. We consider a toricmodelπ : (X, D) → (A3, B) obtained by blow-
ing up three centres which are contained in the coordinate hyperplanes of A3:

Z1 = Z
(
(1, 0, 0), 1+ z2

)
, Z2 = Z

(
(0, 0, 1), 1+ z2

)
,

Z3 = Z
(
(0, 0, 1), 1+ z1

)
.
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Consider the mutation along Z1. From the geometric description given above, μ1
blows up Z1 and contracts the strict transform of the divisor E1 = V(1+ z2) ⊂ A3

to the centre μ1Z1 = Z ((−1, 0, 0), 1+ z2) at infinity. Since μ∗1(1+ z−11 + z2) =
(1 + z−11 )(1 + z2), it is also straightforward to see that the mutation sends Z3 to

μ1Z3 = Z
(
(0, 0, 1), 1+ z−11 + z2

)
. However, since Z2 ⊂ E1, the contraction

of the strict transform of E1 moves the centre of Z2 out of the divisor B(0,0,1). We
get μ1Z2 = Z ((−1, 0, 1), 1+ z2) and thus Z2 makes an unexpected jump. We
illustrate the effect of the mutation on the centres in the following diagram, where
the centres Zi have been drawn ‘tropically’.

Z1

Z2

Z3

•
μ1Z1

μ1Z2

μ1Z3
μ1

The bad behaviour demonstrated in Example 2.11 looks like it can be fixed
by introducing a generic coefficient λ ∈ C× and deforming the centre Z2 to
Z ((0, 0, 1), λ+ z2). Then we will no longer have the inclusion Z2 ⊂ E1 and the
mutation μ1 will keep Z2 and Z3 inside the same boundary component. Unfortu-
nately, as we show in the next example, it is not always possible to avoid unexpected
jumps, even if we start from a seedwhere all of the centres have generic coefficients.

Example 2.12. Consider the toric model π : (X, D) → (A3, B) obtained by blow-
ing up three centres

Z1 = Z
(
(1, 0, 0), a1 + a2z2 + a3z3

)
,

Z2 = Z
(
(0, 1, 0), b1z1 + b2 + b3z3

)
,

Z3 = Z
(
(0, 0, 1), c1z1 + c2z2 + c3

)
where ai , bi , ci ∈ C× are generic coefficients. This seed consists of three general
lines, one in each of the three coordinate hyperplanes of A3. We can apply the
mutation μ1 along Z1 to obtain a new seed:

Z ′1 := μ1Z1 = Z
(
(−1, 0, 0), a1 + a2z2 + a3z3

)
,

Z ′2 := μ1Z2 = Z
(
(0, 1, 0), b1(a1 + a3z3)+ z−11 (b2 + b3z3)

)
,

Z ′3 := μ1Z3 = Z
(
(0, 0, 1), c1(a1 + a2z2)+ z−11 (c2z2 + c3)

)
.

We note that Z ′1 and Z ′2 intersect in a point p = V(z−11 , z2, a1 + a3z3) belonging
to the intersection of their boundary components. If we now apply the mutation μ2
along Z ′2 then we compute that the total transform of the centre Z ′1 is reducible and
given by

Z
(
(−1, 0, 0), z−12 + a2b1

) ∪ Z
(
(−1, 0, 0), a1 + a3z3

)
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where the first component is the centre μ2Z ′1 and the second component is the
exceptional line p′ over the point p (represented by the dashed vertical line in the
third diagram below). Therefore mutating the seed at Z ′2 gives

Z ′′1 := μ2Z
′
1 = Z

(
(−1, 0, 0), z−12 + a2b1

)
,

Z ′′2 := μ2Z
′
2 = Z

(
(0,−1, 0), b1(a1 + a3z3)+ z−11 (b2 + b3z3)

)
,

Z ′′3 := μ2Z
′
3 = Z

(
(0, 0, 1), (a2c1 + c2z

−1
1 )(a1b1 + b2z

−1
1 )+ z−12 (a1c1 + c3z

−1
1 )
)
.

We draw the sequence of mutations with the centres represented tropically, as
before.

Z1

Z2

Z3
Z ′1

Z ′2

Z ′3

• p

Z ′′1

Z ′′2

Z ′′3

p′
μ1 μ2

We now see that Z ′′1 is contained in the hypersurface determined by the equation
of Z ′′3 and so, in exactly the same style as Example 2.11, if we mutate this last seed
at Z ′′3 then Z ′′1 will make an unexpected jump.

2.3. The tropicalisation of a log Calabi–Yau variety

2.3.1. The tropicalisation of U The cocharacter lattice of a torus comes with
some extra structure that we would like to generalise to NU (Z). There is no group
structure on NU (Z) in general. Instead (as hinted above) the right way to proceed
is to try and realise NU (Z) as the integral points of a real affine manifold NU , in the
same way that the lattice N can be realised as the set of integral points of the real
vector space NR := N⊗ZR. This can be done, but only by introducing singularities
into the affine structure on NU . The space NU thus obtained is an integral affine
manifold with singularities and is referred to as the tropicalisation of U .

One can build NU directly, by choosing a compactification5 (X, D) of U and
defining NU to be the cone over the dual intersection complex of the bound-
ary divisor D [17]. However, for log Calabi–Yau varieties with a toric model
π : (X, D) → (T, B) then, by generalising the 2-dimensional case covered in
[12, 1.2], there is a natural way to build the space NU by altering the affine struc-
ture on the cocharacter space NR of the torus TS = T \B. In particular, if U has a
toric model then, as a real manifold, NU is homeomorphic to NR

∼= Rd .
For simplicity (and because it applies in the case we study later on) we assume

that (X, D) and (T, B) are smooth, and the centres Zi ⊂ T blown up by π are

5 Despite the potentially misleading notation, in dimension d ≥ 3 the construction of NU
is actually dependent on the choice of a compactification (X, D) of U . Different choices of
compactification lead to affine structures on NU which differ up to integral piecewise-linear
homeomorphism, cf. [17, Definition 3.8].
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smooth and disjoint. Let F be the fan in NR that defines (T, B) and consider
a pair of maximal smooth cones σ1, σ2 of F that meet along a codimension 2
face τ = σ1 ∩ σ2. We can write σ1 = 〈v1, . . . , vd〉, σ2 = 〈v2, . . . , vd+1〉 and
τ = 〈v2, . . . , vd〉 for some choice of primitive vectors v1, . . . , vd+1 ∈ N . Now
the cone τ corresponds to a torus invariant curve Cτ

∼= P1 ⊂ T and therefore
also a curve Cτ = π−1(Cτ ) in the boundary of (X, D). Similarly the vectors vi
correspond to the set of boundary divisors Di = Dvi ⊂ D meeting Cτ . Consider
the linear map ψ : σ1 ∪ σ2 → Rd defined by

ψ(vi ) = ei for i = 1, . . . , d, and ψ(vd+1) = −e1 −
d∑

i=2
(Di · Cτ )ei ,

where e1, . . . , ed are the standard basis vectors ofRd . This sendsσ1 onto the positive
orthant σ ′1 ⊂ Rd and σ2 onto an appropriately chosen cone σ ′2 ⊂ Rd , which has
been cooked up so that the toric variety defined by the fan with the two maximal
cones σ ′1, σ ′2 contains a projective curve, Cτ ′ for τ ′ = σ ′1 ∩ σ ′2, which has identical
intersection numbers with boundary divisors as the curve Cτ ⊂ X .

To define the tropicalisation NU we let N sing
U be the union of cones of F of

codimension ≥ 2 and N 0
U = NU\N sing

U . To define the affine structure on N 0
U ,

for any pair of maximal cones σ1, σ2 in F as above we consider the integral affine
structure on int(σ1∪σ2) given by pulling back the integral affine structure onRd by
the map ψ |int(σ1∪σ2). In particular, we have the following condition, in terms of the
intersection theory on X , to tell when a piecewise linear function is actually linear
along some codimension 2 cone of F [24, 1.3]. Suppose that φ : int(σ1 ∪ σ2)→ R

is a piecewise-linear function which is linear on each of the cones σ1, σ2. This
determines a Weil divisor �φ =∑d+1

i=1 φ(vi )Dvi on X . Then φ is linear along the
interior of τ = σ1 ∩ σ2 if �φ · Cτ = 0.

The sets of the form int(σ1 ∪ σ2) cover N 0
U , and these glue together to give an

affine structure on N 0
U . It may or may not be possible to extend this over some,

or all, of the cones of N sing
U , so at this point it is customary to redefine N 0

U to
be the maximal subset of NU on which this affine structure extends and then set
N sing
U = NU\N 0

U . We call N sing
U the singular locus of NU . We note that the subset

of integral tropical points NU (Z) ⊂ NU is identified with the cocharacter lattice
N ∼= Zd of NR by this construction.

2.3.2. Scattering diagrams Given a log Calabi–Yau varietyU , the approach pio-
neered in [12] to proving Conjecture 2.5 in the 2-dimensional setting is to construct
the ring C[V ] directly from the tropicalisation NU , by equipping NU with the
structure of a consistent scattering diagram.

We begin by working in NR, where N = Zd is a lattice with dual lattice
M = Hom(N ,Z). In general, one has to be able to work with formal power series
that have exponents in N , for example by choosing a strictly convex cone σ ⊂ N
andworkingwith the ringC[[σ∩N ]] (or else by introducing some formal parameters
to control the convergence). Let m ⊂ C[[σ ∩ N ]] denote the maximal ideal. A wall
in NR is a rational polyhedral cone di ⊂ NR of codimension 1. Roughly speaking, a
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scattering diagram is then a collectionD = {(di , fi ) : i ∈ I } of walls di decorated
with wall functions fi . If ui ∈ M is a primitive vector such that di ⊂ u⊥i , then the
wall function fi ∈ C[[u⊥i ∩ σ ∩ N ]] is a monic power series, i.e. fi ≡ 1 mod m.
The collection of walls is usually not finite and may accumulate in certain regions
of NR, or even all of NR. Moreover the wall functions are almost always infinite
power series, rather than polynomials, in which case there is a further finiteness
condition specifying that only finitely many fi �≡ 1 mod mk for each k ≥ 1.
However, the scattering diagrams constructed for the examples discussed in this
paper are always finite: the set of walls form a finite complete fan F in NR and the
wall functions are all polynomials.

Given any (d, f ) ∈ D, crossing the wall d in the direction of the normal vector
u specifies a wall crossing automorphism

θ(d, f ) : C[[σ ∩ N ]] → C[[σ ∩ N ]] θ(d, f )(z
n) = zn f −〈n,u〉.

The scattering diagram is then called consistent if, for any loop γ : [0, 1] → NR

that begins and ends in a chamber ofD and crosses all walls ofD transversely, the
composition of all the wall crossing automorphisms is the identity.6

Log Calabi–Yau varieties with a toric model Suppose that U is log Calabi–Yau
variety with a toric model π : (X, D) → (T, B) determined by a seed S = {Zi :
i = 1, . . . , k}, where each Zi is a general smooth hypersurface in a component
of B. Let N be the cocharacter lattice of the torus T \B. Under these assumptions
Argüz and Gross [2] give a general inductive method to construct a consistent
scattering diagramDS in NR. They define an initial scattering diagramDS,in which
is supported on the walls of the fan of T which are affected by the nontoric blowup
π . Then they give an inductive procedure which can be used to compute a consistent
scattering diagram DS from DS,in [2, Theorem 1.1].

Broken lines In order to use D = DS to construct the coordinate ring C[V ]
of the mirror V = U �, it is important to fix the integral affine structure on NR

by reconsidering D as being a scattering diagram in NU . Now the basis of theta
functions BV = {ϑn ∈ C[V ] : n ∈ NU (Z)} of Conjecture 2.5 are computed by
counting broken lines in NU , which are tropicalisations of certain rational curves
in U . Roughly speaking, a broken line for n ∈ NU (Z) which starts at q ∈ NU is a
parameterised piecewise linear path � : [0,∞) → NU such that

1. �(0) = q,
2. � is allowed to bend finitely many times as it crosses walls of D and,
3. after it makes its last bend, � exits NU with tangent vector �′(t) = n.

If we let t0 = 0, tk+1 = ∞ and t1, . . . , tk ∈ R>0 be the times at which � bends,
and (di , fi ) be the corresponding walls of D. Then we can associate a monomial
mi ∈ C[N ] to each domain of linearity (ti , ti+1) of �. This is done inductively by
labelling the last domain of linearity (tk,∞) with mk := zn , and then labelling
(ti−1, ti ) with a monomial mi−1 appearing in the expansion of θ(di , fi )(mi ) which
is dictated to us by the bend that � makes along the i th wall.

6 This composition has to be defining inductively, working modulo successive powers of
mk , when γ crosses infinitely many walls ofD.
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Theta functions Fix an initial point q ∈ NU , which is assumed to be a suit-
ably generic (i.e. irrational) point of NU to ensure that � crosses all walls of D
transversely. The theta function ϑn can be expanded as a Laurent power series7

ϑn =∑� m� ∈ C[[N ]] obtained by taking the sum over all broken lines for n which
start at q, wherem� := m0 is the monomial attached to the first domain of linearity
of � obtained by the process described above. These theta functions then form an
additive basis for a ring which is expected to be the coordinate ring of the mirror
variety V = U �.

2.3.3. Generalising toric geometry Once we have constructed the mirror log
Calabi–Yau variety V = U �, we can treat the tropicalisations NU and MU := NV

as an analogue of the cocharacter space and character space for U respectively.
These integral affine manifolds with singularities are equipped with a dual inter-
section pairing and Mandel [24] has used this to generalise many of the traditional
techniques of toric geometry to this setting, particularly in the 2-dimensional case.

