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A R T I C L E I N F O A B S T R A C T

Editor: N. Lambert Castellano, Ruiz, and Valenzuela recently observed a remarkable “pattern” in infinite-distance limits of moduli 
spaces in quantum gravity, which relates the field space variation of the mass of the lightest tower of particles to 
the field space variation of the species scale. In this work, we show how a version of this pattern can be proven to 
hold for BPS particles and strings throughout the vector multiplet moduli space of a 5d supergravity theory, even 
in regions where the particle masses and string tensions are substantially modified relative to their asymptotic 
behavior in the infinite-distance limits. This suggests that a suitably defined version of the pattern may hold not 
merely in the asymptotic limits of moduli space, but in the interior as well.
1. Introduction

Recent explorations of moduli spaces in quantum gravity have un-

covered evidence of universal structures within infinite-distance limits. 
As pointed out long ago by Ooguri and Vafa [1], such limits seem to 
feature a tower of light particles, whose masses decay exponentially 
with geodesic distance ||𝜙|| as 𝑚 ∼ exp(−𝛼||𝜙||). Such a tower of light 
particles implies that quantum gravity becomes strongly coupled at an 
energy scale ΛQG (often referred to as the “species scale”) which is 
parametrically smaller than the Planck scale, and which itself decays as 
ΛQG ∼ exp(−𝜆QG||𝜙||).

It has long been understood that these exponential decay coefficients 
𝛼, 𝜆QG should be order-one numbers in Planck units,1 but recently these 
values have been pinned down with greater precision. Reference [2]

presented strong evidence that the coefficient 𝛼 of the lightest tower 
in a given infinite-distance limit must satisfy 1√

𝑑−2
≤ 𝛼 ≤

√
𝑑−1
𝑑−2 in 𝑑

spacetime dimensions, and several subsequent works [3–5] argued that 
the species scale should decay with a coefficient 1√

(𝑑−1)(𝑑−2)
≤ 𝜆QG ≤

1√
𝑑−2

.

Finally, [6,7] provided strong evidence for not merely an inequality, 
but actually an equality, which relates the two decay coefficients men-

tioned above. In the case of a 1-dimensional moduli space, this equality 
takes the form 𝛼𝜆QG = 1∕(𝑑 −2). More generally, the equality takes the 
form

E-mail address: thomas.w.rudelius@durham.ac.uk.

∇⃗𝑚
𝑚

⋅
∇⃗ΛQG

ΛQG
= 1
𝑑 − 2

, (1)

where 𝑚 is the characteristic mass scale of the lightest tower in the infi-

nite distance limit, the gradient ∇⃗ involves the derivative with respect 
to every massless modulus of the theory, and the inner product is taken 
with respect to the metric 𝑔𝑖𝑗 on moduli space, which is parametrized 
by vacuum expectation values of the massless scalar fields. Plugging 
in 𝑚 = 𝑚0 exp(−𝛼𝜙) and ΛQG = Λ0 exp(−𝜆QG𝜙), we see that (1) indeed 
reduces to 𝛼𝜆QG = 1∕(𝑑 − 2) for a 1-dimensional moduli space.

In [6,7], equation (1) – which the authors referred to as the “pat-

tern” – was conjectured to apply in any infinite-distance limit in the 
moduli space. Within such limits, the pattern may be viewed as a con-

sequence of the Emergent String Conjecture [8], which leads to tight 
constraints on the set of exponentially light towers and the relation-

ships between them [9]. The Emergent String Conjecture holds that 
every infinite-distance limit is either a decompactification limit or an 
emergent string limit in an appropriate duality frame, which in turn im-

plies that the lightest tower of particles is either a tower of Kaluza-Klein 
modes or a tower of string oscillation modes. In addition, it suggests that 
the scale ΛQG should be (roughly) identified with either a string scale 
or a higher-dimensional Planck scale, which can be used to justify the 
pattern (1), as well as many of the other bounds on light towers and the 
species scale mentioned above [9].

It is not so clear, however, how this whole story carries over to the 
interior of moduli space, which is the region of greatest practical impor-
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tance for phenomenology and cosmology. As pointed out in [7], even 
the notion of the “lightest tower” in moduli space is not generically 
well-defined outside the asymptotic regimes of moduli space. One ex-

ception to this, however, comes from towers of BPS particles, which 
remain well-defined throughout moduli space. Similarly, although the 
definition of the species scale may be subtle, the tension 𝑇 of a BPS 
string is well-defined throughout moduli space, and from it we may de-

fine a string scale via 𝑀string ≡
√
2𝜋𝑇 .

