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ABSTRACT
We produce thickness and bone to soft tissue ratio estimations
from a single, 2D medical X-ray image. For this, we simulate the
scattering of the rays through a model of the object and embed this
simulation into an optimiser which iteratively adjusts the model to
match the X-ray simulation to the observed X-ray image. Utilising
a combination of different techniques, first, a CNN-based image
segmentation serves as a regularisation term to the underlying
cost function to guide the descent, while domain knowledge about
physical parameter correlations is injected by additional penalty
terms. Next, the optimiser is embedded into a multilevel framework
which, similar to multi-grid’s philosophy, successively improves
the model on varying resolutions while individual resolutions focus
on particular terms of the cost function. Initial results suggest that
we can obtain meaningful thickness and material estimations.

CCS CONCEPTS
• Mathematics of computing → Optimization with random-
ized search heuristics; • Computing methodologies → Regu-
larization; Reconstruction.
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1 INTRODUCTION
X-ray imaging and the subsequent analysis and interpretation of
these images is one of the fundamental diagnostic tools of modern
medicine. Inferring spatial quantitative information from a single
X-ray image challenges data-based artificial intelligence algorithms.
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First, bone and tissue thicknesses are not primary output quantities
of X-ray imaging, and it is thus difficult to create labelled training
data. Second, the radiation dosage should be minimised, meaning
that ideally we would only have a single X-ray intensity measure-
ment with considerable noise. Finally, scatter yields artefacts in the
images. Scatter is a naturally occurring phenomenon in which pho-
tons in flight between source and detector are deflected from their
initial direct path by the object that is being imaged, henceforth
referred to as "the object". This deflection creates a fog-like haze
across the image where these scattered photons landed, degrading
image quality. Crucially, different to noise, scatter is not random. It
encodes spatial information.

We propose a physics-based approach to reconstruct the model
of the object. Let the input 𝐼 ∈ R𝑛𝑥×𝑛𝑦 be the 𝑛𝑥 × 𝑛𝑦-dimensional
X-ray image. We want to estimate the thickness t of the scanned
object, and the alloy (bone/soft tissue) ratio 𝝁 within. Let 𝐿(t, 𝝁)
be a simulated X-ray image corresponding to the object’s model,
parameterised through the vector variables t and 𝝁, represented in
our implementation by 2-dimensional arrays. The challenge then
reads as:

min
(t,𝝁 )

𝐽 (t, 𝝁) with 𝐽 (t, 𝝁) = 1
2
∥𝐼 − 𝐿(t, 𝝁)∥2𝑥 (1)

with a suitable norm ∥ .∥𝑥 over R𝑛𝑥×𝑛𝑦 , and approach it as a classic
optimisation problem subject to a gradient descent algorithmwhich
minimises the difference between the simulated and the true image.

The X-ray simulator, here the Geant4 [13], produces a projection
𝐿(t, 𝝁) of the object’s model onto the imaging plane. Even though
we spatially parameterise ourmodel through a 2D array of thickness
values, and thus work in 2.5D rather than a real 3D representation,
the projection 𝐿(t, 𝝁) is much more complex, and contains more in-
formation about the object’s shape, than the standard orthographic
projection that we get if we ignore scatter and consider direct beam
only. Thus, where other reconstruction methods ignore scatter and
require two ([24]), or more ([9]) X-ray images, we are able to recon-
struct the object from a single X-ray image using a realistic physics
simulator to compute projections of a 2.5 model with extra material
information, onto a 2D imaging plane.

As (1) is ill-posed, the minimisation requires further regularisa-
tion. First, we introduce a weak admissibility criterion guided by
segmentation: A neural network identifies regions within the image
𝐼 which are free of bone or contain a combination of bone and tissue.
This material knowledge helps to yield an initial guess for (t, 𝝁),
and is then added as a penalty term to (1). Second, we introduce
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a penalty term which enforces smoothness and continuity over
(t, 𝝁). Finally, we introduce a regulariser to penalize values that fall
outside our valid ranges, thus enforcing physical constraints. To the
best of our knowledge, this triad of optimisation ingredients, plus
a rigorous multiscale formalism, have not been proposed before.

