
Theoretical Computer Science 998 (2024) 114509

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Factorisation in the semiring of finite dynamical systems ✩

Émile Naquin a, Maximilien Gadouleau b,∗

a École Normale Supérieure de Lyon, France
b Department of Computer Science, Durham University, UK

A R T I C L E I N F O A B S T R A C T

Communicated by D.-Z. Du

Keywords:
Finite dynamical systems
Factorisation
Cancellative elements
Trees
Graph direct product

Finite dynamical systems (FDSs) are commonly used to model systems with a finite number of
states that evolve deterministically and at discrete time steps. Considered up to isomorphism,
those correspond to functional graphs. As such, FDSs have a sum and product operation, which
correspond to the direct sum and direct product of their respective graphs; the collection of FDSs
endowed with these operations then forms a semiring. The algebraic structure of the product
of FDSs is particularly interesting. For instance, an FDS can be factorised if and only if it is
composed of two sub-systems running in parallel. In this work, we further the understanding of
the factorisation, division, and root finding problems for FDSs. Firstly, an FDS 𝐴 is cancellative
if one can divide by it unambiguously, i.e. 𝐴𝑋 = 𝐴𝑌 implies 𝑋 = 𝑌 . We prove that an FDS 𝐴 is
cancellative if and only if it has a fixed point. Secondly, we prove that if an FDS 𝐴 has a 𝑘-th root
(i.e. 𝐵 such that 𝐵𝑘 = 𝐴), then it is unique. Thirdly, unlike integers, the monoid of FDS product
does not have unique factorisation into irreducibles. We instead exhibit a large class of monoids
of FDSs with unique factorisation. To obtain our main results, we introduce the unrolling of an
FDS, which can be viewed as a space-time expansion of the system. This allows us to work with
(possibly infinite) trees, where the product is easier to handle than its counterpart for FDSs.

1. Introduction

Finite dynamical systems are commonly used to model systems with a finite number of states that evolve deterministically and
at discrete time steps. Multiple models have been proposed for various settings, such as Boolean networks [13,14], reaction systems
[9], or sandpile models [2], with applications to biology [18,19,4], chemistry [9], or information theory [11,10].

The dynamics of an FDS are easily described via its state space graph, which consists of a collection of cycles containing the
periodic states, to which are attached tree-like structures containing the transient states. As such, two families of FDSs are of particular
interest: permutations only have disjoint cycles in their graphs, while the so-called dendrons, where all states eventually converge
towards the same fixed point, only have a tree in their graphs. Therefore, any FDS can be viewed as a collection of trees attached to
a given permutation.

This article will use a terminology that is inspired from graph theory and discrete mathematics. In particular, we will simply talk
about the “graph” of an FDS to mean its “state space graph”. In the terminology of dynamical systems, the cycles are the attractors
of the systems, while their states are the periodic points. The states of the trees attached to the partition are the transient states

✩ This article belongs to Section C: Theory of natural computing, Edited by Lila Kari.
* Corresponding author.
Available online 21 March 2024
0304-3975/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail addresses: emile.touileb@ens-lyon.fr (É. Naquin), m.r.gadouleau@durham.ac.uk (M. Gadouleau).

https://doi.org/10.1016/j.tcs.2024.114509
Received 20 October 2022; Received in revised form 8 September 2023; Accepted 13 March 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:emile.touileb@ens-lyon.fr
mailto:m.r.gadouleau@durham.ac.uk
https://doi.org/10.1016/j.tcs.2024.114509
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2024.114509&domain=pdf
https://doi.org/10.1016/j.tcs.2024.114509
http://creativecommons.org/licenses/by/4.0/

Theoretical Computer Science 998 (2024) 114509É. Naquin and M. Gadouleau

(except their roots). While dynamical systems are usually thought of as maps, we will switch between this functional view and a
graph-theoretical view through the functional graph of the map.

Given two FDSs 𝐴 and 𝐵, we can either add them (that is, create a system that behave like 𝐴 when it starts in a state of 𝐴, and
like 𝐵 when it starts in a state of 𝐵) or multiply them (that is, create a system that corresponds to 𝐴 and 𝐵 evolving in parallel).
Thus, the set 𝔻 of FDSs, endowed with the sum and product above, forms a semiring.

Since the introduction of the semiring of finite dynamical systems (FDSs) in [6] as an abstract way of studying FDSs, some
research has been devoted to understand more thoroughly the multiplicative structure of this semiring [8,1,5,12]. We can highlight
three important problems related to the multiplicative structure of 𝔻.

1. Perhaps the most obvious problem is factorisation: given an FDS 𝐶 , can we find two non-trivial FDSs 𝐴 and 𝐵 (with fewer states
than 𝐶) such that 𝐶 =𝐴 ×𝐵? This corresponds to whether the system modelled by 𝐶 is actually composed of two independent
parts working in parallel.
In [8,1], it is shown that the answer is usually negative: the proportion of reducible FDSs of size 𝑛 vanishes when 𝑛 → ∞.
Moreover, unlike for integers, the semiring 𝔻 does not have unique factorisation into irreducible elements. Worse yet, this is
true when we restrict ourselves to permutations or to dendrons. This adds another layer of difficulty for problems related to
factorisation in the semiring of FDSs.

2. Another important problem is division: given 𝐶 and 𝐴 such that 𝐶 =𝐴𝐵 for some 𝐵, can we find 𝐵? Or in other words, if 𝐶 is
indeed composed of two parts, and we know one part, what is the other? This problem is particularly interesting, as the FDS 𝐵
may not be unique: there exist many examples of FDSs 𝐴, 𝐵, 𝐷 such that 𝐴𝐵 =𝐴𝐷 (an example is provided at the beginning of
Section 3).

3. The third problem is 𝑘-th root: given an FDS 𝐴 and an integer 𝑘, is there 𝐵 such that 𝐵𝑘 = 𝐴, and how many such roots exist?
Until now, very little is known about this problem; for instance there was no result asserting that the solution 𝐵 should be
unique.

In this paper, we establish important connections between FDSs and infinite, periodic trees. In particular, we introduce the
unrolling of an FDS, which can be viewed as a space-time expansion of the system. The unrolling preserves all the information
about the transient dynamics of an FDS, and preserves the product operation. However, the product on trees (and in particular, on
unrollings of FDSs) is much better behaved than its counterpart for FDSs and hence allows us to prove our main results.

This paper makes four main contributions towards the understanding of the three problems listed above.

1. An FDS is connected if its graph is connected; in other words, it has only one periodic cycle. We first prove a fundamental
property of connected FDSs. For any FDS 𝐴, if 𝑋 and 𝑌 are connected and 𝐴𝑋 = 𝐴𝑌 , then 𝑋 = 𝑌 . Intuitively, this means that
division is unambiguous when we know the quotient is connected.

2. Intuitively, a cancellative FDS is one those that can be unambiguously divided by. Formally, 𝐴 is cancellative if 𝐴𝐵 =𝐴𝐶 implies
𝐵 = 𝐶 . Our first and major result is the characterisation of cancellative FDSs: they are exactly those with a fixed point. This
result is close that Theorem 8 of [17], but not equivalent, since Lovász’s paper studies cancellativity in the semiring of digraphs
(and thus, there could be an FDS that is cancellative on 𝔻 but not as a general digraph).

3. Our proof methods involve working with (possibly infinite) trees, and going back and forth between FDSs and trees. As a bi-
product, we obtain an algorithm for division of dendrons. That is, given two dendrons 𝐴 and 𝐵, the algorithm determines the
dendron 𝐶 such that 𝐴 = 𝐵𝐶 or returns a failure if no such dendron exist. It is easily shown that this algorithm runs in time
polynomial in the size of the input.

4. Our result on cancellative FDSs has an important consequence: many polynomials in 𝔻[𝑋] are injective. We then prove that the
polynomial 𝑃 (𝑋) =𝑋𝑘 is injective, i.e. if an FDS has a 𝑘-th root then it is unique.

5. Throughout the paper, we investigate the structure of division and factorisation in dendrons. We further this investigation by
exhibiting large monoids of dendrons with unique factorisation.

While writing up this paper, we have discovered the related paper [7]. This work and [7] have two main similarities: both have
independently introduced the unrolling construction, and both have proved the cancellative nature of the product on infinite trees
(Lemma 22 in this work, Theorem 3.3 in [7]). However, we would like to stress the significant differences between these two papers.
First, the respective proofs of the result mentioned above are completely different: ours is based on a lexicographic order on trees,
while theirs is based on counting tree homomorphisms. Second, and more importantly, both papers consider completely different
problems about FDSs. As such, the last four main contributions of this work (items 2 to 5 in the list above) are novel and do not
appear in the literature so far. Third, [7] proposes the following conjecture (Conjecture 3.1): let 𝐴 and 𝐵 be two connected FDSs,
then for all FDSs 𝑋 and 𝑌 , if 𝐴𝑋 = 𝐵 and 𝐴𝑌 = 𝐵, then 𝑋 = 𝑌 . Our first main contribution (item 1 in the list above) was added
once we were aware of [7]; it is actually a more general result than their conjecture.

The rest of the paper is organised as follows. Section 2 introduces all the necessary definitions to work on the semiring of FDSs.
Then, Section 3 shows that the cancellative elements of the semiring of finite dynamical systems are exactly those with a fixed point.
From this, we give in Section 4 a polynomial-time algorithm for division in dendrons. Section 5 then proves the unicity of 𝑘-th roots.
Then Section 6 constructs a class of monoids with unique factorisation on each of them. Finally, some avenues for further work are
2

proposed in Section 7.

Theoretical Computer Science 998 (2024) 114509É. Naquin and M. Gadouleau

2. General definitions

A finite dynamical system (FDS) is a function from a finite set into itself. We denote by 𝔻 the set of all FDSs. Given an FDS 𝐴, we
denote by 𝑆𝐴 the finite set on which it acts, also called the state space in standard dynamical system terminology.

We note that our definition of an FDS does not technically match the classical definition of a dynamical system. However, it is
easily shown that a discrete-time dynamical system over a finite space is fully characterised by a self-map over a finite set. Moreover,
our definition is equivalent to the definition of a topological dynamical system over a finite set, equipped with the discrete topology.
As such, our definition of an FDS truly encapsulates the dynamical properties of any dynamical system defined over a finite set.

Given two FDSs 𝐴 and 𝐵, we can assume that 𝑆𝐴 ∩ 𝑆𝐵 =∅ (if that is not the case, we can simply rename the elements of one of
those sets). Then, we define their sum as follows:

𝐴+𝐵 ∶ 𝑆𝐴 ⊔ 𝑆𝐵 → 𝑆𝐴 ⊔ 𝑆𝐵

𝑥 ↦

{
𝐴(𝑥) if 𝑥 ∈ 𝑆𝐴
𝐵(𝑥) otherwise.

Given two FDSs 𝐴 and 𝐵, we define their product as follows:

𝐴𝐵 ∶ 𝑆𝐴 × 𝑆𝐵 → 𝑆𝐴 × 𝑆𝐵
(𝑎, 𝑏) ↦ (𝐴(𝑎),𝐵(𝑏)).

Defining the size of an FDS 𝐴 as |𝐴| = |𝑆𝐴|, we see that: |𝐴 +𝐵| = |𝐴| + |𝐵| and |𝐴𝐵| = |𝐴||𝐵|.
When multiplying two FDSs 𝐴 and 𝐵 (for example, in Fig. 1), we get 𝐴𝐵 along with a labelling of the states of 𝐴𝐵 by pairs of

states of 𝐴 and of 𝐵. That is, we get an isomorphism 𝑆𝐴𝐵 ≃ 𝑆𝐴 ×𝑆𝐵 that respects the product structure. However, we shall consider
FDSs up to isomorphism, hence we do not get this labelling along with the FDS in general. The problem of factorising an FDS 𝐶 , for
example, just means labelling the states 𝑆𝐶 with 𝑆𝐴 × 𝑆𝐵 , where 𝐴, 𝐵 ∈ 𝔻, such that this labelling respects the product 𝐴𝐵 = 𝐶 .
A formalization of this idea of labelling the states of a product with the Cartesian product of the state sets of its factors is provided
below:

Definition 1. Given a sequence (𝐴𝑖)𝑖∈𝐼 ∈ 𝔻𝐼 for some finite set 𝐼 and a product 𝐵 =
∏
𝑖∈𝐼 𝐴𝑖 we say that the function 𝜙 ∶ 𝑆𝐵 ↦∏

𝑖∈𝐼 𝑆𝐴𝑖 is a product isomorphism for the product 𝐵 =
∏
𝑖∈𝐼 𝐴𝑖 if:

1. it is a bijection, and
2. for any sequence of states (𝑠𝑖)𝑖∈𝐼 ∈

∏
𝑖∈𝐼 𝑆𝐴𝑖 , we have: 𝐵(𝜙−1((𝑠𝑖)𝑖∈𝐼)) = 𝜙−1((𝐴𝑖(𝑠𝑖))𝑖∈𝐼).

We remark that computing the product gives such a product isomorphism.

Proposition 2 ([6]). The set of FDSs, with the above sum and product, forms a semiring [16], with additive identity the empty function and
multiplicative identity the function 1 ∶ {1} → {1}, 1 ↦ 1.