The intersection pairing The dual intersection pairing is given by

〈·, ·〉 : NU (Z)× MU (Z)→ Z 〈n,m〉 = νDn (ϑm)

which is given by evaluating the order of vanishing of a theta function ϑm ∈ C[U ]
along a boundary component Dn appearing in a compactification of U . This can
be extended to a pairing 〈·, ·〉 : NU × MU → R by first extending to the rational
points of NU and MU by bilinearity, and then extending to the real valued points
of NU and MU by continuity. At least in the 2-dimensional setting, the intersection
pairing obtained this way is the same the intersection pairing given by switching
the roles of U and V [24, Theorem 1.5].

Convexity in NU Given the intersection pairing, Mandel now defines the (strong)
convex hull of a subset S ⊂ NU to be

conv(S) :=
{
n ∈ NU : 〈n, s〉 ≥ inf

s∈S〈s,m〉, ∀m ∈ MU

}

and similarly for subsets of MU . Then a (strongly) convex subset S ⊂ NU is a
subset for which S = conv(S). A polytope P ⊂ NU is the convex hull of a finite
set S, and we call P integral if P = conv(P ∩ NU (Z)). Moreover we can define
the Newton polytope Newt(ϑ) ⊂ MU for a function ϑ ∈ C[U ] to be

Newt(ϑ) = conv

⎧⎨
⎩m ∈ MU (Z) : ϑ =

∑
m∈MU

αmϑm, αm �= 0

⎫⎬
⎭ .

For any c ∈ R and any m ∈ MU we let (m)≥c denote the ‘halfspace’ of NU

given by

(m)≥c := {n ∈ NU : 〈n,m〉 ≥ c}
7 In a general scattering diagram this expansion is only possible as a formal Laurent power

series, corresponding to counts that involve infinitely many broken lines.
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which, in contrast to the classical setting, may be a bounded subset of NU , or
even empty. Then the polar polytope of a set S ⊂ MU is defined to be S◦ :=⋂

s∈S(ϑs)
≥−1, and these are precisely the convex polytopes of NU that contain the

origin [24, Corollary 5.9]. Note that (P◦)◦) = P . Finally, as in the toric setting,
we can define an integral polytope P ⊂ NU to reflexive if P◦ ⊂ MU is an integral
polytope in MU .

2.4. Mirror symmetry

2.4.1. Mirror symmetry for Fano varieties Let X be a smooth projective d-
dimensional Fano variety over C. As mentioned in the introduction Sect. 1.2.1,
mirror symmetry predicts the existence of amirror Landau–Ginzburgmodel (V, w)

to X . Following [20, 2.1], to make the correspondence more precise we must dec-
orate the two sides of the mirror with some extra data

(
X, sX , ωX

) mirror←−−→ (
(V, w), �V , ωV

)

where ωX and ωV are symplectic forms, sX ∈ H0(X,−KX ) is an anticanonical
section and �V ∈ H0(V, KV ) is a volume form. In particular, the section sX
specifies a boundary divisor D = div sX ∈ |−KX |. In the case that (X, D) is
a Fano compactification of a positive log Calabi–Yau variety U = X\D with
maximal boundary, the mirror Landau Ginzburg model to X will be defined on the
mirror to U , i.e. V = U �. In terms of the mirror correspondence above, deleting
the boundary divisor of X corresponds to forgetting the potential on V .

From the point of view of homological mirror symmetry, there are now various
flavours of the Fukaya category and derived category that one can associate to either
side of this correspondence which are conjectured to be equivalent. However we
take a slightly more low-tech point of view championed by the Fanosearch program
[7], as we now describe.

2.4.2. Landau–Ginzburg mirrors There is a test one can apply to check whether
a given Landau–Ginzburg model (V, w) is a possible mirror to a given Fano variety
X , which is to compute the (classical) period of w,

πw(t) =
∫
V

�V

1− tw
∈ C[[t]].

This calculation is particularly simple in the case that V has a toric model, corre-
sponding to the inclusion of a cluster torus chart j : T ↪→ V . After restricting w to
T, we obtain a Laurent polynomial w|T ∈ C[x±11 , . . . , x±1d ] and it follows that

πw(t) = πw|T(t) =
∞∑
n=0

const
(
(w|T)n

)
tn,

which can be seen by expanding (1− tw|T)−1 as a power series in t and repeatedly
applying Cauchy’s residue theorem. Under mirror symmetry, πw(t) is expected to
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equal the regularised quantum period ĜX (t) of X , which is a power series whose
coefficients encode certain Gromov–Witten invariants for X (see [8, A] for details).
For all of the 105 smooth 3-dimensional Fano varieties X , the regularised quantum
period ĜX (t) has been computed by Coates et al. [8].

2.4.3. A generalisation of Batyrev–Borisov duality Let U and V = U � be
two mirror log Calabi–Yau varieties and let BU = {ϑm : m ∈ MU } and
BV = {ϕm : m ∈ NU } be the bases of theta functions on U and V . Given a
pair of dual reflexive polygons P ⊂ NU and Q = P� ⊂ MU we can now make
the following constructions, which generalise Batyrev–Borisov mirror symmetry
for toric Fano varieties.8

1. We define a Landau–Ginzburg model (V, wP ), where the potential wP =∑
p∈P apϕp is obtained by summing the theta functions on V that correspond

to the integral points of P with a specific choice of coefficients ap ∈ Z≥0 (see
Remark 2.14).

2. The polytope Q ⊂ MU determines a grading on the ring C[U ], where degϑm

is the least integer k such that m ∈ kQ, for each m ∈ MU (Z). We let RQ be
the homogenisation of C[U ] with respect to this grading, with homogenising
variable ϑ0. Let (XQ, DQ) be the pair XQ = Proj RQ with boundary divisor
DQ = V(ϑ0).

Note that XQ is an anticanonically embedded, possibly degenerate (i.e. non-Q-
factorial) Fano variety compactifyingU = XQ\DQ , where the sections of |−KXQ |
correspond to the integral points of Q. The expectation is that (XQ, DQ) and
(V, wP ) are mirror in the following sense.

Conjecture 2.13. If (XQ, DQ) admits a Q-Gorenstein deformation to a pair
(X, D), where X is aQ-factorial Fano variety, then there exists a choice of positive
integral coefficients on the lattice points of P such that the Landau–Ginzburgmodel
(V, wP ) is mirror to (X, D).

Note that P may admit more than one (or even no) such choice of coefficients
if XP admits more than one (or no) deformation to a Fano variety X . In general P
is expected to support a Landau–Ginzburg potential corresponding to each defor-
mation component of XQ (cf. Example 4.17).

Remark 2.14. We should explain how to choose the coefficients ap in the construc-
tion of the Landau–Ginzburg model (V, wP ). In dimension d = 2, the Minkowski
ansatz of the Fanosearch program [7, 6] suggests that the correct choice of coeffi-
cients on a reflexive polygon is to label the origin with coefficient a0 = 0 and to
label all of the other lattice points with binomial edge coefficients, i.e. we label the
i th lattice point on each edge of lattice length k with the coefficient

(k
i

)
. In higher

dimensions we expect that the correct formulation will be given by a generalisa-
tion to this setting of the 0-mutable polynomials, introduced by Corti et al. [10].

8 Traditionally Batyrev duality (resp. Batyrev–Borisov duality) refers to themirror duality
between the resolution of a general Calabi–Yau hypersurface (resp. complete intersection)
inside two dual toric Fano varieties.
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In the toric case, the 0-mutable polynomials supported on a face F ⊂ P are spe-
cial labellings of F with positive integral coefficients which are conjecturally in
bijection with the smoothing components of the corresponding strata DF ⊂ XQ .
The expectation is that the potential wP obtained by labelling the faces of P with
a compatible system of 0-mutable polynomials will then specify the deformation
of XQ described in Conjecture 2.13.

3. Dimension 2: the del Pezzo surface dP5

As an illustration before we tackle the 3-dimensional case, we begin by briefly
recalling the famous tale of the del Pezzo surface dP5.

3.1. The affine del Pezzo surface U

Let x1, . . . , x5 be the five terms of the 2-dimensional Lyness recurrence (LR2) given
in Sect. 1.2.1. Geometrically, x1, . . . , x5 are regular functions on an affine surface

U = SpecC[x1, . . . , x5]/ (xi−1xi+1 − xi − 1 : i ∈ Z/5Z),

the vanishing locus of the five relations obtained from (LR2). We can homogenise
the equations with respect to a new variable x0 to obtain the projective closure
X = U ⊂ P5

x0,x1,...,x5 which is a smooth projective surface. The projection map

p12 : X → P2
x0,x1,x2 is birational, and by resolving the baselocus of p−112 we find

that X is a blowup of P2 in four points

e1 = (0 : 1 : −1), e2 = (1 : 0 : −1), d3 = (1 : 0 : 0), d5 = (0 : 1 : 0)

making X a del Pezzo surface of degree 5. As is classically known, there are ten
(−1)-curves on X . We call them D1, . . . , D5, E1, . . . , E5, where E1, E2, D3, D5
are the exceptional curves over the points e1, e2, d3, d5 and the remaining six curves
are the strict transform of the lines passing through any two of these four points,
labelled according to Fig. 2. These ten curves have dual intersection diagram given
by the Petersen graph.

A log Calabi–Yau pair (X, D) The complement to U is the divisor D := X\U ,
which is an anticanonical cycle D = ⋃5

i=1 Di ∈ |−KX | of five (−1)-curves,
corresponding to the outside ring of the Petersen graph. In other words, U is the
interior of a log Calabi–Yau pair (X, D).

The interior (−1)-curves The other five (−1)-curves E = ⋃5
i=1 Ei form a com-

plementary anticanonical pentagram, and are called interior (−1)-curves. They are
given by the locus in U where a cluster variable vanishes, i.e. Ei |U = V(xi ) ⊂ U
for i = 1, . . . , 5.



The 3-dimensional Lyness map 105

(a) (b)

Fig. 2. a A realisation of X ⊂ P5 as a blowup of P2. b The dual intersection graph of the
ten (−1)-curves in X

3.2. The Grassmannian Gr(2, 5)

The five equations defining the affine surfaceU can be written as the five maximal
Pfaffians of the following skewsymmetric 5× 5 matrix (where, for simplicity, we
have omitted the diagonal of zeroes and the antisymmetry)

Pf4

⎛
⎜⎜⎝
1 x1 x2 1

1 x3 x4
1 x5

1

⎞
⎟⎟⎠ = 0 �⇒ xi−1xi+1 = xi + 1 ∀i ∈ Z/5Z.

We can homogenise (LR2) by introducing five parameters y1, . . . , y5 in a particu-
larly nice and symmetric way:

Pf4

⎛
⎜⎜⎝
y5 x1 x2 y3

y2 x3 x4
y4 x5

y1

⎞
⎟⎟⎠ = 0 �⇒ xi−1xi+1 = xi yi+yi−2yi+2 ∀i ∈ Z/5Z. (∗)

After setting xi = −1 for all i , we see that (y2i : i ∈ Z/5Z) is also a solution to
(LR2).

The homogenised equations define a 7-dimensional variety U ⊂ A10, which is
the affine cone over Gr(2, 5) in the Plücker embedding. The projection p : U →
A5

y1,...,y5 realises U as a flat family of affine del Pezzo surfaces. For any point in

the big open torus y ∈ (C×)5 ⊂ A5, the fibre Uy = p−1(y) is isomorphic to
U = X\D after making the change of variables zi = xi yi

yi+2yi−2 for all i ∈ Z/5Z.

However, above the coordinate strata ofA5 the fibres begin to degenerate. The most
degenerate fibre, appearing over 0 ∈ A5, is the 5-vertex

p−1(0) = A2
x1,x2 ∪ A2

x2,x3 ∪ A2
x3,x4 ∪ A2

x4,x5 ∪ A2
x5,x1 ,

a cycle of 5 coordinate planes glued together along their toric boundary strata.
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Remark 3.1. This fibration p : U → A5 is (very nearly) the mirror family to (X, D)

constructedbyGross et al. [12], inwhich thevariables x1, . . . , x5, the compactifying
parameters y1, . . . , y5 and the equations (∗) are interpreted in terms of theGromov–
Witten theory of (X, D). Indeed, the mirror family constructed in [12] is fibred over
the toric base schemeSpecC[NE(X)]. In termsof their construction, our parameters
correspond to yi = zDi , and hence our family can be viewed as a fibration over
A5 = SpecC[zD1 , . . . , zD5 ]. In other words, their family can be pulled back from
our one by the inclusion C[zD1 , . . . , zD5 ] ↪→ C[NE(X)].

In general, the fibres of the familyU are mirror to the interior of the pair (X, D),
so the fact that U appears in both roles here due to the fact that it is self-mirror.

3.3. The tropicalisation of U

3.3.1. A toric model for U Consider the toric pair (T, B) obtained by blowing
up the two points d5, d3 ∈ P2 in Fig. 2a above, so that T is a smooth projec-
tive toric surface whose boundary divisor B consists of a cycle of five rational
curves, with self-intersection numbers (0, 0,−1,−1,−1). This gives a toric model
π : (X, D) → (T, B) for U which is a composition of two nontoric blowups of T
(the blowup of the image of the two points e1, e2 ∈ T ). In particular, the induced
map π |D : D → B on boundary divisors is an isomorphism and so we can label
the components of B =⋃5

i=1 Bi by i ∈ Z/5Z, where Bi = π(Di ).
The seed for this toric model is the set of points S = {e1, e2}, so let us denote the

corresponding inclusion of a cluster torus by j12 : T12 = SpecC[x±11 , x±12 ] ↪→ U .
Now the Lyness map and its inverse are given by

σ2(x1, x2) =
(
x2,

1+ x2
x1

)
= (x2, x3) , σ−12 (x1, x2) =

(
1+ x1
x2

, x1

)
= (x5, x1)

and these are (up to a permutation of the coordinates) the mutation at e1 ∈ B1 and
the mutation at e2 ∈ B2 respectively. Consider the mutation at e1. It is given by
blowing up e1 and contracting the strict transformof the curve E3 to a point e3 ∈ B3.
This gives a toric modelπ ′ : (X, D) → (T ′, B ′)which is isomorphic to the original
one, except that now all the labels have been shifted by one, i �→ i + 1 ∈ Z/5Z.
In particular the dense open torus is T ′\B ′ = T23 = SpecC[x±12 , x±13 ]. Thus the
Lyness map can be interpreted as a mutation of toric models.

