RATIONALITY OF TWIST REPRESENTATION ZETA
FUNCTIONS OF COMPACT p-ADIC ANALYTIC GROUPS

ALEXANDER STASINSKI AND MICHELE ZORDAN

ABSTRACT. We prove that for any twist rigid compact p-adic analytic group
G, its twist representation zeta function is a finite sum of terms nféfZ (p~*),
where n; are natural numbers and f;(t) € Q(t) are rational functions. Mero-
morphic continuation and rationality of the abscissa of the zeta function follow
as corollaries. If G is moreover a pro-p group, we prove that its twist represen-
tation zeta function is rational in p~*. To establish these results we develop
a Clifford theory for twist isoclasses of representations, including a new coho-
mological invariant of a twist isoclass.

1. INTRODUCTION

The representation zeta series of a group G is the formal Dirichlet series

Za(s) =S (@~ = 3 p(1),

pelrr(G)

where 7, (G) is the number of isomorphism classes of (continuous, if G is topological)
complex irreducible n-dimensional representations of G (assumed to be finite for
each n) and Irr(G) denotes the set of irreducible characters of G. If the sequence
Ry(G) = ZZI\LI r;(G) grows at most polynomially, Z(s) defines a holomorphic
function (g(s) on some right half-plane of C, which is called the representation
zeta function of G. Representation zeta functions have been studied in a number
of papers; see the references in [21].

A group G is called representation rigid if the number 7, (G) is finite, for each n.
This holds for large families of groups, such as semisimple Lie groups, arithmetic
groups and semisimple p-adic groups (see, for instance, [16] and [15]). There are
significant classes of groups that are not representation rigid, for example torsion-
free nilpotent groups or reductive p-adic groups with infinitely many 1-dimensional
representations, like GL,,(Z,). These groups therefore do not possess a representa-
tion zeta function in the usual sense. Nevertheless, it turns out that in many cases
the number 7, (G) of irreducible representations (up to isomorphism) of dimension
n up to one-dimensional twists (i.e., tensoring by one-dimensional representations)
is finite for all n. We call such groups twist rigid. Examples of twist rigid groups in-
clude finitely generated nilpotent groups and most (possibly all) reductive compact
p-adic groups. The latter is work in progress of the authors joint with B. Martin.
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For a twist rigid group G, one can define the Dirichlet series
Za(s) = Z T (G)n™*
n=1

and its meromorphic continuation C¢(s) (where it exists), called the twist (repre-
sentation) zeta series/function, respectively.

Following the terminology in [21], we say that a Dirichlet series with integer
coefficients is virtually rational in p~* if, as an element of Z[p; ®,p5 °,...], where
P1,P2, ... are the primes in N, it is of the form

k
(11) S0t hi07),

for some natural numbers k and n; and rational functions f;(t) € Q(t). If Zg(s) de-
fines a zeta function (g (s), we say that (g(s) is virtually rational in p~° if Zg(s) is.
When speaking informally, we will often say that a zeta series/function is (virtually)
rational, that is, omitting the specification “in p~™*”.

In [20] the first author and Voll proved rationality of the local factors of twist
zeta functions of torsion-free finitely generated nilpotent groups associated with
certain group schemes when a suitable Kirillov orbit method can be applied and
in [10] Hrushovski, Martin and Rideau proved (among other things) rationality of
local factors of twist representation zeta functions for all finitely generated nilpotent
groups. Examples of these zeta functions have been computed in [20, 23], and their
abscissae of convergence and analytic properties have been investigated in [8].

The study of twist representation zeta functions of compact p-adic groups was
initiated by the first author and Hésé in [9], who proved in particular that GL,,(O)
is twist rigid (where O is any compact discrete valuation ring) and explicitly com-
puted the twist zeta function of GLy(O) when 2 is a unit in @. When the char-
acteristic of O does not divide n, Stasinski and Hésa also proved that the abscissa
of convergence of (g, (o) coincides with the abscissa of convergence of (g, (o) ([9,
Proposition 3.4]). Computing the latter abscissae is an active area of research: see,
for example, the work by Larsen and Lubotzky [15], by Aizenbud and Avni [1], by
Budur [5] for lower and upper bounds and the work by Avni, Klopsch, Onn, and
Voll [2, 3, 4] and by Zordan [22] for computations in the cases n = 2, 3.

Unlike the pro-p completions of finitely generated nilpotent groups, compact p-
adic groups do not have rational twist zeta function, in general. However, in the
present paper we prove:

Theorem 1.1. Let G be a twist rigid compact p-adic analytic group. Then Zg(s)

is virtually rational in p~*. If in addition G is pro-p, then (g(s) is rational in p~*.

By the same argument as for [21, Corollary 1.2], this theorem has the following
consequences.

Corollary 1.2. Let G be a twist rigid compact p-adic analytic group. Then the
following holds regarding gg(s):

i) it extends meromorphically to the whole complex plane,

i1) it has an abscissa of convergence which is a rational number.

In [21], we proved the analogous results (cf. [21, Theorem 1.1 and Corollary 1.2])
for the representation zeta functions of representation rigid groups (a different proof,
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for p # 2, had been given earlier by Jaikin-Zapirain [12]). Although the proof of
Theorem 1.1 relies in part on results that were originally proved in [21] (namely [21,
Propositions 5.2 and 6.9]), the present case of twist zeta functions is substantially
more difficult and requires several new ideas.

Section 2 defines and studies restriction and induction of what we call G-twist
classes of characters in the presence of a normal subgroup. Here we let G be
an arbitrary profinite group and N a normal subgroup of finite index. For any
subgroup H of G, we say that A\, € Irr(H) are G-twist equivalent if A = 69|y, for
some character 1) of G of degree one (see Definition 2.2).

Let now H and H’ be subgroups of G such that H < H’ and such that H
contains the stabiliser in G of some 6 € Irr(N). Then the Clifford correspondence
says that induction gives a bijection between irreducible characters of H lying over
# and irreducible characters of H' lying over #. As we will see, this immediately
implies that induction of G-twist classes is a surjective map. However, in contrast to
the classical Clifford correspondence, induction of G-twist classes is not necessarily
injective. It is for this reason that our proof of Theorem 1.1 requires new methods
in addition to those used in the proof of [21, Theorem 1.1].