For FDSs, we can adopt a graph-theoretical point of view, by associating to an FDS 𝐴 ∈𝔻 an oriented graph 𝐴 = (𝑉 , 𝐸) where
𝑉 = 𝑆𝐴 and 𝐸 = {(𝑥, 𝑦) ∈ 𝑆2

𝐴
∶ 𝑦 =𝐴(𝑥)}. Then, for 𝐴, 𝐵 ∈𝔻, 𝐴+𝐵 is the disjoint union of 𝐴 and 𝐵 , and 𝐴𝐵 is the direct product

𝐴 ×𝐺𝐵 (see the corresponding section in [15]). In the following, we will often identify an FDS and its graph, and thus, implicitly
quotient 𝔻 by graph isomorphism, that is, we consider that 𝐴 = 𝐵 if and only if 𝐴 and 𝐵 are isomorphic, as 𝐴 and 𝐵 have the
same dynamics in this case.

Definition 3. Given 𝐴, 𝐵 ∈𝔻, we say that 𝐵 is a sub-FDS of 𝐴 if 𝐵 is a subgraph of 𝐴.

Since FDSs take their values in a finite set, the structure of their graphs is simple: they consist of some cycles, on the states of
which, trees (with arrows going upwards, towards the root) are connected, as in the example of Fig. 1. This leads us to several
definitions that are useful to study FDSs.

Definition 4. Let 𝐴 ∈ 𝔻. A state 𝑠 ∈ 𝑆𝐴 is said to be a cycle state if it is on a cycle of 𝐴, or, equivalently, if there exists 𝑛 > 0 such
that 𝐴𝑛(𝑠) = 𝑠. We denote by 𝑆𝐶

𝐴
the set of cycle states of 𝐴. Otherwise, 𝑠 is said to be a tree state.

We define a function depth𝐴 ∶ 𝑆𝐴 → ℕ that gives the depth of any state of 𝐴, and is defined recursively as follows:

∀𝑠 ∈ 𝑆𝐶
𝐴
, depth𝐴(𝑠) = 0

∀𝑠 ∈ 𝑆𝐴 ⧵𝑆𝐶
𝐴
, depth𝐴(𝑠) = depth𝐴(𝐴(𝑠)) + 1.

Furthermore, for any 𝑘 ∈ ℕ, we define the truncature of 𝐴 at depth 𝑘, denoted by [𝐴]𝑘, as the sub-FDS of 𝐴 which contains all the
states of 𝐴 at depth at most 𝑘.
3

A very useful and simple result is the following:

Theoretical Computer Science 998 (2024) 114509É. Naquin and M. Gadouleau

Fig. 1. Product of two FDSs. For instance, the transitions 𝐵→ 𝐶 in the first factor and 1 → 2 in the second factor combine to form the transition (𝐵, 1) → (𝐶, 2) in the
product, written as 𝐵1 → 𝐶2.

Lemma 5. For any 𝐴, 𝐵 ∈𝔻 and 𝑘 ∈ ℕ, [𝐴𝐵]𝑘 = [𝐴]𝑘[𝐵]𝑘.

Of particular interest are the FDSs we call dendrons, that is, connected FDSs (i.e. with a connected graph) with a fixed point. Those
FDS can be seen as rooted trees with arrows pointing towards the root, with a loop on the root. We denote 𝔻𝐷 the set of dendrons
(remark that it is not a semiring, since the sum of two dendrons is not a dendron).

Let’s now focus on those two types of parts of FDSs: trees (which, when summed, form forests) and cycles (which, when summed,
form permutations).

2.1. Forests

We introduce forests as a way to have a product between FDSs that has an inductive definition that works level by level. In
FDSs, the state set of a product is the Cartesian product of the state sets of the factors. This makes the identification of states of an
unlabelled FDS difficult. For forests, the pairs of states which end up in the product are those of even depth. Finally, Lemma 30 is
the reason forests are useful: their product is compatible with that of FDSs.

Definition 6. By tree, we shall mean an in-tree [3, p.21], i.e. an oriented connected acyclic graph with a special vertex called its root,
such that every edge is oriented towards the root. The trees we consider may be infinite, but the degree of each vertex shall always
be finite.

We denote the root of a tree T as root(T).
A forest is a disjoint union of trees. The set of forests is denoted by 𝔽 , and that of trees is denoted 𝔽𝑇 . In the following, we denote

forests in bold face to distinguish them from FDSs.
If T ∈ 𝔽𝑇 , and if there is a single infinite path starting from the root of T, we can extract the sequence 𝑡𝑠𝑒𝑞(T) of trees anchored

on that path. If this sequence is periodic, we say that T is periodic, and that T is of tree period the period of the sequence. We denote
the set of periodic trees as 𝔽𝑃 .

We consider trees as dendrons which have had their fixed point transformed into a sink, and extend the notations from dendrons
whenever they make sense. In particular, we denote by 𝑆A the set of vertices of the forest A. Moreover, the parent of a vertex
𝑥 ∈ 𝑆A is denoted by A(𝑥). For an FDS 𝐴 ∈𝔻 and a state 𝑠 ∈ 𝑆𝐴, we say that T is the tree anchored on 𝑠 if the tree of the tree state
predecessors of 𝑠 in the graph is T; we naturally extend this notation to any forest A. By convention, the depth of an infinite dendron
is ∞, while the depth of an empty dendron is −1.

Given a tree T, we define (T) to be the multiset containing the subtrees anchored on the children of the root of T.
Now, we define a sum and a product operation on forests in order to endow the set of forests with a semiring structure.
The sum of two forests A, B (for which we can assume 𝑆A ∩ 𝑆B = ∅) is the forest C defined as the disjoint union of the graphs A

and B.
Let A, B ∈ 𝔽𝑇 . Then the product of A and B is AB = (𝑉 , 𝐴) with

𝑉 = 𝑆AB = {(𝑎, 𝑏) ∈ 𝑆A × 𝑆B ∶ depthA(𝑎) = depthB(𝑏)},
4

𝐴 = {((𝑎, 𝑏), (A(𝑎),B(𝑏))) ∶ (𝑎, 𝑏) ∈ 𝑆AB}.

Theoretical Computer Science 998 (2024) 114509É. Naquin and M. Gadouleau

This product is almost the same as that on FDSs but here only states of same depth get multiplied together.
It will often prove useful to use multisets with the following product. Given two multisets  and , their product  is {{𝑎𝑏 ∶

𝑎 ∈, 𝑏 ∈}}.
The following lemma explains why trees are interesting: the product is done level by level. Moreover, the root does not behave

differently than the other states (as it does on dendrons), which means that this product is much easier to work with.

Lemma 7. If A, B ∈ 𝔽𝑇 are finite, then:

(AB) =(A)(B) = {{T × T’ ∶ T ∈(A),T’ ∈(B)}}.

Proof. The proof is by induction on the depths of A and B. The case for trees with depth ≤ 1 is trivial. The depth 1 vertices of
AB form the set {(𝑎, 𝑏) ∈ 𝑆A × 𝑆B ∶ depthA(𝑎) = depthB(𝑏) = 1}. We simply show that the tree T(𝑎,𝑏) anchored on (𝑎, 𝑏) in AB is the
product of the tree T𝑎 anchored on 𝑎 in A with the tree T𝑏 anchored on 𝑏 in B. By induction, we know that (T(𝑎,𝑏)) =(T𝑎)(T𝑏),
so T(𝑎,𝑏) = T𝑎T𝑏. This concludes the proof. □

It is easy to verify that the set of forests becomes a semiring with these operations:

Lemma 8. The set 𝔽 of forests becomes a semiring when endowed with the sum and product defined above. Its additive identity is 0, the
empty tree with (𝑉 =∅, 𝐴 =∅), while its multiplicative identity is the rooted infinite directed path P∞ with (𝑉 = ℕ, 𝐴 = {(𝑛 +1, 𝑛)|𝑛 ∈ ℕ}).

A straightforward inductive proof gives the following lemma:

Lemma 9. If A, B ∈ 𝔽 , then for 𝑎 ∈ 𝑆A, 𝑏 ∈ 𝑆B such that (𝑎, 𝑏) ∈ 𝑆AB, we have depthAB((𝑎, 𝑏)) = depthA(𝑎) = depthB(𝑏).

Lemma 10. If A, B ∈ 𝔽 , then depth(AB) =min(depth(A), depth(B)).

Proof. We have:

𝑆AB = {(𝑎, 𝑏) ∈ 𝑆A ×𝑆B ∶ depthA(𝑎) = depthB(𝑏)}.

From Lemma 9, a state (𝑎, 𝑏) ∈ 𝑆A × 𝑆B has depth at most min(depthA(𝑎), depthB). Moreover, if 𝑘 = min(depth(A), depth(B)) and
we let 𝑎 ∈ 𝑆A, 𝑏 ∈ 𝑆B two states that have both depth 𝑘 in their respective trees, then (𝑎, 𝑏) has depth 𝑘 too. □

2.2. Permutations

For every 𝑘 ≥ 1, we denote by 𝐶𝑘 the cycle of length 𝑘 defined as the FDS whose graph is the directed cycle of length 𝑘. We say
that 𝐴 ∈ 𝔻 is a permutation if the function 𝐴 is bijective. In that case, all the states of 𝐴 are cycle states. We denote the semiring
of permutations by 𝔻𝑃 (it has multiplicative identity 𝐶1 and additive identity the empty function). In particular, for any 𝐴 ∈ 𝔻,
[𝐴]0 ∈𝔻𝑃 . In the dynamical system formalism, permutations are called invertible, although we will not use this terminology here.

We introduce two shortened notations: 𝑎 ∨ 𝑏 = lcm(𝑎, 𝑏) and 𝑎 ∧ 𝑏 = gcd(𝑎, 𝑏). In [6], the following very useful and simple result
is proven:

Lemma 11. 𝐶𝑎 ×𝐶𝑏 = (𝑎 ∧ 𝑏)𝐶𝑎∨𝑏.

We now extend it to arbitrary products of cycles. For any multiset 𝐽 of positive integers, we let
⋀
𝐽 =

⋀
𝑗∈𝐽 𝑗 and

⋁
𝐽 =

⋁
𝑗∈𝐽 𝑗;

if 𝐽 is empty, then those terms are equal to 1.

Lemma 12. Let 𝐽 be a multiset of positive integers. Then
∏
𝑗∈𝐽 𝐶𝑗 = 𝛿𝐽𝐶⋁

𝐽 , where 𝛿𝐽 is recursively defined as 𝛿∅ = 1 and for any 𝑎 ∈ℕ

𝛿𝐽∪{𝑎} = (𝑎 ∧
⋁
𝐽)𝛿𝐽 .

Proof. The proof is by induction on the cardinality of 𝐽 . The result is clear when 𝐽 is empty. Assume it is true for 𝐽 , and let 𝑎 ∈ℕ.
Then ∏

𝑗∈𝐽∪{𝑎}
𝐶𝑗 = 𝐶𝑎

∏
𝑗∈𝐽

𝐶𝑗 = 𝛿𝐽𝐶𝑎𝐶⋁
𝐽 = 𝛿𝐽 (𝑎 ∧

⋁
𝐽)𝐶⋁

𝐽∪{𝑎}. □

Given a permutation 𝐴 ∈𝔻𝑃 , such that the length of each of its cycles is a multiple of some 𝑘 ∈ ℕ, and 𝑘 trees T0, … , T𝑘−1 ∈ 𝔽𝑇 ,
we denote by 𝐴(T0, … , T𝑘−1) the FDS obtained by taking each cycle of 𝐴, traversing it by following the arrows, and anchoring on
5

the 𝑖-th state encountered the dendron 𝑇𝑖 mod 𝑘. This is pictured in Fig. 2.

Theoretical Computer Science 998 (2024) 114509É. Naquin and M. Gadouleau

Fig. 2. The FDS 𝐴(T1,T2) for 𝐴 = 𝐶2 +𝐶4 , and two trees T1,T2 .

We use the following notation: for 𝐴 ∈𝔻, and for all 𝑖 ∈ℕ, we denote by 𝜆𝐴
𝑖

the number of cycles of length 𝑖 in 𝐴.
Finally, given an FDS 𝐴 ∈ 𝔻, and a set 𝐿 ⊆ ℕ, we define the 𝐿-support of 𝐴, denoted by supp𝐿(𝐴), as the FDS made of the

connected components of 𝐴 with cycle size in 𝐿.
The following two results will prove useful to understand the product of a permutation with a dendron.

Lemma 13. For any 𝓁, 𝑘 ≥ 1 and trees T1, … , T𝑘 ∈ 𝔽𝑇 , 𝐶𝑘(T1, … , T𝑘) ×𝐶𝓁 = (𝐶𝑘𝐶𝓁)(T1, … , T𝑘).

Proof. Take a product isomorphism for the product 𝐶𝑘 × 𝐶𝓁 = (𝑘 ∧ 𝓁)𝐶𝑘∨𝓁 , and write 𝑆(𝑘∧𝓁)𝐶𝑘∨𝓁 ≃ 𝑆𝐶𝑘 × 𝑆𝐶𝓁 accordingly. Then,
take (𝑖, 𝑗) ∈ 𝑆(𝑘∧𝓁)𝐶𝑘∨𝓁 . Let’s show that the tree that is anchored on this state in 𝑆𝐶𝑘(T1 ,…,T𝑘)×𝐶𝓁 is the tree that is anchored on 𝑖 in
𝐶𝑘(T1, … , T𝑘), say T𝑖. Indeed, since 𝐶𝓁 has no tree states, the tree states over (𝑖, 𝑗) have a first component with is a tree state, and a
second one which is a cycle state. But since each state of 𝐶𝓁 has exactly one predecessor, and the tree anchored on (𝑖, 𝑗) is indeed T𝑖.
This proves the result. □

Corollary 14. For any 𝐴 ∈𝔻𝑃 and trees T1, … , T𝑘 ∈ 𝔽𝑇 , 𝐶𝑘(T1, … , T𝑘) ×𝐴 = (𝐶𝑘𝐴)(T1, … , T𝑘).

