Code Gradients: Towards Automated Traceability of
LLM-Generated Code

Marc North
CS, Durham University
Durham, UK
marc.north@durham.ac.uk
Method Grid
Bath, UK
marc.north@methodgrid.com

Abstract—Large language models (LLMs) have recently seen
huge growth in capability and usage. Within software engineer-
ing, LLMs are increasingly being used by developers to generate
code. Code generated by an LLM can be seen essentially a
continuous mapping from requirements to code. This represents
a great opportunity within requirements engineering to use this
mapping to provide traceability from requirements to LLM-
generated code. The challenge is that the black-box nature of
LLMs makes it difficult to trace requirements, while traditional
approaches require extensive post-hoc testing or expert analysis.
In this research preview, we explore the use of LLM explainability
techniques to trace LLM-generated code back to requirements.
By inspecting the gradients of LLM output, we develop a first
attempt at tracing LLM inputs through to its generated code.
We use this to estimate which low-level requirements have
been met. Furthermore, through an automated iterative process,
we re-query the LLM, instructing it to rewrite its code to
meet the missing requirements. Our results suggest that the
gradients of LLM outputs can be used to trace requirements
through LLM code generation and that this traceability could
potentially be used to improve generated code to better meet
requirements. Future work is required to fully validate this result,
but this represents a first step towards automatic traceability and
verification of AI generated code.

Index Terms—Requirements Engineering, Large Language
Models, Traceability

I. INTRODUCTION

As is the case for all neural networks, Large Language
Models (LLMs) essentially map inputs to outputs, albeit in a
very complex way. This continuous mapping represents a huge
opportunity for Requirements Engineering. One can imagine
that, by examining these mappings as an LLM generating
code from requirements, we would be able to see which
requirements the LLM is ‘looking at’ when it generated
each line of code, potentially providing automatic traceability
between requirements and LLM generated code.

However, our current level of understanding of these LLM
input-to-output mappings makes this a challenge. The black-
box nature of LLMs means that explainability in Natural
Language Processing (NLP) lags far behind the capabilities
of LLMs. Requirements Engineering is no exception to this,
with the coding abilities of state-of-the-art LLMs far exceeding
our understanding of their decision-making.

Amir Atapour-Abarghouei
CS, Durham University
Durham, UK
amir.atapour-abarghouei @durham.ac.uk

Nelly Bencomo
CS, Durham University
Durham, UK
nelly.bencomo@durham.ac.uk

Developer: Write a python function called ‘add*

Al: def add...

(a) Beginning of a response from CodeL.lama LLM to an
instruction to write a function.

Write a python funetion called "l

(b) Visualisation of the gradients of the LLM’s output with
respect to each input token while generating the token ‘add’.

Fig. 1: The gradients of an LLM output with respect to each
input token as it generates code.

It is this challenge — and opportunity — that we look to
explore in this work. We look at LLM explainability and its
applicability to requirement traceability and LLM-generated
code. To do this, we carry out a proof-of-concept experiment
in which we calculate the gradients of LLMs while solving
coding problems, and use those gradients to predict which
requirements have been fulfilled by the code. We present our
preliminary results of this proof-of-concept experiment and
discuss future work to validate and improve these results.

A. Motivating Example

Figure 2] provides a simple yet motivating example to
demonstrate our idea. Figure shows the beginning of a
conversation between a developer and an LLM, CodeLlama
in this case. The user (i.e. developer) message includes three
requirements that the generated code must meet. As the LLM
generates its output, we calculate the gradients of each output
token with respect to each input token and pool these gradients
(the details of how we calculate and pool these gradients are
given in [section IM)). The pooled gradients for our motivating
examples are shown in Figure 2b} the highlighted sections
show the magnitude of the pooled gradients for each require-

ment as the model was generating its code, where the strength
of the highlight is proportional to the magnitude of the pooled
gradients. We use these pooled gradients to estimate which of
the requirements the LLM has ignored, and therefore which
requirement is not met by the generated code. Figure [2c|shows
the continued conversation, where we ask the LLM to rewrite
its code, paying closer attention to the missed requirement.

As can be seen, the requirement with the lowest pooled
gradient is the second requirement, “-contains at least one
number”. Our hypothesis is that a lower pooled gradient for
a requirement in the input correlates with that requirement
not being met by the generated code. Looking at the code
generated from this user message in our motivating example
in figure [2a] we can see that this section of the prompt has
indeed been overlooked by the model — the generated code
fails to correctly check if the generated string contains at least
one number — while the other two requirements, which have
higher pooled gradients, are fulfilled by the generated code.

Figure [2c| demonstrates the reprompting technique used in
our proof-of-concept experiment, where we use the ignored
requirement — as determined by the calculated pooled gradi-
ents — to ask the LLM to rewrite its code. In our motivating
example, the LLM does indeed address the issue and fulfil all
three requirements in its rewritten code. This reprompting is
done automatically, with no manual intervention.

A key point, and one that differentiates our work from
previous work that aims to improve LLM generated code [1[]—
[3], is that we are determining the ignored requirement
without testing — or even looking at — the generated code.
To illustrate this point, imagine handing a human developer a
set of requirements, written across two pages. If, as they code,
you notice that they only read the first page of requirements
and completely ignore the requirements written on the second
page then — without having to test or review their code — you
would probably doubt that their code fulfilled the requirements
on the second page. This is the essence of what this work aims
to do with LLMs: watch them as they code and try to identify
requirements that they ‘don’t look at’.

Note that — in the context of software engineering as a
whole — we are not advocating abandoning software test-
ing. Rather, we are aiming to improve the quality of LLM-
generated code when it is initially generated and so to reduce
the amount of code rejected in later manual or automated
testing.