The main new ingredient needed is an invariant 7z x () attached to the G-

twist class 6 of a 0 € Irr(N) that controls precisely when two G-twist classes induce
to the same G-twist class. This invariant is an element in the group cohomology

H'(L/N,F /1),

where L is the stabiliser of 6 in @, K is the stabiliser of 6 in G (so that K < L),
Fk is the set of functions K/N — C*, T is a certain subgroup of Hom(K/N,C*)
and the action of L/N on Fk /T is the co-adjoint action (see Section 2.2 for the
definitions). We give a quick idea of how 77, KI(g) is defined. By definition of
L, any g € L fixes 6 up to G-twist, that is, for any g € L there is a character
hg of G of degree one such that %0 = 6i4|n. Now let 0 be a projective character
(i.e., the character of a projective representation) of K strongly extending 6 (see
[21, Definition 3.1]). Then both %9 and é¢g|K strongly extend 76, so there exists a
function u(g) : K/N — C* such that

0= 00,y|x - u(g)-

The goal of Section 2 is then to prove that the function g — p(g) gives rise to
a unique element in H'(L/N, F /T'), where the ambiguity in the choice of strong
extension # has been accounted for by quotienting out by 1-coboundaries, and the
the ambiguity in the choice of 1, has been accounted for by quotienting out by I'.
At the same time, it is shown that the resulting cohomology class only depends on
the class #, and not on the choice of representative 6.

The next step, carried out in Section 3, is to show that the invariant 77, x r(6)
is determined by Cr, (5) together with 7z, r, r, (5) Here Cg, is a function with
values in H?(K,, /N, C*) defined in [21] but here considered as a function on G-twist
classes, L, and K, are pro-p Sylow subgroups of L and K, respectively and I}, is the
image of " under restriction of homomorphisms to K,/N. Here it is assumed that
N is a normal pro-p subgroup of G but eventually N will be a uniform subgroup.

The reasons for reducing to pro-p Sylow subgroups is the same as for the reduction
of H(K/N,C*) to H*(K,/N,C*) in the proof of [21, Theorem 1.1], but in the twist
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zeta setting considered in the present paper, the reduction is more complicated and
uses very different arguments.

In Section 4 we use the main result of the previous section (Proposition 3.8) to
prove that Theorem 1.1 follows from the rationality of the partial twist zeta series

Z]CVC/L KI(S). Finally, Section 5 proves rationality of the partial twist zeta series

by, among other things, showing that the condition 7z, k,r,(0) = ¢/, for ¢’ €
HY(L/N, Fg /T), can be expressed as a definable condition on a suitable definable
set.

2. TWIST CLASSES AND CLIFFORD THEORY

From now on and throughout the rest of this paper, we will develop results that
will lead up to the proof of Theorem 1.1. The main goal of the present section
is to define a cohomology class 77, K,p(g) attached to a twist class @ of N. In the
following section, we will show that 77, K}p(g) controls the number of G-twist classes

of L lying above a given . In this sense, the function 77 x r can be thought of as
an analogue of the function Ck introduced in our previous joint work:

Theorem 2.1 ([21, Theorem 3.3]). Let © be an irreducible representation of N
fized by K < G. There exists a projective representation 11 of K which strongly
extends ©. Let & be the factor set of II. Then & is constant on cosets in K/N, so
we have a well-defined element o € Z?(K/N) given by

a(gN,hN) = (g, h).
Moreover, we have a well-defined function
Ci : {6 € Irr(N) | K < Stabg(0)} — H?(K/N), Ck(0) = [a].

Unlike in [21], where only Cx was used, we will need to use also 77 x.r(6) to
establish Theorem 1.1.

Throughout the current section, we let G be an arbitrary profinite group. We
say that two irreducible continuous complex representations p,o of G are twist
equivalent if there exists a one-dimensional representation ¢ of G such that p®1 =
o. This equivalence relation partitions the set of irreducible representations of G
into twist isoclasses. Let Lin(G) denote the set of characters in Irr(G) of degree
one, that is, the linear continuous characters of G. We say that A, ¢ € Irr(G) are
twist equivalent or lie in the same twist class if A\ = §1, for some ¢ € Lin(G). Of
course two representations are twist equivalent if and only if the characters they
afford are. Note that twist equivalence preserves the dimension of representations,
so we can speak of the dimension (degree) of a twist isoclass (twist class).

If H< G and ¢ : G — C* is a function (e.g., a degree one character), we will
write 1|z for Res%(1)). We now define a twist equivalence relation for represen-
tations of a subgroup of G, where the twisting is by degree one characters which
extend to G.

Definition 2.2. Let H be a subgroup of G and let p and o be two irreducible
representations of H. We say that p and o are G-twist equivalent, and write p~g o,
if there is a ¢ € Lin(G) such that

PPy =o.
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Similarly, two irreducible characters \,é € Irr(H) are G-twist equivalent, written
A~ 0, if A= 0|y, for some ¢ € Lin(G).

For a character 0 € Irr(H), we write 6 for the G-twist class of 0, that is,

0={pehr(H)|p~c0}

and we denote the set of such G-twist classes by Ir/\}(H ). In particular, when H = G,
Irr(G) is in bijection with the set of twist isoclasses of G.
From now on, let N be a normal subgroup of G of finite index. T he conjugation

action of G on Irr(NNV) induces an action on Irr(N) Indeed, g-0 := 99 is well-defined
because for any ¢ € Lin(G) and any n € N, we have

‘(WIn0)(n) = “(n)%6(n) = ¥ (n)0(n),

and hence (¢ y0) = 9.
For any 6 € Irr(NV), define the stabiliser subgroups

K’oy = Stabg(e), L’é = Stabg(g).

Note that K7 only depends on the class 6 because Stabg(f) = Stabg (6') for any
¢’ € 6. It is clear that K7 < Ly, but in fact we also have:

Lemma 2.3. The group Ky is normal in L.