Proof. Let’s write 𝐴 =
∑
𝑖∈ℕ 𝜆

𝐴
𝑖
𝐶𝑖. Then,

𝐶𝑘(T1,… ,T𝑘) ×𝐴 =
∑
𝑖∈ℕ

𝜆𝐴𝑖 (𝐶𝑘𝐶𝑖)(T1,… ,T𝑘) = (𝐶𝑘𝐴)(T1,… ,T𝑘)

from the previous lemma. □

3. Cancellative finite dynamical systems

It is known that the division operation can sometimes not yield a unique result; a well-known example is: 𝐶2
2 = 2𝐶2. We can also

show that if we have 𝐴𝐵 =𝐴𝐶 for 𝐴, 𝐵, 𝐶 ∈𝔻, even assuming [𝐵]0 = [𝐶]0 does not guarantee that 𝐵 = 𝐶 , since, given two different
trees T1 and T2, we have the identity 𝐶2(2T1 +𝐶2(T2)) = 𝐶2(𝐶2(T1) + 2T2). We therefore consider the elements for which division is
unambiguous, defined as follows.

Definition 15 (Cancellative element). An FDS 𝐴 ∈𝔻 is said cancellative if for all 𝐵, 𝐶 ∈𝔻, 𝐴𝐵 =𝐴𝐶 ⟹ 𝐵 = 𝐶 .

In this section, we prove that an FDS is cancellative if and only if it has a fixed point (Theorem 34). We approach this theorem in
steps. First, we introduce an order on trees, based on a code for trees. Then, we move on to show that we can transform FDSs into
forests in a way that works well with both the product on forests and on FDSs. Finally, we prove the theorem.

3.1. Order on trees

It will prove very useful to have a total order on finite trees that is compatible with the product. That is, if T1, T2, T3, T4 ∈ 𝔽𝑇 , and
T1 < T2 and T3 ≤ T4, we want to have T1T3 < T2T4. This will be guaranteed by Corollary 20.

To do so, we define a code 𝑓 from finite trees to ℕ∗ (the set of finite sequences of nonnegative integers), and we say that
T1 < T2 ⟺ 𝑓 (T1) <lex 𝑓 (T2) (where <lex is the lexicographical order).

The code is computed as follows, using two mutually recursive functions. We consider for a moment that trees are ordered: the
children of a node are stored in an ordered list, say, from left to right. That is, for a tree T, (T) is now a tuple rather than a multiset.
6

Then, we define a procedure 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 which takes a finite tree, sorts it (using the function 𝑠𝑜𝑟𝑡 defined below), and then traverses

Theoretical Computer Science 998 (2024) 114509É. Naquin and M. Gadouleau

Fig. 3. The two mutually recursive functions for computing 𝑓 .

level by level, following the order of the predecessors, starting from depth 0, and outputs a tuple of the number of predecessors of
each node encountered.

We also define a procedure 𝑠𝑜𝑟𝑡 that takes a finite tree T, begins by calling 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 on each of the subtrees anchored on direct
predecessors of the root, and then order those predecessors from left to right by increasing return value of 𝑐𝑜𝑙𝑙𝑒𝑐𝑡. Finally, 𝑓 (T) =
𝑐𝑜𝑙𝑙𝑒𝑐𝑡(T).

A pseudocode implementation of 𝑠𝑜𝑟𝑡 and 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 is found in Fig. 3.

Example 16. The tree in Fig. 4a has the code (2, 0, 2, 0, 0); its states are traversed in the following order: 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 in the topmost
call to 𝑐𝑜𝑙𝑙𝑒𝑐𝑡.

Lemma 17. The code 𝑓 is prefix-free. That is, if T, T’ ∈ 𝔽𝑇 are such that 𝑓 (T) is a prefix of 𝑓 (T’), we have 𝑓 (T) = 𝑓 (T’).

Proof. Given a code 𝑐, and an index 𝑖, write 𝛿(𝑐, 𝑖) =
∑𝑖
𝑗=1 𝑐𝑗 − 𝑖. This is the number of vertices that have been announced as

children of vertices in 𝑐1, … , 𝑐𝑖 but which are not themselves in 𝑐1, … , 𝑐𝑖. Thus, if we are reading a code 𝑐, and we have read the 𝑖
first elements, we know that we must read at least 𝛿(𝑐, 𝑖) other elements. Moreover, remark that if 𝛿(𝑐, 𝑖) = 0, then we are at the end
of the code, since we have already read the children of every vertex.

Now, suppose that 𝑐 ∶= 𝑓 (T) is a prefix of 𝑐′ ∶= 𝑓 (T’). Let 𝑖 = |𝑐|: we have 𝛿(𝑐, 𝑖) = 0 since 𝑐 is completely read once we have
read the 𝑖 first elements. Moreover, we must have 𝛿(𝑐′, 𝑖) = 𝛿(𝑐, 𝑖) since 𝑐′1… 𝑐′

𝑖
= 𝑐1… 𝑐𝑖. So, 𝛿(𝑐′, 𝑖) = 0 too, and thus, 𝑐 = 𝑐′. □

We now say that, for two trees T, T’, we have T ≤𝑓 T’ if 𝑓 (T) ≤lex 𝑓 (T’). We claim that this defines a total order on trees.
Reflexivity and transitivity are trivial, and its antisymmetry is guaranteed by the following lemma:

Lemma 18. For any two finite trees T, T’, 𝑓 (T) = 𝑓 (T’) ⟹ T = T’.

Proof. We just show that we can reconstruct T from 𝑓 (T) = 𝑐𝑜𝑙𝑙𝑒𝑐𝑡(T). We can ignore the call to 𝑠𝑜𝑟𝑡(T) in 𝑐𝑜𝑙𝑙𝑒𝑐𝑡(T): we can
consider that the tree T we will recover is already sorted. To shorten notations, let’s write 𝑐 ∶= 𝑓 (T).

First, we can partition 𝑐 into levels. Indeed, remark that if we know that the indices corresponding to states at depth 𝑑 form the
set �𝑘, 𝓁�, then we know that the number of states at depth 𝑑 + 1 is

∑𝓁
𝑗=𝑘 𝑐𝑗 , and so the states at depth 𝑑 + 1 correspond to indices

�𝓁+1, 𝓁+
∑𝓁
𝑗=𝑘 𝑐𝑗�. So, we can now iterate on the levels of 𝑐: let’s write for convenience 𝑘𝑑 , 𝓁𝑑 ∈ℕ the first and last indices of states

at depth 𝑑.
The first level, corresponding to depth 0, is easy to reconstruct: simply create the root. For our induction, we also create the

predecessors of the root, of which we know the number, so the induction begins at depth 1.
Now, suppose we have uniquely reconstructed T up to depth 𝑑, and that we want to reconstruct level 𝑑 + 1. We traverse our

reconstructed depth 1 from left to right, and simultaneously traverse 𝑐𝑘𝑑 , … , 𝑐𝓁𝑑 . The 𝑗-th state we encounter has degree 𝑐𝑘𝑑+𝑗 , so
we create 𝑐𝑘𝑑+𝑗 children for that state. Thus, the level at depth 𝑑 + 1 is reconstructed uniquely too.

Thus, we reconstruct T, and this concludes the proof. □

The results which make this code useful are the following lemma and its corollary.

Lemma 19. For all finite trees T1, T2, T3 ∈ 𝔽𝑇 , we have [T1]depth(T3) <𝑓 [T2]depth(T3) ⟹ T1T3 <𝑓 T2T3.

Proof. Let’s prove this by induction on T1 and T2 ’s depth. It’s trivial at depth 0. Take T1, T2 of depth ≤ 𝑘 + 1, with 𝑘 such that the
7

result stands for trees of depth ≤ 𝑘.

Theoretical Computer Science 998 (2024) 114509É. Naquin and M. Gadouleau

Because of Lemma 17, since T1 <𝑓 T2, 𝑓 (T1) cannot be a prefix of 𝑓 (T2).
Thus, there exists an index 𝑖 such that 𝑓 (T1)𝑖 < 𝑓 (T2)𝑖 and for all 𝑗 < 𝑖, we have 𝑓 (T1)𝑗 = 𝑓 (T2)𝑗 . Let 𝑥 ∈ 𝑆T1

be the vertex
at index 𝑖 in 𝑓 (T1), and let 𝑦 ∈ 𝑆T2

be the vertex at index 𝑖 in 𝑓 (T2). In the following, for a tree T and a vertex 𝑢 ∈ 𝑆T, we denote
by 𝑓 T

(𝑢) the code of the subtree with root 𝑢 in T. Since the codes share the same prefix of length 𝑖 − 1, depthT1
(𝑥) = depthT2

(𝑦) (as
seen in the proof of Lemma 18, this shared prefix of length 𝑖 − 1 holds all the information necessary to reconstruct everything above
𝑥 and 𝑦). Let’s denote by 𝑑 this depth. Because [T1]depth(T3) <𝑓 [T2]depth(T3), we have 𝑑 < depth(T3).

It is clear that we have [T1]𝑑−1 = [T2]𝑑−1, so in particular, [T1T3]𝑑−1 = [T2T3]𝑑−1. Let 𝑧 be the root of the tree with minimal code
in T3 at depth 𝑑. Now, we show that the first difference between the codes of T1T3 and T2T3 is at the index 𝑗 corresponding to the
vertex (𝑥, 𝑧) in 𝑓 (T1T3), and to the vertex (𝑦, 𝑧) in 𝑓 (T2T3). There might be multiple possibilities for 𝑧; we can assume that we take
the one which gives the minimum 𝑗.

Indeed, assume that a vertex of the form (𝑥, 𝑡) for some vertex 𝑡 of T3 appears in 𝑓 (T1T3) at depth 𝑑 before index 𝑗. Since it
appears before vertex (𝑥, 𝑧), by induction hypothesis, it means that the code of the subtree anchored on 𝑡 must be smaller than that of
the subtree anchored on 𝑧. By minimality of 𝑧, this means that 𝑓 T3

(𝑧) = 𝑓 T3
(𝑡). Since we have chosen 𝑧 to be the first occurrence

of this code at this depth, we must have 𝑡 = 𝑧. So, (𝑥, 𝑧) is the first vertex in 𝑓 (T1T3) in which 𝑥 appears. A similar reasoning shows
that no vertex involving 𝑦 appears before index 𝑗 in 𝑓 (T2T3). Since every element before 𝑥 is shared between 𝑓 (T1) and 𝑓 (T2),
this means that the first difference between 𝑓 (T1T3) and 𝑓 (T2T3) is at or after index 𝑗.

At index 𝑗, the number of predecessors 𝑓 (T1T3)𝑗 is npredsT1
(𝑥) npredsT3

(𝑧) while 𝑓 (T1T3)𝑗 is npredsT2
(𝑦) npredsT3

(𝑧). Since
npredsT1

(𝑥) < npredsT2
(𝑦), this shows that T1T3 <𝑓 T2T3. □

Corollary 20. For all finite trees T1, T2, T3, T4 ∈ 𝔽𝑇 , if [T1]depth(T3) <𝑓 [T2]depth(T3) and [T3]depth(T2) ≤𝑓 [T4]depth(T2), we have T1T3 <𝑓
T2T4.

Proof. By Lemma 19, we have T1T3 <𝑓 T2T3. If T3 = T4, we can conclude now. Otherwise, T3 <𝑓 T4, and we have, by Lemma 19,
T2T3 <𝑓 T2T4. Combining the two inequalities, we get: T1T3 <𝑓 T2T4. □

We are now ready for the recovery algorithm on finite trees.

Lemma 21. If A, B, C ∈ 𝔽𝑇 , A is finite, and AB = AC, then [B]depth(A) = [C]depth(A).

Proof. Since <𝑓 is a complete order, if [B]depth(A) ≠ [C]depth(A), we can assume without loss of generality that we are in the case
[B]depth(A) < [C]depth(A). In that case, by Lemma 19, we have AB <𝑓 AC. This concludes the proof. □

Lemma 22. If A, B, C ∈ 𝔽𝑇 and A is infinite, and AB = AC, then B = C.

Proof. For every 𝑑 ∈ℕ, we have [A]𝑑 [B]𝑑 = [A]𝑑 [C]𝑑 , and thus, from Lemma 21, [B]𝑑 = [C]𝑑 . This implies that B = C. □

Corollary 23. If 𝐴, 𝐵, 𝐶 ∈𝔻𝐷 , and 𝐴𝐵 =𝐴𝐶 , then 𝐵 = 𝐶 .

Proof. If 𝐴𝐵 =𝐴𝐶 , then 𝐴𝐵 =𝐴𝐶 . Using Lemma 22, this means that 𝐵 = 𝐶 . Thus, 𝐵 = 𝐶 . □

We can now extend the order on possibly infinite trees; this will be of use for our results on the unicity of 𝑘-th roots. For a tree
T, define its code as (T) ∶= (𝑓 ([T]𝑖))𝑖∈ℕ, and say that T ≤ U if and only if (T) ≤lex (U).