Various limitations however remain. Our model employs a gra-
dient descent method which is robust, but is not yet tuned towards
fast convergence. A systematic optimisation and balancing of our
hyper-parameters (primarily, learning rate and regulariser parame-
ter weights) was deemed out of scope. Moreover, we work solely
with geometrically constructed multi-scale operators. As many
fine grid effects can not be represented on coarse resolution levels
if we only average and interpolate geometrically, the integration
of geometric inter-grid transfer operators, or more advanced ho-
mogenisation techniques, is a natural follow-up step. The quality
of our results was further limited by the low resolution of the 2.5D
thickness/alloy models we were able to use. At each level of spa-
tial resolution of the thickness/allow model, the use of the Geant4
simulator requires a calibration process which takes into account
the energy level at which the X-ray machine was operated at. In
practice, that meant that we could only work with a small number
of coarse already calibrated resolutions.

The remainder is organised as follows. After a brief literature
review in Section 2, we discuss our physical and numerical model
which leads to a formulation of the optimisation algorithm in Sec-
tion 3. This model is then augmented by a segmentation-guided
initial guess and the proposed regularisation techniques in Section 4,
before introducing the multi-scale variant in Section 5. Numerical
results in Section 6 highlight the algorithm’s properties on an arti-
ficial benchmark and real-world problems, before a quick outlook
and summary in Section 7 close the discussion.

2 LITERATURE REVIEW
2.1 Ill-posed inverse problems
The inverse problem we seek to solve is ill-posed according to [22].
The ill-posed nature of tomography, that is, the separation of a 2D
image space into 3D components, is well documented [27], and
iterative reconstruction algorithms for X-ray tomography imaging
such as in CT are thought by some to be reaching the limits of their
clinical value [31]. In the general field of solving ill-posed problems,
[5] proposes a iterative regularization gradient technique for such
problems, [10] presents a deep, CNN-based method for producing
super-resolution images for a single, low-resolution image, while
[41] presents an analogous technique for image denoising.

The incorporation of domain knowledge has been proposed in
[30]. This work reformulates the matrix-operations inherent in CT
imaging and factors them into a neural network, thereby injecting
prior knowledge about the physics of the problem into the solution.
Similar ideas are applied to CBCT imaging from incomplete data in
[39]. Finally, as we attempt to optimise a non-convex function, we
note that non-convex optimisation has taken on renewed research
interest in recent years due to its applicability to common machine
learning problems [21].

2.2 Regularisation
[33] discuss the deep neural networks’ potential for regularizing in-
verse problems, proposing that the entire regularization process be
carried out by a neural network. [25] use neural networks for regu-
larization in ill-posed problems relating to structure determination
in biological macromolecule imaging. [3] describes a variational
approach to solving inverse problems in the presence of noise,
minimising a convex function that is regularised using knowledge
about the forward-problem and the type of solutions we might
expect. Comparable approaches are proposed in [7] specifically for
astronomical interferometry images. Physics-informed techniques
also fall under the principle of regularisation when knowledge
about the physics of the underlying system is used to constrain an
optimization [23, 40]. [26] also seeks to resolve the 3D structure
of objects through regularization from prior knowledge, however,
they use several images, at different focus points, to infer depth
information.

[1] consider a technique for functional regularized reconstruc-
tion of CT data via learned gradients, aiming at developing tech-
niques which will use both classical regularization and deep learn-
ing. [6] seeks to replace altogether traditional functional regulariza-
tion in image reconstruction with CNN based methods, while [29]
investigates how functional regularization encoding knowledge
about the model and the forward operator can be learned by GANs.

[14] questions the robustness of techniques that seek to learn
the forward operator in inverse problem solving. They propose a
technique for model adaptation tomake the learnedmodels more ac-
curate undermodel drift. [28] proposes a neural network alternative
to classical Tikhonov regularization, and applies it to the problem of
low-dose, incomplete CT imaging. [4] uses a combination of deep,
learned regularization techniques and classical regularization for
ill-posed problems in medical imaging, utilising Deep Image Priors,
introduced in [38] for ill-posed image restoration problems.

