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ABSTRACT Multiple sclerosis (MS) is a chronic neurological disorder that targets the central nervous
system, causing demyelination and neural disruption, which can include retinal nerve damage leading to
visual disturbances. The purpose of this study is to demonstrate the capability to automatically diagnose
MS by detecting asymmetry within the retina, using a similarity-based neural network, trained on optical
coherence tomography images. This work aims to investigate the feasibility of a learning-based system
accurately detecting the presence of MS, based on information from pairs of left and right retina images.
We also justify the effectiveness of a Siamese Neural Network for our task and present its strengths through
experimental evaluation of the approach. We train a Siamese neural network to detect MS and assess
its performance using a test dataset from the same distribution as well as an out-of-distribution dataset,
which simulates an external dataset captured under different environmental conditions. Our experimental
results demonstrate that a Siamese neural network can attain accuracy levels of up to 0.932 using both an
in-distribution test dataset and a simulated external dataset. Our model can detect MS more accurately than
standard neural network architectures, demonstrating its feasibility in medical applications for the early,
cost-effective detection of MS.

INDEX TERMS Optical coherence tomography, Siamese neural network, asymmetry, classification.

I. INTRODUCTION
Deep learning and its applications have received significant
attention over the past few years. As an increasingly active
research area, it has already made significant contributions
to health and medicine. One open task in this field is the
early diagnosis and detection of autoimmune diseases such
as multiple sclerosis (MS). One primary difficulty is the need
for doctors with specific expertise to screen for this disease as
MS diagnosis is greatly influenced by clinical judgement [1].
Furthermore, it is often difficult for clinicians to assess MS
early, as there is no typical pattern of early symptoms that
applies to everyone [2]. Traditionally, neurologists will use an
MRI scan to diagnose MS; however, this can be expensive [3]
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and invasive for patients due to the noisy, claustrophobic
nature of the scan. Clinicians sometimes perform a lumbar
puncture under local anaesthetic to provide extra information,
though evidently, this can be uncomfortable for patients [4].
In this study, we address the difficulties and cost of early MS
detection by leveraging recent advances in deep learning. Our
work targets a research gap in the literature as there is little to
no research using Siamese Neural Networks trained on OCT
data for MS diagnosis, based on eye symmetry and similarity.
We provide an investigation into how learning-basedmethods
can be used to advance the screening processes currently in
place, replacing traditional methods, using a similarity-based
approach.

Overall, there is a need for development in the diagnostic
work for MS, so that we can improve screening for this
disease [5]. One approach to detecting optic neuritis (ON)
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FIGURE 1. Examples of images from the left and right eyes. Images on
top are of patients with MS and on the bottom without.

is by measuring the symmetry between cellular layers of
the eye, obtained through an OCT scan. This is practical
as our bodies are inherently symmetrical with paired
organs and features such as hands, legs, lungs, etc., giving
an approximate-bilateral symmetrical look (<99%), with
minor differences between left and right samples [6], [7].
By using one eye as proxy for the other, clinicians can
measure the degree of retinal symmetry as several statistical
measures are determined to be lower in eyes with pathology,
as indicated in past research [5], [8], [9], [10], [11].
A computing-based approach is deemed advantageous due
to the inherent difficulty humans encounter when attempting
to identify symmetry within skewed, misaligned, or poor-
quality images. However, existing detection methods are not
effectively leveraging retinal imagery due to their inability to
accurately identify asymmetry. A Neural Network (NN) has
the ability to recognise patterns where human perception falls
short. This enables a more precise analysis of OCT images,
as opposed to solely using human detection for MS [5].
Our methodology adheres to established medical theory;
specifically, we focus on retinal symmetry as opposed to
similarity (examples of data seen in Figure 1). This strategic
approach ensures that our model is capable of accurately
emulating a genuine diagnosis of MS following established
medical practices.

In short, the primary contributions of our study can be
summarised as follows:

• We propose several algorithms based on Siamese Neural
Networks, which can be used for the early detection
of neurological conditions such as MS (Section III-A).
We eliminate poor performing models through a series
of ablation and robustness experiments. (Section IV).

• Our experimental analyses demonstrate that our model
is capable of outperforming standard neural network
architecture, attaining accuracy levels of up to 0.932
(Section IV).

• Our analyses include measuring how well our model
can identify symmetry and similarity between the eyes
to follow clinical practices and provide additional
explainability (Section IV-C).