Lemma 24. For all trees T1, T2, T3 ∈ 𝔽𝑇 , if T1 < T2, we have T1T3 < T2T3.

Proof. If T1 < T2, then T1 ≠ T2. In particular, there is a minimal depth 𝑑 such that [T1]𝑑 ≠ [T2]𝑑 . Since for every 𝑖 < 𝑑, we have
[T1]𝑖 = [T2]𝑖, we have (T1T3)1, … , (T1T3)𝑑−1 = (T2T3)1, … , (T2T3)𝑑−1.

What is left to prove is that (T1T2)𝑑 < (T1T3)𝑑 , that is 𝑓 ([T1T3]𝑑) < 𝑓 ([T1T3]𝑑). This follows from the fact that 𝑓 ([T1]𝑑) <
𝑓 ([T2]𝑑) and Lemma 19. □

Corollary 25. For all trees T1, T2, T3, T4 ∈ 𝔽𝑇 , if T1 < T2 and T3 ≤ T4, we have T1T3 < T2T4.

Proof. By Lemma 24, we have T1T3 < T2T3. If T3 = T4, we can conclude now. Otherwise, T3 < T4, and we have, by Lemma 24,
T1T3 < T2T3 and T2T3 < T2T4. Combining the two, we get: T1T3 < T2T4. □

3.2. Transforming an FDS into a forest

In this subsection, we introduce a way of converting a general FDS into a forest, since the product on forests works level by level.
8

We do as follows:

Theoretical Computer Science 998 (2024) 114509É. Naquin and M. Gadouleau

Definition 26. Let 𝐴 = 𝐶𝑛(T1, … , T𝑛) be a connected FDS. For any 𝑎 ∈ 𝑆𝐴, we write 𝐴−𝑘(𝑎) ∶= {𝑠 ∈ 𝑆𝐴 ∶𝐴𝑘(𝑠) = 𝑎}. Then, for each
𝑎 ∈ [𝐴]0, we set

𝑆𝑎 ∶= {(𝑠, 𝑘) ∶ 𝑠 ∈𝐴−𝑘(𝑎), 𝑘 ∈ℕ}

and

𝐸𝑎 ∶= {((𝑠, 𝑘), (𝐴(𝑠), 𝑘− 1)) ∶ (𝑠, 𝑘) ∈ 𝑆𝑎}.

Lemma 27. The directed graph T𝑎(𝐴) with vertex set 𝑆𝑎 and edge set 𝐸𝑎 defined above is a tree. Moreover 𝑆𝑎 and 𝑆𝑏 are disjoint for all
𝑎 ≠ 𝑏.

Proof. Take 𝑎 ∈ [𝐴]0. We will show that T𝑎(𝐴) is a tree of root (𝑎, 0). First, T𝑎(𝐴) is acyclic because 𝑘 necessarily decreases following
any arc, which also shows that T𝑎(𝐴) is correctly oriented. Furthermore, if 𝑏 ∈ 𝑆𝑎, then there exists 𝑘 such that 𝐴𝑘(𝑏) = 𝑎, and thus
we have the following path from 𝑎 to 𝑏:

(𝑏, 𝑘)→ (𝐴(𝑏), 𝑘− 1)→⋯→ (𝐴𝑘−1(𝑏),1)→ (𝑎,0),

which has all of its edges in 𝐸𝑎. So, T𝑎(𝐴) is a well-defined tree.
Now, we show that if 𝑎, 𝑏 ∈ 𝑆[𝐴]0 and 𝑎 ≠ 𝑏, then 𝑆𝑎 ∩ 𝑆𝑏 = ∅. Suppose that (𝑠, 𝑘) ∈ 𝑆𝑎 ∩ 𝑆𝑏. Then, 𝐴𝑘(𝑠) = 𝑎 = 𝑏, which is the

desired contradiction. □

We thus define the unrolling of 𝐴 as 𝐴 ∶=
∑
𝑎∈𝑆[𝐴]0

T𝑎(𝐴), with 𝑆𝐴 =
⋃
𝑎∈𝑆[𝐴]0

𝑆𝑎.

We can then extend this to general FDSs, by writing: 𝐴+𝐵 =𝐴+𝐵. Note that the unrolling is not injective. Indeed, for instance,
𝐶3 = 3̃𝐶1. This is not true even for FDSs with the same periodic part: if T and U are two distinct trees and 𝑋 = 2𝐶1(T) +𝐶2(U, U) and
𝑌 = 2𝐶1(U) +𝐶2(T, T), then 𝑋 = 𝑌 . However, in the connected case, we have injectivity.

Lemma 28. Let 𝑋, 𝑌 ∈𝔻. If 𝑋 and 𝑌 are connected and [𝑋]0 = [𝑌]0, then 𝑋 = 𝑌 ⟹ 𝑋 = 𝑌 .

Proof. Let 𝑋 = 𝐶𝑥(T1, … , T𝑥). Then 𝑋 has 𝑥 infinite trees X1, … , X𝑥, each a periodic shift of the previous one:

𝑡𝑠𝑒𝑞(X1) = (T1,T2,… ,T𝑥),… , 𝑡𝑠𝑒𝑞(X𝑥) = (T𝑥,T1,… ,T𝑥−1).

We have 𝑌 = 𝐶𝑥(U1, … , U𝑥), and similarly 𝑌 consists of the trees Y1, … , Y𝑥 where

𝑡𝑠𝑒𝑞(Y1) = (U1,U2,… ,U𝑥),… , 𝑡𝑠𝑒𝑞(U𝑥) = (U𝑥,U1,… ,U𝑥−1).

Then U1 ∈ {T1, … , T𝑥}, without loss say U1 = T1, then U𝑦 = T𝑦 for all 1 ≤ 𝑦 ≤ 𝑥 and 𝑋 = 𝑌 . □

Example 29. See Figs. 4 and 5 for examples of unrollings.

The following lemma explains why the unrolling operation makes sense: it is compatible with the product. The proof is rather
technical, but the intuition for this result is simple. A cycle behaves very much like an infinite path in terms of predecessors, and the
unrolling converts the cycle into an infinite path that behaves similarly. Moreover, the reason we create multiple infinite trees for
each cycle is to avoid problems with cases where the product of two connected FDSs gives a non-connected FDS.

Lemma 30. For any 𝐴, 𝐵 ∈𝔻, we have: 𝐴𝐵 =𝐴𝐵.

Proof. We show this result for connected 𝐴 and 𝐵 as the other cases follow by distributivity. Thus, we write 𝐴 = 𝐶𝑚(T0, … , T𝑚−1)
and 𝐵 = 𝐶𝑛(U0, … , U𝑛−1). Now, we can write:

𝑆𝐴 =
⋃
𝑎∈[𝐴]0

{(𝑠, 𝑘) ∶ 𝑠 ∈𝐴−𝑘(𝑎), 𝑘 ∈ℕ},

𝑆𝐵 =
⋃
𝑏∈[𝐵]0

{(𝑠, 𝑘) ∶ 𝑠 ∈𝐵−𝑘(𝑏), 𝑘 ∈ℕ}.

Now, the product 𝐴𝐵 has the following state set:

𝑆𝐴𝐵 = {(𝑎, 𝑏) ∈ 𝑆𝐴 ×𝑆𝐵 ∶ depth𝐴(𝑎) = depth𝐵(𝑏)}

≃ {((𝑠𝑎, 𝑘𝑎), (𝑠𝑏, 𝑘𝑏)) ∈ 𝑆𝐴 ×𝑆𝐵 ∶ 𝑘𝑎 = 𝑘𝑏}

≃
⋃

{(𝑠 , 𝑠 , 𝑘) ∈ 𝑆 × 𝑆 ×ℕ ∶ 𝑠 ∈𝐴−𝑘(𝑎), 𝑠 ∈𝐵−𝑘(𝑏);𝑘 ∈ℕ}.
9

(𝑎,𝑏)∈[𝐴]0×[𝐵]0
𝑎 𝑏 𝐴 𝐵 𝑎 𝑏

Theoretical Computer Science 998 (2024) 114509É. Naquin and M. Gadouleau

Fig. 4. The ⋅̃ operation on a dendron.

Fig. 5. The ⋅̃ operation on a connected FDS.

Now, let’s show that this is isomorphic to 𝑆
𝐴𝐵

(remember that 𝑆𝐴𝐵 = 𝑆𝐴 × 𝑆𝐵):

𝑆
𝐴𝐵

=
⋃

𝑐∈[𝐴𝐵]0

{(𝑠, 𝑘) ∈ 𝑆𝐴𝐵 ×ℕ ∶ 𝑠 ∈𝐴𝐵−𝑘(𝑐), 𝑘 ∈ℕ}

=
⋃

(𝑎,𝑏)∈[𝐴]0×[𝐵]0

{((𝑠𝑎, 𝑠𝑏), 𝑘) ∈ 𝑆𝐴𝐵 ×ℕ ∶ (𝑠𝑎, 𝑠𝑏) ∈𝐴𝐵−𝑘((𝑎, 𝑏)), 𝑘 ∈ ℕ}

=
⋃

(𝑎,𝑏)∈[𝐴]0×[𝐵]0

{((𝑠𝑎, 𝑠𝑏), 𝑘) ∈ 𝑆𝐴𝐵 ×ℕ ∶ 𝑠𝑎 ∈𝐴−𝑘(𝑎), 𝑠𝑏 ∈𝐵−𝑘(𝑏), 𝑘 ∈ℕ}.

The last step comes from the following identity: for 𝑐 = (𝑎, 𝑏) ∈ 𝑆𝐴𝐵 = 𝑆𝐴 × 𝑆𝐵 , we have 𝐴𝐵−𝑘(𝑐) = 𝐴−𝑘(𝑎) × 𝐵−𝑘(𝑏). Thus, we
have shown that 𝑆𝐴𝐵 ≃ 𝑆

𝐴𝐵
.

Now, what is left to do is show that the edges are also isomorphic. Thus, we must show that for any (𝑠𝑎, 𝑠𝑏, 𝑘), (𝑠′𝑎, 𝑠
′
𝑏
, 𝑘′) ∈ 𝑆𝐴𝐵 ,
10

we have (𝑠𝑎, 𝑠𝑏, 𝑘) → (𝑠′𝑎, 𝑠
′
𝑏
, 𝑘′) in 𝐴𝐵 if and only if we have (𝑠𝑎, 𝑠𝑏, 𝑘) → (𝑠′𝑎, 𝑠

′
𝑏
, 𝑘′) in 𝐴𝐵.

Theoretical Computer Science 998 (2024) 114509É. Naquin and M. Gadouleau

In the end of the proof, we denote by 𝑥 → 𝐶𝑦 the existence of an edge from 𝑥 to 𝑦 in the forest or FDS 𝐶 (if 𝐶 is an FDS, 𝑥 → 𝐶𝑦

means 𝑦 = 𝐶(𝑥)). Now, we can reason by equivalence:

(𝑠𝑎, 𝑠𝑏, 𝑘)
𝐴𝐵
←←←←←←←←←←←←←←→ (𝑠′𝑎, 𝑠

′
𝑏
, 𝑘′)

⟺ 𝑘′ = 𝑘− 1 ∧ (𝑠𝑎, 𝑘)
𝐴
←←←←←←←←→ (𝑠′𝑎, 𝑘

′) ∧ (𝑠𝑏, 𝑘)
𝐵
←←←←←←←←→ (𝑠′

𝑏
, 𝑘′)

⟺ 𝑘′ = 𝑘− 1 ∧ 𝑠𝑎
𝐴
←←←←←←←←→ 𝑠′𝑎 ∧ 𝑠𝑏

𝐵
←←←←←←←←→ 𝑠′

𝑏

⟺ 𝑘′ = 𝑘− 1 ∧ (𝑠𝑎, 𝑠𝑏)
𝐴𝐵
←←←←←←←←←←←←←←→ (𝑠′𝑎, 𝑠

′
𝑏
)

⟺ (𝑠𝑎, 𝑠𝑏, 𝑘)
𝐴𝐵
←←←←←←←←←←←←←←→ (𝑠′𝑎, 𝑠

′
𝑏
, 𝑘′).

This concludes the proof. □

We can now show that division is unambiguous when restricted to connected FDSs.

Theorem 31. For any FDS 𝐴 ∈𝔻, if 𝑋, 𝑌 ∈𝔻 are connected, then

𝐴𝑋 =𝐴𝑌 ⟹ 𝑋 = 𝑌 .

Proof. Suppose 𝐴𝑋 = 𝐴𝑌 . Let [𝑋]0 = 𝐶𝑥 and [𝑌]0 = 𝐶𝑦, then |[𝐴𝑋]0| = 𝑥|[𝐴]0| and |[𝐴𝑌]0| = 𝑦|[𝐴]0| show that 𝑥 = 𝑦, that is
[𝑋]0 = [𝑌]0. Thus,

𝐴𝑋 =𝐴𝑌 ⟹ 𝐴𝑋 =𝐴𝑌
Lemma 30
⇐⇐⇒𝐴𝑋 =𝐴𝑌

Lemma 22
⇐⇐⇒𝑋 = 𝑌

Lemma 28
⇐⇐⇒𝑋 = 𝑌 . □

We remark that Theorem 31 implies [7, Conjecture 3.1]. Indeed, if 𝐴 and 𝐵 are connected and 𝐴𝑋 =𝐴𝑌 =𝐵, then 𝑋 and 𝑌 are
connected, thus 𝑋 = 𝑌 .