One setting in which both BPS particles and BPS strings appear is su-

pergravity in five dimensions, which offers a rich and diverse landscape 
of quantum gravity theories arising from M-theory compactifications on 
Calabi-Yau threefolds. In this work, we explore this landscape, demon-

strating that a suitably refined version of (1) persists even into the 
interior of moduli space, where other universal features of infinite-

distance limits cease to be valid.

In particular, we focus on vector multiplet moduli spaces of 5d su-

pergravity theories that feature emergent string limits, in which a BPS 
string becomes tensionless in the asymptotic limit. In such theories, we 
find that the pattern in (1) is satisfied throughout vector multiplet mod-

uli space provided that (a) 𝑚 is defined to be the mass scale associated 
with a tower of BPS particles which become massless in some infinite-

distance limit, and (b) the quantum gravity scale ΛQG is defined to 
be the string scale 𝑀string =

√
2𝜋𝑇 of an emergent BPS string of ten-

sion 𝑇 . Remarkably, we find that (1) remains satisfied even when the 
lengths of the individual vectors ∇⃗𝑚∕𝑚 and ∇⃗ΛQG∕ΛQG vary signif-

icantly throughout moduli space, and it remains satisfied even after 
passing (via flop transitions of the Calabi-Yau threefold) into distinct 
phases of the theory.

Our analysis suggests that the pattern is indeed pointing toward a 
universal feature of quantum gravity, and it further suggests a possible 
refinement of the pattern. Namely, our results suggest that one should 
set 𝑚 in (1) to be the mass scale associated with the lightest tower of 
Kaluza-Klein modes or string oscillation modes (which become mass-

less in an appropriate infinite-distance limit), and one should take the 
quantum gravity scale ΛQG to be a string scale or higher-dimensional 
Planck scale (each of which also vanish in an infinite-distance limit). 
This choice for the quantum gravity scale ΛQG agrees with the species 
scale in asymptotic limits, but in the interior of moduli space the two 
may differ in subtle but important ways, as we discuss in §4 below. 
Although the full scope of this refinement is unclear at present, it is en-

couraging that some features of the asymptotic limits of moduli space 
seem to apply in the interior as well. Clearly, further research is needed.

The remainder of this letter is structured as follows: in §2, we re-

view relevant aspects of 5d supergravity. In §3, we show how equation 
(1), when properly defined, persists throughout vector multiplet mod-

uli spaces of 5d supergravity theories. In §4, we end with a discussion 
of implications and possible refinements of the pattern.

2. Basics of 5d supergravity

In this section, we review relevant aspects of 5d supergravity. For 
further details, see [10].

Many features of a 5d supergravity theory are captured by its pre-

potential, a cubic function of the coordinates 𝑌 𝐼 :

 = 1
6
𝐶𝐼𝐽𝐾𝑌

𝐼𝑌 𝐽 𝑌 𝐾 , (2)

where here and henceforth repeated indices are summed. In an M-

theory compactification to 5d on a Calabi-Yau threefold 𝑋, indices 
𝐼, 𝐽, 𝐾 run from 0 to ℎ1,1(𝑋) − 1, the constants 𝐶𝐼𝐽𝐾 are the triple 
intersection numbers of the manifold, and the moduli 𝑌 𝐼 are volumes 
of certain two-cycles. The vector multiplet moduli space is given by 
the slice  = 1, which means that this moduli space has dimension 
𝑛 ≡ ℎ1,1(𝑋) − 1.