• To demonstrate the robustness and adaptability of our
model, we employ a simulated external test set that

accurately reflects the diverse lighting and environmen-
tal conditions encountered in different Optical Coher-
ence Tomography (OCT) machinery. This approach
validates our model’s effectiveness and underscores its
practical applicability in real-world scenarios across
various OCT systems. (Section IV-F).

To enable better reproducibility of our approach and to
ensure wide-spread dissemination of our study, the source
code is publicly available.1

II. RELATED WORK
We consider related work within three distinct areas, focusing
on conventional methods forMS detection based on statistical
features (Section II-A), MS detection through learning-based
methods (Section II-B), and Siamese Neural Networks
(Section II-C) and their applications (Section II-D).

A. STATISTICAL MS DETECTION METHODS
In medicine, the diagnosis of MS can be determined by
investigating the textural information within the retinal nerve
fibre layer [12]. One way of measuring this is through
Dissemination in Space (DIS) and Dissemination in Time
(DIT) [13]. The assessment of symmetry in the retina is
conventionally quantified through the Inter-Eye Percentage
Difference (IEPD) metric [14]. Recently, IEPD cutoffs are
recommended to determine DIS and DIT [5], and have been
revised in recent studies [9], [11], [15]. IEPD is usually
measured through OCT scans since OCT has considerable
advantages over MRI. OCT is an inexpensive, noninvasive,
and accessible imaging technique that produces reliable
quantitative measures for detecting pathology [16], [17],
[18], [19], [20]. Research indicates that medical practitioners
exhibit high precision in diagnosing patients afflicted with
MS displaying both unilateral and bilateral ON. The down-
side is that this entails a significant amount of work due to
its laborious, time-consuming, andmanually intensive nature.
Past research in this field demonstrates that a system to
automatically define regions of interest is eagerly awaited [8].

B. DEEP LEARNING FOR MS DETECTION
One way of addressing this issue is through the use of
learning-based approaches. Deep learning can significantly
improve the diagnostic value of retinal OCT data, as explored
in [5]. Another method to determine pathology in the eye
is the Symmetry Index (SI). SI measures the degree of
symmetry of the running pattern of the choridal vessels,
relative to a horizontal line across a part of the eye called
the fovea [10]. This has been used to detect Central Serous
Chorioretinopathy (CSC) in the past. It has been shown
that people with this disease have a lower SI than that of
healthy eyes, thereby indicating its potential utility in the
detection of other retinochoroidal diseases such as MS [10].
This reinforces the fact that ocular pathology can be detected
through the use of binocular methods, using one eye as

1https://github.com/regybean/SiameseMSDiagnosis
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a proxy for the other, as opposed to singular eye images.
The most effective approaches in this area all utilise either
conventional machine learning (ML) techniques or neural
networks (NN) to ascertain the degree of asymmetry required
to identify retinal pathology such as MS [7], [21], [22], [23],
[24], [25], [26]. An approach taking advantage of Siamese
Neural Networks excels at handling paired data, and thus has
the potential to exceed traditional statistical measures as it
considers all of the retina, rather than single measurements,
such as the thickness of the retina.

C. SIAMESE NEURAL NETWORKS
ASiamese neural network (SNN) requires two inputs into two
parallel convolutional neural sub-networks, which commonly
share the same weights. The two networks are united by a
similarity metric, and once fed through a classifier, the overall
model can be used for various recognition-related tasks [27].
This architecture is well suited to the problem at hand as the
two inputs correspond to the left and right eyes, permitting
a binocular approach. Furthermore, the similarity metric
(severity of ON) is learned implicitly, negating the need for
manual threshold setting. SNNs are extremely useful for such
problems, as they do not rely on a specific localisation of the
pathology of interest, requiring only image level annotation
and the binary comparison labels [26].
Overall, SNNs are inherently suited to this problem and

have been extensively used in computer vision tasks [28],
[29], [30], [31], [32], [33], [34] as well as speech and natural
language processing [32]. In the person re-identification
problem, for example, using a SNN has seen great success
over other deep learning approaches [25], [35]. This success
is accredited to the ability of the SNN to handle illumination
variation, partial occlusions, and viewpoint invariance. This
can be of value for the retinal images used in this study
since OCT images are generally subject to imperfections
due to the inherent nature of the imaging process. Notably,
different OCT machines may exhibit varying levels of noise
during image capture and the surrounding brightness can
significantly affect the illumination of the images [36].