σ2

•
0

−1

−1

−1

−1

0

−1

−1

−1

0
• •

0

0

−1

−1

−1
•
•
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(a) (b)

Fig. 3. a The fan for (X, D) in NU . b The scattering diagram for U in MU

By the five-periodicity of the Lyness map, the surfaceU contains five cluster torus
charts Ti,i+1 := SpecC[x±1i , x±1i+1] for i ∈ Z/5Z and U is given by the union of
all five of them, identified according to the mutations.

The exchange graph of U Each toric model for U has two nontoric centres to
blow up in, so the graph is 2-valent. The 5-periodicity implies that G is a pentagon.

3.3.2. The tropicalisation NU Consider the complete fan F in R2 determined by
the five rays ρi = R≥0vi for i ∈ Z/5Z, where the vi are the five points

v1 = (−1, 0), v2 = (0,−1), v3 = (1, 0), v4 = (1, 1), v5 = (0, 1).

This is the fan of the toric pair (T, B)which appears in our toric model (Fig. 3). We
can now construct NU , the tropicalisation of U , by taking this fan F and altering
the integral affine structure inR2 as described in Sect. 2.3.1. This changes the affine
structure along the rays ρ1 and ρ2, corresponding to the two components of (T, B)

along which a nontoric blowup occurs, and has the effect of bending lines that pass
through ρ1 and ρ2 towards the origin. As a result it introduces a singularity at the
origin 0 ∈ NU .

3.3.3. A scattering diagram for U The same fanF in NU also supports the struc-
ture of a scattering diagramDwhich can be used to construct the coordinate ring of
(the mirror to) U . The construction of D and its relationship to C[U ] is described
in [12, Example 3.7]. To obtainD, we attach the following five scattering functions
fi ∈ C[z±11 , z±12 ] to the rays ρi for i ∈ Z/5Z:

f1 = 1+ z1, f2 = 1+ z2, f3 = 1+ z1, f4 = 1+ z1z2, f5 = 1+ z2.

It is now straightforward to check that the collection of walls D = {(ρi , fi ) : i ∈
Z/5Z} defines a consistent scattering diagram, i.e. that starting from any point in
the interior of a chamber ofF and composing the five wall crossing automorphisms
corresponding to a loop around 0 ∈ NU yields the identity.

To get from the scattering diagram back to C[U ] we can consider the cluster
monomials xi = ϑvi which are the theta functions corresponding to the points
vi ∈ MU for i ∈ Z/5Z. As described in Sect. 2.3.2 these can be expanded as
Laurent polynomials xi = ∑� c�zm� where � ranges over all of the broken lines
for vi starting at some given point q ∈ NU . In our case the coefficients of all the
scattering functions are all equal to 1 so all c� = 1. Suppose that q is chosen near to
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Fig. 4. The monomials xi obtained by counting broken lines

Table 1. Table of intersection numbers 〈Di , x j 〉 for i, j ∈ Z/5Z

D1 D2 D3 D4 D5

x1 1 0 −1 −1 0
x2 0 1 0 −1 −1
x3 −1 0 1 0 −1
x4 −1 −1 0 1 0
x5 0 −1 −1 0 1

the point (−1+ε, 1+ε) for some small irrational ε > 0, which lies in the chamber
〈v5, v1〉. Then the five expansions of the cluster variables are shown as in Fig. 4,
and these five terms generate the coordinate ring C[U ].

For any a, b ∈ Z≥0 now consider the point m = avi + bvi+1 in the chamber
〈vi , vi+1〉. Since any broken line that leaves a chamber of D can never return to
it (cf. [12, Example 3.7]), it is easy to see that there is only one broken line for
m that starts at a point q very near to m, namely the straight line that leaves q in
the direction of m. Thus if we choose to expand the theta function ϑm by counting
broken lines starting at q we obtain ϑm = ϑa

i ϑb
i+1. This completely determines all

of the theta functions associated to the points of MU (Z).

3.3.4. The intersection pairing Since the mirror of U constructed fromD is iso-
morphic toU , it follows that the tropicalisation NU is self-dual, i.e. that NU ∼= MU .
The duality between the two affine manifolds NU and MU is given by extending
the intersection pairing

〈·, ·〉 : NU (Z)× MU (Z)→ Z 〈n,m〉 := νDn (ϑm)

to an intersection pairing 〈·, ·〉 : NU×MU → Rwhich can be calculatedR-linearly
in each cone of the fan F . Given that, as a rational function on X , the divisor of xi
is

div xi = Ei + Di − Di−2 − Di+2,

the pairing NU × MU → R can be determined by Table 1.
For example, we can now compute the five halfspaces (xi )≥−1 ⊂ NU , which are

shown in Fig. 5. Equivalently, exactly the same diagrams show the five halfspaces
(Di )

≥−1 ⊂ MU .
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Fig. 5. The halfspaces (xi )
≥−1 ⊂ NU for i ∈ Z/5Z

3.4. Applications to mirror symmetry

3.4.1. Reflexive polygons in NU Now that we have built the spaces NU andMU as
integral affine manifolds with singularitiesand their their dual intersection pairing
〈·, ·〉 : NU × MU → R, we can use them to construct examples of del Pezzo pairs
and their mirror Landau–Ginzburg models, as in Sect. 2.4.3.

Theorem 3.2. Up to automorphism there are 23 reflexive polygons in NU , which
are displayed in Fig.6. For each reflexive polytope P, the Landau–Ginzburg model
wQ : U → C obtained by labelling Q = P� with binomial edge coefficients has
the right period to be a mirror to the del Pezzo pair (XP , DP ) (where the del Pezzo
surface of degree 8 represented by the unique polygon with eight vertices is F1).

Proof. The classification of reflexive polygons in NU proceeds in an equivalent
manner to the classification of reflexive polygons in the ordinary toric setting.
Beginning from any one such polygon, such as the polygon P of Example 3.3, we
can add or remove vertices corresponding to blowing up or blowing down (−1)-
curves in the boundary of the associated Looijenga pair (XP , DP ). Disregarding
polygons with nonzero interior lattice points produces the 23 examples of Fig. 6.

To verify that the potential wQ has the right period to be mirror to (XP , DP ),
we can restrict to the cluster torus T12 ⊂ U to get a Laurent polynomial w0 :=
wQ |T12 ∈ C[x±11 , x±12 ]. The only difference between the Landau–Ginzburg model
(U, wQ) and the toric Landau–Ginzburg model (T12, w0) is that we have extended
the domain of definition of w0 along the two exceptional curves of U\T12. It is
now just a case of verifying that w0 is mutation equivalent to a known Laurent
polynomial mirror to XQ (see [1, Figure 1]). ��

If d(P) denotes the number of boundary points of a reflexive polygon P ⊂ NU ,
then for a dual pair of reflexive polygons we have d(P)+ d(P�) = 10. This is in
contrast to the usual formula d(P) + d(P�) = 12 that holds in the ordinary toric
setting, and corresponds to the fact that we have made two nontoric blowups in the
boundary.

3.4.2. Examples We illustrate Theorem 3.2 with a few examples.
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Fig. 6.Representatives for the 23 classes of reflexive polygons in NU . The gray lines indicate
the two rays alongwhichwe bend the affine structure of NU and the arrows between polygons
denote the addition or removal of a vertex. Since NU is isomorphic to its dual space MU ,
given a polygon P ⊂ NU we can identify the dual polygon P� ⊂ MU with a polygon in
NU . Duality between these reflexive polygons is then given by top-to-bottom reflection in
the diagram. In particular there are three self-dual pentagons in the central row

Example 3.3. Suppose we take the standard projective compactification (X, D) of
U , which corresponds to the pair (XP , DP )where P = P� is the self-dual polygon

×

·
·
·
·
·

·
·
·
·
·

·
·
·
·
·

·
·
·
·
·

·
·
·
·
·

•1

•
1

•
1

•1 •1
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which, according toRemark 2.14, has been labelledwith binomial edge coefficients.
Note that P is cut out by the five halfspaces of Fig. 5. Let w = wP be the potential
on the mirror Landau–Ginzburg model w : U → C, which is given by

w = x1 + x2 + x3 + x4 + x5.

This is a σ2-invariant function, and we note that this has a nice alternative represen-
tation asw+3 = x1x2x3x4x5, corresponding to the fact that the fibrew−1(−3) ⊂ U
breaks up as the union of the five interior (−1)-curves E =⋃5

i=1 Ei .

The period πw(t) By restricting w to the cluster torus chart T12 (i.e. expanding
it as a Laurent polynomial in terms of x1, x2), we can compute the period πw(t)
which we see to be equal to the regularised quantum period for dP5. The first few
terms are given by

πw(t) = 1+ 10t2 + 30t3 + 270t4 + 1560t5 + 11350t6 + 77700t7 + · · ·
Alternatively, we can compute the period of the shifted potential w + 3, which is

given by the change of variables πw+3(t) = 1
1−3t πw

(
t

1−3t
)
. The series is

πw+3(t) = 1+ 3t + 19t2 + 147t3 + 1251t4 + 11253t5 + 104959t6 + · · ·
which can be recognised as one of the famous Apéry series πw+3(t) =∑∞

n=0
∑n

k=0
(n
k

)2(n+k
k

)
tn and is well-known as a period for the del Pezzo surface

of degree 5.

The elliptic fibration After extending to a birational map w : X ��� P1, the fibres
of w belong to the anticanonical pencil |D, E | ⊂ |−KX | with baselocus given by
the five points Di ∩ Ei ∈ X . Blowing up these five points φ : X̃ → X resolves
w into an elliptic fibration w̃ = w ◦ φ : X̃ → P1, which appears in Beauville’s
classification of rational elliptic surfaces with four singular fibres [4]. There are two
I5 fibres over∞ and −3, corresponding to D and E respectively, and two further

I1 fibres over the values − 5
ϕ
and 5ϕ, where ϕ = 1+√5

2 is the golden ratio.

×
− 5

ϕ

×
5ϕ

×
−3

×
∞

The Landau–Ginzburgmodelw : U → C is obtained from this elliptic fibration
w̃ by deleting the fibre at ∞ and five horizontal sections given by the five φ-
exceptional curves. In terms of mirror symmetry, the significance of the five deleted
sections is due to the fact that the anticanonical divisor D ⊂ X has five corners
[20, Remark 2.1]. Changing the choice of boundary divisor by smoothing a corner
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of D corresponds to extending w along one of the missing horizontal sections, so
the Landau–Ginzburg model obtained by extending w to X̃\w̃−1(∞) is mirror to a
del Pezzo surface of degree 5 with a smooth anticanonical divisor, as expected [3].

The fibration w̃ has some very interesting arithmetic properties. The five φ-
exceptional curves of w̃ are permuted by the Z/5Z-symmetry. For each smooth
fibre X̃t these sections give rise to the orbit of a rational 5-torsion point under
translation. Moreover, the monodromy action on H1(X̃t ,Z) ∼= Z2 around the four
singular fibres generates the congruence subgroup �1(5) ⊂ SL(2,Z), as shown in
[5].

Example 3.4. To give a slightly more exotic example, consider the following poly-
gon P ⊂ NU and its dual Q = P� ⊂ MU , which have also been labelled with
binomial edge coefficients.

Q

·
·
·
·
·

·
·
·
·
·

·
·
·
·
·

·
·
·
·
·

·
·
·
·
·

1

1
P

·
·
·
·
·

·
·
·
·
·

·
·
·
·
·

·
·
·
·
·

·
·
·
·
·

×
10

10 5 1

3

3
1

5

Note that both P and Q are both bigons; they each have precisely two vertices
when considered in the affine structure of NU or MU .

Graded ring calculation for (XQ, DQ) Consider the theta functions ϑ1, . . . , ϑ4
corresponding to the lattice points (−1,−1), (1, 1) ∈ Q and (−1, 0), (0,−1) ∈
2Q respectively. In terms of the basis of theta functions of C[U ], these are

ϑ1 = x1x2, ϑ2 = x4, ϑ3 = x1, ϑ4 = x2

and, after homogenising, they can be used to give a presentation of the graded ring
RQ = C[ϑ0, ϑ1, ϑ2, ϑ3, ϑ4]/I with generators in degrees 1, 1, 1, 2, 2 respectively.
The ideal of equations I defining RQ is generated by two relations

ϑ3
0ϑ1 = ϑ3ϑ4 and ϑ1ϑ2 = ϑ2

0 + ϑ3 + ϑ4.

Using the second equation to eliminate ϑ4, we get a quartic hypersurface

XQ ∼= V

(
ϑ1ϑ2ϑ3 − ϑ3

0ϑ1 − ϑ2
0ϑ3 − ϑ2

3

)
⊂ P(1, 1, 1, 2)ϑ0,ϑ1,ϑ2,ϑ3 .

As may be expected from the spanning fan of P ⊂ NU , this defines a singular del
Pezzo surface of degree 2, with an A2 singularity at the coordinate point P1 = (0 :
1 : 0 : 0) and an A4 singularity at the coordinate point P2 = (0 : 0 : 1 : 0). The
boundary divisor DQ = V(ϑ0) has two components

D1 = V (ϑ0, ϑ3) , D2 = V (ϑ0, ϑ1ϑ2 − ϑ3)
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which meet at the two singular points P1, P2.