3.3. Cancellative FDSs are those with a fixed point

Using the results of the previous part, we have the following lemma:

Lemma 32. If 𝐴 ∈𝔻, and 𝐴 has a fixed point, then 𝐴 is cancellative.

Proof. Take 𝐵, 𝐷 ∈𝔻 such that 𝐴𝐵 =𝐷. Let’s show that we can recover 𝐵 by induction on the size of 𝐷. The base case is trivial: if |𝐷| = 0, then 𝐷 = 0 and since 𝐴 has a fixed point, 𝐴 ≠ 0, so 𝐵 = 0.
Let 𝓁 be the size of the smallest cycle of 𝐷. Since 𝐴 has a cycle of length 1, it means that the smallest cycle of 𝐵 is of length

𝓁 too. Let 𝐿 ⊆ ℕ be the set of divisors of 𝓁. We let 𝐴′ = supp𝐿(𝐴), and similarly 𝐵′ = supp𝐿(𝐵) and 𝐷′ = supp𝐿(𝐷). Then we have
𝐴′𝐵′ =𝐷′. Indeed, cycles of length 𝓁 in 𝐷 come from a product of a cycle of length 𝑎 in 𝐴 and length 𝑏 in 𝐵, such that 𝑎 ∨ 𝑏 = 𝓁. In
particular, this implies that 𝑎|𝓁, and since 𝑏 ≥ 𝓁 because 𝓁 is the smallest cycle length in 𝐵, this implies 𝑏 = 𝓁.

So, we have 𝐴′𝐵′ =𝐷′, which implies 𝐴′𝐵′ =𝐷′. Take the smallest tree in 𝐴′, denote it by T𝐴, and take the smallest tree in 𝐷′,
denote it by T𝐷 . Then, there is a tree T𝐵 in 𝐵′ such that T𝐴T𝐵 = T𝐷 , by Corollary 20 and minimality of T𝐴 and T𝐷 .

This means that by Lemma 22, we find T𝐵 by dividing T𝐷 by T𝐴. Moreover, since T𝐵 is in 𝐵′, we know that it comes from a
cycle of length 𝓁 in 𝐵. So, we set 𝐸 = 𝐶𝓁(𝑡𝑠𝑒𝑞(T𝐵)1, … , 𝑡𝑠𝑒𝑞(T𝐵)𝓁) the “reconstruction” of this cycle. The useful property of 𝐸 is
that it is part of 𝐵. Thus, the equation becomes 𝐴(𝐵 −𝐸) =𝐷 −𝐴𝐸 (those two subtractions are well-defined since 𝐸 is a connected
component of 𝐵, and 𝐴𝐸 is a connected component of 𝐷), which involves a product strictly smaller than 𝐷. □

Now, we show that if an FDS has no fixed point, then it is not cancellative.

Lemma 33. Let  be a finite set of integers greater than 1. Then there exist 𝑋 ≠𝑋′ ∈𝔻𝑃 such that 𝐶𝑎𝑋 = 𝐶𝑎𝑋′ for all 𝑎 ∈.

Proof. Recall the sequence 𝛿𝐽 from Lemma 12. For all 𝐼 ⊆, let 𝛼𝐼 = 𝛿
∏
𝑎∈ 𝑎 and 𝛼′

𝐼
= 𝛼𝐼 + (−1)|𝐼|𝛿𝐼 ∏𝑎∈𝐴⧵𝐼 𝑎.

Since 𝛼𝐼 , 𝛼′𝐼 ≥ 0, we can then define the FDSs 𝑋 =
∑
𝐼⊆ 𝛼𝐼𝐶

⋁
𝐼 and 𝑋′ =

∑
𝐼⊆ 𝛼

′
𝐼
𝐶⋁

𝐼 . We remark that the number of fixed
points in 𝑋 and 𝑋′ are 𝛼∅ and 𝛼′∅, respectively. Since 𝛼′∅ = 𝛼∅ +

∏
𝑎∈ 𝑎 ≠ 𝛼∅, 𝑋 and 𝑋′ are distinct FDSs.

Let 𝑏 ∈. For all 𝐼 ⊆ ⧵ {𝑏}, let 𝐽 = 𝐼 ∪ {𝑏}. Then we have

𝐶𝑏(𝛼′𝐼𝐶⋁
𝐼 + 𝛼′𝐽𝐶⋁

𝐽) = (𝛼′
𝐼
(𝑏 ∧

⋁
𝐼) + 𝛼′

𝐽
𝑏)𝐶⋁

𝐽

= ((𝛼 + (−1)|𝐼|𝛿 ∏
𝑎)(𝑏 ∧

⋁
𝐼) + (𝛼 − (−1)|𝐼|𝛿 ∏

𝑎)𝑏)𝐶⋁
11

𝐼 𝐼

𝑎∈⧵𝐼
𝐽 𝐽

𝑎∈𝐴⧵𝐽
𝐽

Theoretical Computer Science 998 (2024) 114509É. Naquin and M. Gadouleau

Fig. 6. 𝑑𝑖𝑣𝑖𝑑𝑒(C,A) to divide C by A, for finite C and A.

= (𝛼𝐼 (𝑏 ∧
⋁
𝐼) + 𝛼𝐽 𝑏)𝐶⋁

𝐽

+

[(
(−1)|𝐼|𝛿𝐼 ∏

𝑎∈𝐴⧵𝐼
𝑎

)
(𝑏 ∧

⋁
𝐼) −

(
(−1)|𝐼|𝛿𝐼 (𝑏 ∧⋁

𝐼)
∏
𝑎∈𝐴⧵𝐼

𝑎

)]
𝐶⋁

𝐽

= 𝐶𝑏(𝛼𝐼𝐶⋁
𝐼 + 𝛼𝐽𝐶⋁

𝐽).

Therefore,

𝐶𝑏𝑋
′ =

∑
𝐼⊆⧵{𝑏}

𝐶𝑏(𝛼′𝐼𝐶⋁
𝐼 + 𝛼′𝐽𝐶⋁

𝐽) =
∑

𝐼⊆⧵{𝑏}
𝐶𝑏(𝛼𝐼𝐶⋁

𝐼 + 𝛼𝐽𝐶⋁
𝐽) = 𝐶𝑏𝑋. □

This lemma above combined with Lemma 32 gives:

Theorem 34. An FDS is cancellative if and only if it has a fixed point.

Proof. The case where the FDS has a fixed point is handled by Lemma 32. Suppose 𝐴 has no fixed point and let  be the set of all
cycle lengths of 𝐴. Following Lemma 33, there exist 𝑋, 𝑋′ ∈ 𝔻𝑃 such that 𝐶𝑎𝑋 = 𝐶𝑎𝑋′ for all 𝑎 ∈. Let 𝐵 = 𝐶𝑎(T1, … , T2) be a
connected component of 𝐴, where 𝑎 ∈. According to Corollary 14, we have 𝐵𝑋 = 𝐵𝑋′. Summing over all connected components
of 𝐴, we finally obtain 𝐴𝑋 =𝐴𝑋′. □

From now on, we define 𝔻∗ to be the set of cancellable FDSs. Its algebraic structure is that of a cancellative subsemiring of 𝔻,
but 𝔻∗ does not have an additive identity.

4. Polynomial-time algorithm for tree and dendron division

The algorithm Fig. 6 provides an algorithmic proof of Lemma 21, as formalised below:

Lemma 35. The 𝑑𝑖𝑣𝑖𝑑𝑒 algorithm is correct: for all A, B, C ∈ 𝔽𝑇 , AB = C ⟹ [B]depth(A) = 𝑑𝑖𝑣𝑖𝑑𝑒(C, A), and [C]depth(A) ̸ | A ⟹
𝑑𝑖𝑣𝑖𝑑𝑒(C, A) = ⊥.

Proof. In the case in which AB = C, we show that we can recover uniquely [B]depth(A) from A and AB by induction on depth(A). The
base case is for depth(A) = −1, in which A = 0 is the empty tree. Then, the result is trivial since [B]−1 = 0 for any B ∈ 𝔽𝑇 .

Now, for the general case, we do an induction on the size of the product C = AB. The base case for C = 0 is trivial. Let’s write
{{T1, … , T𝑛}} =(A) with T1 ≤𝑓 ⋯ ≤𝑓 T𝑛, {{U1, … , U𝑘}} =(B) with U1 ≤𝑓 ⋯ ≤𝑓 U𝑘, and finally, write {{V1, … , V𝑛𝑘}} =(C)
with V1 ≤𝑓 ⋯ ≤𝑓 V𝑛𝑘. We remark that to recover [B]depth(A), all we need is to recover [U𝑗]depth(A)−1 for all 1 ≤ 𝑗 ≤ 𝑘.

Let 𝑑 be depth(C) −1 as in the algorithm. Then let tA (respectively tB, tC) be the minimum tree in (A) (respectively (B), (C))
of depth ≥ 𝑑. We can then write tAtB = tC without loss of generality. Since tA has depth < depth(A), the outer induction hypothesis
shows that 𝑑𝑖𝑣𝑖𝑑𝑒(tC, tA) = [tB]𝑑 .

There are two cases. If depth(B) ≤ depth(A), then 𝑑 = depth(B) by Lemma 10 and so [tB]𝑑 = tB. Otherwise, if depth(B) > depth(A),
then depth(C) = depth(A) by Lemma 10 and so tB = [tB]depth(A)−1, which is a depth 1 subtree of [B]depth(A). So, in both cases, tB is a
12

depth 1 subtree of [B]depth(A).

Theoretical Computer Science 998 (2024) 114509É. Naquin and M. Gadouleau

Now that we have tB, the algorithm computes tB(A) = {{tBT1, … , tBT𝑛}}, which are 𝑛 subtrees of C, and removes them from C.
Finally, the next loop iteration corresponds to applying the internal induction hypothesis to the identity AB’ = D’ where

(B’) =([B]depth(A)) ⧵ {tB}

and

(D’) =(D) ⧵ tB(A).

To conclude, if we are in the case where [C]depth(A) ̸ | A, we need to show that if 𝑑𝑖𝑣𝑖𝑑𝑒([C]depth(A), A) does not return ⊥ but some
tree B, then AB = [C]depth(A) which is a contradiction. To do so, remark that by construction during the while loop, (A)(B) =
([C]depth(A)), which means that AB = [C]depth(A). □

This algorithm only works on trees. But Lemma 38 allows one to use it on dendrons, using the truncature of their unrollings.
First, we need the following definition, adapting the definition of product isomorphism for forests:

Definition 36. Given a product B =
∏
𝑖∈𝐼 A𝑖 for some finite set 𝐼 , a family (A𝑖)𝑖∈𝐼 ∈ 𝔽 𝐼 , and denoting 𝑆∏

𝑖∈𝐼 A𝑖
=
⋃
𝑘∈ℕ{(𝑎𝑖)𝑖∈𝐼 ∈∏

𝑖∈𝐼 𝑆A𝑖
∶ depthA𝑖

(𝑎𝑖) = 𝑘}, we say that the function 𝜓 ∶ 𝑆B ↦ 𝑆∏
𝑖∈𝐼 A𝑖

is a forest product isomorphism for the product B =
∏
𝑖∈𝐼 A𝑖 if:

1. it is a bijection,
2. for any 𝑏 ∈ 𝑆B, 𝜓(𝑏) is a root if and only if 𝑏 is a root, and
3. for any families of non-root states (𝑠𝑖)𝑖∈𝐼 , (𝑠′𝑖)𝑖∈𝐼 ∈ 𝑆∏

𝑖∈𝐼 A𝑖
, we have: 𝜓−1((𝑠𝑖)𝑖∈𝐼) → 𝜓−1((𝑠′

𝑖
)𝑖∈𝐼) is an edge of B if and only if

for each 𝑖 ∈ 𝐼 , 𝑠𝑖 → 𝑠′
𝑖

is an edge of A𝑖.

As for the first definition of a product isomorphism, if there is a tree product isomorphism between B and
∏
𝑖∈𝐼 A𝑖, this means

that B =
∏
𝑖∈𝐼 A𝑖. A simple inductive proof shows that:

Lemma 37. Given a tree product isomorphism 𝜓 for a product B =
∏
𝑖∈𝐼 A𝑖 is such that for any (𝑎𝑖)𝑖∈𝐼 ∈ 𝑆∏

𝑖∈𝐼 A𝑖
and 𝑏 ∈ 𝑆B, such that

𝜓(𝑏) = (𝑎𝑖)𝑖∈𝐼 , we have depthB(𝑏) = depth∏
𝑖∈𝐼 A𝑖

((𝑎𝑖)𝑖∈𝐼).

Lemma 38. Let 𝐴, 𝐵, 𝐶 ∈𝔻𝐷 , and let 𝑘 ≥ depth(𝐴). Then 𝐴 =𝐵𝐶 if and only if [𝐴]𝑘 = [𝐵]𝑘[𝐶]𝑘.