D. SIAMESE NEURAL NETWORKS IN MEDICINE
Within medical applications, SNNs are already being used
extensively to diagnose and classify various diseases [37],
[38]. Furthermore, within the existing literature [21], [22],
[23], [24], SNNs have been used to ascertain symmetry
within pairs of retinas, using fondus images or OCT images.
These models are useful in detecting diverse forms of retinal
pathology beyond MS, thereby providing further support for
the feasibility of our study. One approach [21] applies an SNN
to colour fondus images, to determine whether pairs of retinas
can be used as a strong biometric. This study reinforces the
idea that left and right retinas are approximately bilaterally
symmetrical, up to a max accuracy of 89% on their
network [21]. One takeaway from this work is that when
weights are shared, compared to unshared, performance is

FIGURE 2. Proposed network architecture for the contrastive Siamese
network, showing how input data, X1 and X2, are transformed into a
binary class label and a loss output.

observed to improve. In Section III-A, we discuss howweight
sharing may effect the performance of the system, depending
on whether it relies on symmetry or similarity for its analysis.
Another similar study uses an SNN trained on fondus images,
along with a test group, to determine similarity in pairs
of eyes [23], with the SNN substantially outperforming
human volunteers. This highlights the potential value of
incorporating such models into clinical settings.

Two other studies [22], [24] use SNNs to detect Diabetic
Retinopathy (DR), another retinal disease. The first study
contrasts monocular and binocular approaches, giving the
specificity for each as 70.7% and 82.2% respectively. This
suggests that binocular methods are preferred for the detec-
tion of pathology [22]. AnML approach is considered in [24],
though the feature extraction algorithms are determined to
be complicated and difficult, so a deep learning approach is
used instead [24]. Overall, the promising results achieved by
SNNswithin the area form the basis of our proposed approach
towards MS diagnosis.

III. METHODOLOGY
Our methodology relies on the capability of Siamese Neural
Networks to compare the similarity between the two output
representations, given two images of the left and right eyes as
the inputs. We propose two different ways of calculating this
similarity between the two images. One method involves sep-
arately outputting the two feature representations, enabling
a loss function to compute a similarity metric between
them, utilising a distance function. An alternative approach
involves concatenating both representations and passing them
through a fully-connected layer with a single output. The key
advantage is that the loss function is not required to calculate
similarity, as the output can directly predict the desired class,
taking advantage of an internal representation of similarity.

A. PROPOSED ARCHITECTURE
The contrastive Siamese network architecture can be seen
in Figure 2. The network consists of two twin sub-
networks, T1 and T2, each processing one of the two input
samples, X1 and X2. The convolutional layers, denoted as
fconv, are responsible for extracting features from the input
samples, while the fully-connected layers, denoted as ffc,
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within each network generate a representation of that input
sample. Mathematically, this can be described as T1(X1) =

ffc(fconv(X1)) and T2(X2) = ffc(fconv(X2)). After processing
the two input samples through their respective sub-networks,
the output representations, T1(X1), T2(X2) and targets Y are
fed into a distance or similarity metric function, L, which
calculates the similarity score L(Y,T1(X1),T2(X2)) between
the two input samples, using a contrastive loss function.
For similar pairs of input samples, the loss function tries to
minimise the distance or dissimilarity between the output
representations, while for dissimilar pairs, it tries to maximise
this distance. The contrastive loss function trains the model
such that dissimilar samples correspond to a positive case of
MS.

The aggregated Siamese network architecture is illustrated
in Figure 3. Once the convolutional layers fconv extract the
image features, the two image representations, T1(X1) and
T2(X2), are concatenated into a single representation (T1(X1)·
T2(X2)) and then fed through the fully-connected layer in
the network ffc to give Z = ffc(T1(X1) · T2(X2)). The
fully-connected layer acts as a classifier, where linear layers
reduce the dimensions of the concatenated representation
down to a single metric, which determines the model’s
class prediction - either MS positive or MS negative.
The subsequent loss function, L, can be any standard
classification loss function, such as binary cross-entropy,
applied as L(Z,Y). The key disparity between the two
architectures lies in the approach taken to calculate similarity
as each respective network has a different output.