Proof. Indeed, if k € K, g € Ly and x € N, then there exist some 1, ¥ -1 €
Lin(G) such that

B(y) = 0(y)by(y), ¢ 0(y) =0(y)g-1(y), forallye N.
Thus

IR () = 0(gh~ g aghg ™) = 0k g egk )iy ()
= 0(g ")ty (x) = O(x)y1 ()b, ().
But on the other hand,

O(x) = 99 0(x) = (9 0)(x) = (¢ '0)(g  ag)
=0(g7 2g)h,-1(97 " g) = O(z)g(x)thy—1 (),
so gkg~' € K5 0

2.1. Restriction and induction of twist classes. Let H be a group such that
N < H < G. Let Irt(H | 6) be the set of those G-twist classes A\ € Irr(H)
such that A € Irr(H | ¥|n0), for some ¢ € Lin(G). This is well-defined because
A€ Ir(H | |n0) if and only if ¥'|gA € Irr(H | ¢ |ny|n0), for all ¢ € Lin(G).

The following is an immediate consequence of Clifford’s theorem (see [11, (6.5)]).
Informally, it says that the G-twist classes contained in the restriction to N of
p € Irr(H | 0) are precisely the H-conjugates of 6.

— h~
Lemma 2.4. Let j € Irr(H | 6). Then j € Ire(H | 6), for any h € H. Moreover,
zf p € Ir(H | 6), for some 0 € Irr(N), then there exists an h € H such that

0—0’
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We now consider induction of twist classes. Let H and H’ be groups such that
Kg < H < H' < @. Induction gives rise to a function

Tndy : Tre(H | 8) — Tee(H' | §)

X — Ind&’ X,

which is well-defined thanks to the formula Ind® (¥|gA) = ¥|g Indi ()), for
1 € Lin(G), and surjective thanks to standard Clifford theory (see [11, (6.11)(b)]).
However, unlike the classical Clifford correspondence, where induction gives a bi-

—H'
jection Irr(H | 6) — Irr(H' | 0), the map Indy is not necessarily injective. Nev-
ertheless, once we get up to the group Lz, induction of twist classes behaves as in
the classical Clifford correspondence, namely:

—C
Lemma 2.5. The map IndL§ is bijective.

Proof. Let X\, X € fﬂf(Lg | 6) such that Indfé A~g Indfg N. After multiplying by
suitable degree one characters of G' restricted to Lz we may assume that both A
and )\ lie above . By hypothesis, there is a ¢ € Lin(G) such that

Indf A\ = ¢Indf_ X,
so by Clifford’s theorem there is a g € G such that %0 = 1|y6. Thus g € Lz and
= 9 lies above |y0. Standard Clifford theory now implies that A = ¢[r N’

because A\ and | Lg)‘/ induce to the same irreducible character of G, both lie above
Y|n0, and Stabg(¢¥|n0) = Kz < Lj. O

2.2. The function [ attached to a strong extension. From now on, let § €
Irr(N) be fixed, let L and K groups such that
N<L<ILy and N <K< K5

We assume that L normalises K. The situations we will consider where this is
satisfied are when either L = Lg and K =LnN K(; or L < Lg and K = Kg.

From now on, let § € Plrr, (K) be a strong extension of § to K with factor set
a. For any g € L, we have

(2.1) 99 = 0g| N,
for some 1, € Lin(G). The conjugate projective character %9 defined by gé(aﬁ) =

0(g~txg) has factor set 9%, where
Ia(z,y) = a(g txg, g yg) for all z,y € K.
Since both “d and éz/;g\ K are strong extensions of 70, there exists a function
n(g) : K/N — C~
(i.e., a function on K constant on cosets of N) such that
(2.2) 0 = 0yl - p(9)-
Note that we may take u(g) = p(gn)/,\for any n € N because N fixes 6. Indeed, if

O is a representation affording 6 and © is a projective representation of K affording
0, then, for any n € N and = € K, we have
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(2.3) "0(z) = tr(O(n"'an)) = tr(O(n"1)O(2)O(n)) = tr(6(z)) = b(x).

We will therefore henceforth write p(gN) instead of p(g).
Using (2.2) and the fact that factor sets multiply under tensor products of pro-
jective representations, we deduce that the factor set of u(gN) is 9aa ™1, that is,

w(gN) € PIrr o0 -1 (K/N).

Lemma 2.6. For every x € K there exists an n € N such that é(mn) # 0. Thus,
for fized 8, the function p(gN) is uniquely determined by gN, 6 and 4|k .

Proof. Let © be a representation iffording 0 and Oa projective representation of
K affording 6, so that 6(zn) = tr(0(an)) = tr(6(x)O(n)). Assume that §(zn) =0

~

for all n € N. Then tr(0(x)©(n)) =0 for all n € N, and by a theorem of Burnside
(see [6, (27.4)]) the values of © span the whole algebra Mg(1)(C) of matrices of size
6(1), so we have tr(6(z)A) = 0, for all A € Mp(1)(C). Since the trace form on
Mp(1)(C) is non-degenerate, this implies that @(:E) = 0, which is a contradiction.
Thus 6(zn) # 0 for some n € N and
u(gN)(@N) = p(gN)(@nN) = “B(an)b(zn) oy (@n) ",

which proves the second assertion. [

We now consider how p(gN) depends on 14|x. By (2.1), we have %0 = 01),|n.
I:et Y, € Lin(G) bf) such that % = 64/ |n. Then 6 (g9, !)|x = 0 and since both
0 (¢g1p ')k and 6 are strong extensions of 6, we have

(2.4) 0 (gl ke = 0- vy,
for some function v, : K/N — C*. In fact, since 0 (Yghy )|k and 0 have the same
factor set, v, has trivial factor set, that is, v, is a homomorphism. Thus (2.2) can
be written
gr N

(2.5) = 0glic - (gN) = 00|k - (g )vg.
Definition 2.7. Define the following subgroup of Lin(K/N).

Iy g ={v € Lin(K/N) | fc|x = Ov, for some ¢ € Lin(G)}.

(as usual, we denote by Lin(K/N) the subgroup of Lin(K) of characters which are
trivial on N).

In the present section, K and 0 are fixed and we will simply write I' for ' 5.