The Landau–Ginzburg model wP : U → C We form the Landau–Ginzburg
potential

wP = x2x
2
3 + 3x3 + 3x5 + x25 x1 + 5x5x1 + 10x1 + 10x2 + 5x2x3

obtained by considering binomial edge coefficients on P . By restricting to the
torus chart T12 ⊂ U we obtain a Laurent polynomial, which satisfies the following
identity

(wP + 12) |T12 =
(1+ x1 + x2)2(x1 + x2)3

x21 x
2
2

.

By Sect. 2.4.2, the nth coefficient αn of the period πw+12(t) =∑n≥0 αntn is equal
to the coefficient of x2n1 x2n2 in

(1+ x1 + x2)
2n(x1 + x2)

3n =
2n∑
k=0

(
2n

k

)
(x1 + x2)

3n+k,

where the righthand side was obtained by expanding the first bracket by using the
binomial formula, treating 1+ x1+ x2 as the sum of 1 and x1+ x2. The term x2n1 x2n2
can only appear in the righthand side if k = n, and then we easily see that

αn =
(
2n

n

)(
4n

2n

)
�⇒ πwP+12(t) =

∑
k≥0

(4n)!
n!n!(2n)! t

n .

This function πwP+12(t) is equal to the regularised I -function ÎX4(t) for a hyper-
surface X4 ⊂ P(1, 1, 1, 2), and it is known to be a shift of the regularised quantum
period ĜX4(t) of X4 [8, Proposition D.9]. In order to recover ĜX4(t) from ÎX4(t),
the appropriate shift is by the unique constant term required to kill the coefficient
α1 of ÎX4(t). Since α1 =

(2
1

)(4
2

) = 12 we see that πwP (t) = ĜX4(t).
This shows thatwP has the right period to be mirror to XQ , but, more precisely,

we expect that the particular Landau–Ginzburg model that we have constructed is
actually a mirror to the (singular) del Pezzo surface XQ with its boundary divisor
DQ . Note that wP has a reducible fibre w−1P (−12) with two disjoint components;
one component of multiplicity 2 and one of multiplicity 3. After extending wP to
the dual compactification wP : XP ��� P1, blowing up two basepoints and then
resolving singularities, we obtain an extremal rational elliptic fibration with three
singular fibres of type I1, I2 and Ẽ7 over the points 52,∞ and −12 respectively.

×
−12

×
52

×
∞
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The two components of multiplicity 2 and 3 are given by the two solid lines in
the Ẽ7 fibre, shown in the diagram above. The surface U is obtained by deleting
the two horizontal (−1)-curves, as well as the six dotted (−2)-curves in the Ẽ7
fibre. We saw above that the presence of an ordinary node in the boundary divisor
DQ ⊂ XQ corresponds to the deletion of a horizontal (−1)-curve in the mirror to
(XQ, DQ). This example suggests that the presence of an Ak singularity at a node
corresponds to the deletion of a chain of k + 1 rational curves of self-intersection
(−1,−2, . . . ,−2).
Example 3.5. One can do the computations of Example 3.4 with the roles of P and
Q reversed. The graded ring RP is the homogeneous coordinate ring of a smooth
surface XP ⊂ P8, which is an anticanonically polarised F1. The boundary divisor
DP = D1 ∪ D2 is the union of two smooth rational curves of self-intersection
D2
1 = 1 and D2

2 = 3. By restricting to T12 ⊂ U we see that the Landau–Ginzburg
potential satisfies wQ |T12 = x1x2 + 1

x1
+ 1

x2
+ 1

x1x2
which is a mirror Laurent

polynomial for F1.

4. Dimension 3: the Fano 3-fold V12

We now describe a parallel story in the 3-dimensional setting which generalises

1. the cluster structure on U the affine del Pezzo surface of degree 5,
2. the fibration on the affine cone over Gr(2, 5) by such surfaces,
3. the self-dual integral affine manifold with singularities NU obtained by tropi-

calising U ,
4. the Borisov–Batyrev style mirror symmetry constructions of Sect. 3.4.

Indeed, the corresponding actors will be the orthogonal Grassmannian OGr(5, 10)
and the Fano 3-fold V12. We will begin by generalising the second statement by
giving a description of OGr(5, 10) which leads to a homogenisation of the 3-
dimensional Lyness recurrence (LR3).

4.1. The orthogonal Grassmannian OGr(5, 10)

4.1.1. OGr(5, 10) as a homogeneous variety The orthogonal Grassmannian
OGr(5, 10) is one of the two isomorphic irreducible components in the space of
5-planes C5 ⊂ C10 which are isotropic with respect to a given quadratic form. It
is the homogeneous variety for the group SO(10) of type D5 with a ‘half-spinor
embedding’ OGr(5, 10) ⊂ P(S+), where S+ is one half of the spin representation
S+ ⊕ S− of SO(10). Given the symmetry broken by choosing S+ over S−, it is
perhaps better to think of the isomorphic Grassmannian OGr(4, 9) ∼= OGr(5, 10)
instead. This is a homogeneous variety for the group SO(9) of type B4, with spinor
embedding OGr(4, 9) ⊂ P(S) corresponding to the (irreducible) spin representa-
tion S =⊕4

i=0
∧i

C4 of SO(9).

D5 B4S+

S−
S
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(a) (b)

Fig. 7. a The sixteen spinor variables labelling the 4-cube C . b The face of C which corre-
sponds to the equation x1x4 = x2y5 + x3y8 + y2y3

The representation S is 16-dimensional with weights 1
2 (±1,±1,±1,±1), which

are the vertices of a 4-dimensional cube C in the weight lattice for B4. The Weyl
groupW (B4) acts as the full symmetry group ofC and a Coxeter element inW (B4)

acts onC as a rotation of order 8. Taking the orthogonal projection onto the Coxeter
plane (shown in Fig. 7a) we see this 8-fold rotational symmetry of C which splits
the vertices into two groups of size 8.

4.1.2. The equations of OGr(5, 10) Let R = C[S] and name the 16 spinor vari-
ables x1, . . . , x8, y1, . . . , y8 ∈ R, indexed by Z/8Z, according to the labels in
Fig. 7a. The corresponding vertices of C are represented by the columns of the
following matrix (where the minus signs in front of y3 and y7 are only chosen to
make the equations displayed below more beautiful).

x1 x2 x3 x4 x5 x6 x7 x8 y1 y2 −y3 y4 y5 y6 −y7 y8
+ − − − − + + + − + − − + − + +
+ + − − − − + + + − + − − + − +
+ + + − − − − + + + − + − − + −
+ + + + − − − − − + + − + − − +

The ten quadratic equations defining OGr(5, 10) are now obtained by swapping
minus signs in columns that differ in three or more places. For example,⎛

⎜⎜⎝
+
+
+
+

⎞
⎟⎟⎠

⎛
⎜⎜⎝
+
−
−
−

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
+
+
+
−

⎞
⎟⎟⎠

⎛
⎜⎜⎝
+
−
−
+

⎞
⎟⎟⎠−

⎛
⎜⎜⎝
+
−
+
−

⎞
⎟⎟⎠

⎛
⎜⎜⎝
+
+
−
+

⎞
⎟⎟⎠+

⎛
⎜⎜⎝
+
+
−
−

⎞
⎟⎟⎠

⎛
⎜⎜⎝
+
−
+
+

⎞
⎟⎟⎠

corresponds to the equation x1x6 = x8y5 + y7y8 + x7y2. The full ideal I defining
OGr(5, 10) is given by

x1x4 = x2y5 + x3y8 + y2y3
x5x8 = x6y1 + x7y4 + y6y7

x1x5 − x3x7 = y1y5 − y3y7
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x2x5 = x3y6 + x4y1 + y3y4
x6x1 = x7y2 + x8y5 + y7y8

x2x6 − x4x8 = y2y6 − y4y8
x3x6 = x4y7 + x5y2 + y4y5
x7x2 = x8y3 + x1y6 + y8y1
x4x7 = x5y8 + x6y3 + y5y6
x8x3 = x1y4 + x2y7 + y1y2

where the first two columns give the eight periodic relations

xi xi+3 = xi+1yi+4 + xi+2yi−1 + yi+1yi+2 i ∈ Z/8Z

which are a homogenisation of (LR3) by the variables y1, . . . , y8. The binomials
appearing in these eight equations correspond to the antipodal vertices in the eight
3-cube faces of C , as shown in Fig. 7b. The last two equations are implied from
the first eight and correspond to the two orthoplexes (4-dimensional octahedra)
inscribed on the two bipartite decompositions on the set of vertices of C .

The affine cone U We let U = Spec(R/I ) ⊂ A16 be the affine variety defined
by these equations, i.e. the affine cone over OGr(5, 10). Note that there is a map
i : U → U with i(xi ) = −y3i and i(yi ) = x3i+4, which switches the role of the x
variables and the y variables. Therefore, after setting xi = −1 for all i we see that
(y3i : i ∈ Z/8Z) is also a solution to the Lyness recurrence (LR3).

Anticanonical class The ideal I is a Gorenstein ideal of codimension 5 and has
minimal resolution

R ← R(−2)⊕10 ← R(−3)⊕16 ← R(−5)⊕16 ← R(−6)⊕10 ← R(−8) ← 0.

From the last module we can read off the adjunction number for U ⊂ A16, giving
−KU = OA16(16 − 8)|U = OU (8). In particular, if we let Di = V(yi ) and
Ei = V(xi ) for i = 1, . . . , 8, then both D = ⋃8

i=1Di and E = ⋃8
i=1 Ei define

anticanonical divisors in U .

4.1.3. A fibration of U by affine Fano 3-folds Consider the projection p : U →
A8

y1,...,y8 . The fibres of p are a flat family of affine Gorenstein 3-folds which spreads
out the components of D above the coordinate strata of A8.

The central fibre U0 The central fibre U0 := p−1(0) is given by the common
intersection of all components of D ⊂ U . It breaks up a reducible affine toric
3-fold with ten components:

8⋂
i=1

Di = V(y1, . . . , y8) =
8⋃

i=1
A3
xi−1,xi ,xi+1 ∪ Q1357 ∪ Q2468
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Fig. 8. The polytope P and the dual polytope Q = P∗

where Q1357 = V(x1x5 − x3x7) ⊂ A4
x1,x3,x5,x7 and Q2468 = V(x2x6 − x4x8) ⊂

A4
x2,x4,x6,x8 are both isomorphic to the cone over the Segre embedding of P1 × P1.

Therefore U0 looks like the cone over a reducible toric surface

DP := D123 ∪ D234 ∪ . . . ∪ D812 ∪ D1357 ∪ D2468,

with ten components D1357 = P(Q1357), D2468 = P(Q2468) and D123 = P2
x1,x2,x3 ,

etc. These components intersect along their toric boundary strata like the polytope
P of Fig. 8.

The general fibreUλ,μ Wenow look at a general fibre of this fibrationUy = p−1(y)
where y = (y1, . . . , y8) ∈ (C×)8. We can rescale the coordinates on Uy by

(x1, . . . , x8)

�→
(
y1y2
y4

x1,
y1y2
y7

x2,
y2y3
y8

x3,
y4y5
y7

x4,
y4y5
y2

x5,
y4y5y8
y2y3

x6,
y7y8
y2

x7,
y8y1
y3

x8

)

to find that Uy ∼= Uλ,μ, for an affine 3-fold Uλ,μ ⊂ A8
x1,...,x8 depending on two

parameters λ = y3y7
y1y5

and μ = y2 y6
y4y8

with λ,μ ∈ C×. The equations defining Uλ,μ

become:

x1x4 = x2 + λx3 + λ x5x8 = x6 + λx7 + λμ x1x5 − λx3x7 = 1− λ

x2x5 = λμx3 + x4 + λ x6x1 = λx7 + x8 + λ x2x6 − x4x8 = λμ− λ

x3x6 = x4 + x5 + 1 x7x2 = x8 + μx1 + 1

x4x7 = x5 + x6 + μ x8x3 = x1 + x2 + 1

Thus the fibres of p are isomorphic over the intersection of two quadrics in the base
given by V(λy1y5 − y3y7, y2y6 − μy4y8) ∩ (C×)8.

Lemma 4.1. The projective closure Xλ,μ := Uλ,μ ⊂ P8 has boundary divisor
Dλ,μ isomorphic to DP, and Xλ,μ has 16 ordinary (non-Q-factorial) nodal singu-
larities along Dλ,μ, given by the 8 coordinate points Pxi and the 8 points:

(1 : −1) ∈ P1
x1,x2 , (λ : −1) ∈ P1

x2,x3 , (1 : −λμ) ∈ P1
x3,x4 , (1 : −1) ∈ P1

x4,x5 ,

(1 : −1) ∈ P1
x5,x6 , (λ : −1) ∈ P1

x6,x7 , (1 : −λ) ∈ P1
x7,x8 , (μ : −1) ∈ P1

x8,x1 .

Moreover, the interior Uλ,μ
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1. is smooth if both λ,μ �= 1,
2. acquires one node if either λ = 1 or μ = 1,
3. acquires two nodes if both λ = μ = 1.

Proof. Ifμ = 1 then the point (−1, 0,−1, 0,−1, 0,−1, 0) belongs toUλ,1 and we
can eliminate the variables x1, x3, x5, x7 in a neighbourhood of this point to find an
ordinary nodal singularity with local equation (x2x6 − x4x8 = 0) ⊂ A4

x2,x4,x6,x8 .
Similarly if λ = 1 the point (0,−1, 0,−1, 0,−1, 0,−1) becomes a node of U1,μ.
If both λ = μ = 1 then this gives nodes at two distinct points ofU1,1. Smoothness
elsewhere and the singular locus along Dλ,μ can be checked by computer algebra,
e.g. Macaulay2. ��

4.1.4. Mirror interpretation of the family U We saw in Remark 3.1 that the fibra-
tion we defined in Sect. 3.2 was not quite the same as the mirror family for (X, D),
the del Pezzo surface of degree 5, constructed by Gross et al. [12], since their
mirror construction produces a family over SpecC[NE(X)], rather than A5. In a
similar vein, the referee of this paper suggested the following more conceptual
mirror description of our 3-dimensional family U , using the geometry of U1,1 that
we work out in the rest of this section.