Shared weights refer to a configuration in which both
sub-networks in the SNN have identical weights. This means
that the weights learned by each sub-network during training
are exactly the same for each respective retina. Commonly,
shared weights are appropriate for images that share similar
properties, as they can learn a similar representation for each
input. Instead of using shared weights, the two twin networks
can be separate and independently learn representations for
the left and right eye images individually. The disadvantage
of using models with shared weights is that we use the same
parameters for each eye, which means the model is inclined
to find the same set of features in the left and right images
as each eye is treated the same way. This model is likely to
focus on the similarity between the two images rather than
symmetry as they have no unique representations. On the
other hand, the advantage of using unshared weights is that
the models are free to extract their own features, for each eye,
using their own individual parameters; therefore, symmetry
is likely to be the primary focus rather than similarity (as
is standard medical practice) [11], [15]. This is because the
models will compare two different representations that are
more symmetrical than similar. We analyse this further in our
experiments in Section IV-C.

B. DATASET
Prior to conducting our experiments, the first challenge is
to curate a dataset suitable for our neural network, as SNNs

FIGURE 3. Proposed network architecture for the aggregated Siamese
network, showing how input data, X1 and X2, are transformed into a
binary class label and a loss output.

require pairs of inputs.Within the context of our problem, it is
important that each data point only contains retinal imagery
from a single patient.

Consequently, each patient can be considered to have two
data points, {Left, Right} and {Right, Left}, and one class
label. In the case where the model has shared weights, the
order of the images does not affect the model’s interpretation
of the data because symmetry is maintained, all passing
through the same network. The benefit of this formulation
is that we will have a larger set of training data. If a model
has unshared weights, we only pass in a single data point for
each patient {Left, Right} to ensure that each sub-network
consistently receives the same type of input every time. For
this same reason, none of our data augmentation techniques
involve flipping an eye randomly, as it is imperative to
preserve the individuality of left and right features. If both
eyes are not mirror-symmetric, then CNNs could learn
unexpected features from flipped images [6].

The OCT image dataset utilised in our study comprises
133 pairs of left and right retina, each having an associated
MS positive or negative label. Due to constraints such
as the necessity of acquiring both retinas and the limited
availability of MS-positive retinas, the dataset is significantly
small. To overcome this, we utilise data augmentation to
force the model to learn more robust features and reduce
overfitting.

We apply a range of data augmentation techniques,
including affine transformations, such as rotation, translation,
scale, and shearing with random parameters which help to
simulate the nuances between different OCT machines and
their calibration and will thus improve the generalisation
capabilities of the model trained on augmented data. Another
augmentation method we investigate is brightness and
contrast shifts to account for illumination changes that may
occur during the image capture process. Furthermore, the
contrast change has the advantage of making blood vessels
clear and more prominent in some of the images, which helps
the model focus on the patterns more easily with greater
emphasis on the relevant information within the images.
Finally, we apply different levels of speckle and Gaussian
noise to simulate the noise that occurs during image capture
and increase the variability of the data for the model. Each
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FIGURE 4. Construction of the simulated external set from the test set.
Note the fixed changes in the levels of noise, brightness, contrast, and
rotation.

augmentation technique is applied with a probability of 50%.
We run extensive experiments to find the best augmentation
techniques (Section IV-B).

While the model can be reliably tested using a classic train-
test split, the generalisation capabilities of the model needs to
be evaluated using external test data captured under different
initial conditions. However, external data with our specific
requirements, proves to be very rare in this domain. Hence,
we fabricate a simulated external dataset that functions as a
second test set for our experiments. This strategy enables us
to measure the model’s robustness to change. This simulated
dataset uses the same images as the test set. However, the
individual images have a different fixed level of brightness,
contrast, noise, and rotation than that of the original set.
The amount of transformations applied is selected from a
random suitable range.We design this set in such a way that it
reflects what OCT imagery may look like from other sources.
Figure 4 shows how the samples are constructed, differing
from our test samples.

C. TRAINING
The training process involves iteratively feeding training
data to the network, and adjusting its parameters in order
to minimise the loss function [39]. After constructing each
model, their respective loss functions must be implemented
differently as the number of outputs from each model
differs.

A contrastive loss function is employed for our contrastive
Siamese model, with the neighbours being pulled together
and non-neighbours pushed apart [40]:

L(Y, X⃗1, X⃗2) = (1 − Y)
1
2
(DW )2

+ (Y)
1
2
{max(0,m− (DW )}2, (1)

where X⃗1 and X⃗2 are representations from the input images,
Y denotes the target, m is the minimal distance the points
need to keep andDW represents the distance between the two

inputs, DW =

∥∥∥X⃗1, X⃗2

∥∥∥
2
.