Note that I' is independent of the choice of representative 6 of 6 and of the choice
of strong extension 6 of §. Indeed, if ) € Lin(G) and ¢’ is a strong extension of
01|, then there exists a function w : K/N — C* such that

él/)h(w S él.
Clearly fe|x = v holds for some ¢ € Lin(G), if and only if fe| x| xw = Ovi)| gw,
that is, by the equation above, if and only if é’5|K =0v.
Moreover, for every v € I' and 9, as in (2.2), if we let ¢ € Lin(G) be such that
fc|x = Ov, we have that (2.4) holds with Y, = e "y and vy = v. Thus (2.5)
implies the following.
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Lemma 2.8. For any g € L, the coset u(gN) := pu(gN)T is independent of the
choice of Y4l in (2.2).

In what follows, for a set A, we use the notation Func(A4,C*) to denote the
group of functions A — C* under pointwise multiplication. The last lemma implies
that, when 6 is fixed, gV and 0 uniquely determine pu(gN) and hence 0 uniquely
determines the function

o:L/N— Fg/T, gr— u(gN),
where
Fk := Func(K/N,C>).

We endow the abelian group Fy with the structure of L/N-module via gN - f = 9§,
that is, (gN- f)(zN) = f(g~txgN) (this is well-defined because K is normalised by
L). Since é£|K = v implies, by conjugating both sides by g, that é5|K = égu Iisa
submodule of F. Thus the quotient F /T carries the corresponding L/N-module
structure.

2.3. The cohomology class determined by ri. We now consider how zi depends
on the choice of strong extension € and the choice of representative 6 € 6.

Proposition 2.9. Let 6 € Irr(N) and let 6 be a strong extension of 0 to K. The

function i associated with 0 is an element of Z*(L/N, F /T). The image [fi] of i

in HY(L/N, Fx /JT') is uniquely determined by 0, that is, independent of the choice

of strong extension 6 and independent of the choice of representative 6 € 6.

Proof. For the first statement, we need to show that i is a crossed homomorphism,

that is, that for all g,¢' € L, li(g¢’N) = 1i(gN)?fi(g’ N), or equivalently,
#(gN)?u(g'N)T = p(gg'N)T.

By (2.2), there exist some 1,4, 9y € Lin(G) such that

’
99 A

0="00g|K 1y N)) = 0y|x - ‘ulg'N)
0yl e - (gN )y |k - “u(g' N)
=0 (Ygthg)| i - 1(gN) (g’ N).

On the other hand, for some 14, € Lin(G) we have 970 = éz/Jgg/|K - (g9’ N) and
hence

Ogqr i - 1(g9'N) = 0 (gtbgr) i - 11(gN) (g’ N).
This is equivalent to

(2.6) 0 (Vgtg) tgg i = 0 1u(gN) (g’ N)u(gg'N) Y,
which implies that u(gN)?u(¢’N)u(gg’N)=* € T. Thus f is crossed homomor-
phism.

For the second statement, let #' be another strong extension of # to K. Then

there exists a function w € Fg, such that 6/ = fw and hence, for any g € L there
is a ¢, € Lin(G) such that

(2.7) 0 =00yl ic - 1(gN) % = 'ty - p(gN) ™"
The function
f:gN = %ww™ T = 9%T(wl) !
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lies in BY(L/N, F/T) and (2.7) implies that [i] = [fif]. Hence both 6 and 6 deter-
mine the same element [fi] € Z'(L/N, Fg /T)/BY(L/N, Fx /T) = HY(L/N, Fx /T).

Finally, we need to show that [fz] is independent of the choice of representative
0 € 6. Let 0 € 6 and let ¢ € Lin(G) be such that ¢ = 6¢|y. Then 0u|x is a
strong extension of §’. We want to compute fi of 8’ with respect to 61)|x. For any
g € L, (2.2) yields

Y00lx) = 00|k = 00| kY| K - 1(gN)
= (09 k)| i - 1(gN).

Thus 6 and 8’ give rise to the same element fi, with respect to the strong extensions 0
and 0|k, respectively. By the independence of [z] on the choice of strong extension
proved above, we conclude that 6 and 6’ give rise to the same element [f]. O

2.4. The function 7., g . So far we have associated [f] € H'(L/N, Fx /T') with
a fixed class 6 € Irr(N). We now consider the situation when 6 varies, but with K
and L fixed.

Let L and K be as in the beginning of Section 2.2 and let I" be any subgroup of
Lin(K/N). Define

Ity jer(N) = {0 € r(N) | L= Ly, K = K5, T =T 5},
—_< ~
vy gp(N)={0€lr(N) | L< Ly, K< Kz I'=Tp 5},

where I'j. 5 is as in Definition 2.7. Note that I/I\'}L7K,1" (N) may well be empty for
some L, K,T'. Proposition 2.9 implies that we may define the following function

—~<
Tekr vy e p(N) — HY(L/N, Fg /T), Tr.xr(0) = [a]

3. REDUCTION TO PRO-p SYLOW SUBGROUPS

Throughout the present section, G will denote a profinite group and N a finite
index normal pro-p subgroup of G. Let N < K I L < G and I' be an arbitrary
subgroup of Lin(K/N). For any prime ¢ dividing |L/N], let L, be a subgroup of L
such that L,/N is a Sylow g-subgroup of L/N. Similarly, let K, be a subgroup of
K such that K;/N is a Sylow g-subgroup of K/N. We may and will assume that

K,=KnNL,
Let H < G be a group that fixes §. We note that the function Cy defined in
[21, Theorem 3.3] induces a function on twist classes. Let 6’ € 6 so that §' = 6y|y

for some ¢ € Lin(G). Let 6 be a strong extension of §. Then iy is a strong
extension of #’ with the same factor set as that of 8, and thus

Cu(0)=Cy(0).
This shows that the function Cg is constant on the twist class 5, SO CH(g) is well-

defined.
The goal of this section (Proposition 3.8) is to show that the invariant Tz x r(6)

~ —< ~
attached to a twist class 0 € Irry, ;o (V) is determined by Cr, (¢) together with

Tv,.x,.r,(0), where I';, is the image of I' under the map defined by restricting
homomorphisms of K/N to K,/N.
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Let g be a prime. We denote the g-primary component of a torsion abelian group
M by M4 and write m(q) for the g-part of an element m € M.