The rest of this paper will set out the context of our work
and test our initial hypothesis, testing our gradient inspection
and reprompting technique shown in this motivating example
on a wider dataset of coding challenges and different LLMs.
While in this research preview we focus on one specific
technique to trace requirements and improve LLM-generated
code, namely calculating gradients and reprompting the LLM,
it is important to bare in mind that this is just one possible
technique for tracing requirements during LLM code genera-
tion.

Developer:

Write a method that generates a string that:
-is six characters long

-contains at least one number

-has a repeated character

Al:

def generate():
while True:
password = ' '.join(random.choice (
string.ascii_letters + string.digits
) for _ in range (6))
if any(password.count (c)>1 for c in password) :
return password

(a) Beginning of conversation asking Codel.lama to generate a
function matching the given requirements. Note that the code does
not meet the second requirement that it must contain at least one
number.

<s> [INST] "Write a method that generates a string that:<
-is six characters long -

-contains at least one number-

. [s T) -

“python’ "4

def generate():<

(b) Visualisation of the pooled gradients of each requirement in the
user prompt. Only pooled gradients of the requirements are shown.
Note that the ignored requirement has the lowest pooled gradient.

Developer:
Rewrite the method with the same requirements, paying
close attention to “contains at least one number”.

Al:

def generate():
while True:
password = ' '.join(random.choice (
string.ascii_letters + string.digits
) for _ in range (6))
if any (password.count (c)>1 for c in password) \
and any (c.isdigit () for c in password) :
return password

(c) Continuation of the conversation asking CodeLlama to rewrite its
generated code, telling it to pay close attention to the missed
requirement. This rewritten code does meet all the requirements.

Fig. 2: Motivating example of our gradient-based
reprompting technique.

B. Research Questions

e« RQ1: Is there a correlation between a low gradient
in LLM output with respect to a section of its input
representing a software requirement and that requirement
being unfulfilled in the LLM’s generated code?

o RQ2: If such unfulfilled requirements are identified and
passed as a subsequent input to an LLM, can the LLM
use them to fix its own code?

II. BACKGROUND AND RELATED WORK
A. Traceability in Software Engineering

In software engineering, traceability plays a crucial role in
managing the connections between various software artifacts.
Given its critical role in ensuring the safety, reliability, and
compliance of complex systems, traceability holds significant
value in safety-critical domains, with its necessity in some
domains even being manditory, such as ISO 26262 mandat-
ing requirements traceability of development artifacts in the
automotive industry [4].

However, while this traceability is important, manually
discovering and maintaining traceability links can be error
prone and time consuming, leading to much research into
methods for automatically or semi-automatically handling
these traceability links. In addition to improved traceability
tools [5], information retrieval techniques [6] and trace query
languages [7] have been developed in an attempt to reduce the
amount of manual time and effort required.

Examples of these approaches include Al-Msie’deen’s Ya-
menTrace [8], a system aimed at automatically recovering
and visualising traceability links from object-oriented code
using latent semantic indexing, and the use of a vector space
model [9] to extract traceability links between requirements
and source code written in different languages.

More recently, advances in machine learning have driven
efforts towards automatically recovering traceability links from
code using natural language processing. Advances in NLP
have also allowed this traceability link recovery to be aware
of domain-specific language in both requirements and code
[10], which has traditionally been a challenge in specialised
domains. This move towards deep-learning traceability has
seen improvements in the state-of-the-art, and spurred research
moving toward ‘ubiquitous traceability’ [11f], that is, auto-
mated traceability built into the software engineering process.

One such example of NLP-driven traceability is Guo et al.
[12]. Using word embeddings and a recurrent neural network
to understand the domain-specific language of requirements
better; they found that this deep-learning approach outper-
formed latent semantic indexing approaches. Similarly, Lin et
al. introduced Trace BERT [13]], a deep learning model based
on the BERT transformer, that is partially trained on related
software engineering challenge data to learn software seman-
tics. They found that this approach was more accurately able
to recover links between issues and commits in open-source
projects than classical information retrieval trace models.

Further recent progress in Al continue to disrupts all phases
of the software engineering cycle, including implementation;

amongst developers using GitHub CoPilot 40% of the code
being committed “is now Al-generated and unmodified” [14].
These developments present both challenges and opportunities
to requirements engineering and traceability, and it is increas-
ingly important to adapt requirements traceability tools and
practices to the software engineering landscape.

Our work similarly seeks to use recent developments in
NLP to automate traceability. Where the direction of our
work differs from this previous work — even the previous
work focusing on NLP and LLMs — is that we aim to track
and maintain the traceability links between requirements and
code as the code is being generated, rather than recovering
traceability links post-hoc.

B. Interpretability

A machine learning model can be said to be ‘interpretable’
if it can provide human-understandable explanations for its
outputs [15]. Models with decision-making processes that
are not easily understandable by humans are called black-
box models. While black-box model interpretability is a very
active research area, interpreting black-box model decision-
making remains a challenge and is increasingly becoming a
pressing issue, as the majority of machine-learning models
driving the recent growth of Al capability — especially in
natural language processing and software engineering, where
the transformer architecture has been the basis of much of the
recent successes [[16]] — fall into this black-box category.

While the rise of LLM coding presents opportunities in
terms of automatic requirements traceability, the fact that
interpretability research within NLP is still in the early stages
presents a challenge. Other fields of computer science, such
as computer vision, have been tackling similar challenges of
neural network explainability and — although computer vision
neural networks have a different structure to LLMs — there
is overlap [17] and some explainability techniques developed
for computer vision can be adapted for use with LLMs.

Input-feature attribution, which aims to determine how im-
portant an input feature is for a given output, is widely used in
computer vision interpretability — for example in determining
which pixels in an input image are most important to a model
when classifying an image — and, while not as widely, have
also been used in natural language processing [18]]. Two such
examples of interpretability techniques developed in computer
vision and subsequently adapted for NLP are Grad-CAM [19]
and SmoothGrad [20]; we use SmoothGrad to calculate our
traceability gradients, discussed further in section [II}

C. Post-processing LLM Code Output

An LLM’s capabilities, whether in coding or natural lan-
guage tasks, is heavily impacted by the quality of its training,
and much recent NLP research has focused on how to im-
prove LLM performance with different pre-training [21]] and
fine-tuning [22] techniques. However, training an LLM —
especially pre-training one from scratch — is time-consuming
and expensive, prohibitively so for many organisations and

individuals. A growing area of NLP research focuses on how
to improve LLM performance at inference time.