Following Proposition 4.15, there is a compactification (XQ, DQ) of the spe-
cial fibre U1,1 whose boundary divisor DQ consists of eight copies of P1 × P1

intersecting like the polytope Q. By blowing up the non-Cartier interior divisors
of XQ in some order, we can make a small partial resolution ψ : X̃Q → XQ that
resolves 10 of the 12 nodes of XQ but does not change the intersection complex
of D̃Q (and in particular, leaves the two nodes at the two 4-valent vertices of Q
intact). The intrinsic mirror symmetry construction of Gross and Siebert [15] then
produces a mirror family p′ : U ′ → B ′ over the base B ′ := SpecC[Nef(X̃Q)]with
the same central fibre U0 as our family U .

This mirror family is equivariant for the action of the torus T on B ′, where
T := TD̃Q

∩ Pic X̃Q and TD̃Q
is the torus of rank 8 generated by the irreducible

components of D̃Q . In this caseT has rank 6, since the coefficients of a Cartier divi-
sor supported on D̃Q must satisfy two linear conditions imposed by the two nodes.
From the description of X̃Q as the blowup of a toric variety (cf. Proposition 4.2)
one can compute that Pic X̃Q has rank 8, and thus PicU1,1 ∼= Pic X̃Q/T is a lattice
of rank 2, confirming that the fibres of the mirror family U ′ depend on two defor-
mation parameters λ and μ. These two deformation parameters correspond to the
two ψ-exceptional O(−1,−1)-curves over the two interior nodes of U1,1 on one
side of the mirror, and the two vanishing Lagrangian spheres S3 in the smoothing
of U1,1 on the other side.

As in Remark 3.1, our family U should now rather be viewed as an extension
of this mirror family p′ : U ′ → B ′ to a family p : U → A8 defined over the
base A8 = SpecC[σ�], where σ� ⊇ Nef(X̃Q) is dual to the cone σ ⊂ A1(X̃Q)

generated by the classes of 1-strata in the boundary of (X̃Q, D̃Q). This cone is
independent of the choice of small resolution ψ of XQ , and one would expect it
to be equal to the cone containing Nef(X̃Q) in the secondary fan of (X̃Q, D̃Q), as
defined by Hacking et al. [18].
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4.2. The affine Fano-3-fold Uλ,μ

We now study the affine Fano 3-foldUλ,μ = Xλ,μ\Dλ,μ, which has a (generalised)
cluster structure and is the 3-dimensional analogue of the affine del Pezzo surface
considered in Sect. 3.

4.2.1. Blowup description of Uλ,μ One way that the affine del Pezzo surface can
be obtained is by blowing up one point on each of the coordinate axis in A2 and
deleting the strict transform of the boundary. We now give a similar description for
the 3-folds Uλ,μ.

Proposition 4.2. Let H = V(x1x2x3) ⊂ A3 denote the union of the coordinate
hyperplanes. There is a locus Z ⊂ H ⊂ A3 such that Uλ,μ

∼= BlZ (A3)\H̃—
i.e. the blowup of Z minus the strict transform of H. According to the cases of
Lemma 4.1:

1. if λ,μ �= 1 then Z consists of a conic and two lines

Z = V(x1, λ+ x2 + λx3) ∪ V(x2, 1+ x1 + x3 + μx1x3)

∪ V(x3, 1+ x1 + x2),

2. if λ �= 1, μ = 1 then Z consists of four lines (two lines and a reducible conic)

Z = V(x1, λ+ x2 + λx3) ∪ V(x2, 1+ x1) ∪ V(x2, 1+ x3)

∪ V(x3, 1+ x1 + x2),

3. if λ = 1, μ �= 1 then Z consists of a conic and two linesmeeting at an embedded
point

Z = V(x1, 1+ x2 + x3) ∪ V(x2, 1+ x1 + x3 + μx1x3)

∪ V(x3, 1+ x1 + x2) ∪ V(x1, 1+ x2, x3),

4. if λ = μ = 1 then Z consists of a reducible conic and two lines meeting at an
embedded point

Z = V(x1, 1+ x2 + x3) ∪ V(x2, 1+ x1) ∪ V(x2, 1+ x3)

∪ V(x3, 1+ x1 + x2) ∪ V(x1, 1+ x2, x3).

1.

λ,μ �= 1

2.

λ �= 1, μ = 1

3.

λ = 1, μ �= 1

•
4.

λ = μ = 1

•

Remark 4.3. Before proving the proposition, we briefly describe the effect of the
blowupswemake and explain howUλ,μ ends upwith the number of nodes expected
from Lemma 4.1.
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1. The blowup BlZ (A3) obtains an ordinary node in the fibre over any point P ∈ Z
contained in the intersection of two curves. If P is contained in a 1-stratum of
the boundary then after the blowup the node is contained in H̃ and hence does
not appear inUλ,μ. However, if P is contained in the interior of a 2-stratum (as
happens in cases 2. and 4.) then the node is not contained in H̃ and therefore
must appear in Uλ,μ.

2. Blowing up an embedded point in the intersection of two lines also produces a
node in the interiorUλ,μ (as happens in cases 3. and 4.). To see how, we can first
blow up the embedded point with exceptional divisor E . Let L ⊂ E be the line
that passes through the strict transform of the two lines on either side. Blowing
up the lines turns L into a contractible O(−1,−1) curve, which is contracted
to an ordinary node.

•
L •

blow up point
←−

blow up lines
←−

contract L
−→

3. It is interesting that cases 2. and 3. give two different constructions of varieties
that should be isomorphic by exchanging the role of λ and μ. Indeed, we can
send the configuration 3. to the configuration 2. by the mutating one of the two
line components, e.g. we blow up the line V(x3, 1+ x1+ x2) and then contract
the strict transform of the divisor V(1+ x1 + x2) to the plane at infinity.

• blow up

←−
contract

−→

Proof. Consider g : Uλ,μ ⊂ A8 → A3
x1,x2,x3 , which is a birational projection of

Uλ,μ onto its image. This image is the constructible set

g(Uλ,μ) = (C×)3x1,x2,x3 ∪ Z0, where Z0 =
{
Z\V(x1, x3) if λ �= 1
Z if λ = 1

and Z is as in the statement of the proposition. (In other words, if λ �= 1 the image
of Uλ,μ misses the two points of Z that lie on the x2-axis.) Now g restricts to an
isomorphismon the open torus (C×)3x1,x2,x3 ⊂ Uλ,μ andwe can check that the fibres
over z ∈ Z are all affine lines g−1(z) ∼= A1, unless λ = 1 and z = (0,−1, 0), in
which case g−1(z) ∼= A2. We can resolve the inverse map g−1 : g(Uλ,μ) ��� Uλ,μ

by blowing up Z ⊂ A3, as described in Remark 4.3. ��

4.2.2. The exchange graph of Uλ,μ Recall our fibration p : U → A8
y1,...,y8 ,

which we can think of as a family of affine 3-folds over the coefficient ring
Ry = C[y1, . . . , y8]. We let Ay := A8

y1,...,y8 denote the base of this fibration.
In the traditional language of cluster algebras, we think of the x variables as cluster
variables on U and the y variables as frozen variables. Moreover, we recall the two



The 3-dimensional Lyness map 121

Fig. 9. The exchange graph G for the affine charts covering U

quadratic terms q1, q2 which we introduced in Sect. 1.2.2. These are homogenised
as follows:

q1 := x1x5 − y1y5 = x3x7 − y3y7, q2 := x2x6 − y2y6 = x4x8 − y4y8.

For convenience of notation, we let q1 = q3 = q5 = q7 and q2 = q4 = q6 = q8.
For reasons that will shortly become clear (see Remark 4.5), we want to add q1 and
q2 to our list of cluster variables.

Lemma 4.4. For any i = 1, . . . , 8, we have

x1, . . . , x8, q1, q2 ∈ Ry[x±1i−1, x
±1
i , x±1i+1] and

x1, . . . , x8, q1, q2 ∈ Ry[x±1i , q±1i , x±1i+2].
Proof. This is straightforward to check by simply expanding all of the cluster
variables in the corresponding Laurent ring. ��

WeletTi−1,i,i+1 := Spec Ry[x±1i−1, x
±1
i , x±1i+1] andTi,q,i+2 = Spec Ry[x±1i , q±1i ,

x±1i+2] for i ∈ Z/8Z. Then Lemma 4.4 shows that these give a system of 16 open
affine charts in U of the form T = (C×)3 × Ay , which we can represent at the
vertices of the exchange graph G shown in Fig. 9. The graph is the 1-skeleton of a
3-dimensional polytope and we can label the faces of this polytope so that the three
faces around each vertex give the coordinates on the torus factor of each chart. The
edges of G correspond to the three different types of exchange relation:

xi−1xi+2 = xi yi+3 + xi+1yi−2 + yi yi+1,
xi−2xi+2 = qi + yi−2yi+2,
xiqi−1 = xi−1xi+1yi+4 + xi−1yi+1yi+2 + xi+1yi−1yi−2 + yi−1yi yi+1.

Remark 4.5. We can also now see the geometrical reason as to why we are led to
include q1 and q2 in our list of cluster variables. In the coordinates on the fibreUλ,μ

of U described above, and in the case λ,μ �= 1, from the blowup up description
Uλ,μ = BlZ (A3

x1,x2,x3)\H̃ of Proposition 4.2 we see that the exchange map

(x1, x2, x3) �→
(
x2, x3,

λx2 + x3 + λ

x1

)
,



122 T. Ducat

is a mutation along one of the two line components of Z . Similarly, the exchange
map

(x1, x2, x3) �→
(
x1,

μx1x3 + x1 + x3 + 1

x2
, x3

)
,

is a mutation along the conic component of Z . This transforms the cen-
tres along which we obtain our blowup description as follows: now Uλ,μ =
BlZ ′(A3

x1,q1,x3)\H̃ ′ where H ′ = V(x1q1x3) and Z ′ ⊂ H ′ is the union of the
following three components.

Z ′ =⋃
⎧⎨
⎩
V(x1, λq1 + 1)
V(q1, μx1x3 + x1 + x3 + 1)
V(x3, q1 + 1)

From this we see that the final type of exchange map

(x1, q1, x3) �→
(
x3, q1,

λq1 + 1

x1

)
,

is a mutation along one of the two line components of Z ′. The nice surprise is that
this system of torus charts and mutations forms a closed system (i.e. composing
mutations around closed cycles in G gives the identity map on the corresponding
torus chart).

Remark 4.6. In the cases where one or both of λ,μ = 1 the number of centres
to blow up in the locus Z increases from three to either four or five respectively.
Therefore the valency of the mutation graph also increases. After a fairly involved
computation explicitly tracking the centres of Z (which includes having to deal
with unexpected jumps similar to those described in Sect. 2.2.3), it can be shown
that the exchange graph ofU1,μ (or equivalentlyUλ,1) is 4-valent with 28 vertices.
Similarly the exchange graph of U1,1 is 5-valent with 48 vertices. In particular,
these exchange graphs are also finite. The exchange graph for the rank 5 case is a
bit too complicated to draw elegantly, however the rank 4 case gives the following
graph

••

•
•

•
••

•
• •

•
•

•
• •
•

•
•

•••
•
•
•
• • •

•

which is the 1-skeleton of a 4-dimensional polytope. Visually, we see that it can be
‘collapsed’ onto the exchange graph G of Fig. 9.
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4.2.3. The interior divisors inside Uλ,μ We consider the following ten interior
divisors of Uλ,μ

Ei = V(xi ) for i = 1, . . . , 8 and Fi = V(qi ) for i = 1, 2.

These are all the divisors that appear in the complement of one of the 16 cluster
tori and are the analogue of the five interior (−1)-curves of the del Pezzo surface
in Sect. 3. Because of the jump in the rank of the class group Cl(Uλ,μ), something
special happens to these divisors when either or both of λ,μ = 1.

Proposition 4.7. 1. If λ,μ �= 1, then the divisors Ei and Fi are all irreducible.
2. If μ = 1, the four ‘odd’ divisors E1, E3, E5, E7 break up into four over-

lapping irreducible components E13, E35, E57, E71, where E13 = V(x1, x3)
etc. Moreover F2 breaks into two components as F2 = F26 ∪ F48, where
F26 = V(1+ x2, 1+ x6) and F48 = V(1+ x4, 1+ x8).

3. If λ = 1, the four ‘even’ divisors E2, E4, E6, E8 and F1 all break into two
components, with the analogous description to (2).
In particular, if λ = μ = 1 then all ten divisors break up into a total of twelve

components.

Proof. We consider the image of these divisors under the projection g : Uλ,μ →
A3
x1,x2,x3 with the discriminant locus Z ⊂ A3 as in Proposition 4.2. For λ,μ �= 1

we find that E1, E2, E3 are the exceptional divisors over the three components of
Z and the remaining divisors are given by the strict transform under g−1 of the
following (irreducible) divisors in A3.