Proof. Remember that we already know that 𝐴 = 𝐵𝐶 ⟺ 𝐴 = 𝐵𝐶 . Now, one direction is trivial: if 𝐴 = 𝐵𝐶 , then 𝐴 = 𝐵𝐶 so
[𝐴]𝑘 = [𝐵]𝑘[𝐶]𝑘 for every 𝑘. Now, we assume that [𝐴]𝑘 = [𝐵]𝑘[𝐶]𝑘 for some 𝑘 ≥ depth(𝐴) and we show that 𝐴 =𝐵𝐶 .

Now, we want to create a tree product isomorphism 𝜙 ∶ 𝑆𝐴 → 𝑆𝐵𝐶 for the product 𝐴 = 𝐵𝐶 . To do so, we start from the tree
product isomorphism 𝜓 ∶ 𝑆[𝐴]𝑘

→ 𝑆[𝐵]𝑘[𝐶]𝑘
for the product [𝐴]𝑘 = [𝐵]𝑘[𝐶]𝑘.

We can extend 𝜓 to 𝜙 easily. For all (𝑎, 𝑑) ∈ 𝑆𝐴 × ℕ where 𝑑 ≥ depth𝐴(𝑎), set 𝜙(𝑎, 𝑑) = ((𝑏, 𝑑), (𝑐, 𝑑)) where 𝜓(𝑎, depth𝐴(𝑎)) =
((𝑏, depth𝐴(𝑎)), (𝑐, depth𝐴(𝑎))). This is a well-defined function since 𝜓(𝑎, depth𝐴(𝑎)) will always exist as 𝑘 ≥ depth(𝐴).

Let’s prove that this is a valid tree product isomorphism. First, 𝜙 is bijective. Indeed, suppose that 𝜓(𝑎, 𝑑) = 𝜓(𝑎′, 𝑑′). Denote by
𝜓(𝑎, 𝑑) = ((𝑏, 𝑑), (𝑐, 𝑑)) and 𝜓(𝑎′, 𝑑′) = ((𝑏′, 𝑑′), (𝑐′, 𝑑′)). We directly have (𝑏, 𝑐, 𝑑) = (𝑏′, 𝑐′, 𝑑′). This means that depth𝐴(𝑎) = depth𝐴(𝑎′),
by definition of 𝜙, because 𝑏 and 𝑐 are at the same depth as 𝑎 (this follows from Lemma 37, since 𝜓 is a tree product isomorphism).
This means that 𝜓(𝑎, depth𝐴(𝑎)) = 𝜓(𝑎′, depth𝐴(𝑎)), which implies 𝑎 = 𝑎′ by bijectivity of 𝜓 .

Now, for any (𝑎, 𝑑) ∈ 𝑆𝐴 ×ℕ such that 𝑑 ≥ depth𝐴(𝑎), 𝜙(𝑎, 𝑑) = ((𝑏, 𝑑), (𝑐, 𝑑)) is a root if and only if 𝑑 = 0 and 𝑏 and 𝑐 are roots.
Because of the definition of 𝜓 , 𝑏 and 𝑐 are roots if and only if 𝑎 is a root in 𝐴, since 𝜓 is a tree product isomorphism.

For the last property we need to check, we write 𝑥
C
←←←←←←←→ 𝑦 to mean that there is an edge from 𝑥 ∈ 𝑆C to 𝑦 ∈ 𝑆C in C.

Finally, we show that for all ((𝑏, 𝑑), (𝑐, 𝑑)), ((𝑏′, 𝑑′), (𝑐′, 𝑑′)) ∈ 𝑆𝐵𝐶 , we have: 𝜙−1(((𝑏, 𝑑), (𝑐, 𝑑)))
𝐴
←←←←←←←←→ 𝜙−1(((𝑏′, 𝑑′), (𝑐′, 𝑑′))) if and only

if (𝑏, 𝑑)
𝐵
←←←←←←←←→ (𝑏′, 𝑑′) and (𝑐, 𝑑)

𝐶
←←←←←←←←→ (𝑐′, 𝑑′). Indeed, following the definition of 𝜙 from 𝜓 , we can write 𝜙−1(((𝑏, 𝑑), (𝑐, 𝑑))) = (𝑎, 𝑑) ∈ 𝑆𝐴

and 𝜙−1(((𝑏′, 𝑑′), (𝑐′, 𝑑′))) = (𝑎′, 𝑑′) ∈ 𝑆𝐴.

Since 𝜓 is a tree product isomorphism, there is an edge (𝑎, 𝑑)
𝐴
←←←←←←←←→ (𝑎′, 𝑑′) if and only if there is an edge ((𝑏, depth𝐴(𝑎)),

(𝑐, depth𝐴(𝑎)))
[𝐵]𝑘[𝐶]𝑘
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ((𝑏′, depth𝐴(𝑎)), (𝑐′, depth𝐴(𝑎))), that is, if and only if there is an edge ((𝑏, 𝑑), (𝑐, 𝑑))

𝐵𝐶
←←←←←←←←←←←←←←→ ((𝑏′, 𝑑), (𝑐′, 𝑑)), which

is equivalent to the existence of (𝑏, 𝑑)
𝐵
←←←←←←←←→ (𝑏′, 𝑑′) and (𝑐, 𝑑)

𝐶
←←←←←←←←→ (𝑐′, 𝑑′).

This proves that 𝐴 = 𝐵𝐶 , which in turn proves that 𝐴 =𝐵𝐶 , and concludes. □

Theorem 39. Given 𝐴, 𝐵 ∈𝔻𝐷 , we can find 𝐶 ∈𝔻𝐷 such that 𝐴 = 𝐵𝐶 or prove that it does not exist in polynomial time in the sizes of 𝐴
13

and 𝐵.

Theoretical Computer Science 998 (2024) 114509É. Naquin and M. Gadouleau

Proof. Given 𝐴, 𝐵 ∈𝔻𝐷 , let 𝑘 = depth(𝐴). Then, call 𝑑𝑖𝑣𝑖𝑑𝑒([𝐴]𝑘, [𝐵]𝑘). If this function returns ⊥, then there is no 𝑋 ∈ 𝔽𝑇 such that
[𝐴]𝑘 = [𝐵]𝑘𝑋, which shows that there is no 𝐶 ∈𝔻𝐷 such that 𝐴 =𝐵𝐶 by Lemma 38.

Otherwise, if this function returns some 𝑋 ∈ 𝔽𝑇 , then we have [𝐴]𝑘 = [𝐵]𝑘𝑋 with depth(𝑋) = 𝑘. Now, remark that if there is
some 𝐶 ∈𝔻𝐷 such that 𝐴 =𝐵𝐶 , we have depth(𝐶) ≤ 𝑘 and thus [𝐴]𝑘 = [𝐵]𝑘[𝐶]𝑘, so by Lemma 21, we have 𝑋 = [𝐶]𝑘. Therefore, if
the function returns an 𝑋 ∈ 𝔽𝑇 , either 𝑋 is of the form [𝐶]𝑘 for some 𝐶 ∈ 𝔻𝐷 , and then we recover 𝐶 such that 𝐴 = 𝐵𝐶 from the
reverse direction of Lemma 38, or 𝑋 is not of that form, and by Lemma 21, there is no 𝐶 ∈𝔻𝐷 such that 𝐴 =𝐵𝐶 .

The 𝑑𝑖𝑣𝑖𝑑𝑒 algorithm is indeed in polynomial time since a call to 𝑑𝑖𝑣𝑖𝑑𝑒(T, U) ends up making at most one call to 𝑑𝑖𝑣𝑖𝑑𝑒(V, W)
for V some subtree of T and W some subtree of U. Since every operation in a call to 𝑑𝑖𝑣𝑖𝑑𝑒 is in polynomial time, this concludes. □

5. Unicity of 𝒌-th roots

Using Theorem 34, we can prove a simple result above polynomials, which in particular states that a polynomial with a coefficient
of degree 1 which is cancellative is injective.

Proposition 40. Let 𝑃 =
∑
𝑖=0 𝑎𝑖𝑋

𝑖 ∈ 𝔻[𝑋] and 𝐴, 𝐵 ∈ 𝔻 such that 𝑃 (𝐴) = 𝑃 (𝐵). Then, we have 𝐴 = 𝐵 if 𝑎1 ∈ 𝔻∗ or if for some 𝑖 > 1,
𝑎𝑖 ∈𝔻∗ and 𝐴 ∈𝔻∗.

Proof. Write 𝑃 (𝑋) =
∑𝑑
𝑖=0 𝑎𝑖𝑋

𝑖. We can assume that 𝑎0 = 0, and we still have 𝑃 (𝐴) = 𝑃 (𝐵). Let 𝐷 =
∑𝑑
𝑖=1 𝑎𝑖

∑𝑖−1
𝑗=0𝐴

𝑖−1−𝑗𝐵𝑗 . Then:

𝐴𝐷 =
𝑑∑
𝑖=1
𝑎𝑖

𝑖−1∑
𝑗=0
𝐴𝑖−𝑗𝐵𝑗

=
𝑑∑
𝑖=1
𝑎𝑖

(
𝐴𝑖 +

𝑖−1∑
𝑗=1
𝐴𝑖−𝑗𝐵𝑗

)

= 𝑃 (𝐴) +
𝑑∑
𝑖=1
𝑎𝑖

𝑖−1∑
𝑗=1
𝐴𝑖−𝑗𝐵𝑗

= 𝑃 (𝐵) +
𝑑∑
𝑖=1
𝑎𝑖

𝑖−1∑
𝑗=1
𝐴𝑖−𝑗𝐵𝑗

=
𝑑∑
𝑖=1
𝑎𝑖

(
𝐵𝑖 +

𝑖−1∑
𝑗=1
𝐴𝑖−𝑗𝐵𝑗

)

=
𝑑∑
𝑖=1
𝑎𝑖

𝑖∑
𝑗=1
𝐴𝑖−𝑗𝐵𝑗

=
𝑑∑
𝑖=1
𝑎𝑖

𝑖−1∑
𝑗=0
𝐴𝑖−1−𝑗𝐵𝑗+1

=𝐵𝐷.

In the case where 𝑎1 has a fixed point, remark that the term for 𝑖 = 1 in 𝐷 =
∑𝑑
𝑖=1 𝑎𝑖

∑𝑖−1
𝑗=0𝐴

𝑖−1−𝑗𝐵𝑗 is simply 𝑎1, and so, 𝐷 has a
fixed point. Otherwise, in the case where there is 𝑖 > 1 such that 𝑎𝑖 with a fixed point, and 𝐴 has a fixed point, the term in the sum
for that 𝑖 is: 𝑎𝑖

∑𝑖−1
𝑗=0𝐴

𝑖−1−𝑗𝐵𝑗 , in which we find the term 𝑎𝑖𝐴𝑖−1, which has a fixed point, so 𝐷 ∈𝔻∗.
Since 𝐷 ∈𝔻∗, 𝐴𝐷 =𝐵𝐷 implies 𝐴 =𝐵. □

A general characterisation of injective polynomials would be very interesting. It seems unlikely that the condition 𝑎1 ∈ 𝔻∗ is
necessary since that would mean that if 𝑎1 ∉ 𝔻∗ then, even if every other coefficient is in 𝔻∗, one could find 𝐴 ≠ 𝐵 such that
𝑃 (𝐴) = 𝑃 (𝐵).

In the rest of this section, we show that for any 𝑘 ≥ 1, the polynomial 𝑃 (𝑋) =𝑋𝑘 is injective.

Theorem 41. For all 𝑘 ≥ 1 and 𝐴, 𝐵 ∈𝔻, if 𝐴𝑘 =𝐵𝑘, then 𝐴 =𝐵.

Our first step is to prove the injectivity of the mapping X ↦ X𝑘 on 𝔽 . Given a forest F ∈ 𝔽 , let (F) ∈ 𝔽𝑇 be the tree obtained by
joining all the trees of F to a new common root. More formally, if  (F) is the multiset of trees of F, then ((F)) =  .

Lemma 42. For any forest F ∈ 𝔽 and any 𝑘 ≥ 1, we have 𝑘(F) =(F).
14

Proof. By Lemma 7, we have (𝑘(F)) = 𝑘(F). Now, it is clear that 𝑘(F) =  (F𝑘). This concludes the proof. □

Theoretical Computer Science 998 (2024) 114509É. Naquin and M. Gadouleau

Lemma 43. The mapping X ↦ X
𝑘 is injective on 𝔽 .

Proof. We first prove that the mapping X ↦ X𝑘 is injective on 𝔽𝑇 . Let T1, T2 ∈ 𝔽𝑇 with T1 < T2. Then by induction on 𝑘, Corollary 25
shows that T𝑘1 < T𝑘2 .

We now prove injectivity on 𝔽 . Let A, B ∈ 𝔽 , such that A𝑘 = B𝑘. By Lemma 42, we have 𝑘(A) =𝑘(B). By injectivity on 𝔽𝑇 , we
obtain (A) =(B), which implies A = B. □

Our second step is to prove the result for bijective FDSs.

Lemma 44. Let 𝐴, 𝐵 ∈𝔻. If 𝐴𝑘 = 𝐵𝑘, then [𝐴]0 = [𝐵]0.

Proof. Remark that 𝐴𝑘 =𝐵𝑘 implies [𝐴]𝑘0 = [𝐵]𝑘0 . All that’s left to show is that if 𝐴, 𝐵 ∈𝔻𝑃 and 𝐴𝑘 =𝐵𝑘, then 𝐴 =𝐵.