A method that has found success is have an LLM generate
multiple possible answers for a task and then to filter or
rank those responses to select the best candidate answer.
Within software engineering, AlphaCode [23|], SEIDR [1],
and CodeRanker [3]] employed such an approach, generating
multiple answers to coding tasks, before filtering down based
on some criteria.

While improving performance, there is a downside to any
approach that ranks or accepts/rejects solutions based on unit-
tests: the tests must already exist or be manually created.
Attempts have been made to address this limitation, for
example by having an LLM generate the tests against which
its own candidate solutions would later be ranked [24], or
running the generated code and iteratively passing any com-
pilation/runtime errors back to the model to rewrite the code
[2]]. Our proposed method takes a similar iterative approach,
but instead of reprompting the LLM with the error message,
we reprompt with the ignored requirement, discussed in more
detail below in section

Another problem with any approach that evaluates the
generated code by executing it, as part of a unit test suite
or otherwise, is that LLMs can produce any arbitrary code.
This introduces huge security risks if run in an uncontrolled
or unsupervised manner, as it could lead to the execution of
harmful or unintended operations. Therefore, care must be
taken to execute their code in a safe environment. This is not
necessarily practical in real-world applications.

D. Code Evaluation

Evaluating LLM output remains an open challenge in natu-
ral language processing generally. The domain of software en-
gineering has an advantage in this regard, as the correctness as
code can more easily be tested to validate proposed evaluation
metrics. Dong et al. [25] aimed to train a deep-learning model
to evaluate code correctness. They introduced CodeScore, an
LLM-based code evaluation metric that aims to evaluate the
correctness of LLM generated code and demonstrated that
CodeScore correlates with code functional correctness better
than other widely-used metrics such as BLEU [26]. Similarly,
Zhou et al. [27] use a pretrained model, CodeBERTScore to
evaluate code. Building on BERTScore [28]], which evaluates
NLP models by comparing embeddings of the input and output
text, CodeBERTScore similarly evaluates code by embedding
both the natural language problem statement and the gener-
ated code and taking the pairwise cosine similarity between
embedded tokens.

While our work similarly seeks to evaluate generated code
with regard to a natural language problem statement, our work
differs in that we are not using an external model to evaluate
the output, but rather by examining the inner-workings of the
LLM itself as it generates the code.

III. METHODS
A. Gradient-Based Reprompting

Given an LLM, capable of generating code, and some
natural-language requirements that we want the generated code
to fulfil, our gradient-based reprompting technique can be
outlined as follows:

1) Split the natural-language requirements into short seg-
ments, each segment representing a distinct requirement.

2) Instruct the model to generate code that meets the require-
ments.

3) As the model generates its output, calculate the gradients
of its output with respect to each of the input tokens. Here, a
gradient represents the direction and magnitude of change in
the model’s output prediction in response to small changes in
its input, effectively highlighting the influence of each input
token on the generated output.

4) Pool the gradients for each requirement segment to quan-
tify how much the model ‘looked at’ each requirement segment
as it generated its output.

5) Identify the requirement segment with the lowest pooled
gradient; this is the segment of the requirements that the model
‘ignored’ the most and, thus, according to our hypothesis, the
requirement that the generated code is least likely to fulfil.
6) Continue the conversation and instruct the model to rewrite
the code, but pay closer attention to the ignored segment.

We use simple prompts when instructing the model. Re-
fining these prompts could improve the quality of the code,
but such prompt-engineering is not the focus of this paper;
the important point for this work is that our prompting is
consistent between comparisons to control for the quality of
the prompt affecting our results.

The fundamental idea behind this gradient-based reprompt-
ing is to identify which requirements the model ignored,
and to instruct the model to rewrite its code, paying closer
attention to ignored requirement. Importantly, we aim to do
this in an automated way, without running, testing, or even
reading the model’s generated code.

In order to evaluate our approach, we do, in fact, run unit
tests against the output code (see[[II-E). This is done as part of
this work to evaluate our proposed gradient-based reprompting
approach. But, importantly, running these unit tests is part of
the evaluation of our proposed technique, and not part of the
technique itself.

B. Requirement Segmentation

Our first step is to split our natural language requirement
statements into discrete requirements. While there do exist
tools for automatically parsing natural language, for example
Stanza [29]], for this experiment we manually split the doc
strings into segments. Incorporating such tools into our re-
prompting technique would be valuable in practice but is not
the focus of this experiment and is left for future work.

C. Identifying Ignored Requirements

Identify requirements that were potentially ignored by the
model — without running the code — is the fundamental idea

behind our proposed technique. To do this, on each forward
pass through the LLM, we calculate the gradients of the output
with respect to each input’s embeddings. For a given input-
token-output-token pair, we calculate the gradient of the output
with respect to the input’s embeddings, giving a vector of size
D, where D is the size of the model’s embedding vector space.
We take the magnitude of this vector to obtain a single gradient
magnitude and, after doing so for each input embedding vector,
we have m such gradient magnitudes; doing this for each
forward pass gives nxm gradient magnitudes, where n is the
number of tokens in our initial input and m is the number of
tokens in the model’s output.