For the aggregated Siamese model we used a standard
binary cross-entropy loss.

L(x, y) = −mean(yn · log xn + (1 − yn) · log(1 − xn)), (2)

where xn is the euclidean distance between each two samples
and yn is the target for each sample.

Adam [41], RMSprop [42] and SGD [43] are used as
optimisers in our experiments. We also make use of a
scheduler to adjust the learning rate of the optimiser and help
improve performance [44]. The different hyper-parameters
are selected empirically, discussed in Section IV-A.

D. IMPLEMENTATION DETAILS
All implementation is done in PyTorch [45] and all models
are tained on an NVIDIA GeForce RTX 2080 Ti GPU.
Optuna [46] is used for hyper-parameter tuning, using
a tree-structured parzen estimator (TPE) algorithm. Each
image sample is resized to 300 × 300 and normalised. All
networks fully converge after 20 epochs and in general take
no longer than 2 minutes (Table 1) to fully train; therefore,
we do not consider training time to be an issue. Models are
evaluated bymeasuring the final accuracy,F1 score, andAUC
on the test set, and simulated external set.

IV. EXPERIMENTAL RESULTS
Numerous experiments are carried out to fine-tune and
optimise the models for the best possible performance
and all results are rigorously evaluated and discussed. Our
experiments are conducted on four primary models, namely:
unshared contrastive model (UC), which is our contrastive
architecture in Figure 2 using separate weights for the
two networks, shared contrastive model (SC) which is our
contrastive model using shared weights, unshared aggregated
model (UA), which is our aggregated architecture in Figure 3
without any shared weights and the shared aggregated model
(SA). In order to be able to evaluate our results, we establish
a baseline model that solely uses a single concatenated
image of both eyes, processed through a single network. The
architecture of the baseline is otherwise similar to that of
our Siamese network. The dataset comprises 68 MS positive
retina pairs and 65 MS negative retina pairs. We train and test
using 89 and 44 retina pairs respectively (66:33 split) over
20 epochs with a batch size of 16, in all of our experiments,
unless mentioned otherwise. Some of our experiments focus
on improving the model by performing ablation experiments
as seen in Sections IV-A, IV-B, IV-D, IV-E, in order to
increase the model accuracy. Other experiments focus on
improving the generalisability of the model so it is more
effective when applied to different OCT imagery, captured
under different conditions, subject to different levels of noise
and light. These experiments can be found in Sections IV-F
and IV-G.

A. HYPER-PARAMETER TUNING
Table 2 shows the result of our experiments to determine the
optimal combination of hyper-parameters, utilising a sample
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TABLE 1. The average runtime for a forward pass over 20 epochs. SA:
Shared Aggregated; UA: Unshared Aggregated; SC: Shared Contrastive;
UC: Unshared Contrastive. Showing the low complexity of the models.

of 30 test cases. While a validation set is often used to
tune hyper-parameters, the small number of images available
in the dataset makes this very challenging. We mitigate
this by testing for generalisability in later experiments
(Section IV-F). The test offers a range of results, showcasing
the accuracy, F1 score, and AUC for each model, alongside
their associated hyper-parameters. The baseline scores of
0.989, 0.988, 1.00 are presented, and the Siamese models
perform worse with the next best model, Shared Aggregated
(SA) model, achieving scores of 0.920, 0.909, 0.988 for
accuracy, F1 and AUC respectively.

This test was completed to get a general understanding of
the performance we could achieve from each model. From
Table 2, we can deduce that the best performing model is
the baseline when the hyper-parameters are optimally fine-
tuned for all models. This is due to the lack of diversity
within the data as each sample is taken from the same
OCT machine, from the same hospital. While the baseline
appears to identify the patterns within this dataset well,
it is likely to perform worse when applied to other data or
augmented data (as demonstrated in Section IV-F). The next
best models are the Shared Aggregated model (SA), and the
Unshared Aggregated model (UA). The results clearly show
that aggregated models generally outperform contrastive
models. This indicates that outputting the distance rather than
the image representations from the network is more suited
to our problem. As contrastive models are expected to be
inferior, we have omitted them from our subsequent tests.