Lemma 3.1. Let G be a finite group of order m and M be an abelian group (written
multiplicatively) on which G acts. Assume that M is finitely divisible in the sense
that for any positive integer n and a € M, there is a finite but non-zero number of
elements x € M such that x™ = a. Then, for any integer ¢ > 1, we have

7Z'(G, M) = BY(G, MU,
where U' = {a € Z(G, M) | o™ = 1}. Moreover, H (G, M) is finite.
Proof. We first prove that BY(G, M) is divisible. A function 3 : G* — M is in
Bi(G, M) if and only if it is of the form

5(917 Ce 791) = glf'(gQ7 . 7gi)f(gl7 . ’gn)(_l)i
i—1

H f(gh - 95-1,9595+15- - -5 9i
j=1

)(—1)j

for some function f : G*=1 — M, where G° := {1} (see, e.g., [19, VIL3]). Let 3
and f be such that this holds. Since M is divisible, there exists, for any positive
integer n, a function f € G*~! — M such that f™ = f. Thus

5(917 ce 791) = glf(QQ, e ,gi)nf(gh . 7gn)(_l)i"

i—1
Hf(gla"'7gj717gjgj+17"'7gi)(_1)]n
j=1
g =1 n
g1+~ -~ — T -~ — J
=( Fg2, -0 f(grs - 9) " T Flors- 0951, 9595415 590)' 1)) ,
j=1

so B =" for some v € BY(G, M).

Let a € ZY(G,M). By [21, Lemma 3.8(i)] we have o™ € BY(G,M). Since
BY(G, M) is divisible, there is a 3 € B*(G, M) such that a™ = ™, and hence
aB~! € U'. We thus have o € BY(G, M)U* and since a was arbitrary, Z!(G, M) =
Bi(G, M)U".

Now, every element in U? is a function G* — {a € M | a™ = 1}. The codomain
is a finite set since M is finitely divisible, so U’ is finite and hence H!(G, M) is
finite, since it embeds in U®. O

3.1. Reduction of the parameter L. In this subsection we will show that for
9, 0 € IITL’K’F(N),

7—LP,K,F(§) = 7—L,,,K,F(9~') - 7-L,K,F(§> = 7—L,K,F(§l)-

(see Proposition 3.4). In order to prove this we need two lemmas. Let W < C*
be the group of roots of unity. Let f € Func(K,C*) and ¢ a prime. As in [21,
Section 6.1], we will fix a homomorphism 7, : C* — W, and denote m; o f by
fe)- Then for any g € G normalising K and any prime ¢, we have W fwy) =COfw-
Recall also the notation Fx = Func(K/N,C*).
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Lemma 3.2. Let q be a prime dividing |L/N| and p € Z'(L,/N, Fx). Suppose
that there exists a function wy : K/N — W, such that for all g € L,
1(gN) () = gwqwczl Vg
for some vy € T'. Then i € BY(L,/N, Fg/T).
Proof. Let U = {a € Z'(L,/N, F) | a/F«/NI = 1}. Then, as C*, and hence Fg, is
finitely divisible, Lemma 3.1 implies that
7Z'(L,/N, Fr) = UBY(L,/N, Fi).
Thus there is a 7 € U and a function w : K/N — C* such that, for g € L,
p(gN) = 7(gN)%w=". This implies that pu(gN)q) = 7(9N)(y g(w(q))w(_qi and
hence
T(9N) (g) = 1IN () (Uwig)wp)) "
Combined with the equation u(gN)(g) = %wqwy, 'vy this implies that

T(gN) () = gwqwq_l(g(w(q))w(_(j)_lyg = g(wqw(_qi)(wqw(_(j)_lyg'

Since 7(gN') has values in W, we have 7(gN) = 7(gN) () and thus, for all g € L,

p(gN) = T(gN) ww™ = (wewi ) (wewi,)) ™ fw™ g

= g(wqw(_qiw)(wqw(_q%w)flug.
Hence the function fi : L,/N — Fg /T is an element in B'(L,/N, Fg /T). O

Lemma 3.3. Let 0 € ﬂr}L’K’F(N). For every prime q dividing |L/N| such that
q # p, we have Tp, xr(0) = 1.

Proof. Let © be a representation of N affording the character 6. Then, for g € L,
there is a 1, € Lin(G), P, € GLy(1)(C) and p € Z'(Ly/N, Fi) such that

(3.1) 6 = P 1OP, - vyl ic-p(gN).

By definition we have T, x r(0) = [fi], so by Lemma 3.2 it suffices to show that
there is a function wy : K/N — W, such that for all g € L,

(3.2) w(gN) g = gwqwq_ll/g,

for some v, € I'. To prove this, let £ = deto O so that & € Func(K,C*) (note that
the use of this function is the reason we cannot work only with projective characters
in this proof). Then, by equation (3.1),

9™ = p(gN)?D (g ).

and hence

(3.3) %" = nlgN) (S (Wl )0

Now, 6(1) is a power of p so it is coprime to ¢. This means that raising to the
power of (1) is an automorphism of W(,). Therefore there exists a unique function

wq : K — W) such that wg(l) = §(g) and (3.3) implies that

9wqwq_1 = M(QN)(q) (¢9|K)(Q)'

We finish the proof by showing that the last equality implies equation (3.2),
that is, that (¢y|x)(q) € I' and that w, is constant on cosets of N. First observe
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that (¢g|n)(g) is @ homomorphism from a pro-p group to the g-group W, so it
must be trivial. By the definition of I' . 5 (Definition 2.7), it therefore follows that

(YglK)(q) €T g=T-
It remains to show that w, is constant on the cosets of N in K. Indeed, let

t € Kand n € N. Then (:)(tn) = @(t)@(n), so &(tn) = £(t)€(n) and hence
Eg(tn) = £y (1)€(g)(n). Since {|y= detoO is a homomorphism from the pro-p
group N to C*, &, is trivial on N. It follows that £, (tn) = () (t), so wy(tn)?@) =
£ (tn) = & (1) = we(t)’D) and thus w,(tn) = wq(t). O