Take 𝐷 ∈𝔻𝑃 , and write 𝐷 =
∑
𝑖 𝜆
𝐴
𝑖
𝐶𝑖. Assume there exists 𝐵 =

∑
𝑖 𝜆
𝐵
𝑖
𝐶𝑖 such that 𝐵𝑘 =𝐷. For all 𝑖 ∈ℕ, let 𝐹𝑖 = {𝐿 = (𝑙𝑗)𝑗∈�1,𝑘� ∶⋁

𝑗 𝑙𝑗 = 𝑖} be the possible ways a product of 𝑘 cycles 𝐶𝑙1 ×⋯ ×𝐶𝑙𝑘 is equal to some scalar multiple of 𝐶𝑖.
For any sequence 𝐿 = (𝑙𝑗), we abuse notation and identify 𝐿 with the multiset of its entries; we can then use the notation 𝛿𝐿. By

Lemma 12, we obtain for all 𝑖 ∈ ℕ

∑
𝐿∈𝐹𝑖

𝛿𝐿

𝑘∏
𝑗=1

𝜆𝐵
𝑙𝑗
= 𝜆𝐴𝑖 .

This is a set of triangular positive polynomial equations (as the equation for 𝑖 only involves 𝜆𝐵1 , … , 𝜆𝐵
𝑖

), thus it has at most one
solution. Therefore, if 𝐵 exists, it is unique. □

Our third and final step proves the theorem.

Lemma 45. Let 𝑃 ∈ ℕ[𝑋] be a polynomial with coefficients in ℕ, and let 𝐴 ∈ 𝔻. Then, for any 𝓁 ∈ ℕ, we have supp≤𝓁(𝑃 (𝐴)) =
𝑃 (supp≤𝓁(𝐴)).

Proof. Write 𝑃 =
∑𝑑
𝑖=1 𝑎𝑖𝑋

𝑖. If 𝐴 =
∑𝑛
𝑗=1𝐴𝑗 where each 𝐴𝑗 is connected, then the products that appear in 𝑃 (𝐴) are the 𝑎𝑖

∏𝑖
𝑘=1𝐴𝛽𝑘

for each 𝑖 ∈ �1, 𝑛� and 𝛽 = (𝛽𝑘)𝑘∈�1,𝑖� ∈ �1, 𝑛�𝑖. Remark that for such a product 𝑎𝑖
∏𝑖
𝑘=1𝐴𝛽𝑘 to have a cycle length ≤ 𝓁, every 𝐴𝛽𝑘

must have cycle length ≤ 𝓁. This concludes the proof. □

Lemma 46. The mapping 𝐴 ↦𝐴𝑘 is injective on 𝔻.

Proof. Given 𝐴𝑘, we find [𝐴]0 and thus we know the lengths of the cycles of 𝐴 by Lemma 44; denote them by 𝓁1 <⋯ < 𝓁𝑛. We
show by induction on 𝑖 ∈ �0, 𝑛� that we can recover supp≤𝓁𝑖 (𝐴) from 𝐴𝑘 (with an implicit 𝓁0 = 0, such that supp≤𝓁0 (𝐴) = 0, to make
for a trivial base case and avoid repetition).

Take some 𝑖 ∈ �1, 𝑛 − 1� such that the induction hypothesis stands for 𝑖. We show that it also stands for 𝑖 + 1. By Lemma 45,
supp≤𝓁𝑖+1 (𝐴

𝑘) = (supp≤𝓁𝑖+1 (𝐴))
𝑘. By the lemma’s hypothesis, we recover ̃supp≤𝓁𝑖+1 (𝐴) from ̃(supp≤𝓁𝑖+1 (𝐴))

𝑘. Now, since we have
̃supp≤𝓁𝑖 (𝐴) from the induction hypothesis, we recover

̃supp𝓁𝑖+1 (𝐴) =
̃supp≤𝓁𝑖+1 (𝐴) ⧵

̃supp≤𝓁𝑖 (𝐴).

It is straightforward to reconstruct supp𝓁𝑖+1 (𝐴) from ̃supp𝓁𝑖+1 (𝐴) since we know there every tree in ̃supp𝓁𝑖+1 (𝐴) comes from
a connected component of cycle length 𝓁𝑖+1. And thus, we recover supp≤𝓁𝑖+1 (𝐴) = supp𝓁𝑖+1 (𝐴) + supp≤𝓁𝑖(𝐴), which concludes the
induction. □

6. A family of monoids with unique factorisation

The 𝐶2
2 = 2𝐶2 identity shows that factorisation into irreducible FDSs is not unique on 𝔻. Moreover, it is shown in [5] that

factorisation is also not necessarily unique on 𝔻𝐷 , for example with the identity presented in Fig. 7. We can however exhibit an
example of an interesting class of trees in which every element has a unique factorisation in irreducible FDSs. Although our example
might not be useful in practice, it is interesting as a generalisation of the simpler result that shows that factorisation is unique on the
multiplicative monoid generated by products of paths (which is called 𝐿𝐷1 with the notations below).

Definition 47. A rhizome is a path from a leaf to the fixed point in a dendron. The length of a rhizome is its number of transitions,
that is its number of non-fixed point states.
15

According to our terminology, the depth of a dendron is the length of its longest rhizome.

Theoretical Computer Science 998 (2024) 114509É. Naquin and M. Gadouleau

Fig. 7. A dendron that admits two different factorisations in irreducible factors.

Definition 48. An FDS 𝐴 ∈𝔻 is a linear dendron if it is a dendron such that only its fixed point may have more than one predecessor.
A linear dendron has 𝐾 rhizomes if its fixed point has 𝐾 non-fixed point predecessors.

A star 𝑆𝑛 is a linear dendron of depth 1 and 𝑛 states, while a path 𝑃𝑛 is a linear dendron with only one rhizome and 𝑛 + 1 states.

We are now in position to show that most linear dendrons are irreducible. We remark that the semigroup of stars is isomorphic
to that of the positive integers: 𝑆𝑎𝑏 = 𝑆𝑎 × 𝑆𝑏. Therefore, composite stars have a unique factorisation in 𝔻.

Proposition 49. The only reducible linear dendrons are the stars with a composite number of states.

Proof. The case of stars is straightforward. Let 𝑇 be a linear dendron of depth 𝑘 > 1. Then any rhizome of maximum length of 𝑇
contains a state with exactly one predecessor: the state at depth 1 of the rhizome.

Suppose 𝑇 is reducible towards a contradiction, say 𝑇 = 𝐴 ×𝐵. The depth of either 𝐴 or 𝐵 is at least 𝑘, say 𝑃𝑘 is a subdendron
of 𝐴. Moreover, 𝑃1 is a subdendron of 𝐵. Thus, 𝑃𝑘 × 𝑃1 is a subdendron of 𝐴 ×𝐵 = 𝑇 . It’s easy to see that 𝑃𝑘 × 𝑃1 contains a path of
depth 𝑘 states with more than one predecessor each (except the leaf at the end). This is a rhizome of maximal length in 𝑇 in which
no state has exactly one predecessor. This concludes the proof. □

Definition 50. For all 𝐾 ∈ ℕ, we define 𝐿𝐷𝐾 the multiplicative monoid generated by linear dendrons with 𝐾 rhizomes.

Based on Proposition 49, if 𝑃 ∈ 𝐿𝐷𝐾 has a unique factorisation in 𝐿𝐷𝐾 , then it has a unique factorisation in 𝔻. Thus, we focus
on factorisation in 𝐿𝐷𝐾 .

Let 𝑃 ∈ 𝐿𝐷𝐾 be factorised as 𝑃 = 𝐹1 ×⋯ × 𝐹𝑁 where 𝐹𝑗 is a linear dendron for each 1 ≤ 𝑗 ≤ 𝑁 . Each state 𝑠 ∈ 𝑆𝑃 can be
expressed as 𝑠 = (𝑠1, … , 𝑠𝑁) where 𝑠𝑗 ∈ 𝑆𝐹𝑗 for all 𝑗. Some of those 𝑠𝑗 ’s could be fixed points; let 𝐼(𝑠) = {𝑗 ∶ 𝐹𝑗 (𝑠𝑗) = 𝑠𝑗}. Then the
number of predecessors of 𝑠 is either 0 if any 𝑠𝑗 is a leaf, or equal to (𝐾 + 1)|𝐼(𝑠)| otherwise. This suggests the following notation.

Definition 51. Let 𝑃 ∈𝐿𝐷𝐾 and 𝑖 ∈ℕ. A state 𝑠 of 𝑃 is 𝑖-fixed if it has (𝐾 + 1)𝑖 predecessors.

Lemma 52. Any 𝑖-fixed state has a unique 𝑖-fixed predecessor; all other predecessors are either leaves or 𝑗-fixed for some 𝑗 < 𝑖.

Proof. Let 𝑠 = (𝑠1, … , 𝑠𝑁) be 𝑖-fixed and without loss let 𝐼(𝑠) = �1, 𝑖�. Remark that 𝑠1, … , 𝑠𝑖 are fixed points, while 𝑠𝑖+1, … , 𝑠𝑁 have
a unique predecessor each, say 𝑡𝑖+1, … , 𝑡𝑁 respectively. Then any predecessor of 𝑠 is of the form 𝑢 = (𝑢1, … , 𝑢𝑖, 𝑡𝑖+1, … , 𝑡𝑁) where 𝑢𝑙
is a predecessor of 𝑠𝑙 for all 1 ≤ 𝑙 ≤ 𝑖. Therefore 𝑢 is at most 𝑖-fixed, with equality if and only if 𝑢 = (𝑠1, … , 𝑠𝑖, 𝑡𝑖+1, … , 𝑡𝑁). □

Now that we have all the necessary definitions, we can introduce the following lemma, which enables a partial recovery of some
factors from a product of linear dendrons. This is the core lemma, and it is from it that we can finally recover every factor.

Lemma 53 (Linear extraction lemma). Let 𝑃 = 𝐹1 ×⋯ ×𝐹𝑁 ∈𝐿𝐷𝐾 and let 𝑠 be a depth 1, codepth 𝓁, 𝑖-fixed state of 𝑃 . Consider the tree
anchored on 𝑠 in 𝑃 and remove the unique 𝑖-fixed predecessor of 𝑠 and all its antecedents. Then the obtained dendron is 𝐸𝑠 = [

∏
𝑗∈𝐼(𝑠) 𝐹𝑗]𝓁 .

Proof. Without loss, let 𝐼(𝑠) = �1, 𝑖�. Let 𝑠 = (𝑠1, … , 𝑠𝑛) and for all 𝑖 + 1 ≤ 𝑗 ≤𝑁 and 𝑑 ∈ ℕ let 𝑡𝑑
𝑗

be the unique state of 𝐹𝑗 satisfying
𝐹𝑑
𝑗
(𝑡𝑑
𝑗
) = 𝑠𝑗 . All the states in the dendron 𝐸𝑠 are either 𝑠 or of the form 𝑢 = (𝑢1, … , 𝑢𝑖, 𝑡𝑑𝑖+1, … , 𝑡𝑑

𝑁
), where 𝑑 is the depth of 𝑢 in 𝐸𝑠

and (𝑢1, … , 𝑢𝑖) ≠ (𝑠1, … , 𝑠𝑖). By removing the coordinates 𝑖 + 1, … , 𝑁 from each state, we see that 𝐸𝑠 is a sub-FDS of 𝐹1 ×⋯ × 𝐹𝑖.
All that is left is to show that we do indeed get the truncature at depth 𝓁. Remark that the codepth 𝓁 of 𝑠 is the length of the

smallest path among the rhizomes anchored at 𝑠𝑖+1, … , 𝑠𝑁 in their respective factors, minus 1. Thus, the sub-FDS of 𝐹1 ×⋯ × 𝐹𝑖 we
obtain is indeed truncated at depth 𝓁. □

Let 𝑃 = 𝐹1 ×⋯ × 𝐹𝑁 where all the factors have depth 𝑘 + 1. Let 𝔄 = {[𝐹𝑖]𝑘 ∶ 𝑖 ∈ �1, 𝑁�} be the collection of truncated factors
and for each 𝐵 ∈𝔄, denote its multiplicity by 𝑛𝐵 = |{𝑖 ∈ �1, 𝑁� ∶ [𝐹𝑖]𝑘 = 𝐵}|. We denote by 𝐷𝑖 the set of 𝑖-fixed depth 1 states of
16

codepth 𝑘 of 𝑃 .

Theoretical Computer Science 998 (2024) 114509É. Naquin and M. Gadouleau

Lemma 54. For all 𝐵 ∈𝔄, there exists 𝑠 ∈𝐷𝑖 with 𝐸𝑠 =𝐵𝑖 if and only if 𝑖 ≤ 𝑛𝐵 .

Proof. Without loss, let 𝐵 ∈𝔄 such that 𝐵 = 𝐹1 =⋯ = 𝐹𝑛𝐵 . Let 𝑖 ≤ 𝑛𝐵 and consider a state 𝑠 = (𝑠1, … , 𝑠𝑁) of 𝑃 where 𝑠1, … , 𝑠𝑖 are
fixed points of 𝐵, while for every 𝑖 + 1 ≤ 𝑗 ≤𝑁 , 𝑠𝑖 is a depth 1 state on a path of depth 𝑘 +1. Then 𝑠 ∈𝐷𝑖, and the extraction lemma
extracts 𝐵𝑛 from 𝑠. Conversely, if 𝐸𝑠 =𝐵𝑗 , then 𝐵𝑗 divides [𝑃]𝑘 and hence 𝑗 ≤ 𝑛𝐵 . □

We now show that factorisation is unique on products of linear dendrons which share the same depth.