We can think of these gradient magnitudes as a measure of
how important each input token was in the generation of each
output token. However, we are not interested in the importance
of individual input tokens to individual output tokens, but
rather the importance of input segments to the output as a
whole. To find this, firstly we take the maximum gradient
magnitude that each input token has for any output token,
then pool these maximum input gradient magnitudes. In this
experiment, we compare the results of using different gradient
pooling strategies. Once we have a single value for each input
token in a segment, we calculate pooled gradients using each
of these four different strategies:

o Average value: We average the values from all input
tokens in the segment.

o Pruned average value: We first prune the input token
values, keeping only those with a z-score less than 2,
and then take the average of the remaining input token
values. In initial testing, we observed that tokens that
don’t add much meaning to a requirement — such as
commas or new line tokens — would sometimes have
very high gradients and we wonder if these high gradients
are adding noise to segment selection.

« Maximum value: We take the maximum value from any
one of the input tokens in the segment and use that as
the pooled gradient value for the whole segment. The
idea behind this pooling strategy is that there may only
be a few specific tokens in a segment that provide most
of the semantic meaning of the requirement and one
might expect those tokens would likely have the highest
gradients.

¢ Pruned maximum: Similar to above, we prune input
tokens with a z-score of greater than 2, then take the
maximum remaining value.

For each of these pooling method, we select the segment
with the lowest score as our ‘ignored’ requirement that will
be used to reprompt the model in the next step.

In addition to these four pooling methods, we also include
a random baseline in our experiment. For this, we ignore the
gradients entirely and select a requirement segment at random.
The purpose of including this random baseline is to check that
our gradient-based requirement selection is driving any change
in results, rather than any improvement simply being the result
of instructing the model to rewrite its own code.

D. Reprompting

After the model has generated its proposed solution to the
problem and we have selected an ‘ignored requirement’, we
continue the conversation with the model and instruct it to try
generating the code a second time. We build a second user
message and a second partial model response and feed this as
new input into the model. Our motivating example in figure
shows how this second initial input is built.

E. Evaluation

We use the HumanEval [30] benchmark to evaluate our
technique, which consists of 164 Python coding problems. We
comparing the pass@1 for each model:

1) Without our technique (‘model-only’)

2) Using the four different requirement selection strategies

3) Using the random segment selection strategy

We test our technique on four different models (two differ-
ent sizes of each of the following two architectures):

1) WizardCoder [31]: Released by Microsoft, WizardCoder
is a fine-tuned version of StarCoder [32], trained using a
code-specific Evol-Instruct method. We use the 1-billion
and 3-billion parameter versions.

2) CodeLlama Instruct [33]]: a variation of Meta’s gen-
eral natural language Llama2 [34] model fine-tuned for
coding. We use the 7-billion and 13-billion parameter
versions.

To clarify — since we state that a key goal of our technique
is to improve LLM-generated code without testing it, but are
now testing it — this testing is done to compare the quality of
the code generated by the LLM with and without our technique
applied, i.e. testing the code is done to evaluate our technique,
it is not part of the technique itself.

IV. RESULTS
A. Code improvements

Table [[] shows a comparison between each model’s first
attempt pass@1 score versus when reprompted using each
of our segment selection strategies. As can be seen, the
reprompted results generally show an improvement over the
baseline score.

The size of the HumanEval dataset is used is relatively
small, and the number of test cases that change results after
being reprompted — either from fail to pass or vice versa —
is also small. That is, the majority of test cases that pass on
the first attempt also pass on the reprompted attempt, and the
majority of test cases that fail on the first attempt also fail on
the reprompted attempt. So while our results in general show
improvement when reprompted with the ‘ignored’ requirement
and we can be cautiously optimistic about these results,
we must be wary of drawing firm conclusions from these
preliminary results.

The max pooling strategy show the strongest improvement.
This perhaps suggests that only be a few specific tokens in a
requirement segment provide most of the semantic meaning of
the requirement, and that including the gradients of the other

Model Model only Max pooling Max pooling w/ z-score Ave pooling Ave pooling w/ z-score Random
Pass@1 Pass@1 | + Pass@1 | + Pass@] | + Pass@1 | + Pass@1 | +
WizardCoder 1b 3.0 5.5 +2.5 | 43 +1.3 5.5 +2.5 | 43 +1.3 5.5 +2.5
WizardCoder 3b 134 15.9 +2.5 | 16.5 +3.1 15.2 +1.8 | 159 +2.5 14.0 +0.6
CodeLlama 7b Instruct hf 42.7 43.9 +1.2 | 42.1 -0.6 42.7 +0.0 | 40.9 -1.8 39.6 -3.1
CodeLlama 13b Instruct hf || 43.3 439 +0.6 | 44.5 +1.2 43.9 +0.6 | 43.9 +0.6 43.3 +0.0
TABLE I: Pass@1 scores and improvement.
tokens in the requirements, such as stop-words and punctuation ~def add_elements(arr, k):
Initialize a variable to store the sum

— as we do in the average pooling — brings down the pooled
gradient of a segment in a way that is inconsistent with the
requirements importance.

B. Regressions

As can be seen in table [while we generally see im-
provements in evaluation scores when reprompting, in some
instances it actually leads to a lower overall score. Indeed,
even in the instances where reprompting raises the pass@1
across the whole dataset, the effect on code correctness is
not uniformly positive. While reprompting the model with
segments of the requirements did lead the model to improve
its answer to some problems, in some cases the reprompting
actually caused the model to regress and incorrectly ‘fix’ a
previously correct answer. The number of such improvements
and regressions can be seen in table

An example of a code regression can be seen in figure
Bl The original code [3a] meets all of the requirements and
passes all of the tests. However, when we reprompt the model
and instruct it to pay closer attention to the parts of the
requirements regarding ‘the first k elements’ of the list, the
model mistakenly edits its code [3b]to initialise its running total
to the sum of the first k elements, rather than zero. It seems
that the instruction to focus on a segment of the requirements
that was already fulfilled by the original code caused the model
to over-focus on that requirement and force it into another part
of the code, causing a bug.