At a generic point in moduli space, the gauge group is 𝑈 (1)ℎ1,1(𝑋), 
2

and the gauge kinetic matrix is given by
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𝑎𝐼𝐽 = 𝐼𝐽 −𝐼𝐽 , (3)

with

𝐼 = 𝜕𝐼 = 1
2
𝐶𝐼𝐽𝐾𝑌

𝐽𝑌 𝐾 , 𝐼𝐽 = 𝜕𝐼𝜕𝐽 = 𝐶𝐼𝐽𝐾𝑌
𝐾. (4)

The metric on moduli space is given (up to a factor of 1∕2) by the 
pullback of 𝑎𝐼𝐽 to the  = 1 slice2:

𝑔𝑖𝑗 =
1
2
𝑎𝐼𝐽 𝜕𝑖𝑌

𝐼𝜕𝑗𝑌
𝐽 , (5)

where 𝜕𝑖 ≡
𝜕

𝜕𝜙𝑖
, and we have parametrized 𝑌 𝐼 = 𝑌 𝐼 (𝜙) in terms of the 

𝑛 moduli 𝜙𝑖, 𝑖 = 1, ..., 𝑛.

Using the definitions above, it is possible to prove the following 
useful relation between the inverse metric 𝑔𝑖𝑗 and the inverse gauge 
kinetic matrix 𝑎𝐼𝐽 [10]:

𝑎𝐼𝐽 = 1
2
𝑔𝑖𝑗𝜕𝑖𝑌

𝐼𝜕𝑗𝑌
𝐽 + 1

3
𝑌 𝐼𝑌 𝐽 , (6)

Similarly, using the simple identities 𝑌 𝐽𝐼𝐽 = 2𝐼 , 𝑌 𝐼𝐼 = 3 = 1, 
and 𝑎𝐼𝐽 𝑎𝐽𝐾 = 𝛿𝐾

𝐼
, it is easy to see that

𝑎𝐼𝐽 𝑌
𝐽 = 𝐼 ⇒ 𝑎𝐼𝐽𝐼 = 𝑌 𝐽 . (7)

A particle is labeled by a vector of electric charges, 𝑞𝐼 . The mass of 
such a particle is bounded from below by the BPS bound:

𝑚(𝑞𝐼 ) ≥
(√

2𝜋
)1∕3 |𝑍| = (√

2𝜋
)1∕3 |𝑞𝐼𝑌 𝐼 | , (8)

Particles that saturate the BPS bound are called BPS particles.

Meanwhile, a string may carry magnetic charge under the gauge 
fields, which is labeled by a magnetic charge vector 𝑞𝐼 . The tension 
of such a charged string is bounded from below by the BPS bound for 
strings:

𝑇 (𝑞𝐼 ) ≥ 1
2

(
1√
2𝜋

)1∕3 |𝑍̃| = 1
2

(
1√
2𝜋

)1∕3 |𝑞𝐼𝐼 | . (9)

Strings that saturate this bound are called BPS strings.

3. The pattern in 5d supergravity

Suppose there exists an infinite-distance limit in vector multiplet 
moduli space in which a tower of BPS particles of mass 𝑚𝑘 = 𝑘𝑚 be-

comes light, and a BPS string of tension 𝑇 becomes tensionless. The 
results of [2,9,11] indicate that in the asymptotic limit, the tension of 
the BPS string and the mass of the BPS particles will satisfy

𝑔𝑖𝑗
𝜕𝑖𝑚

𝑚

𝜕𝑗𝑚

𝑚
= 4

3
, 𝑔𝑖𝑗

𝜕𝑖𝑇

𝑇

𝜕𝑗𝑇

𝑇
= 4

3
, (10)

and

𝑔𝑖𝑗
𝜕𝑖𝑚

𝑚

𝜕𝑖𝑇

𝑇
= 2

3
. (11)

Here, (11) matches the pattern equation (1) after setting 𝑑 = 5, ΛQG =
𝑀string ≡

√
2𝜋𝑇 . In what follows, we will prove that (11) remains true 

at all points of the vector multiplet moduli space, even points located 
in different phases of the theory. This is remarkable because the rela-

tions in (10) do not, in general, hold beyond the asymptotic regimes of 
moduli space.