2.3 Multi-scale
Here, we borrow ideas from multiscale analysis, making use of both
the error-smoothing and coarse-grid correction that multigrid can
offer us, as outlined in chapter 2 of [37]. The concept of algebraic
multigrid described in [36] is also of interest to us, as they allow a
better use of the extra information provided by a segmentation of
our image, which will be discussed in more detail in 5.

In [34], grey scale native-resolution images are analysed along-
side their down-sampled counterparts, as it is recognised that dif-
ferent resolutions will better represent information encoded at
different frequency features. This is a feature that we try to harness
the value of as well. Recent work has been carried out to apply
multi-grid techniques for efficiency in medical image processing,
specifically patch-based scatter correction in X-ray imaging [15].
In [15] multi-grid is used to process medical images at various
resolutions, making computationally feasible their technique of
correcting X-ray scatter based on relatively large patch sizes and
search areas. [18] uses multiscale methods in inverse problem solv-
ing, specifically, CT reconstruction with the use of neural networks
incorporating handcrafted features of domain knowledge, as was
in the case in [30].
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2.4 X-ray simulation
The X-ray simulation of proposed the thickness/alloy model uses
an IBEX Ltd technology, developed over Geant4 simulation kit [11–
13]. Geant4 is a software toolkit for physically realistic, stochastic
simulation of particle transport, developed at CERN. It has been
more intensely developed, and it is more widely used than its direct
competitors, such as EGS5 [19], and PENELOPE [32]. Geant4 has
been utilised in numerous projects and applications, ranging from
simulations of targeted particle therapy at biological cell scale [20],
to atmospheric simulations at planetary scale [16].

3 PHYSICAL AND NUMERICAL MODEL
3.1 The thickness / alloy model
Our model of the X-rayed object consists of a single layer of 𝑛𝑥 ×𝑛𝑦
voxels. Each voxel 𝑥,𝑦 has a particular thickness t𝑥𝑦 ≥ 0 and
accommodates a homogeneous mixture of two materials, soft tissue
and bone, at a specific for that voxel ratio 𝝁𝑥𝑦 ∈ [0, 1], referred to
as the voxel’s alloy. A 0 value of 𝝁 means pure soft tissue, while 1
means pure bone.

Direct

ScatterScatter

Incident Beam

Figure 1: An X-ray beam hits a voxel and is scattered or pass
through while its energy decreases. The voxels have different
thicknesses and alloy compositions.

Our spatial 2.5Dmodel is similar to models used in shallow water
equations, or some ice sheet models erecting a volumetric model
over a 2D domain. It has been designed to facilitate computational
efficiency and be compatible with the simulator. In the simulation,
X-rays hit the object orthogonal to the voxel layer and then hit the
imaging plate orthogonally, too, (Fig. 1). The function

𝐿 :
(
R+0 × [0, 1]

)𝑛𝑥×𝑛𝑦 ↦→
(
R+0

)𝑛𝑥×𝑛𝑦

accepts a thickness field t ∈
(
R+0

)𝑛𝑥×𝑛𝑦

, and a corresponding alloy
field 𝝁 ∈ [0, 1] 𝑛𝑥×𝑛𝑦 , returning a 𝑛𝑥 × 𝑛𝑦 simulated X-ray image.