This is an interesting result, as the challenge is not only
in how to reprompt the model to fix bugged code, but also in
how to avoid misleading the model by erroneously asking it to
rewrite correct code. Since we are not running the code to test
if it actually meets all of the requirements before reprompting
it, we will often be asking the model to rewrite code that is
already correct. Future work could address this; perhaps by
trying to estimate whether all of the requirements are met by
the first attempt based on the requirements’ gradients and only
reprompting the model if they are below a certain threshold.

Future work could also focus on reducing the number
of such regressions without impacting corrections. Perhaps
improving our requirement segment selection, or refining our
simple reprompt template via prompt-engineering, would help
here.

C. Reprompting only failing code

We also include a comparison of each model-only baseline
with the results from each of our segment selection strategies
when we allow our system to test the model’s first response

sum = 0
Loop through the first k elements
for i in range (k) :
If the
or equal to 100,
if arr[i] <= 100:
sum += arr[i]

element is less than

add it to the sum

current

Return the sum

return sum

(a) Initial, correct solution.

def add_elements (arr, k):
Initialize a variable to store the sum
sum = sum(arr[:k])
Loop through the first k elements
for i in range (k) :
If the current element is less than

or equal to 100, add it to the sum
if arr[i] <= 100:

sum += arr[i]

**=

Return the sum
return sum

(b) Regression after reprompt.

Fig. 3: The initial LLM output and the regression, when the
LLM was instructed to focus on the requirement segment,
‘from the first k elements of arr’ (edited slightly for
readability).

and only reprompting the model if any tests fail. If the model’s
first attempted solution passes then we keep that code. This
is not the main focus of our work, as our main goal is to
improve model performance without running the tests, but it
is a similar approach to that taken by related work and — given
that reprompting can lead to breaking previously correct code
— brings up some interesting results.

Note that in this comparison the LLM is reprompted in the
exact same way as other comparisons, i.e. it is instructed to
pay closer attention to the ‘ignored requirements’. We do not
tell the LLM that its original code failed a test or provide any
additional information, such as the test code or error messages.

As can be seen in table [[II} each of our segment selection
strategies sees improved performance when we test the original
code first vs when we don’t. This is not too surprising of a
result, as we are essentially giving the model two attempts at
the problem and choosing the best answer.

Model Max pooling Max pooling w/ z-score Ave pooling Ave pooling w/ z-score Random
Fixes | Regressions Fixes | Regressions £ Fixes | Regressions Fixes | Regressions Fixes | Regressions
WizardCoder 1b 8 4 6 4 8 4 6 4 7 6
WizardCoder 3b 7 3 9 4 7 4 7 3 8 6
CodeLlama 7b Instruct hf 5 3 7 8 4 4 7 10 8 13
CodeLlama 13b Instruct hf || 4 3 5 3 4 3 4 3 4 4

TABLE II: The number of fixes and regressions.

If we already know that code does not meet our require-
ments then it is, of course, easier to fix only the broken code.
As discussed in our introduction, test cases will not always
be available and can be time-consuming to manually create,
and so one of our main motivations is to attempt to trace
and evaluate LLM code without tests being available, but is
it interesting to note that our reprompting technique improves
performance when tests are available.

However, it is very notable that the random segment selec-
tion strategy performed just as well — or better — when we
only reprompted failing test cases.

D. Random reprompting

As discussed in we include a comparison of our
segment selection strategies with one in which we choose a
requirement segment at random. Choosing a segment of the
requirements at random, of course, offers no insight into why
the initial code might be incorrect. Nevertheless, as table E]
shows, randomly choosing a requirment segment and asking
the model to focus on it while rewriting the code does, in some
cases, improve the code. Moreover, when only reprompting
failing test cases (table [lII), randomly selecting a segment can
be as good, or better, than selecting based on gradients.

Asking an LLM to fix its own code by choosing a re-
quirement for it to focus on at random can, in fact, work
and this raises an important point. In any experiment that
compares a model’s base performance with a technique aimed
at improving performance, it is important to include a random
implementation of the technique, or other similar baselines, to
thoroughly validate any claim that the technique itself leads
to an improvement in model performance.

V. LIMITATIONS AND THREATS TO VALIDITY
A. Limitations

One limitation of our approach is that, while it is model-
agnostic and can, in theory, be employed using any LLM,
it does make use of the model’s gradients during inference.
This means that it cannot be used with an LLM that is only
accessible via a black-box API, such as ChatGPT or CoPilot.

Furthermore, since our reprompting technique involves
keeping the conversation history in the LLM input, for longer
inputs — or smaller models — we would potentially encounter
problems with limitations of input size. Future work could
address this by using different techniques to rewrite the code
that do not require keeping the full conversation history in the
input.

B. Threats to validity

In this section, we present the main threats that might have
an impact on the validity of the results of this work.

o Internal validity: The HumanEval dataset used to test
our reprompting techniques is, at 164 problems, relatively
small and a change in the results of a small number of
problems could have a large impact on results. So while
our results show a general improvement in code correct-
ness when reprompted, the small dataset and difference
between results means the variance in our results is high.
Future work to reproduce our findings on larger datasets
would address this.

o External validity: We ran our experiments using two
different LLM architectures of different sizes. Since the
number and diversity of LLM architectures and fine-
tuned variants is rapidly growing, it is difficult to validate
our results as being generalisable across the span of
all different models. However, since all LLMs have
calculable gradients between their inputs and outputs
(notwithstanding the above point that those gradients
might not be available if the model is only available via
an API), in theory, our results should transfer to other
LLM architectures.

VI. FUTURE WORK

NLP explainability research — and Al explainability re-
search in general — is still in its infancy and there are abun-
dant opportunities for future work to build on our preliminary
work presented here to further explore traceability in LLM-
generated code. This section outlines our proposed future work
that will build on the initial experiment presented in this paper.

A. LLM Gradients

Expanding on the preliminary experiment presented here,
our next step will be validating our results on larger datasets
and exploring variations of our experiment setup.