B. DATA AUGMENTATION
This test shows the effect of using and removing different
augmentations, based on the optimal values found in
the previous experiment. We assess every combination of
augmentations and present a range of results in Table 3. The
random affine transformation performs a random rotation
between ± 20 degrees, a random translation in x,y up to ±

1.5% of the images size, a random scale up to ± 10% of the
images size, and a random shear up to ± 10 degrees in x,y.
The brightness and contrast are randomly changed by up to
± 15%. Gaussian noise adds random noise at an amount of
0.2. Speckle noise adds noise at an amount of 0.2.

Data augmentation is not universally beneficial for all
models, as the results of our experiments demonstrate that
the performance of each model varies when augmented
data is used. Using Table 3, we confirm our suspicion that

the baseline performs poorly when trained on augmented
data. In the presence of diverse data, the baseline model
exhibits a worse performance, hence why the best performing
metrics can be observed for the baseline where there is
no data augmentation. Interestingly, UA also prefers no
augmentation in terms of its performance. The spread of
results we obtain from this experiment is shown to be
tighter than that of the baseline, suggesting UA generally
reacts better to augmentation. On the other hand, the SA
model shows a significant improvement in performance with
data augmentation techniques such as affine transformations,
brightness & contrast adjustments, and the addition of
Gaussian noise improving the model’s performance.

C. SYMMETRY VS. SIMILARITY
In order to provide some explainability into the behaviour of
our model, in this section, we attempt to identify whether the
model is focusing on the symmetry of the eyes (as often done
by medical practitioners [5]) or whether similarity between
the pair of inputs dictates the output prediction. We measure
how well the models can identify symmetry, by flipping one
eye in the test set. This test effectively measures whether
the model is focusing on symmetry as if symmetry features
are learnt during the training process, then the model would
be expected to perform reasonably well on a test where
symmetry is enforced artificially.

It is important to explain the behaviour of the model so
we can assess whether the approach is following common
medical practice and measures interretinal symmetry for
diagnosing MS, rather than similarity. UA achieved scores
of 0.864, 0.842, 0.940, SA achieved scores of 0.784, 0.782,
0.871 and the baseline achieved scores of 0.807, 0.790, 0.942.

In a similar test, we measure the models’ ability to
identify similarity, where one of the images in the train and
test set was flipped. This checks for whether the model is
focusing on similarity. It is crucial to flip both images since
not doing so would result in both symmetrical and similar
features between the train and test sets, making it impossible
to test which type of features the model was identifying.
UA achieved scores of 0.795, 0.757, 0.940, SA achieved
scores of 0.818, 0.765, 0.989 and the baseline achieved scores
of 0.830, 0.800, 0.961.

Our symmetry/similarity tests identified that UA exhibited
a focus on symmetry by -2.2% in accuracy - i.e. the model
performs 2.2% worse in terms of accuracy in the symmetry
test than in the similarity test. Conversely, SA performs
with a focus on symmetry at a level of −19.3%. This
suggests UA better focuses on symmetry overall as the
difference between the standard dataset results is smaller.
These findings are particularly relevant in medical contexts,
where retinal symmetry is a critical diagnostic factor for MS.
As a consequence of this, we would prefer a model that
better analyses symmetry. Additionally, the similarity test
demonstrates that SA places an emphasis on similarity by
−15.9%whereas UAwas lower at−6.8%. Larger differences
in these results indicate a lesser focus on a given aspect.
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TABLE 2. The best hyper-parameter tuning results. SA: Shared Aggregated; UA: Unshared Aggregated; SC: Shared Contrastive; UC: Unshared Contrastive.
Demonstrating the general performance of the models.

TABLE 3. Augmentation experiment results, demonstrating the most effective combination of data augmentation methods.

TABLE 4. A sample of layer freezing results for UA to show a
performance increase.

These results confirm that SA focuses more on similarity
over symmetry and UA focuses more on symmetry over
similarity. These results are intuitively sensible since an
unshared model can capture individual features for each eye
due to them having entirely different parameters, allowing
the model to focus more effectively on the symmetry
between distinct features rather than the comparison of the
same features in each eye. In light of this test, we work
with only UA in subsequent tests to align with medical
practices.