To prove this, we must use one important fact: the tower of light 
particles (of charge 𝑘𝑞𝐼 , for increasing 𝑘) and the asymptotically ten-

sionless BPS string (of magnetic charge 𝑞𝐼 ) have vanishing Dirac pair-

ing, i.e., 𝑞𝐼𝑞𝐼 = 0. This fact follows from the discussion in §5 of [10], 
which showed that all asymptotic limits of the moduli space feature a 

2 Note that our definition of the moduli space metric 𝑔𝑖𝑗 differs from that of 

[10] by a factor of 2: 𝑔here

𝑖𝑗
= 1

2
𝔤there
𝑖𝑗

.
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tensionless BPS string and a tower of light BPS particles with vanishing 
Dirac pairing.3 In contrast, boundaries of moduli space involving light 
particles and tensionless strings of nontrivial Dirac pairing (𝑞𝐼𝑞𝐼 ≠ 0) 
lie at finite distance rather than infinite distance.4

With this fact in hand, the relation (11) follows straightforwardly 
from the definitions and identities of §2. To begin, we plug the formulas 
for the mass (tension) of BPS particles (strings) into the left-hand side 
of (11):

𝑔𝑖𝑗
𝜕𝑖𝑚

𝑚

𝜕𝑗𝑇

𝑇
=
𝜕𝑖(𝑞𝐼𝑌 𝐼 )
𝑞𝐾𝑌

𝐾

𝜕𝑗 (𝑞𝐽𝐽 )
𝑞𝐿𝐿

. (12)

From here, we use the definition of 𝐼𝐽 in (4) to set 𝜕𝑗𝐽 = 𝜕𝑗𝑌
𝑃𝑃𝐽 , 

and we use the identity of (6) to rewrite this as

𝑔𝑖𝑗
𝜕𝑖𝑚

𝑚

𝜕𝑗𝑇

𝑇
=

2𝑞𝐼𝑎𝐼𝑃𝑃𝐽 𝑞𝐽

(𝑞𝐾𝑌 𝐾 )(𝑞𝐿𝐿)
− 2

3
(𝑞𝐼𝑌 𝐼 )𝑃𝐽 𝑌 𝑃 𝑞𝐽

(𝑞𝐾𝑌 𝐾 )(𝑞𝐿𝐿)

=
2𝑞𝐼𝑎𝐼𝑃𝑃𝐽 𝑞𝐽

(𝑞𝐾𝑌 𝐾 )(𝑞𝐿𝐿)
− 4

3
, (13)

where in the second line we have used the fact that 𝑃𝐽 𝑌 𝑃 = 2𝐽 . 
Next, by the definition of 𝑎𝐼𝐽 in (3), we have

𝛿𝐼
𝐽
= 𝑎𝐼𝑃 𝑎𝑃𝐽 = 𝑎𝐼𝑃 (𝑃𝐽 −𝑃𝐽 ) , (14)

which implies

𝑎𝐼𝑃𝑃𝐽 = −𝛿𝐼
𝐽
+ 𝑎𝐼𝑃𝑃𝐽 = −𝛿𝐼

𝐽
+ 𝑌 𝐼𝐽 , (15)

where in the last equation we have used the identity in (7). Plugging 
this into (13), we arrive finally at

𝑔𝑖𝑗
𝜕𝑖𝑚

𝑚

𝜕𝑗𝑇

𝑇
= 2

3
−

2𝑞𝐼𝑞𝐼

(𝑞𝐾𝑌 𝐾 )(𝑞𝐿𝐿)
. (16)

Imposing the vanishing of the Dirac pairing between the BPS particles 
and the BPS string, 𝑞𝐼𝑞𝐼 = 0, we find the desired result (11).

4. Discussion

Within 5d supergravity, we have shown that any BPS particle of 
charge 𝑞𝐼 and any BPS string of charge 𝑞𝐼 with vanishing Dirac pairing 
𝑞𝐼𝑞

𝐼 = 0 satisfy the relation (11). This implies the pattern of (1) after 
setting ΛQG =𝑀string =

√
2𝜋𝑇 . It is relatively well-established that this 

relation is satisfied in the asymptotic limits of moduli space; our re-

sult shows that it extends to the entire moduli space. This agrees with 
observations made in [7], which showed that the pattern is satisfied 
exactly (i.e., not merely at leading order in an expansion) in certain 
infinite-distance limits in vector multiplet moduli spaces of 4d super-

gravity theories.