One such variation will be using a threshold for considering
a requirement ‘ignored’. In our preliminary experiment, we
always assume that the code has an unfulfilled requirements
and we always instruct it to fix its code. As was seen, in some
cases this lead to the model incorrectly changing functional
code and breaking it. Future work will seek to address this
issue by introducing a threshold for pooled gradients, below
which we consider requirements to have been ignored, and
only instructing the model to fix code with requirements falling
below this threshold.

In our experiments, we only calculate and use the gradients
of the LLM’s first attempt. Future work will also examine the

Model Baseline Max pooling Max pooling w/ z-score Ave pooling Ave pooling w/ z-score Random
Pass@1 Pass@1 | + Pass@1 | + Pass@] | + Pass@1 | + Pass@1 | +
WizardCode 1b 3.0 7.9 +4.9 | 6.7 +3.7 7.9 +4.9 | 6.7 +3.7 7.9 +4.9
WizardCode 3b 13.4 17.7 +4.3 | 18.9 +6.5 17.7 +4.3 | 17.7 +4.3 17.7 +4.3
CodeLlama 7b Instruct hf 42.7 47.0 +4.3 | 47.0 +4.3 47.0 +4.3 | 47.0 +4.3 47.6 +4.9
CodeLlama 13b Instruct hf || 43.3 45.7 +2.4 | 46.3 +3.0 43.9 +0.6 | 43.9 +0.6 433 +0.0

TABLE III: Pass@1 scores and improvement over the model-only score when only repromting the failed problems.

gradients during the reprompting phase and explore whether
these gradients can be used to detect code regressions.

Anther assumption made in our preliminary experiment is
that there is always no more than one unfulfilled requirement.
Future work will also instruct the model to fix all require-
ments falling below the threshold, either by adding all such
requirements to a single user message, or addressing them in
separate user messages.

A key stage of our preliminary experiment is calculating the
gradients of an LLM as it generates its output. Work has been
done — some in NLP but also more extensively in computer
vision — into methods for calculating model gradients in a
way that provides more interpretable results. Our preliminary
experiment uses SmoothGrad [20] to calculate gradients, but
future work will compare different Al explainability methods
in NLP and other Al domains, such as [19] SHAP [35] and
LIME [36], and explore whether any features of these methods
are specifically suitable for LLM-code traceability.

B. Transformer Attention

A fundamental component of the transformer architecture
that LLMs employ is the attention mechanism [16], which
allows LLMs to weigh the importance of different words
or phrases in its input when generating or understanding
text. This attention mechanism takes the context-free token
embeddings output by the initial embedding layers and gives
context to each token by transforming its embedding based
on its position within the input and relationships with other
input tokens. This attention mechanism provides LLM with
much of their understanding of natural language and code,
but also provides researchers with an opportunity to under-
stand how LLMs interpret their inputs. Within the context
of requirements traceability, examination of LLM’s attention
mechanisms could potentially provide insight into how LLMs
understand and process requirements, how those requirements
relate to each other, and how they are used to generate code.

While we do not believe that LLM attention has previously
been used to trace requirements, there is existing research
that examines the attention mechanisms from an explainability
point of view that our future work will look to draw inspiration
from and build on. Jawahar et al. used the attention values
within BERT to examine how it understands the syntactic and
semantic features of natural language, identifying which layers
of BERT’s attention mechanism attend to different linguistic
features [37]. Jiang et al. also used LLMs for sentence
embedding [38]], that is, generating embedding vectors for
whole sentences using context-aware attention. Our future
work will initially seek to similarly identify which layers
and attention heads in LLMs attend to different features of

requirement inputs, and then trace how the outputs of those
specific attention heads are processed by the model.

While we believe there exist opportunities in this direction,
this is an ambitious goal, as intepretability research based on
transformer attention mechanisms is very much in its infancy
with few concrete results being available, much less practical
applications for such results.

C. Reprompting

Our preliminary experiment sought to address the issues
with the generated code by continuing the conversation with
the LLM and instructing it to rewrite its code. Future work
will explore different ways of directing the LLM’s focus to
the ignored requirements. For example, not by including the
ignored requirement in a new input, but rather by tweaking
the model’s parameters corresponding to the part of the input
containing the ignored requirement, thereby giving the ignored
requirement greater influence in the model’s calculations —
much like a latest diffusion model in computer vision may
emphasises part of an a prompt [39] when denoising an image.

Additionally, the concept underlying our work could also
be expanded to explore NLP explainability and requirements
in other domains outside of software engineering. Code-
generation lends itself well to such research, as it is possible
to automatically verify code correctness, but state-of-the-art
code-generating LLMs and natural-language-generating LLMs
are architecturally identical and any techniques that work for
one can potentially be adapted to work in the other. For
example, if tracing software requirements to generated code
is possible, then using the same explainability techniques to
estimate whether an Al-generated text document meets some
given requirements should also be used.

VII. CONCLUSIONS

Automatically tracing requirements of LLM-generated code
— and improving that code without testing it — is an ambi-
tious goal. Our preliminary experiment found that examining
the gradients of an LLM as it generates code allowed us to
estimate which requirements were unfulfilled and, by instruct-
ing the LLM to rewrite the code, improve the correctness of
the generated code. There are many avenues for further work
exploring the possibility of automated traceability between
natural language requirements and LLM-generated code, as
well as the use of that traceability to improve LLM perfor-
mance. Building on our preliminary results, our future work
will hopefully represent a first step towards automated trace-
ability of requirements to LLM-generated code and provide
further direction for research into the use of this traceability
in improving LLM-generated code.

[1]

[2

—

[3

—

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

V. Liventsev, A. Grishina, A. Hidrmd, and L. Moonen, “Fully au-
tonomous programming with large language models,” in Proceedings
of the Genetic and Evolutionary Computation Conference, Jul. 2023, p.
11461155, arXiv:2304.10423 [cs].

K. Zhang, Z. Li, J. Li, G. Li, and Z. Jin, “Self-Edit: Fault-Aware Code
Editor for Code Generation,” arXiv pre-print server, Jun. 2023.