Proposition 3.4. Let 5,5’ € IrNrLKI(N). Then

7-LP,K,F(§) = EP,K,F(@) = 7-L,K,F(§) = 7-LKF(§/)

Proof. By [21, Lemma 3.8], H'(L/N, F/T) is a torsion abelian group so we can
write

Tox.r(0) = H 7—L,K,F(§)(q)7
q

where ¢ runs through the primes dividing |L/N|. Let ¢ be a prime dividing |L/N]|.
By [21, Lemma 3.8],

res, : H'(L/N, F/T) () — H'(Ly/N, Fg /T)

is injective. We claim that

(34) resq(’TL,K,p(O)(q)) = 7-Lq,K,F(9)

(and similarly for 6”). Indeed, letting p be such that 77, & r(6)

resy,/N,L,/N(Tr,x.r(9) = [Alz,] = Tr,xr(0),

[1], we have

where the second equality holds by the definition of 7z, x r(f). Furthermore,
since H'(L,/N, Fx/T') is a g-group, the homomorphism resz/N,L,/N 18 trivial on
HY(L/N, Fi /T) s, for any prime ¢ # ¢. Thus,

vesy, /v 0, /N (To,k,0(0) = respn o, v (To ke (0) () = resg(To, k.0 (0) ),

proving (3.4).
Now, if ¢ # p, Lemma 3.3 implies that 7z  xr(f) = 1 and by (3.4) we obtain

resy (T, x,r(0)(g) = 1,~Whence ’TLJSF(G)(Q) =1 (by the injectivity of res;). We must

therefore have T, x r(0) = Ty, K}p(@)(p), and since 6 was arbitrary, we similarly have

7'L7K7p(<9~’) = 7—L7K7F(§/)(p)- Applying (3.4) for ¢ = p, we get

res, (7L, 0 (0)(p)) = To, k0 (0) = TL, k0 (0) = resy(TLk,r (0") ()

and we conclude that 7},71(71'*(5)(1,) = 7171(71'*(5/)(1,), and thus 'TL,K,F(a) = E,K,F(@)'
O

3.2. Reduction of the coefficient module. We have shown that 77 x r(6) is

determined by Tz, k.r(0) € H'(L,/N, Fg/T). We will now further show that the
latter is determined by an element in H'(L, /N, Fg, /T",) where

I, ={vlg,|verl}.
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3.2.1. Reduction of the parameter I'. We start by investigating the structure of
Lrg
Definition 3.5. We define

I'% = {v € Lin(K/N) | v = €|, for some ¢ € Lin(G), v, = 1}.

Lemma 3.6. Let § € Irr(N) such that K < Stabg(6).
i) Then Iy 5 splits as the (internal) direct product

0
FK,§ =Tk (FK,é) (p)
where (FK,§) o = {vp) v el}.
ii) Moreover, let p : Lin(K) — Lin(K,) be the homomorphism of abelian
groups induced by restricting maps on K to maps on K,. ThenT% < Kerp
and p restricted to (I‘K g) ) is injective with image T'p. 5.

Proof. We prove the first statement. Let 6 be a strong extension of §. First T'% <
'y 5 Indeed, if v € I'%, then v|y= 1 and v = €|k for some £ € Lin(G). We
have e|y= 1, so fe|y= 6. Thus v = feg, so v € I'. Second, ' N (r 1

because, by definition, v,y =1 for all v € I'%. Let now v € T, so that
v= H Y(q)
q

where the product runs over primes ¢ | [K : N|. We prove that for ¢ # p, v, € ro.
Fix g # p. Since (v(g))p) = 1, it suffices to show that v, is the restriction of a
character in Lin(G). In order to do so, let © be representation affording ¢ and let
O be a strong extension of © to K. By definition of I' K,.0 We have that there are

P € GLgy(1)(C) and ¢ € Lin(G) such that

Kpﬁ) )

elg-©=v- P'OP.

This implies that
s|?<(1)- (det0©) = M . (deto (:))
Hence (g]x)?™® = 1M and so ((g|x)?M) ) = (#D)(,. The decomposition of
a root of unity into roots of unity of prime power order is multiplicative, hence
(eq) lr)fM) = V(Gq()l). Since ¢ # p and (1) is a power of p, it follows that 4|k = v/(q)-
We prove the second part. Clearly T'%, < Kerp because K, is a pro-p group.

Moreover, every homomorphism K/N — W, factors through

K 1 K, K, KIN

[K,K|N . [K, KN

where the product runs over primes ¢ | |K : N|. For ¢ # p, there are no non-trivial
homomorphisms K,[K, K|N/[K,K|N — W. Thus p is injective on (FK,, ) ®)

and we need only prove the statement about its image. To this end, let @p = 0Ok,
and let v, € I';; 5. Then there are P € GLy(1)(C) and ¢ € Lin(G) such that

elx, ©p = 1, P10, P.
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Restricting both sides of the last equality to N we have that ¢|x-© = P~1OP, so

e|x-© and P~1OP are both strong extensions of &[y-©. Thus there is a scalar
function v : K/N — C* such that

v-Ip) = e|x-OP1OIP.

By its very definition, v € I" and so v, € (F K 5) This is enough to conclude,

(p)’
because K, is a pro-p group and hence we have v, |k, = v|k,= vp. O

The following consequence of the structure of T’ K8 will achieve the goal of this
subsection and will also be key to producing a first order formula for the predicate
'y 5 =T in Section 5.

Proposition 3.7. Let 6 € IAr;(N) such that K < Kp. Assume there exists 0 e
Irr(N) such that Ty, 5, =T. Then T, 5 =T if and only if T'). 57=T,.
’ ) V2l
Proof. Part ii) of Lemma 3.6 gives that
T 7=Tp = (Tx 7)) =T
By part i) of Lemma 3.6, the latter is equivalent to I'j. 7 = (F(}(FK 5) o =
9T, =T. 0

3.2.2. Reduction of the parameter K. In what follows, we let 6 € I’H“LJQF(N).
Proposition 3.7 implies that

~ ~<
Irrp, kr(N) C Irer,Kp,Fp(N)

(see Section 2.4 for the definitions of these sets) and therefore, for 9 € Irr Lk r(N),
the element Tz, x, r,(0) € H' (L, /N, Fg, /T'p) is well-defined. The following propo-
sition shows that 7'LP7K,F(§) is determined by Tz, k,.r, (5)

Proposition 3.8. Let 6,6’ € Ir,er7K7p(N) and assume that C, 0) = Ck, (6"). Then
TL,.K,.T, 0) = 7—Lp,Kp7Fp(9 )= Tr.xk,r(0 0) =Tz Kr(9’)
Proof. By Proposition 3.4 it suffices to prove that
Tiy ko0, (0) = Tiy k0,0, () = To, 0(0) = o, k0 (6).