Our result is nontrivial for a couple of reasons. To begin, it is not 
hard to find examples in which the closely related formulas of (10) are 
badly violated in the interior of moduli space, even though they are in-

deed satisfied in the asymptotic limits.5 In some cases, the length of 
the vector 𝜕𝑖𝑚∕𝑚 may even diverge in certain limits of moduli space, 
yet even then the relation (11) remains valid. (The ℎ1,1 = 3 geometry 
of [14], studied extensively in [10], is one example where this occurs.) 
Secondly, the interior of a 5d vector multiplet moduli space can feature 

3 At least, any such limit features a tensionless BPS string of charge 𝑞𝐼 and a 
set of charges 𝑘𝑞𝐼 , 𝑘 ∈ ℤ with 𝑞𝐼 𝑞𝐼 = 0 and 𝑍 = 𝑞𝐼𝑌

𝐼 → 0. That these charges 
are occupied by BPS particles remains to be proven in full generality, but this 
is true in all known examples and follows from many well-supported quantum 
gravity conjectures [10].

4 Geometrically, such finite-distance boundaries correspond to the collapse 
of a divisor to a point, whereas infinite-distance boundaries correspond to the 
collapse of the entire Calabi-Yau threefold [12].

5 Type I’ string theory in 9d is another well-studied case where formulas anal-
3

ogous to those of (10) are violated – see [13] for further details.
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complicated phase transitions (geometrically realized by flop transitions 
or Weyl reflections [15]), each of which involves a modification of the 
triple intersection numbers 𝐶𝐼𝐽𝐾 and hence of the prepotential  . Re-

markably, our derivation of (11) is unaffected by such modifications, 
and thus the relation persists even across the distinct phases of vec-

tor multiplet moduli space. This suggests that, whereas many features 
of infinite-distance limits of moduli spaces in quantum gravity may be 
consequences of the weakly coupled lamppost, the pattern of (1), suit-

ably interpreted, may have a wider range of applicability.

In addition, our work suggests a possible modification of the pattern 
of (1), in which the species scale is replaced by a string scale or higher-

dimensional Planck scale. One possibility takes the form

∇⃗𝑚
𝑚

⋅
∇⃗𝑀
𝑀

= 1
𝑑 − 2

,

with 𝑚 =min( ) for some 𝑀 ∈  ∪ , (17)

where  is the set comprised of the mass scales of all of the Kaluza-

Klein towers or string oscillator towers which become light in the var-

ious asymptotic limits of the theory,  is the set of all of the string 
scales 𝑀string =

√
2𝜋𝑇 of the fundamental strings which become light 

in the emergent string limits of the theory, and  is the set of higher-

dimensional Planck scales that arise in the decompactification limits 
of the theory. In many cases, including in asymptotic limits of moduli 
space, 𝑀 can in fact be chosen to be the smallest mass scale in the set 
 ∪ .

This modified version of the pattern is more or less equivalent to 
(1) in infinite-distance limits of moduli space. The advantage of the 
modification can be seen, for instance, in Type IIB string theory in 10 
dimensions. Here, the species scale Λsp (defined as the coefficient of 
the 𝑅4 term in the action) varies smoothly over moduli space, reaching 
a critical point with ∇⃗Λsp = 0 at 𝜏 = 𝑖 [16,17]. As a result, (1) breaks 
down in a neighborhood of this point if the quantum gravity scale is 
simply defined to be the species scale, ΛQG = Λsp, and 𝑚 is simply de-

fined to be the mass scale of the lightest tower. A similar breakdown 
may be expected to occur near critical points of the species scale in 
5d supergravity as well, which can occur at a boundary between two 
phases of the theory. (The symmetric flop geometry of [10] is one ex-

ample where this occurs.)

In contrast, the choice of the scale 𝑀 used in (17) has the advantage 
that it, like the mass scale of the lightest tower 𝑚, can have discontin-

uous first derivative across the boundaries between different regions 
of moduli space, as different string scales/higher-dimensional Planck 
scales may satisfy the bound at different points in moduli space. As a 
result, (17) is satisfied at all points in Type IIB moduli space and all 
points in the vector multiplet moduli space of the aforementioned sym-

metric flop example of [10].

The full scope of the relation proposed in (17) remains to be un-

derstood. Indeed, it is not even clear that it holds in 5d supergravity 
theories when the lightest tower consists of non-BPS particles (such as 
the Kaluza-Klein modes for a decompactification limit to 11d M-theory). 
Nonetheless, it is exciting to think that the pattern first observed in [6,7]

may have a broader range of applicability than previously realized, and 
it is refreshing to see that some of the conjectured features of quantum 
gravity may extend beyond the infinite-distance lamppost.
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