J. P. Inala, C. Wang, M. Yang, A. Codas, M. Encarnacién, S. K. Lahiri,
M. Musuvathi, and J. Gao, “Fault-Aware Neural Code Rankers,” May
2022. [Online]. Available: https://openreview.net/forum?id=LtJMqnbslJe
14:00-17:00, “Iso 26262-1:2018.” [Online]. Available: https://www.iso.
org/standard/68383.html

M. C. Panis, “Successful deployment of requirements traceability in a
commercial engineering organization...really,” in 2010 18th IEEE Inter-
national Requirements Engineering Conference, Sep. 2010, p. 303-307.
M. Seiler, P. Hiibner, and B. Paech, “Comparing traceability through
information retrieval, commits, interaction logs, and tags,” in 2019
IEEE/ACM 10th International Symposium on Software and Systems
Traceability (SST), May 2019, p. 21-28.

J. 1. Maletic and M. L. Collard, “Tql: A query language to support
traceability,” in 2009 ICSE Workshop on Traceability in Emerging Forms
of Software Engineering, May 2009, p. 16-20.

R. Al-Msie’deen, “Requirements traceability: Recovering and visu-
alizing traceability links between requirements and source code of
object-oriented software systems,” no. arXiv:2307.05188, Jul. 2023,
arXiv:2307.05188 [cs].

O. Yildiz, A. Okutan, and E. Solak, Bilingual Software Requirements
Tracing using Vector Space Model, Jan. 2014, journalAbbreviation:
ICPRAM 2014 - Proceedings of the 3rd International Conference on
Pattern Recognition Applications and Methods.

J. Guo, N. Monaikul, C. Plepel, and J. Cleland-Huang, “Towards
an intelligent domain-specific traceability solution,” in Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE "14. New York, NY, USA: Association for
Computing Machinery, Sep. 2014, p. 755-766.

J. Cleland-Huang, O. C. Z. Gotel, J. Huffman Hayes, P. Mider, and
A. Zisman, “Software traceability: trends and future directions,” in
Future of Software Engineering Proceedings, ser. FOSE 2014. New
York, NY, USA: Association for Computing Machinery, May 2014,
p- 55-69. [Online]. Available: https://dl.acm.org/doi/10.1145/2593882.
2593891

[Online]. Available: https://www.scopus.com/record/
display.uri?eid=2-52.0-85027712504 &origin=inward &txGid=
3£53a41852b669¢29dedf3fa0cb8e308

J. Lin, Y. Liu, Q. Zeng, M. Jiang, and J. Cleland-Huang, “Traceability
transformed: Generating more accurate links with pre-trained bert mod-
els,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), May 2021, p. 324-335.

Microsoft, “Morgan stanley tmt conference,” 2023. [Online].
Available: |https://www.microsoft.com/en-us/Investor/events/FY-2023/
Morgan-Stanley-TMT-Conference

Andrew, Michael, and F. Doshi-Velez, “Right for the right reasons:
Training differentiable models by constraining their explanations,” arXiv
pre-print server, 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and 1. Polosukhin, “Attention is all you need,” no.
arXiv:1706.03762, Aug. 2023, arXiv:1706.03762 [cs].

M.-H. Guo, C.-Z. Lu, Z.-N. Liu, M.-M. Cheng, and S.-M. Hu, “Visual
attention network,” Computational Visual Media, vol. 9, no. 4, pp. 733—
752, 2023.

J. Wang, J. Tuyls, E. Wallace, and S. Singh, “Gradient-based analysis
of nlp models is manipulable,” in Findings of the Association for
Computational Linguistics: EMNLP 2020, T. Cohn, Y. He, and Y. Liu,
Eds. Online: Association for Computational Linguistics, Nov. 2020, p.
247-258.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618-626.

D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg,
“Smoothgrad: removing noise by adding noise,” no. arXiv:1706.03825,
Jun. 2017, arXiv:1706.03825 [cs, stat]. [Online]. Available: http:
/larxiv.org/abs/1706.03825

[21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

(39]

K. Tirumala, D. Simig, A. Aghajanyan, and A. S. Morcos,
“D4: Improving llm pretraining via document de-duplication and
diversification,” no. arXiv:2308.12284, Aug. 2023, arXiv:2308.12284
[cs]. [Online]. Available: http://arxiv.org/abs/2308.12284

Z. Yuan, J. Liu, Q. Zi, M. Liu, X. Peng, and Y. Lou, “Evaluating
instruction-tuned large language models on code comprehension and
generation,” 2023. [Online]. Available: https://arxiv.org/abs/2308.01240
Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond
et al., “Competition-Level Code Generation with AlphaCode,” Science,
vol. 378, no. 6624, pp. 1092-1097, Dec. 2022, arXiv:2203.07814 [cs].
[Online]. Available: http://arxiv.org/abs/2203.07814

S. K. Lahiri, S. Fakhoury, A. Naik, G. Sakkas, S. Chakraborty,
M. Musuvathi, P. Choudhury, C. von Veh, J. P. Inala, C. Wang,
and J. Gao, “Interactive Code Generation via Test-Driven User-Intent
Formalization,” Oct. 2023, arXiv:2208.05950 [cs]. [Online]. Available:
http://arxiv.org/abs/2208.05950

Y. Dong, J. Ding, X. Jiang, G. Li, Z. Li, and Z. Jin, “CodeScore:
Evaluating Code Generation by Learning Code Execution,” Dec. 2023,
arXiv:2301.09043 [cs]. [Online]. Available: http://arxiv.org/abs/2301.
09043

M. Evtikhiev, E. Bogomolov, Y. Sokolov, and T. Bryksin, “Out
of the bleu: how should we assess quality of the code generation
models?” Journal of Systems and Software, vol. 203, p. 111741, 2023,
arXiv:2208.03133 [cs]. [Online]. Available: http:/arxiv.org/abs/2208.
03133

S. Zhou, U. Alon, S. Agarwal, and G. Neubig, “CodeBERTScore:
Evaluating Code Generation with Pretrained Models of Code,” Oct.
2023, arXiv:2302.05527 [cs]. [Online]. Available: http://arxiv.org/abs/
2302.05527

T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore:
Evaluating text generation with bert,” no. arXiv:1904.09675, Feb. 2020,
arXiv:1904.09675 [cs]. [Online]. Available: http:/arxiv.org/abs/1904.
09675

[Online]. Available: https://stanfordnlp.github.io/CoreNLP/parse.html
OpenAl, “Evaluating large language models trained on code,”
no. arXiv:2107.03374, Jul. 2021, arXiv:2107.03374 [cs]. [Online].
Auvailable: http://arxiv.org/abs/2107.03374.