D. TRANSFER LEARNING
Another important area to explore to improve performance
and robustness is the potential application of transfer learning
within our training pipeline. Transfer learning makes use
of pre-trained weights in model initialisation, allowing for
the pre-learning of simple features such as lines and shapes.
By doing so, if these simple features appear in the training
data, then the model’s weights are effectively pre-learned.
This leads to a higher accuracy and is especially useful when
only a very small amount of data is available, as is in our
case. In this experiment, the weights from ImageNet1K [47]
are used in our training process. Without transfer learning,
UA gets scores of 0.886, 0.872, 0.986 for accuracy, F1 Score

TABLE 5. The results of the experiments to determine the best
architecture, using optimal hyper-parameters.

and AUC respectively, but with the use of transfer learning,
the model reaches scores as high as 0.932, 0.923, 0.975. The
baseline does not improve using transfer learning, getting
scores of 0.989, 0.988, 1.00 without and 0.920, 0.918,
0.973 with transfer learning.

We also experiment with freezing a number of shallow
layers in the model to allow the network to learn task-specific
features while retaining the useful generic features learned
in the pre-training phase. Table 4 shows the results of this
experiment. Using this technique, UA achieves scores of
0.932, 0.923, 0.975 for accuracy, F1 and AUC respectively
with 24 frozen layers. This improves the performance by
around 5%, bringing it closer to the baseline accuracy, as the
model can better focus on deeper layers which identify
patterns associated with symmetry.

Interestingly, transfer learning tests demonstrate that the
baseline does not improve with pre-trained weights. We can
analyse that the baseline extracted different features to get to
its outputs than that of the pre-trained model and therefore,
its pre-trained weights are not useful. This means that the
baseline is taking advantage of certain shortcuts within
the existing datasets and cannot generalise to data from a
different underlying distribution (a conclusion reinforced in
Section IV-F).
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TABLE 6. A sample of results of the baseline and UA models on the simulated external test set on random set of hyper-parameters.

TABLE 7. Results of our experiments on the simulated external test set
with different architectures, using optimal hyper-parameters.

E. NETWORK ARCHITECTURE
Swapping out the network architecture can have a significant
impact on predictive performance as some architectures are
better suited to different types of tasks. In this section,
we perform extensive experiments to determine the best
possible network architecture for our task. Table 5 shows
a summary of the best results obtained using the different
network architectures for UA. We perform hyper-parameter
tuning on each pre-trained individual architecture with no
augmentation, constructing 40 different test cases for each
architecture. We primarily focused our investigation on
smaller architectures [48], [49], [50], [51], [52], [53] as our
dataset is small and a large number of learnable parameters
will inevitably lead to overfitting. We can see ResNet50
achieves the highest scores of 0.955, 0.952, 0.988 for
accuracy, F1 and AUC respectively.

F. EVALUATING ROBUSTNESS
Robustness testing involves measuring how well the model
adapts to alterations in the data to evaluate its generalisation
capabilities. We measure this by modifying the data on which
the model is trained and tested. To more accurately assess the
model’s ability to withstand changes, we include a simulated
external test set in our experiments.

We first demonstrate that our model, has better gener-
alisation capabilities over that of the baseline model, even

in the case where hyper-parameters are completely random.
Table 6 overviews how each model reacts to new simulated
data. We can see that the baseline model continually fails to
generalise to simulated external data, in most cases seemingly
guessing at random, whereas the UA model sometimes is
able to generalise. We can see that even if hyper-parameter
tuning does not take place, the model still performs
well and is capable of diagnosing MS compared to the
baseline.

Secondly, it is important to verify the results of our
experiments on the different architectures in Section IV-E,
using the simulated external test set to evaluate the robustness
of the architectures in the context of our problem. We use
the same optimal parameters from Section IV-E and observe
the simulated external test set accuracy for each architecture.
We can then observe how different architectures cope with
data simulated to be captured under different conditions. The
results can be seen in Table 7. To measure the effectiveness
of our model, we also assess the baseline simulated accuracy.
We can observe AlexNet reaches a high score of 0.955, 0.950,
0.991 for accuracy, F1 Score and AUC.

Experimenting with the different network architectures
presents the challenge of selecting the best-performing
architecture using our two test sets. AlexNet shows good
performance on the simulated external test set but has a
lower accuracy on the regular test set. This suggests it is
generalising well but not generally performing well. Our
experiments with other models, such as ResNet50, reveal
a lower accuracy on the simulated external test set but a
very high accuracy on the regular test set. This suggests that
ResNet50 may have overfit to the training and in-distribution
testing data, but failed to generalise well to out-of-distribution
data, possibly due to its complexity. We determine that
ResNet18 offers the best trade-off due to its reasonably high
accuracy on both the simulated external test set and the
regular test set. ResNet18 has the right number of parameters
for our task and dataset and is a very well-rounded model,
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TABLE 8. Results of k-fold validation on the regular and simulated external test sets for a better evaluation of model performance.