3.2 Gradient computation
As 𝐿(t, 𝝁) is a black-box function, no analytic second derivative is
available. We thus make (1) subject to a simple gradient descent

based on numerical evaluations, computing a sequence of approxi-
mations of the model (t, 𝝁) (1) , (t, 𝝁) (2) , (t, 𝝁) (3) , . . . through

(t, 𝝁) (𝑛+1) = (t, 𝜇) (𝑛) − 𝛾 (∇𝜹𝑥𝑦
) 𝐽 ((t, 𝜇) (𝑛) )

where

(∇𝜹𝑥𝑦
) 𝐽 ((t, 𝝁) (𝑛) ) =

𝐽 ((t, 𝝁) (𝑛) + 𝜹𝑥𝑦) − 𝐽 ((t, 𝝁) (𝑛) )
|𝜹𝑥𝑦 |

·
𝜹𝑥𝑦

|𝜹𝑥𝑦 |
We randomly pick a direction 𝜹𝑥𝑦 to walk along. The real gradi-

ent (∇𝜹𝑥𝑦
) 𝐽 along this direction is approximated by simple finite

differences of the values of 𝐽 at (t, 𝝁) (𝑛) and at (t, 𝝁) (𝑛) +𝜹𝑥𝑦 . The
modification term 𝜹𝑥𝑦 has the same dimensions as the model (t, 𝝁)
and value zero everywhere, except for one randomly chosen voxel
(𝑥,𝑦), where one or both of the thickness t𝑥𝑦 and alloy 𝝁𝑥𝑦 values
is equal to a small, random, non-zero quantity. The code randomly
chooses between changes to thickness, alloy, or a combination of
the two. Once we have randomly picked a search direction, J is eval-
uated both for ±𝜹𝑥𝑦 , i.e., we look both “left” and “right”. Finally,
the learning rate 𝛾 is a small hard-coded scalar quantity.

The data in 𝐼 and 𝐿(t, 𝝁) reflect raw data pulled from X-ray
devices and results of particle simulations, respectively. Intensities
are measured in approximate photon counts, typically on the scale
of 104 counts per pixel. The thickness t is given in centimeters,
and in our experiments, we pick it from 0cm–30cm. An a priori
calibration of the simulator ensures that the values of 𝐿(t, 𝝁) fit to
those of 𝐼 .

4 REGULARIZED GRADIENT DESCENT
As (1) is of potentially high dimension, likely non-convex (in 𝐿(t, 𝝁))
and constrained, it is hard to solve. It also is a coarse approximation
of reality: the Geant4 simulates the scatter behaviour of the rays
approximately; the reference image 𝐼 contains measurement noise,
as well as error from the calibration; most importantly, we use of a
low resolution 2.5D model of only two material types.

For these reasons, we introduce various regularisers plus a biased
randomised choice of gradient directions. These ingredients have
two purposes: they ensure that the explored (t, 𝝁) choices represent
physically meaningful objects, and speed up the computation. We
note, however, that even with the use of regularisers, still we cannot
guarantee global convexity or the existence of a global minimum.
We only can experimentally verify that the problem is tractable.

4.1 Physical admissibility constraints
Besides t ≥ 0 and 0 ≤ 𝝁 ≤ 1, we also introduce t ≤ 𝑡max, where
𝑡𝑚𝑎𝑥 is the maximum object thickness the scanner is able to handle.
Instead of enforcing physical admissibility by hard-coding the con-
straints, we add instead penalty terms to the cost (1). Specifically,
we have

𝐽𝑎𝑑𝑚 (t, 𝝁) =
1
2
∥𝐼 − 𝐿(t, 𝝁)∥2𝑥 +

+ 𝜆adm | |min{t, 0} +max{0, t − tmax}| |𝑓 𝑟𝑜
+ 𝜆adm | |min{𝝁, 0} +max{0, 𝝁 − 1}| |𝑓 𝑟𝑜 (2)

for a fixed value of 𝜆adm ≥ 0.
Any 𝜆adm < ∞ permits slight violations of the admissibility

constraints, as we enforce them only weakly. Since the simulator
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cannot handle values that do not satisfy these constraints, as for
example negative thicknesses, we approximate (t, 𝝁) to the nearest
admissible values before passing them to the simulator.