E1 : x1 = λ+ x2 + λx3 = 0 E6 : (1+ x1 + x2)(λ+ x2 + λx3) = λ(1− μ)x1x3
E2 : x2 = 1+ x1 + x3 + μx1x3 = 0 E7 : 1+ x1 + x2 + x3 + μx1x3 = 0
E3 : x3 = 1+ x1 + x2 = 0 E8 : 1+ x1 + x2 = 0
E4 : λ+ x2 + λx3 = 0 F1 : 1+ x1 + x3 + μx1x3 = 0
E5 : λ+ λx1 + x2 + λx3 + λμx3 = 0 F2 : (λ+ x2 + λx3)(1+ x1 + x2) = λx1x3

E1 E2 E3 E4 E5

E6 E7 E8 F1 F2

If μ = 1 the conic component of Z breaks into two pieces. This has the effect
of breaking all the divisors E2, E4, E6, E8 and F1 in two. If λ = 1 then the two line
components of Z meet at an embedded point. This has the effect of breaking all the
divisors E1, E3, E5, E7 and F2 in two. In the most extreme case when λ = μ = 1,
the ten divisors break up into twelve components as follows.

E71 : x1 = 1+ x2 + x3 = 0 E35 : x3 = 1+ x1 + x2 = 0 F15 : 1+ x1 = 0
E82 : x2 = 1+ x1 = 0 E46 : 1+ x2 + x3 = 0 F26 : 1+ x2 = 0
E13 : x1 = 1+ x2 = x3 = 0 E57 : 1+ x1 + x2 + x3 + x1x3 = 0 F37 : 1+ x3 = 0
E24 : x2 = 1+ x3 = 0 E68 : 1+ x1 + x2 = 0 F48 : 1+ x1 + x2 + x3 = 0
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E71 • E82 • E13 • E24 • E35 • E46 •

E57 • E68 • F15 • F26 • F37 • F48 •

��

4.3. The tropicalisation of Uλ,μ

To simplify the notation in this section we letU = Uλ,μ so that the dependence on
λ,μ is now left implicit.We nowwant to construct the tropicalisation NU ofU (as in
Sect. 2.3.1), the dual spaceMU and the dual intersection pairing 〈·, ·〉 : NU×MU →
R.

4.3.1. The intersection pairing Recall that we have a set of ten cluster variables
{x1, . . . , x8, q1, q2} and a set of ten boundary components {D123, . . . , D812, D1357,

D2468} in the boundary divisor D of our projective compactification (X, D) of U .
For any cluster monomial ϑm ∈ C[U ] and any boundary component Dn we let
〈Dn, ϑm〉 := ordDn (ϑm) denote the order of vanishing of ϑm along Dn . We start by
computing the analogousmatrix to Table 1 that wewill use to define the intersection
pairing 〈·, ·〉 : NU × MU → R. Since this matrix is symmetric, this realises a one-
to-one correspondence between the ten cluster variables x1, . . . , x8, q1, q2 inC[U ]
and the ten boundary divisors D123, . . . , D812, D1357, D2468 of (X, D).

Proposition 4.8. Considered as rational functions on X, the cluster variables x1
and q1 have divisor

div x1 = E1 + D456 − D781 − D812 − D123 − D1357

div q1 = F1 + D2468 − D123 − D345 − D567 − D781 − 2D1357

and similarly for the other cluster variables, up to the Dih8 action. In particular,
each cluster variable vanishes along a unique boundary component of (X, D),
giving a one-to-one correspondence between the ten cluster variables of U and
the ten components of D. With respect to this ordering, the pairing between these
cluster variables and boundary components is represented by the symmetric 10×10
matrix given in Table 2.

Proof. In terms of the homogeneous equations that define X we are required to
compute div(x−10 x1) and div(x−20 q1), where x0 ∈ |OX (1)| is the homogenising
variable. Since div x0 = D = D123+· · ·+D812+D1357+D2468, the first formula
follows from showing that, considered as a section x1 ∈ |OX (1)|, we have

div x1 = E1 + D234 + D345 + 2D456 + D567 + D678 + D2468

and the second formula follows similarly for q1 ∈ |OX (2)|. This now follows from
an explicit calculation with the equations of X . ��
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Table 2. The intersection numbers 〈Di , x j 〉 for U

D456 D567 D678 D781 D812 D123 D234 D345 D2468 D1357

x1 1 0 0 −1 −1 −1 0 0 0 −1
x2 0 1 0 0 −1 −1 −1 0 −1 0
x3 0 0 1 0 0 −1 −1 −1 0 −1
x4 −1 0 0 1 0 0 −1 −1 −1 0
x5 −1 −1 0 0 1 0 0 −1 0 −1
x6 −1 −1 −1 0 0 1 0 0 −1 0
x7 0 −1 −1 −1 0 0 1 0 0 −1
x8 0 0 −1 −1 −1 0 0 1 −1 0
q1 0 −1 0 −1 0 −1 0 −1 1 −2
q2 −1 0 −1 0 −1 0 −1 0 −2 1

Given the correspondence inTable 2 it is nowconvenient to rename the boundary
divisors as D1, . . . , D8, Dq1 , Dq2 so that Di = Di+3,i+4,i+5 corresponds to xi for
i ∈ Z/8Z and Dq1 = D2468 and Dq2 = D1357 correspond to q1 and q2. We will us
Table 2 to define a complete fan F in R3 which will give us both a toric model and
a scattering diagram for U .

4.3.2. A toric model for U The fan F In order to tropicalise U , we must
first start by choosing a cluster torus chart for U . We consider the cluster torus
j : T1q3 ↪→ U with coordinates x1, q1, x3, determined by the seed Z ′ ⊂ A3

described in Remark 4.5. This is one mutation away from the original torus chart
T123 with coordinates x1, x2, x3, corresponding to the seed Z ⊂ A3 which we used
to describe a toric model for U in Proposition 4.2. The reason for this change in
the choice of seed is that the irreducible components of Z ′ ⊂ A3 are all smooth
and disjoint (as opposed to those of Z ). Thus we can obtain a description of the
tropicalisation of U by blowing up Z ′ directly, without having to blow up any of
the 1-dimensional strata of A3.

Consider the ten primitive integral vectors v1, . . . , v8, w1, w2 ∈ Z3 correspond-
ing to the following columns

v1 v2 v3 v4 v5 v6 v7 v8 w1 w2

−1 0 0 1 1 1 0 0 0 1
0 1 0 1 0 1 0 1 −1 2
0 0 −1 0 0 1 1 1 0 1

read off as the negative of the rows corresponding to x1, q1, x3 in Table 2. We can
define a complete fan F in R3 which has rays generated by these ten vectors and
whose cones are dual to the exchange graph in Fig. 9. ThusF has 16 3-dimensional
cones corresponding to the 16 cluster torus charts ofU and 24 2-dimensional cones
corresponding to the 24 possible mutations between cluster torus charts. The fan
F is displayed in Fig. 10.
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Fig. 10. The fan F giving both a toric model of U , and the scattering diagram for C[U ]

The toric model for U We consider the toric variety (T, B) defined by the fan F ,
and the locus Z ′ ⊂ T determined by the seed

S = {((−1, 0, 0), λq1 + 1) , ((0,−1, 0), μx1x3 + x1 + x3 + 1) , ((0, 0,−1), q1 + 1)}
described in Remark 4.5, corresponding to the torus chart with coordinates
x1, q1, x3.

Proposition 4.9. The pair π : (X̃ , D̃) → (T, B) obtained by blowing up Z ′ ⊂ T
is a toric model for U. This compactification (X̃ , D̃) is a small resolution of the
projective compactification (X, D) of U, and identifies the boundary components
D1, . . . , D8, Dq1 , Dq2 of D with the ten components of D̃ corresponding to the
vectors v1, . . . , v8, w1, w2 respectively.

Proof. The proof that π : (X, D) → (T, B) is a toric model for U follows from
extending a similar calculation to the proof of Proposition 4.2 from the toric vari-
ety A3 to the toric variety T . To see that the boundary components are identi-
fied as claimed, we can check that the identifications hold for the affine chart
A3

σ = SpecC[σ∨ ∩ M] ⊂ T ��� X for each maximal cone σ ⊂ F .
After blowing up the locus Z ′ ⊂ T we see that the boundary divisor D̃ is

isomorphic to B, except for the fact that each of D̃1, D̃3, D̃5 and D̃7 are blown-up
in two boundary points, turning these four boundary components into del Pezzo
surfaces of degree 5 with an anticanonical pentagon of (−1)-curves (as in Exam-
ple 3.3). The model (X, D) is now obtained from (X̃ , D̃) by contracting sixteen
O(−1,−1)-curves in the boundary (giving the sixteen nodes of Lemma 4.1). These
are the eight boundary strata corresponding to the cones 〈xi , qi 〉 for i ∈ Z/8Z and
eight more curves, four in each of the boundary components D̃1, D̃3, D̃5, D̃7, giving
the eight nodes along the lines P1

xi ,xi+1 . These sixteen curves are indicated by the
dashed lines in Fig. 11. ��
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Fig. 11. A toric model π : (X̃ , D̃) → (T, B) for U is constructed by blowing up the locus
Z ′ ⊂ B which is a union of three rational curves (drawn tropically with thick lines). The
model (X, D) is obtained from (X̃ , D̃) as a small contraction of the sixteen O(−1,−1)-
curves (drawn tropically with dashed lines) to ordinary nodes

Remark 4.10. In Proposition 4.9 we obtained our projective compactification
(X̃ , B̃) of U by blowing up Z ′ ⊂ T . This construction uses a different seed to the
seed Z ⊂ A3 appearing in Proposition 4.2, which can be used to obtain an affine
partial compactification (BlZ (A3), H̃) of U . Nevertheless, (X̃ , B̃) is a compactifi-
cation of a small resolution of BlZ (A3) in the following way. Note that BlZ (A3)

is singular, since the components of Z ⊂ A3 meet at points in the x1-axis and
x3-axis. Consider the small resolution ψ : (W, HW )→ (BlZ (A3), H̃), whereW is
obtained by first blowing up the conic component of Z ⊂ A3, and then the two lines.
This (W, HW ) can be embedded inside (X̃ , B̃) where the boundary components
correspond to B(−1,0,0), B(0,1,0) and B(0,0,−1), and the two ψ-exceptional lines are
the two dashed vertical lines in the relative interiors of B(−1,0,0) and B(0,0,−1),
appearing in Fig. 11.

The tropicalisation NU We can now construct NU , the tropicalisation of U with
respect to this seed, by altering the integral affine structure along the codimension
1 cones of F by following the process described in Sect. 2.3.1. We arrive at the
following description.

Lemma 4.11. The integral affine structure on NU is obtained by bending any line
that passes through one of the following seven walls of F:

〈v7, v1〉, 〈v1, v3〉, 〈v3, v5〉, 〈v1, w1〉, 〈v3, w1〉, 〈v5, w1〉, 〈v7, w1〉.
If Mi,i+2 represents the bend from passing from the cone 〈vi , wi , vi+2〉 to the cone
〈vi , vi+1, vi+2〉 through the wall 〈vi , vi+2〉 for i = 7, 1, 3, then

M71 =
⎛
⎝1 1 0
0 1 0
0 0 1

⎞
⎠ , M13 =

⎛
⎝1 1 0
0 1 0
0 1 1

⎞
⎠ , M35 =

⎛
⎝1 0 0
0 1 0
0 1 1

⎞
⎠ ,

and if Miq represents the bend from passing from the cone 〈vi−2, vi , wi 〉 to the
cone 〈vi , vi+2, wi 〉 through the wall 〈vi , wi 〉 for i = 1, 3, 5, 7, then

M1q =
⎛
⎝ 1 0 0
−1 1 0
0 0 1

⎞
⎠ , M3q =

⎛
⎝1 0 0
0 1 1
0 0 1

⎞
⎠ , M5q = M−1

1q , M7q = M−1
3q .
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Table 3. Wall functions for the scattering diagram Dλ,μ

Wall Function Wall Function Wall Function

d12 1+ z2 + z1z2 d13 1+ z1 + z3 + μz1z3 d1q 1+ z2
d23 1+ λz2 + λz2z3 d24 1+ z2 + z1z2 + λz1z

2
2 d2q 1+ λz1z

2
2z3

d34 1+ λz2z3 + λμz1z2z3 d35 1+ z1 + z3 + μz1z3 d3q 1+ λz2
d45 1+ z2 + z1z2 d46 1+ λz1z2 + λμz1z2z3 + λμz21z

2
2z3 d4q 1+ λμz1z

2
2z3

d56 1+ z2z3 + μz1z2z3 d57 1+ z1 + z3 + μz1z3 d5q 1+ z2
d67 1+ λz2z3 + λμz1z2z3 d68 1+ z2z3 + μz1z2z3 + λμz1z

2
2z

2
3 d6q 1+ λz1z

2
2z3

d78 1+ λz2 + λz2z3 d71 1+ z1 + z3 + μz1z3 d7q 1+ λz2
d81 1+ z2z3 + μz1z2z3 d82 1+ λz2 + λz2z3 + λz22z3 d8q 1+ λμz1z

2
2z3

The singular locus of NU is given by the four rays R≥0vi for i = 1, 3, 5, 7, corre-
sponding to the four non-toric boundary divisors of (X̃ , D̃).

4.3.3. A scattering diagram for U The finite cluster structure on U is equivalent
to the existence of a consistent scattering diagramwith a finite number of chambers.
Consider the fan F defined above. Let di j be the wall spanned by xi and x j , and
let diq be the wall spanned by xi and qi . In what follows, when we refer to a wall
di j it is convenient to implicitly allow j = q.

Proposition 4.12. Decorating the walls of the fan F with the wall functions given
in Table 3 defines a consistent scattering diagram Dλ,μ in NU .

Proof. It is straightforward to check (via computer algebra) that composing the
wall-crossing automorphisms corresponding to an oriented loop around any joint
(i.e. a codimension 2 cone of F) in Dλ,μ gives the identity. ��
Remark 4.13. The wall functions can be easily read off from the mutation rela-
tions. First note that, when expanded as a Laurent polynomial in x1, q1, x3, the
cluster variables all have a monic leading monomial,9 i.e. the constant term of their
numerator is equal to 1. Now the scattering function on the wall di j is obtained
by substituting the leading monomial of each cluster variable (written in terms
of z1, z2, z3) into the righthand side of the corresponding mutation relation and
clearing the denominators. For example crossing the wall d68 corresponds to the
mutation x7q2 = λμ + x6 + μx8 + x6x8. If we substitute x6 �→ (z1z2z3)−1 and
x8 �→ (z2z3)−1 into the righthand side and clear the denominator we get the scat-
tering function f68 in Table 3. Of course in general the scattering diagram is usually
introduced in order to derive the mutation relations, not the other way round.