By [21, Lemma 4.1] our hypothesis C, 0) = Ck, (6") implies that Cx (6) = Cx (6).
Therefore, by [21, Lemma 3.4], there exist strong extensions 0 and ' with the same
factor set. Thus there exist u, ' € Z'(L,/N, Fk), such that for all g € L, there
are 14,1, € Lin(G) with

95 95 5

0 =00g|k-p(gN)  and 0" =0"Yglicp'(gN).
Since § and @’ have the same factor set, we have
(3.5) w(gN)~1 i/ (gN) € Lin(K/N) = Hom(K/N,C*).

Assume now that ’TLP,KWFP(’QV) = TLp’Kp,pp(éT/). Then there is a function 7 :
K,/N — C* such that, for any g € L,,

((gN) M, ) (1 (gN) |1, )Tp = ' Ty
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Changing 1, and ¢, if necessary we may without loss of generality assume that

(3.6) pgN) " e, 1 (gN) i, = "

By (3.5) and (3.6), 9qn~1! is the restriction of an element in Lin(K/N), hence it is
trivial on (K,N[K, K])N. By the second isomorphism theorem, 1 defines a function
on K,[K, K|N, which is constant on cosets of [K, K|N. By abuse of notation, we
denote this function by 7 as well. The finite abelian group K/([K, K]N) factors as

K KK KN 10 K,[K, KIN
[K,KIN  [K,K|N [K,K]N ’

(3.7)

where ¢ runs through the primes dividing |K : K,|. Extend 7 to the function
7 K/([K,K|N) — C* such that ) = 1 on % for every ¢ # p. By (3.5) and
(3.6), the function 997~! is a homomorphism on % and it is trivial on each
of the other factors on the right-hand side of (3.7). Thus %)7~! is a homomorphism
K/N — C*. Therefore
(1) ) = i) i)
is a homomorphism K/N — W, and, by (3.6),
1N L, 1 (GN) ) 56, = 000y 1) = M) ) 1K,

Since u(gN)(p%u’(gN)(p) is a homomorphism from K/([K,K|N) to the p-group

Wp), it is trivial on every factor %, q # p, in (3.7). We therefore have

WIN) oy GN) ) = i) i)
for any g € L, so by Lemma 3.2,
§T € BY(L,/N, K/T),
that is,
T, xr(0 0) = TL, ().

4. REDUCTION TO THE PARTIAL TWIST ZETA SERIES

4.1. Dirichlet polynomials for twist character triples. If 6 € IrA;(N ) and
N < L < Lz we will call (L, N, 0) a G-twist character triple. Given such a triple,
define the Dirichlet polynomial

~ A1)\ 7°
Tusa= ¥ (G5)
AeIrr(L|6)
The goal of this subsection is to prove Proposition 4.3, that is, that the invariants
Ck, (6) and TL,.K,T, (A) associated with 6 determine f I N,Q)( ). This will be used
in the proof of Proposition 4.4 in the following subsectlon.

We start with some straightforward generalisations to projective characters of
some of the notation and formalism regarding induction and restriction. Let H be
a profinite group and let o € Z?(H). If M is a normal subgroup of H of finite index
and 0 € Plrr,,, (M) we define

Plrro (H | 0) = {7 € Plrr (H) | (Resh; m,0) # 0}.
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From now on, let « € Z%(L/N).

Lemma 4.1. Let 6 € Plrr,,  (N). Assume that LN Ky < K (i.e., Stabr(0) < K)
and that ag is L-invariant Then we have a bijection

Indy , : Plrra, (K | 0) — Pl (L | 6).

Proof. The proof of [11, Theorem 6.11] transfers, mutatis mutandis, to the present
situation as Frobenius reciprocity and Clifford’s theorem hold in the more general
context of projective representations (see, e.g., [13, Theorem 10.1] for the latter).

O

We generalise the G-twist equivalence relation ~¢g on Irr(L) to PIrr, (L) in the
obvious way, that is, for 1, w9 € Plrr, (L),

T ~g e <= m = m|, for some ¢ € Lin(G).

For a projective character 6 denote its G-twist class by 6 and we denote the set of
G-twist classes in PIrr, (L) by Plrr, (L). Moreover, if 6 € Plrr,,, (N), we define

Plrrq (L | 0)

as the set of those G-twist classes 7™ € ﬁr/ra(L) such that 7 € Plrro (L | 09|n),
for some ¢ € Lin(G). The G-twist equivalence relation is compatible with Indf(ﬁa
in the sense that for any A € Plrr,, (K) and ¢ € Lin(G), we have Indf(,a()\)w =
Indf(7a()\1/}| g ). This follows immediately from the character formula for induced
projective characters; see [14, Chapter 1, Proposition 9.1 (i)]. Thus, if ak is L-
invariant, there is a function

(4.1) Tndy , : Plrte, (K | 8) — Plra(L | 0)

sending 7 € Iﬁr/raK (K | 5) to the G-twist class of Indf()a .
The following lemma is a straightforward application of Mackey’s intertwining
number formula for projective characters [14, Ch. 1, Theorem 8.6].

Lemma 4.2. Let my,my € Plrr,,, (K) and assume that o is L-invariant. Then
—L —
IndK’a m™ = IndK’a Ty < dgeL (71'1 ~a 9772)_
Proposition 4.3. Let 6,6 € i;‘;‘L7K71"(N) and assume that CKp(g) = CKp(év’) and
Tep k1, (0) =Tr,.k,.1,(0). Then

fong(s) = ]F(L,N,(J')(S)'
Proof. We prove this by constructing a bijection

o :Ire(L | 6) —s Irr(L | 6")
such that for all € IArI*(L | 8) we have
AL ()

o1 (1)

for X € o(A).