4.2 Segmentation-guided admissibility and
initialisation

Deep learning algorithms have been firmly established as the cur-
rent state-of-the-art in image segmentation, outperforming earlier
approaches, [35], based on shallow networks. Here, we use the deep
learning X-ray segmentation algorithm XNet [8], which segments
an X-ray image into three classes: open beam (void), soft tissue
only, contains bone. The computed segmentation is encoded by two
booleans per pixel

𝑠𝑒𝑔 : 𝐼 ↦→ ({0, 1} × {0, 1})𝑛𝑥×𝑛𝑦 (3)

where values of 1 in 𝑠𝑒𝑔1 and 𝑠𝑒𝑔2 denote the presence of soft tissue
and bone, respectively. As 𝑠𝑒𝑔2 = 1 ⇒ 𝑠𝑒𝑔1 = 1, i.e., there is no
bare bone without tissue around it, 𝑠𝑒𝑔 classifies the image voxels
into three classes.

Where the segmentation has estimated an alloy of just soft tissue,
i.e., we should have 𝝁𝑥𝑦 = 1, the cost function is increased by a
value proportional to 1 − 𝝁. Where the segmentation has estimated
that bone is present, i.e., we should have 𝝁𝑥𝑦 < 1, the cost function
is increased by a constant value for any pixel with 𝝁 ≥ 1. This gives
the further regularized cost function:

𝐽𝑠𝑒𝑔 (t, 𝝁) = 𝐽𝑎𝑑𝑚 (t, 𝝁)
+ 𝜆seg1 | |𝑠𝑒𝑔1 · (1 − 𝝁) | |𝑓 𝑟𝑜
+ 𝜆seg2 | |𝑠𝑒𝑔2 · [𝝁 > 1] | |𝑓 𝑟𝑜 (4)

where · denotes element-wise matrix multiplication, 1 is the matrix
with all values 1, and [𝝁 > 1] is the matrix with values 1 at the
places where 𝝁𝑥,𝑦 > 1, and 0 elsewhere.

The segmentation (3) is also used for the initialisation of the
algorithm. Thickness is initialised to t ≈ tmax/2 where we see some
material, and 0 elsewhere. The alloy is initialised to 𝝁 = 0.5 in the
presence of some bone, and 0 elsewhere. Void voxel entries are
omitted from the stochastic gradient trials 𝜹 .

4.3 Smoothness constraints
Anatomies are organic shapes which rarely exhibit non-smooth
changes in thickness or alloy in any dimension, an issue that makes
modelling them a challenging task [17]. The exception to this rule
can be found along the edges of the object and the bone inside,
where we expect a sharp change from non-zero thickness to zero
thickness, and changes of 100% soft-tissue to < 100%. We apply a
zero-cross edge detection filter on the 𝑠𝑒𝑔1 and 𝑠𝑒𝑔2 binary masks of
the segmented image (3), identifying the edges of the just the bone
region, and the edges of the imaged object. This yields a further
tuple

𝑒𝑑𝑔𝑒 : 𝐼 ↦→ ({0, 1} × {0, 1})𝑛𝑥×𝑛𝑦 (5)

per pixel, which flags the transition from void into tissue and from
tissue-only into a tissue-and-bone region. We use it to define a fur-
ther regularization term which penalizes large second derivatives,
deactivated along edges where we expect to sharp changes

(a)

(b) (c)

Figure 2: Why a smoothness regularisation is important. To
model the scattering in (a), an intensity increase in the lower
right voxel requires either a significant reduction of the
voxel’s height (b) or a moderate of several voxels around
(c). The desirable model of a homogeneous object would be
(c), however, stochastic gradient tends to modify single vox-
els as in (b).

𝐽Δ (t, 𝝁) = 𝐽𝑠𝑒𝑔 (t, 𝝁)

+ 𝜆Δ
1 − 𝑒𝑑𝑔𝑒 (𝐼t)

2
| |Δt| |2

𝑓 𝑟𝑜

+ 𝜆Δ
1 − 𝑒𝑑𝑔𝑒 (𝐼𝝁 )

2
| |Δ𝝁 | |2

𝑓 𝑟𝑜
(6)

where Δt is the sum of the absolute values of the convolutions
of t by the matrices

−1 2 −1
−4 8 −4
−1 2 −1

 and

−1 −4 −1
2 8 2

−1 −4 −1

 .
and Δ𝝁 is defined similarly. The motivation for this regulariser is
illustrated in Fig. 2. Finally, we note that this regulariser, using a
second derivative, is resolution dependent. The finer the resolution,
the higher the value of 𝜆Δ should be.