Since the mutation relations generating the cluster exchange graph for U are
now easily read off as the wall-crossing automorphisms inDλ,μ, this shows that the
cluster variables x1, . . . , x8, q1, q2 can now be recovered from Dλ,μ as the theta

9 This is not a happy accident. Indeed the rescaling that happens in Sect. 4.1.3 whilst
deriving the equations of U was specially chosen in order to achieve this very fact.
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functions attached to the integral points v1, . . . , v8, vq1 , vq2 ∈ NU (Z) respectively.
Moreover, these could be computed by counting broken lines in Dλ,μ.

Since the tropicalisation NU also has the nice property that once a straight
line has left a cone of F it can never return, which can been seen by an explicit
computation with affine structure of NU as described in Lemma 4.11. Therefore,
by a similar argument to the dimension 2 case Sect. 3.3.3, for all a, b, c ≥ 0 the
integral point av1 + bv2 + cv3 ∈ NU (Z) belonging to the cone 〈v1, v2, v3〉 of F
must parameterise the theta function ϑav1+bv2+cv3 = ϑa

v1
ϑb

v2
ϑc

v3
, and similarly for

all of the other cones of F . This gives a complete description of the theta functions
on U .

Relationship to the Argüz–Gross scattering diagramAs described in Sect. 2.3.2,
for any log Calabi–Yau variety with a suitably nice toric model Argüz and Gross [2]
define a consistent scattering diagram by an inductive procedure, starting from an
initial scattering diagram. Following this procedure in our case essentially recovers
our special scattering diagram D1,1.

Indeed, given the three centres Z1 = V(x1, 1 + q1), Z2 = V(q1, 1 + x1 +
x3+μx1x3) and Z3 = V(x3, 1+λq1) in our toric variety X , their initial scattering
diagram is built by attaching the nontrivial wall functions 1+ t1z1 to d71, 1+ t2z2
to d1q , d3q , d5q and d7q , 1 + t3z3 to d35 and (1 + t1z1)(1 + t3z3) to d13. Here
t1, t2 and t3 are formal parameters (one for each centre Zi ) introduced to control
the convergence of the wall functions in the case that the scattering diagram turns
out not to be of finite type. The consistent scattering diagram obtained by their
procedure should be the same as the one obtained from our diagram D1,1 after
substituting zi �→ ti zi for i = 1, 2, 3.

Enumerative interpretation of the wallsMoreover, given our consistent scattering
diagram D1,1 it should now be possible to go one step further and understand
the enumerative geometry of the log Calabi–Yau pair (X̃ , D̃) in similar terms to
the example studied in [2, 7]. Namely, for the wall functions fd appearing in the
scattering diagram, one should be able to interpret the coefficients of the power
series log fd as punctured Gromov–Witten invariants for (X̃ , D̃). In particular,
each of the eight interior divisors Ei,i+2 ⊂ U1,1 is isomorphic to A2

u,v , and hence
each one contains a 2-dimensional family of A1-curves {ua = vb : a, b ∈ Z≥0}
(i.e. smooth rational curves which, after further resolving (X̃ , D̃) by toric blowups,
intersect the boundary D̃ transversely in one point). These should correspond to
the eight wall functions of the form 1 + x + y + xy decorating di,i+2. The four
interior divisors Fi,i+4 ⊂ U1,1 are all isomorphic to A1 ×C×, and hence each one
contains a unique deformation family ofA1-curves. These should correspond to the
four wall functions of the form 1+ x decorating di,q ∪di+4,q . Lastly, the eight wall
functions of the form 1+ x + y should correspond to the eightO(−1,−1)-curves
in D̃ ⊂ X̃ that are contracted to the eight (non-coordinate point) nodes p ∈ D ⊂ X
described in Lemma 4.1. Indeed, taking an appropriate affine neighbourhood of any
one of these nodes gives the local SYZ singularity X2,1 in the notation of [13], and
the mirror X1,2 has scattering diagram given by a single wall with a wall function
of exactly this form.
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4.4. Applications to mirror symmetry

In this section, and until the end of the paper, we restrict to looking at the special
fibre U := U1,1 of our family U of cluster varieties, corresponding to the values
λ = μ = 1. This is the most degenerate fibre, since it gains the two extra interior
nodal singularities, and it is precisely the affine variety defined by the original
recurrence relation (LR3). The reason for this specialisation is that the expansions
of the cluster variables as Laurent polynomials on a given cluster torusT123 all now
satisfy the binomial edge coefficient condition of Remark 2.14, which we expect
for our mirror Landau–Ginzburg potentials. We continue to let (X, D) be the pair
obtained by taking the projective closure X = U ⊂ P8 with boundary divisor D.

4.4.1. Landau–Ginzburg models mirror to V12 and V16 We now describe how to
construct explicit Landau–Ginzburg models which are mirror to the Fano 3-fold
pairs considered in Sect. 1.2.2.

Proposition 4.14. The polytopes P = conv (x1, . . . , x8) and Q = conv
(
x1, . . . ,

x8, q1, q2
)
are a pair of dual polytopes in MU . Moreover they are, combinatorially,

a realisation of the two polytopes of Fig.8 when considered in the affine structure
of MU .

Proof. When drawn with respect to the fan F in R3, the polytopes P and Q are
pictured as follows

P

×
•x1

•x2

•x3 •x4

•x5

•
x6

•x7

• x8

Q

×
•x1

•x2

•x3 •x4

•x5

•
x6

•x7

• x8

•
q1

•q2

and so we are required to show that the dashed edges in the diagram are really flat
when considered with respect to the affine structure on MU .

The polytope P gives an integral piecewise-linear functionφP : NU → R given
by φP (n) = min{c ∈ R : n ∈ cP}, which is linear in each cone of our fan F .
Since φP (vi ) = 1 for all i ∈ Z/8Z and φP (w1) = φP (w2) = 2, this determines a
Weil divisor �P = D1 + · · · + D8 + 2Dq1 + 2Dq2 on X̃ . Now any codimension 2
cone τ of F , corresponds to a curve Cτ in the boundary of X̃ . Using the criterion
described in Sect. 2.3.1, the map φP is linear with respect to the affine structure on
NU if �P · Cτ = 0. Now we easily check that �P is only nonzero on the curve
classes corresponding to the cones 〈xi , xi+1〉 and 〈xi , qi 〉.

The computation is similar for the polytope Q, which corresponds to the Weil
divisor �Q = D1 + · · · + D8 + Dq1 + Dq2 on X̃ . ��
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We now consider the two compactifications (XP , DP ) and (XQ, DQ) of U
which were discussed in Sect. 1.2.2. Note that (XP , DP ) = (X, D) is the standard
projective compactification of U that we have been considering throughout this
section.

An unprojection Before describing the mirror Landau–Ginzburg models to
(XP , DP ) and (XQ, DQ), we explain how to go from one model to the other
by making a birational modification ψ : XP ��� XQ , called an unprojection. Geo-
metrically, this contracts the two P1×P1 divisors D1357, D2468 ⊂ D. This is done
by adjoining q1 = x−10 (x1x5 − x20 ) and q2 = x−10 (x2x6 − x20 ), which are rational
sections of OX (1), as generators to the homogeneous coordinate ring C[XP ].
Proposition 4.15. Let XQ ={
(x0 : x1 : . . . : x8 : q1 : q2) ∈ P10 : (x0 : x1 : . . . : x8) ∈ XP

}
be the graph of the

two rational sections q1, q2 on XP. Then XQ ⊂ P10 is a projectively Gorenstein
3-fold of codimension 7 determined by the 21 equations

xi xi+3 = x0(x0 + xi+1 + xi+2) (×8)
xi xi+4 = x0(qi + x0) (×4)
xiqi+1 = (x0 + xi+1)(x0 + xi−1) (×8)
q1q2 = x0(4x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8) (×1)

and has graded resolution with Betti numbers (1, 21, 64, 70, 70, 64, 21, 1).

Proof. This is an application of the theory of unprojection developed by Papadakis–
Reid [25]. The divisor Dq1 = V(x0, x2, x4, x6, x8, x1x5−x3x7) ⊂ P8 is a complete
intersection of codimension 6 (hence projectively Gorenstein) and contained in
XP ⊂ P8 which is projectively Gorenstein of codimension 5. By adjunction we
have KXP = OXP (−1) and KDq1

= ODq1
(−2), and since (−1)− (−2) = 1 > 0

we can apply [25, Theorem 1.5] to obtain an unprojection variable q1 as a rational
section ofOXP (1).We compute that q1 = x−10 (x1x5−x20 )works as an unprojection
variable, and satisfies the equations

x0q1 = x1x5 − x20 = x3x7 − x20 ,

xiq1 = (x0 + xi−1)(x0 + xi+1) for i = 2, 4, 6, 8

and thus we obtain an unprojection (Dq1 ⊂ XP ) ��� (Pq1 ∈ X ′P ) which contracts
Dq1 to an ordinary node at the coordinate point Pq1 ∈ X ′P . Now we repeat the
procedure to the strict transform of Dq1 in X ′P to get q2 = x−10 (x2x6 − x20 ) and an
unprojection (Dq2 ⊂ X ′P ) ��� (Pq2 ∈ XQ). ��

Geometry of the unprojection The unprojection factors as a blowup of the (non-
Cartier) Weil divisor Dq1 , which resolves four nodes of XP , followed by the con-
traction of the strict transform to an ordinary node. The result of this operation is
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depicted below.To construct XQ wedo this unprojection to both Dq1 and Dq2 ⊂ XP

(i.e. to both the front and back squares of the diagram).

•
•
•••••

•
•
•
• • • • •

•

•
••

•

•
• •

•

••

• •

blowup contract

•
•

••
•

•
• •

•

••

• •

Note that the unprojection ψ : XP ��� XQ restricts to an isomorphism on the
open set U = XP\DP , since q1 and q2 are regular functions on U . Therefore if
DQ is the strict transform of the boundary divisor DP then (XQ, DQ) is also a log
Calabi–Yau compactification of U .

The potential wQ According to Remark 2.14, since the ten nonzero integral points
of Q are all vertices, the Landau–Ginzburg potential supported on Q that we con-
sider is uniquely determined by summing the corresponding ten theta functions
with coefficient 1, i.e.

wQ = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + q1 + q2.

We note that this is σ3-invariant function and, indeed, restricting to the cluster torus
chart T123 ⊂ U gives

(wQ + 5)|T123 =
(1+ x1 + x2)(1+ x2 + x3)(1+ x1 + x2 + x3 + x1x3)

x1x2x3

which is well-known to be an invariant function for Lyness map σ3.

The period πwQ (t) Consider the period

πwQ (t) = 1+ 48t2 + 600t3 + 13176t4 + 276480t5 + 6259800t6

+ 146064240t7 + · · ·
which agrees with the regularised quantum period ĜX (t) for the Fano 3-fold X of
type V12, as listed in [8, 13]. Alternatively, the shifted potential wQ + 5 has period

πwQ+5(t) = 1+ 5t + 73t2 + 1445t3 + 33001t4 + 819005t5 + 21460825t6 + · · ·

which can be recognised as the Apéry series πw+5(t) =∑∞
n=0
∑n

k=0
(n
k

)2(n+k
k

)2
tn

and is also well-known as a mirror period sequence for the Fano 3-fold V12, cf.
[16].

A K3 fibration Aswe saw in the 2-dimensional examples of Sect. 3.4.2, smoothing
a singular log Calabi–Yau pair (X, D) to a pair (X̃ , D̃) consisting of a smooth
Fano 3-fold X̃ with smooth anticanonical boundary divisor D̃, corresponds under



The 3-dimensional Lyness map 133

(a) (b)

Fig. 12. a The sixteen lines of intersection for the boundary divisor DQ and the degenerate
interior divisor EQ represented inside DQ . b Similarly for the twelve lines of intersection
of DP and EP

mirror symmetry to a compactification of the fibres of the mirror Landau–Ginzburg
fibration. The Landau–Ginzburg model mirror to the smooth Fano 3-fold V2k of
Picard rank 1, is a fibration of K3 surfaces of Picard rank 19 (the fibration X̂k in
the notation of [11]), and our self-mirror log Calabi–Yau 3-fold appears as an open
subset in the fibration X̂6, as we now describe.

In order to appreciate some beautiful geometry hiding here, it is convenient
to consider extending the potential wQ to the compactification XQ . In analogy to
the critical value −3 for the Landau–Ginzburg potential on the del Pezzo surface,
the factorisation of (wQ + 5)|T123 corresponds to the fact that the interior divisor
EQ := w−1Q (−5) ⊂ U is reducible. Then, in the notation of Proposition 4.7, the

reducible fibre is EQ = ∪8i=1Ei,i+2 which is the union of eight copies of P1 × P1

and happens to be isomorphic to DQ (i.e. these eight components also meet like
the faces of the polytope Q). The intersection of the divisors DQ ∩ EQ is a set of
sixteen lines, given by the pair of lines on each face of DQ which pass through the
eight nodes (1 : −1) ∈ P1

xi ,xi+1 in the boundary of XQ . These lines are shown in
Fig. 12.