TABLE 9. The best experimental results with tuned hyper-parameters on 50:50 split of the data to test robustness.

meaning it can perform well on out-of-distribution external
data.

To test the overall capabilities of our approach, we also
experiment with k-fold cross-validation. Table 8 shows the
results on our regular and simulated external test sets with
k-fold cross-validation, using different k values, for UA and
baseline. This is done to gain a better understanding of the
performance of the model over different splits of the data to
help us more precisely interpret model performance.

Our k-fold validation confirms that the baseline model
fails to achieve high accuracy on the simulated external
test set, with less than 50% accuracy observed across all
k values. In contrast, we see that UA consistently exhibits
superior performance on the simulated external test set
over all k values. This outcome is likely due to how the
network is structured, making it ideal for diverse samples.
Surprisingly, UA also outperforms the baseline model across
all k values. With the changing split of data, the baseline
once again continues to fall short in the face of our
Siamese network, proving our model’s continued robustness
to change. Interestingly, our model even attains high accuracy
levels when both datasets are used with lower values of k,
demonstrating its ability to train on very small amounts of
data, unlike the baseline.

G. 50:50 DATA SPLIT
Since the domain this study is focusing on generally suffers
from data scarcity, it is important for any proposed approach
to be able to perform well even when trained on a very small
training dataset. In this section, we present the results of an
experiment on a 50:50 spread of the test and training data after
optimal performance is achieved via hyper-parameter tuning.
The best results found for each model after hyper-parameter
tuning can be seen in Table 9.

Interestingly, our 50:50 split test yields intriguing results,
as UA surpasses the baseline in terms of accuracy on the
test and simulated external test set by around 2% and
20% respectively. The UA model improves with the new

split whereas the baseline performance decreased. These
results, combinedwith the k-fold cross validation experiment,
suggest that the baseline model tends to overfit and lacks
generalisation capabilities. To make the baseline generalise
and capture better features, we need a more diverse training
dataset, which is extremely difficult and expensive to obtain.

V. CONCLUSION
Our study has investigated the effectiveness of detecting
MS, through asymmetry within the retinas. We propose the
use of a Siamese neural network, trained on OCT images
to detect ON lesions and diagnose MS with high accuracy.
Early diagnosis of MS can help alleviate symptoms and
slow the progression of the autoimmune disease. With new
techniques desperately needed for the diagnosis of MS [5],
we have demonstrated the practicality of our model through
numerous rigorous experiments. The proposed model is
robust and accurate and can achieve accuracy levels of up
to 0.932, even though the dataset available for training
is rather small. Additionally, our approach has also been
tested on a simulated external test set to evaluate its
generalisation capabilities, which is highly important when
training data is scarce. An effective automated MS detection
model such as the proposed approach is cost-effective,
only requires OCT imagery, and is very fast and efficient
compared to a medical professional, being able to analyse
many images per second. Additionally, such an automated
diagnosis system can provide low-cost early warnings, which
can significantly democratise access to essential healthcare,
especially in areas where specialist services might not be
readily available. Despite this, there could be challenges
when applying this technique in real-world scenarios as
neural networks often function in ways that are complex
and difficult to interpret for human users, obscuring the
understanding of their decision-making processes. This lack
of transparency and explainability can be a significant issue
in medical diagnostics and can face regulatory hurdles as
well. Over time, other technical challenges could arise such
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as an increased variability in OCT images due to factors
like a patient’s age or ethnicity, which can also affect the
performance of the network. Additionally, the reliability
of this approach also depends heavily on the quality and
consistency of the images, requiring standardised imaging
procedures to ensure accuracy of the overall system.

There is a vast scope for future work that could extend
our research. Of course, the inclusion of a larger dataset
for training would boost the performance of any automated
MS detection approach. One important extension would
be the use of another authentic dataset captured under
different clinical and environmental conditions to evaluate the
robustness of the model, rather than the simulation of one,
as was used in our work. Other directions of future research
could include specific region symmetry analysis within each
retina as ocular pathology is more prevalent around the optic
nerve and at the terminal of vascular vessels.
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