4.4 Continuity constraints and the complete
regulariser

As we switch off smoothness considerations along edges, it is possi-
ble for sharp peaks to arise along them. The smoothness regulariser
(6) then causes this error to propagate to adjacent pixels, polluting
the reconstructed model. To help prevent this, we introduce a fur-
ther regulariser based on the 𝐶0 norm, which applies to all voxels.
Its aim is to penalize values that are significantly higher or lower
than their adjacent values.

We convolve the thickness and alloy images with the left and
right first order differences filters, [0,−1, 1] and [−1, 1, 0] to take a
measure of continuity along the 𝑥 dimension, and measure conti-
nuity in the 𝑦 dimension similarly. Let Δℎ denote the maximum of
the absolute values of the responses of these filters. We define our
final regulariser:
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𝐽𝑟𝑒𝑔 (t, 𝝁) = 𝐽Δ (t, 𝝁) + 𝜆𝐶0 | |Δℎt| |𝑓 𝑟𝑜 + 𝜆𝐶0 | |Δℎ𝝁 | |𝑓 𝑟𝑜 (7)

where 𝜆𝐶0 is a constant.

5 MULTISCALE
Following a fundamental paradigm in multigrid community [36],
our strategy is to first obtain a reasonable guess over the large,
smooth areas, and then concentrate on the regions of material
transitions, where errors are effectively eliminated by fine resolu-
tion processing. At each resolution, we work with a pre-computed
database of radially symmetric scatter kernels. Specifically, from
coarse to fine, we work at resolutions DS89, DS45, DS23, and DS11,
where DS89 means that one voxel of the thickness/alloy model
corresponds to 89 × 89 pixels of the input X-ray.

Different to classic multigrid, we introduce resolution switch
criteria which change the resolution depending on the improvement
factor of the algorithm. The cost function 𝐽 is used to compute the
improvement factor 𝛾 between iterations 𝑛 and 𝑛 + 𝑝

𝛾 =
𝐽𝑟𝑒𝑔 (t, 𝝁) (𝑛+𝑝 )

𝐽𝑟𝑒𝑔 (t, 𝝁) (𝑛)
(8)

where 𝑝 depends on the number of scattering voxels of the model,
and it is a pre-defined constant on each resolution. Acknowledging
that non-linear optimisation problems are vulnerable to overfitting
and thus require resolution switches in both directions of the coarse
to fine hierarchy, we distinguish between four cases:

(1) 𝛾 < 0.8: significant improvement is being made on the cur-
rent resolution. We expect that further updates would reduce
𝐽 further, so we continue on the present resolution.

(2) 0.8 ≤ 𝛾 < 0.95: some improvement on the current resolution,
but it is slow. We assume that there is a significant amount
of high frequency error which cannot be easily eliminated
at this resolution. We trigger a V-cycle, that is, move to the
the next coarser level and then back again.

(3) 0.95 ≤ 𝛾 < 1.05: no significant improvement has been made.
We switch to the next finer level.

(4) 1.05 ≤ 𝛾 : a significant deterioration has occurred.We assume
that is is due to inconsistencies between coarse estimations
of the object and the object’s true shape. We blacklist the
coarsest allowed resolution, meaning that it will no-longer
be reached in future V-cycles, and carry out a V-cycle to
reset the recent deterioration.

6 RESULTS
In section 6.1, we present results from the proposed optimisation
algorithm. The input images were X-rays of limb phantoms made of
PMMA plastic and aluminium rods, and X-rays of a human cadaver.
In Section 6.2, we present the results of an ablation study with the
regularisers turned off.

6.1 Results
Based on the X-rays of four limb phantoms, Fig. 3 shows estimates of
the overall thickness, and estimates of the bone thickness computed
as the product of the overall thickness by the alloy values.