Lemma 55. A product of elements of 𝐿𝐷𝐾 which have the same depth 𝑘 is uniquely factorisable.

Proof. We do this by induction on the depth 𝑘. For 𝑘 = 0, this lemma is obvious (the factorisation is 𝐶1). Take some 𝑘 such that
the lemma stands for depth 𝑘. We show that the lemma is also true for depth 𝑘 + 1. The proof is in four steps. First, we identify the
number of factors, then we recover the set of their depth 𝑘 truncatures, then we recover the multiset of these truncatures and finally,
we recover the full, untruncated factors. Take 𝑃 a product of elements of 𝐿𝑇𝐾 .

Number of factors. We recover 𝑁 the number of factors of 𝑃 by remarking that its fixed point is 𝑁 -fixed: thus by counting its
number of predecessors, we can recover 𝑁 from 𝑃 and write 𝑃 = 𝐹1 ×⋯ × 𝐹𝑁 .

Set of truncatures. According to Lemma 54, by applying the extraction lemma to all the elements of 𝐷1, we recover all the
factors 𝐵 ∈𝔄.

Multiset of truncatures. By Lemma 54, for all 𝐵 ∈𝔄, 𝑛𝐵 =max{𝑖 ∶ ∃𝑠 ∈𝐷𝑖𝐸𝑠 =𝐵𝑖}. As such, applying the extraction lemma on
𝐷𝑖 for 1 ≤ 𝑖 ≤𝑁 then yields 𝑛𝐵 for all 𝐵 ∈𝔄.

Untruncated factors. As of now, we have all the factors and their multiplicity, but they are truncated at depth 𝑘. To fully
reconstruct the linear dendron 𝐹𝑖 of depth 𝑘 +1 from [𝐹𝑖]𝑘, all we need is the number 𝑓𝑖 of paths of depth 𝑘 +1 in 𝐹𝑖. We now show
how to determine this number.

Fix 𝐵 ∈𝔄. Let’s denote by 𝑓1, … , 𝑓𝑛𝐵 the number of paths of depth 𝑘 + 1 of and let 𝐺1, … , 𝐺𝑛𝐵 be the elements of 𝜙(𝐵). For any
𝑛 ∈ �0, 𝑛𝐵�, let’s count in 𝑃 the number of states of 𝐷𝑁−𝑛 from which the extraction lemma extracts [𝑃]𝑘∕𝐵𝑛. Each of these states
corresponds to an 𝑛-uple of depth 1 states of 𝐺1, … , 𝐺𝑛𝐵 (each in a distinct factor) on which a path of depth 𝑘 + 1 is anchored. As
such, there are 𝑝𝑛 ∶=

∑
𝐼⊆�1,𝑛𝐵�|𝐼|=𝑛

∏
𝑖∈𝐼 𝑓𝑖 of them (given the set of factors of 𝐺1, … , 𝐺𝑛𝐵 of index in 𝐼 , the number of depth 1 states

of codepth 𝑘 + 1 is
∏
𝑖∈𝐼 𝑓𝑖). Finding that number for all 𝑛 ∈ �0, 𝑛𝐵� makes it possible to express the 𝑓1, … , 𝑓𝑛𝐵 as the roots of a

polynomial of degree 𝑛𝐵 and thus, allows one to find them. Here is how we proceed. Write 𝑅(𝑋) =
∑𝑛𝐵
𝑚=0(−1)

𝑚𝑝𝑚𝑋
𝑛𝐵−𝑚. By Vieta’s

relations, we know that the 𝑛𝐵 roots of 𝑅 are 𝑓1, … , 𝑓𝑛𝐵 . □

Now, we show that we can always get to this case:

Theorem 56. Factorisation is unique on 𝐿𝐷𝐾 .

Proof. Let 𝑃 = 𝐹1 ×⋯ × 𝐹𝑁 ∈ 𝐿𝐷𝐾 have depth 𝑘 + 1. Let 𝐼 = {1 ≤ 𝑖 ≤𝑁 ∶ depth(𝐹𝑖) ≤ 𝑘} be the set of indices of factors with no
paths of depth 𝑘 + 1. Now, let 𝑆 be the set of depth 1 states belonging to a rhizome in 𝑃 of depth 𝑘 + 1. For all 𝑠 ∈ 𝑆 , since 𝑠 has
depth 1 and codepth 𝑘, 𝑠𝑖 is a fixed point for all 𝑖 ∈ 𝐼 and hence 𝑠 is at least |𝐼|-fixed. Conversely, if 𝑠 ∈ 𝑆 such that 𝑠𝑗 has codepth
𝑘 for all 𝑗 ∉ 𝐼 , then 𝑠 is |𝐼|-fixed. Using the extraction lemma on such a state 𝑠, we recover [

∏
𝑖∈𝐼 𝐹𝑖]𝑘 =

∏
𝑖∈𝐼 𝐹𝑖.

Let’s divide 𝑆 by
∏
𝑖∈𝐼 𝐹𝑖. The result is unique by Corollary 23. So, we get

∏
𝑗∉𝐼 𝐹𝑗 the product of the factors of depth 𝑘 + 1,

and
∏
𝑖∈𝐼 𝐹𝑖 the product of the factors of depth at most 𝑘. An induction on the second subproduct means that we can extract all the

subproducts of shared depth, and apply the previous lemma on each of them. □

7. Conclusion

In this article, we have obtained results which may lead to a deeper understanding of the structure of the semiring of FDSs 𝔻. In
particular, we have characterised the cancellative elements of 𝔻, shown how to perform division of dendrons in polynomial time,
proved that 𝑘-th roots are unique, and we have exhibited a family of monoids with unique factorisation. While this sheds some light
on the structure of 𝔻, there are still many questions.

An interesting direction is the complexity of division on general FDSs, or on cycles. Contrary to the situation on trees, this
algorithmic problem may not be in 𝖯. On the other hand, it is clearly in 𝖭𝖯. The question of knowing whether it is 𝖭𝖯-complete is
still open, as a reduction (if it exists) does not seem obvious at all.

Another important direction to better understand the structure of 𝔻 is the study of primality, defined as follows: 𝐴 ∈𝔻 is prime if
and only if for every 𝐵, 𝐶 ∈𝔻, 𝐴|𝐵𝐶 implies 𝐴|𝐵 or 𝐴|𝐶 . Most of the work on this has been done in [5], in which Couturier proves
that for an FDS to be prime, it must be a dendron. Still, as of now, no example of a prime FDS is known, and no finite-time algorithm
to check primality is known.

One could also be interested in more practical applications of FDS factorisation. Imagine for example a “grey box” (some deter-
ministic mechanism that does not display its internal workings, but displays its state such that two different states can always be
17

recognized) that is observed by a probe that records the evolution of its state, until this state falls into a cycle, at which point the

Theoretical Computer Science 998 (2024) 114509É. Naquin and M. Gadouleau

probe launches the process again, and so on. Thus, the probe reconstructs the FDS 𝑆 governing the evolution of the grey box’s state.
We are interested in a way to know, with the current partial recovery of 𝑆 , how many more states we need to add at the minimum
in order to get a factorisable system. This is useful because suppose that the probabilistic model of exploration shows that there is a
90% chance that the probe has recovered at least 90% of the states of 𝑆 . Then, if we know that, say, in order to get a factorisable
recovered system, we need to add at least 30% more states than the ones we already have recovered, we know that with probably at
least 90%, the grey box is not factorisable, that is, it does not contain two independent mechanisms running in parallel.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] Florian Bridoux, Antonio E. Porreca, Composing Behaviours in the Semiring of Dynamical Systems, January 2020 Talk given at the International Workshop on
Boolean Networks (IWBN 2020), Universidad de Concepción, Chile.

[2] P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: an explanation of 1/f noise, Phys. Rev. Lett. 59 (4) (1987) 381–384.
[3] Jørgen Bang-Jensen, Gregory Gutin, Digraphs: Theory, Algorithms and Applications, Springer, 2009.
[4] Gilles Bernot, Jean-Paul Comet, Adrien Richard, Madalena Chaves, Jean-Luc Gouzé, Frédéric Dayan, Modeling in computational biology and biomedicine, in:

Modeling and Analysis of Gene Regulatory Networks, Springer-Verlag, 2013, pp. 47–80.
[5] Johan Couturier, Méthodes algébriques et algorithmiques pour la décomposition de systèmes dynamiques, Final university year thesis, 2021, in French, unpub-

lished, Aix-Marseille Université.
[6] Alberto Dennunzio, Valentina Dorigatti, Enrico Formenti, Luca Manzoni, Antonio E. Porreca, Polynomial equations over finite, discrete-time dynamical systems,

in: Giancarlo Mauri, Samira El Yacoubi, Alberto Dennunzio, Katsuhiro Nishinari, Luca Manzoni (Eds.), Cellular Automata, Springer International Publishing,
Cham, 2018, pp. 298–306.

[7] François Doré, Enrico Formenti, Antonio E. Porreca, Sara Riva, Algorithmic reconstruction of discrete dynamics, arXiv :2208 .08310, September 2022.
[8] Valentina Dorigatti, Algorithms and complexity of the algebraic analysis of finite discrete dynamical systems, Master’s thesis, Università degli Studi di Milano

Bicocca, 2017.
[9] Andrzej Ehrenfeucht, Grzegorz Rozenberg, Reaction systems, Fundam. Inform. 75 (1–4) (2007) 263–280.

[10] Maximilien Gadouleau, Adrien Richard, Søren Riis, Fixed points of Boolean networks, guessing graphs, and coding theory, SIAM J. Discrete Math. 29 (4) (2015)
2312–2335.

[11] Maximilien Gadouleau, Søren Riis, Graph-theoretical constructions for graph entropy and network coding based communications, IEEE Trans. Inf. Theory 57 (10)
(October 2011) 6703–6717.

[12] Caroline Gaze-Maillot, Antonio E. Porreca, Profiles of dynamical systems and their algebra, arXiv :2008 .00843.
[13] Carlos Gershenson, Introduction to random Boolean networks, arXiv e-prints, nlin /0408006, August 2004.
[14] Eric Goles, Servet Martínez, Neural and Automata Networks: Dynamical Behavior and Applications, Kluwer Academic Publishers, Norwell, MA, USA, 1990.
[15] Richard Hammack, Wilfried Imrich, Sandi Klavzar, Handbook of Product Graphs, 2nd edition, CRC Press, Inc., USA, 2011.
[16] U. Hebisch, H.J. Weinert, Semirings: Algebraic Theory and Applications in Computer Science, World Scientific, 1998.
[17] L. Lovász, On the cancellation law among finite relational structures, Period. Math. Hung. 1 (2) (1971) 145–156.
[18] R. Thomas, Boolean formalization of genetic control circuits, J. Theor. Biol. 42 (3) (1973) 563–585.
18

[19] René Thomas, Richard D’Ari, Biological Feedback, CRC Press, 1990.

http://refhub.elsevier.com/S0304-3975(24)00124-5/bib5C3665A9587B618A30281E9CD4C81979s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bib5C3665A9587B618A30281E9CD4C81979s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bibD2D530503A00920AD23D70EDDDF94C25s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bib29D4612447694B050F8DB2B1800FD9D9s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bib7CBE92D38C662E83717C071CF203D319s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bib7CBE92D38C662E83717C071CF203D319s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bibA3DCA7419489C778EDFA35EA1E75E901s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bibA3DCA7419489C778EDFA35EA1E75E901s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bib445DA7E76213D8E700F806B87D8AB7C5s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bib445DA7E76213D8E700F806B87D8AB7C5s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bib445DA7E76213D8E700F806B87D8AB7C5s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bibB6FCBD5EC0CD59EF990B7CC0F37DEAEBs1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bib977E4247B03BD5D3C0EABDB8FAAFCD4Cs1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bib977E4247B03BD5D3C0EABDB8FAAFCD4Cs1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bib361006AE92A6035A0317C997519757A8s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bibFBF45361FB37E96550DF7B611405E976s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bibFBF45361FB37E96550DF7B611405E976s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bib6489A5DA9BE7EBB6D237B602313D1E74s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bib6489A5DA9BE7EBB6D237B602313D1E74s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bibF113C57E0F327614637E6FF7C07AB155s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bib6869E51CB8D73FA770A979CA3993041Fs1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bibA90D91CB77AAAC18FC7232567FF32DD9s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bib4657B5FCA6A6CCEE679B96162C36A3DCs1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bibA1CB1E904FB97BE2FE2C76D8BE4BB50Es1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bib47E9A6AF3930A2AB0360F1B169E2A850s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bib7A5AA6CCB9280FE2AEA553A3E3A9FF66s1
http://refhub.elsevier.com/S0304-3975(24)00124-5/bib31F89C8F10812F2938057420226AE90As1

	Factorisation in the semiring of finite dynamical systems
	1 Introduction
	2 General definitions
	2.1 Forests
	2.2 Permutations

	3 Cancellative finite dynamical systems
	3.1 Order on trees
	3.2 Transforming an FDS into a forest
	3.3 Cancellative FDSs are those with a fixed point

	4 Polynomial-time algorithm for tree and dendron division
	5 Unicity of k-th roots
	6 A family of monoids with unique factorisation
	7 Conclusion
	Declaration of competing interest
	Data availability
	References