Now the fibres of wQ : XQ ��� P1 are given by the anticanonical pencil
|DQ, EQ |with baselocus the sixteen lines described above. The general suchmem-
ber of this pencil is a K3 surface St := w−1Q (t) which is smooth, apart from eight
ordinary double points which lie at the eight nodes of X that are contained in
DQ ∩ EQ . Therefore, after taking its minimal resolution, the K3 surface St con-
tains a configuration � = ⋃24

i=1 �i of 24 (−2)-curves with the dual intersection
diagram displayed in Fig. 13a, where the black nodes correspond to the sixteen lines
of DQ ∩ EQ and the white nodes correspond to the eight ordinary double points.
Since the 24 (−2)-curves � span a lattice of rank 19 and St deforms in a nontrivial
family, it follows that St has Picard rank 19.

Returning to our original Landau–GinzburgmodelwQ : U → C ,we see that the
fibres are a family of affine K3 surfaces w−1Q (t) = St\�, given by the complement
of this configuration of lines� in St . These can be represented by as affine quartics

(t + 5)x1x2x3 = (1+ x1 + x2)(1+ x2 + x3) (1+ x1 + x2 + x3 + x1x3)
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(a) (b)

Fig. 13. a The configuration � of 24 (−2)-curves in the boundary of w−1Q (t). b The config-

uration � of 20 (−2)-curves in the boundary of w−1P (t)

and there are precisely four degenerate fibres. Two reducible fibres corresponding to
the values EQ = w−1Q (−5) and DQ = w−1Q (∞), and two values λ± = 24(1±√2)
which acquire an A1 singularity. We get a picture as in the 2-dimensional case.

×
−5

×
λ−

×
λ+

×
∞

× A1 × A1

The potential wP We can rerun this entire analysis with the potential wP =
x1 + · · · + x8 in place of wQ . In summary, the period of wP is

πwP (t) = 1+ 24t2 + 192t3 + 2904t4 + 40320t5 + 611520t6 + 9515520t7 + · · ·
which agrees with the regularised quantum period ĜX (t) for the Fano 3-fold X of
type V16, as listed in [8, 15].

In this case the pencil of affine K3 surfaces determined bywP specifies an open
subset of the fibration X̂7 of [11], known to be mirror to the smooth Fano 3-fold
V14. There is a factorisation

(wP + 4)|T123 =
(1+ x1)(1+ x2)(1+ x3)(1+ x1 + x2 + x3)

x1x2x3

which is another σ3-invariant Laurent polynomial, and corresponds to a reducible
fibre given by EP := w−1P (−4) = ⋃4

i=1 Fi,i+4 in the notation of Proposition 4.7.
This reducible fibre EP is the union of four rational surfaces intersecting like a
tetrahedron inU . When extended to the compactification XP , the boundary divisor
DP meets EP in a collection of 12 lines, given by the Dih8-orbits of V(x1 + x2 +
x3) ⊂ D123 and V(x1 + x3) ⊂ D1357. These are displayed (tropically) in Fig. 12b
and pass through the same eight nodes in the boundary of XP as the previous case.
The general member in the anticanonical pencil |DP , EP |, corresponding to the
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fibres of wQ , is a K3 surface St = w−1Q (t) which passes through the twelve lines
and is smooth apart from eight ordinary double points at the eight nodes of XP .
The minimal resolution of St is a K3 surface containing a configuration � of 20
(−2)-curves generating a lattice of Picard rank 19, and which correspond to the
dual intersection diagram of Fig. 13b. The fibres of the original Landau–Ginzburg
modelwP : U → C are affine K3 surfaces of the form St\�. There are exactly four
degenerate fibres: the two reducible fibres DP = w−1Q (∞) and EP = w−1Q (−4),
and a further two values where the fibre obtains an A1 singularity.

4.4.2. Other Fano 3-folds We do not try to attempt to classify all reflexive poly-
topes in NU , although it would be interesting to know how many there are in
comparison to the 4319 reflexive polytopes in R3. Nevertheless, we can consider
all of the polytopes obtained from removing vertices from the polytope Q from
Sect. 4.4.1.

Theorem 4.16. Consider theLaurent polynomialw0 = w|T123 ∈ C[x±11 , x±12 , x±13 ]
obtained by restricting the Landau–Ginzburg potential w = ε1x1 + . . . + ε8x8 +
ε9q1 + ε10q2 with coefficients εi ∈ {0, 1} for i = 1, . . . , 10.

1. Of the 1024 possibilities for w0, 705 have 3-dimensional Fano Newton poly-
topes, i.e. Newt(w0) has primitive vertices and 0 ∈ int(Newt(w0)).

2. These 705 Laurent polynomials give rise to 46 distinct periods.
3. Of these 46 periods, 20 are equal to the regularised quantum period of a smooth

Fano 3-fold, as described in Table 4.

Table 4 only contains one representative Landau–Ginzburg potential in each
case and, even after taking the Dih8 symmetry into account, the same period
sequence can be obtained from several different potentials. For example, in addition
to the entry in the Table 4, the following five potentials also have the right period
to be mirror to V22:

x1 + x2 + x5 + x6 + q2, x1 + x2 + x3 + x4 + x5 + q2, x1 + x2 + q1 + q2,

x1 + x2 + x3 + x4 + x5 + x7 and x1 + x2 + x3 + x4 + x6 + q2.

According to Conjecture 2.13, the different choices of potential correspond to dif-
ferent degenerations of a Fano 3-fold of type V22 to a pair (XQ, DQ)where Q is the
dual polytope to P = Newt(w) ⊂ MU . It would be interesting to know whether
the remaining 26 period sequences are all period sequences of Fano 3-folds with
terminal singularities.

4.4.3. A final example We end with a final example of mirror duality for a pair
of exotic polytopes in NU , which cannot be realised combinatorially as polytopes
in Euclidean space. The intersection of the two halfspaces (q1)≥−1 ∩ (q2)≥−1 is a
closed polytope Q ⊂ NU with eight vertices xi xi+1 for i ∈ Z/8Z. Therefore the
dual polytope P is given by P = ⋂i∈Z/8Z(xi xi+1)≥−1. This gives a pair of dual
polytopes in NU

P = conv(q1, q2) and Q = P� = conv(x1x2, x2x3, . . . , x8x1).



136 T. Ducat

Table 4. Mirror Landau–Ginzburg potentials on U for 20 smooth Fano 3-folds

Fano 3-fold Mirror Landau–Ginzburg potential w

V12 x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + q1 + q2
V14 x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + q1
V16 x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8
V18 x1 + x2 + x3 + x4 + x5 + x6 + x7
V22 x1 + x2 + x3 + x4 + x5 + x6
MM2,9 x1 + x2 + x3 + x6 + q1 + q2
MM2,12 x1 + x2 + x3 + x5 + x6 + x7
MM2,13 x1 + x2 + x3 + x4 + x6 + x7
MM2,14 x1 + x2 + x3 + x4 + x5 + x7 + q1
MM2,16 x1 + x2 + x3 + x6 + q1
MM2,17 x1 + x2 + x3 + x5 + x6
MM2,20 x1 + x2 + x3 + x4 + x7
MM2,21 x1 + x2 + x3 + x5 + x7
MM2,22 x1 + x2 + x3 + x6
MM3,7 x1 + x2 + x4 + x6 + x7
MM3,10 x1 + x2 + x3 + x5 + x7 + q1
MM3,12 x1 + x3 + x6 + x7 + q1
MM3,13 x1 + x5 + q2
MM3,15 x1 + x4 + x5 + x7
MM3,20 x1 + x4 + x6

We draw these two polytopes below, where the solid lines denote edges of the
polytope and dashed lines are due to the bend in the affine structure of NU . We note
that P has two vertices and eight faces (so topologically it looks like a beachball
with eight stripes), whereas Q has eight vertices and two faces.

×

•
q1

•
q2

• •

••

• •
•

•

×

•
x1x2

•x8x1

•x7x8

•
x6x7

•
x5x6

• x4x5

• x3x4

•
x2x3

We now describe how to set up the mirror correspondence between the (degenerate)
Fano 3-fold (XP , DP ) (resp. (XQ, DQ)) and the Landau–Ginzburgmodel (U, wQ)

(resp. (U, wP )).

Example 4.17. We start by describing themirror correspondence for (XQ, DQ) and
(U, wP ).



The 3-dimensional Lyness map 137

The Landau–Ginzburg model (U, wP ) Using P as the polytope to define a
Landau–Ginzburg model (U, wP ) is straightforward, since P contains only two
nonzero lattice points which are both vertices. By Remark 2.14 they both receive
coefficient 1 and this uniquely determines the potentialwP = q1+q2. By restricting
to the torus chart T123 and computing the period sequence of the resulting Laurent
polynomial, we find that

πwP (t) = 1+ 8t2 + 24t3 + 240t4 + 1440t5 + 11960t6 + 89040t7 + · · ·
which is the regularised quantum period of the smooth Fano 3-foldMM2,21 [8, 38].

The Fano 3-fold (XQ, DQ) When considered in the integral affine structure of
MU , the two faces of Q are two flat lattice octagons labelled with the following
theta functions.

•x6x7 •x5x6

•x4x5

•x3x4

•x2x3•x1x2

•x8x1

•x7x8 •x7
•x5

•x3•x1

•x5x6

•x4x5

•x3x4
•x2x3•x1x2

•x8x1

•x7x8

•x6x7

•x6

•x4
•x2

•x8

Thus to construct (XQ, DQ) we consider the graded ring RQ which is generated
in degree 1 by seventeen generators

x0, x1, . . . , x8, x1x2, . . . , x8x1

where x0 is the homogenising variable. According to computer algebra XQ =
Proj RQ ⊂ P16 is a Gorenstein Fano variety of Fano index 1 and degree deg XQ =
vol Q = 28. This at least agrees with XQ being a (degeneration of a) Fano 3-fold
of type MM2,21, as predicted by the period sequence of wP . By Conjecture 2.13
we expect that XQ admits a Q-Gorenstein smoothing to a smooth Fano 3-fold of
type MM2,21.

Moreover, the boundary divisor DQ = V(x0) consists of two components
D = D1 ∪ D2 which are toric surfaces (defined by the two octagons above) which
glued together other along an octagon of rational curves. This realises Q as the
intersection complex of DQ .

Example 4.18. The more interesting (and currently less clear) direction is to under-
stand how to set up themirror correspondence with the roles of P and Q reversed. It
suggests the possibility of constructing at least three different deformation families
of Fano 3-folds with the Hilbert series [6, #14885] in the Graded Ring database.
Currently two such families are known: one constructed as a complete intersection
in a toric variety [19] and the other via unprojection [26] (although it is not known
whether these two families are distinct).
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The Fano 3-fold (XP , DP ) The polytope P gives degrees 2, 2, . . . , 2, 1, 1 to the
variables x1, x2, . . . , x8, q1, q2 respectively. Taking the projective closure ofU with
respect to this gradingwe get a Fano 3-fold XP = Proj RP ⊂ P(13, 28) in weighted
projective space. One of the equations defining XP is

q1q2 = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + 4x20

which we could use to eliminate x1 say, and reduce to a model XP ⊂ P(13, 27).
The Hilbert series of XP now agrees with [6, #14885], showing that XP has
degree deg(XP ) = vol(P) = 4, Fano index 1 and basket of quotient singulari-
ties {8 × 1

2 (1, 1, 1)}. The anticanonical boundary divisor DP = V(x0) has eight
components:

D12 = V(x0, x3, x4, x5, x6, x7, x8, q1q2 − x1 − x2) etc.

which are all copies of P(1, 1, 2) that are joined to their neighbours along conics
meeting at the two coordinate points where q1 �= 0 and q2 �= 0. Thus P is realised
as the intersection complex for the boundary divisor DP . One of the eight 12 (1, 1, 1)
points of XP lies in the relative interior of D12 at the point where x1 + x2 �= 0 and
all of the other coordinates vanish. Similarly for the other seven 1

2 (1, 1, 1) points.
We note that if Y is a Fano 3-fold with Hilbert series [6, #14885], then

h0(Y,−KY ) = 3 and hence −KY is ample but not very ample, so there is no
Gorenstein toric degeneration of Y . Therefore there is no reflexive polytope we can
write down which will give us a mirror Laurent polynomial for Y .

The Landau–Ginzburg model (U, wQ) To cook up a Landau–Ginzburg potential
wQ which is mirror to (XP , DP ), we need to label the lattice points of Q with
appropriate integer coefficients, as described in Remark 2.14. Since we label all
vertices of Q with the coefficient 1, the only decisions we need to make are over
the lattice points belonging to the relative interior of each face. Following [10],
we expect that the right thing to do is label the lattice points of each face F ⊂ Q
with the coefficients of a 0-mutable polynomial supported on F . In our case this is
one of the following three choices of coefficients, according to the three possible
maximal Minkowski decompositions of the octagon.

1 1
1 2 2 1
1 2 2 1
1 1

1 1
1 3 2 1
1 2 3 1
1 1

1 1
1 2 3 1
1 3 2 1
1 1

•
•

• •
•

•
•

•+ + + •
• •

• •
•

•
•+ + •

•
•

•
•
•

•
•+ +

After taking into account theDih8 symmetry, there are just threeways to decorate Q
with coefficients, yielding three Landau–Ginzburg potentials with distinct periods.
As described in Remark 2.14, according to Conjecture 2.13 these are conjecturally
in one-to-one correspondence with three possible deformations of XP . None of
these three periods appear in the classification of quantum periods for smooth Fano
3-folds [8], which is unsurprising since XP has isolated terminal quotient singu-
larities (which cannot be deformed away by any smoothing). However it suggests
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that XP may lie at the intersection of three different components of Fano 3-folds
in its Hilbert scheme.

Remark 4.19. Smoothings of Gorenstein toric Fano 3-folds (XP , DP ) associated
to an (honest) reflexive polytope P ⊂ R3 have been studied in [9], and their
construction requires the input of a Minkowski decomposition of each facet of
P . Different choices of Minkowski decompositions lead to topologically distinct
smoothings.
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