Fig. 4 shows the results of the algorithm on cadaver images of
a wrist and a shoulder. Compared to the limb phantoms, these are
more complex anatomies, with many smaller, overlapping bones.
We note that in the wrist model, the greater volume of bone at the
joint between hand and arm was successfully identified, as well as
the increase in bone thickness where the ulna and radius overlap
near the elbow. The overall accuracy of the thickness estimates is
unverifiable, but in both cases the broad structure of the estimated
models is visually appropriate.

6.2 Ablation study on the use of regularisers
The ablation study was performed on an X-ray image of the simple
limp phantom (SLP), which has the shape of a partially-rounded
cuboid, with a single aluminium rod running down the centre. It
has the same thickness t = 5𝑐𝑚 everywhere, except the far left and
right edges, and in the middle it has a a value of 𝝁 = 0.4, that is, 40%
of its depth is aluminium. As we explicitly know the t and 𝝁 ground
truth values, we can compare the ground truth cost function 𝐽 and
compare it with the 𝐽 values during optimisation.

We use removed all regularisers and used three setups: a system-
atically bad initial guess, where all thicknesses are set to 1% of the
maximum supported thickness, while the alloy is 50% everywhere;
a randomised initial guess; a good initial estimate. The latter uses
initial thickness value of t = 5𝑐𝑚 wherever the segmentation identi-
fies non-open-beam voxels, and 𝝁 = 0.5wherever the segmentation
identifies some bone.

Fig. 5) (left and middle) shows that bad initial guesses were not
compensated by the gradient descent over the first 80 updates.
Moreover, as expected, the impact of a bad initialisations correlates
with the image resolution. That is, the gradient descent’s capability
vanishes for higher image resolutions.

We note that a good initial guess could be directly provided by
the segmentation, or be implicitly realised via penalty terms added
to the objective function 𝐽 . The main observation here is that the
design of the regularisers should aim at pushing the solution into a
state that agrees with the outcome of the image segmentation.

We also note that while, in line with our previous discussion, a
𝜃 = 0.5 outperforms 𝜃 = 1, nevertheless, all descents stagnate in the
higher resolutions, or even start to increase 𝐽 again after a certain
iteration count. The unregularised gradient descent is effective only
for a few updates and if and only if we work in a coarse resolution.
Furthermore, the gradient descent’s outcome is off from the optimal
solution (ground truth) by almost a factor of eight; in the best case.

7 CONCLUSIONS
We developed a cost function for the ill-posed inverse problem
of thickness and material estimation in single-scan X-ray images,
where the forward function is a physically realistic particle simu-
lator. We use a neural network for image segmentation and regu-
larization to feed-in domain knowledge. Moreover, we developed a
multiscale version of the algorithm to obtain better solutions and
speed-up the process.

In this paper, we demonstrated the effectiveness of our method
with relatively coarse resolution voxel models. Naturally, a next
step would be to expand to higher resolutions. A major constraint
for this is the required calibration between the Geant4 particle
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Figure 3: Surface plots of the final thickness and material estimations for four limb-analogue phantoms.

simulator and the X-ray hardware system, which should be done
for each resolution separately; one cannot just construct resolutions
on the fly.

A second promising direction of future work is the use of better,
machine learning informed, priors to start the optimisation process.
At the moment, we only use the segmentation, and in the absence
of other information, we begin from a state that is perfectly flat,
with the bone and soft-tissue regions assigned the same thickness,
and just different alloy values. Recent research, [2], has shown how
advances in the field of depth estimation from single images can
be used to enhance algorithmic performance in downstream tasks.
Thus, we can imagine the use of a second neural network trained to
predict better thickness priors, enabling our algorithm to converge
faster.

Finally, we would also like to test the system on a wider range of
X-ray hardware systems, even though we do not expect significant
issues, since the algorithm is constructed around a system-agnostic
simulation algorithm, courtesy of IBEX Innovations.
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Figure 4: Overall thickness (left) and bone thickness (middle), estimated from a single X-ray image (right).
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