Z. Luo, C. Xu, P. Zhao, Q. Sun, X. Geng, W. Hu, C. Tao, J. Ma, Q. Lin,
and D. Jiang, “Wizardcoder: Empowering code large language models
with evol-instruct,” no. arXiv:2306.08568, Jun. 2023, arXiv:2306.08568
[cs]. [Online]. Available: http://arxiv.org/abs/2306.08568

R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone et al., “Starcoder: may the source be with you!” no.
arXiv:2305.06161, Dec. 2023, arXiv:2305.06161 [cs].

B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E.
Tan et al, “Code llama: Open foundation models for code,”
no. arXiv:2308.12950, Aug. 2023, arXiv:2308.12950 [cs]. [Online].
Available: http://arxiv.org/abs/2308.12950.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, and
B. et al,, “Llama 2: Open foundation and fine-tuned chat models,”
no. arXiv:2307.09288, Jul. 2023, arXiv:2307.09288 [cs]. [Online].
Available: http://arxiv.org/abs/2307.09288

S. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” no. arXiv:1705.07874, Nov. 2017, arXiv:1705.07874 [cs,
stat]. [Online]. Available: http://arxiv.org/abs/1705.07874

M. T. Ribeiro, S. Singh, and C. Guestrin, ““why should i
trust you?”: Explaining the predictions of any classifier,” no.
arXiv:1602.04938, Aug. 2016, arXiv:1602.04938 [cs, stat]. [Online].
Available: http://arxiv.org/abs/1602.04938

G. Jawahar, B. Sagot, and D. Seddah, “What does bert learn about the
structure of language?” in Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, A. Korhonen,
D. Traum, and L. Marquez, Eds. Florence, Italy: Association
for Computational Linguistics, Jul. 2019, p. 3651-3657. [Online].
Available: https://aclanthology.org/P19-1356

T. Jiang, S. Huang, Z. Luan, D. Wang, and F. Zhuang, “Scaling sentence
embeddings with large language models,” no. arXiv:2307.16645, Jul.
2023, arXiv:2307.16645 [cs]. [Online]. Available: http://arxiv.org/abs/
2307.16645

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,”
no. arXiv:2112.10752, Apr. 2022, arXiv:2112.10752 [cs]. [Online].
Available: http://arxiv.org/abs/2112.10752

https://openreview.net/forum?id=LtJMqnbslJe
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/68383.html
https://dl.acm.org/doi/10.1145/2593882.2593891
https://dl.acm.org/doi/10.1145/2593882.2593891
https://www.scopus.com/record/display.uri?eid=2-s2.0-85027712504&origin=inward&txGid=3f53a41852b669e29dedf3fa0cb8e308
https://www.scopus.com/record/display.uri?eid=2-s2.0-85027712504&origin=inward&txGid=3f53a41852b669e29dedf3fa0cb8e308
https://www.scopus.com/record/display.uri?eid=2-s2.0-85027712504&origin=inward&txGid=3f53a41852b669e29dedf3fa0cb8e308
https://www.microsoft.com/en-us/Investor/events/FY-2023/Morgan-Stanley-TMT-Conference
https://www.microsoft.com/en-us/Investor/events/FY-2023/Morgan-Stanley-TMT-Conference
http://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1706.03825
http://arxiv.org/abs/2308.12284
https://arxiv.org/abs/2308.01240
http://arxiv.org/abs/2203.07814
http://arxiv.org/abs/2208.05950
http://arxiv.org/abs/2301.09043
http://arxiv.org/abs/2301.09043
http://arxiv.org/abs/2208.03133
http://arxiv.org/abs/2208.03133
http://arxiv.org/abs/2302.05527
http://arxiv.org/abs/2302.05527
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
https://stanfordnlp.github.io/CoreNLP/parse.html
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/1705.07874
http://arxiv.org/abs/1602.04938
https://aclanthology.org/P19-1356
http://arxiv.org/abs/2307.16645
http://arxiv.org/abs/2307.16645
http://arxiv.org/abs/2112.10752

Citation on deposit:

AR North, M., Atapour-Abarghouei, A., &

\ | 4 Durham Bencomo, N. (in press). Code Gradients:
University Towards Automated Traceability of LLM-
Durham Research Online

Generated Code.

For final citation and metadata, visit Durham
Research Online URL: https://durham-
repository.worktribe.com/output/2433851

https://durham-repository.worktribe.com/output/2397266
https://durham-repository.worktribe.com/output/2397266

	north2024code
	Introduction
	Motivating Example
	Research Questions

	Background and Related Work
	Traceability in Software Engineering
	Interpretability
	Post-processing LLM Code Output
	Code Evaluation

	Methods
	Gradient-Based Reprompting
	Requirement Segmentation
	Identifying Ignored Requirements
	Reprompting
	Evaluation

	Results
	Code improvements
	Regressions
	Reprompting only failing code
	Random reprompting

	Limitations and Threats to validity
	Limitations
	Threats to validity

	Future Work
	LLM Gradients
	Transformer Attention
	Reprompting

	Conclusions
	References

	Citation page-V1-2023