As Ck,(0) = Cr,(8), we have Cr(f) = Cx () by [21, Lemma 4.1], so [21,
Lemma 3.4] implies that there are strong extensions 6 and @’ of 6 and ¢, respectively,
with the same factor set, say . Suppose that 7., x, r, (5) =TL,K,T, ([97) Then
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by Proposition 3.8, there are cocycles u, u’ € Z'(L/N, Fg), such that for any g € L
there exist 1,1, € Lin(G) with
g~
0 = 0| rc-p(gN),
%0 =0'g) |1 (gN),
p(gN)T = 1/ (gN) 9T,

for some function n : K/N — C*. By changing ¢, and 7,/}; if necessary, we may
assume without loss of generality that u(gN) = u/(gN)9%n~!. This gives, in par-
ticular, that

(4.2) by = ()¢, -p(gN).
Let w: L/N — C* be a function extending 7 and let § € B2(L/N) be its factor

set. Clearly, the restriction dx equals the factor set of 7. Let A € IrA/r(L | 6) and let
p € Irr(K | 0) be such that

~ —L .
A = Indgp.
By [21, Lemma 3.6] we have p = 0 - 7 for a unique © € Plrr,—1 (K/N). We define

~ ——L N
oo(A) = Indg 5 (nd' - ).

Note that 6’ - 7 € Irr(K), so nf’ - # € Plrrs, (K) and since 7 has constant value
7(1) on N, we have oo(\) € Plrrs(L | n(1)6").
We will show that
o0 : Tre(L | 6) — Plrs(L [ (1))

is a well-defined bijection.
First, to prove that oy is well-defined we need to prove that og(\) is independent

of the choice of the G-twist class p inducing to A. To this end, suppose that
~ I .
p* € Irr(K | 0) is another character such that A = Indgp* and let p* = 6 - 7*

L —~ L ~

with 7* € Plrr,-1(K/N). The relation Ind,p = Indgp* implies (by Mackey’s
induction-restriction theorem for ordinary characters) that there is a g € L such
that g(é . 7) ~q 0 - 7. Moreover, we have

(0-7)="0- 9 = (0wl p(gN)) - o
=0- (g7r¢9|K : N(QN)),

and thus 7* ~¢ 9mp(gN). On the other hand, by equation (4.2),

(4.4) "0l m) = nd’ - (my i - (o)),

SO

(4.3)

*

g(nél'ﬂ) ~G n9’~7r .
As 6 and 6’ have the same factor set, u(gN) and i/(gN) have the same factor set,

so = t(gN)u'(gN), and thus 9mn~!, is a homomorphism for all g € L. Hence the
factor set 0 of 1 is L-invariant. We can thus apply Lemma 4.2 to obtain that

—~—

I’n\&z)é (né’ : 7r) = ﬁ&fm (né’ . 7r*),

that is, oq is well-defined.
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Similarly, we can prove that oq is injective. Indeed, if oo(A) = oo(A*), with
A= E&iﬁ, p=0-7 and = E&;ﬁ*, p* =0 -7*, then Lemma 4.2 implies that
there is a g € L such that g(né/ .7) ~a -7, so by (4.4), 7~ 9mu(gN), hence
by (4.3) we get g(é -7) ~g 0 - 7, which by Lemma 4.2 implies that A= A*

The surjectivity part of Lemma 4.1 implies that the function in equation (4.1)
is surjective. Thus the function og is surjective and hence bijective.

We now define

c(N) =w - ao(N), for X € Irr(L | 6).
Multiplying by w™?! is clearly a bijection lgfr/rg(L | n(1)8") — fﬂr(L | /) so o is a
bijection I/rvr(L | 6) iIAr;(L | 6/). Moreover, for all A € IArI*(L | 6) with X = Ifﬁaf(ﬁ,
p=0-mand X € o()\), we have
A1) = L K[6()m(1),
N1 =w) L K|w(1)0'(D)r(1) = |L: K|0'(1)7(1).
This concludes the proof. O

4.2. Reduction of Theorem 1.1 to the partial twist zeta series. From now
on, let G be a twist-rigid compact p-adic analytic group. Note that G is allowed to
be FAD here and that in this case we may well have Zg(s) # Zg(s). Let N be a
normal open pro-p subgroup of G.

As in Sections 2 and 3 we write

Kg = Stabg(a), Lg = Stabg(e),

for any § € Irr(N). For K, L, ', K, and L, as in Section 3 and for any ¢ €
H?(K,/N) (we follow the convention in [21] to drop the trivial coefficient module

C* from cohomology groups as well as from cocycle and coboundary groups) and
¢ e H'(L,/N, Mk, /T}), define

5% o (N) = {0 € It ke r(N) | Ci, (6) = ¢, To,,r, (6) = €'}

In analogy with the partial representation zeta series defined earlier, we introduce
the partial twist zeta series

ZNprr(s) = Z o(1)~".
Geliny s r(N)
Note that ZJCVC/LKF (s) = 0 unless there is a 6 € Irr(N) such that K = K5, L = Ly
and I' . 7 = T". Note also that

Zn(s) = Z Z ZJC\;;CL,K,F(S)'
N<K<L<G c€H?(K,/N)
P<Lin(K/N) o' el (L, /N Fic, /T')

Let S denote the set of subgroups K < G such that N < K and K = Ky for
some 6 € Irr(N). Similarly, let S denote the set of subgroups L < G such that
N < L and L = Ly, for some 6 € Irr(N). For K € S, let G(K) be the set of
subgroups of I' < Lin(K/N) such that T' =T for some 6 € Irr(N) such that
K< Kg.

K,0°
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Proposition 4.4. Suppose that ZJCVCILKF(S) is rational in p~*°, for every L € g,
K eS8, Teg(K), ce H(K,/N) and ¢ € H(L,/N, F,/T). Then Theorem 1.1
holds.

Proof. By Lemma 2.4, for every p € I/E;(G), there are exactly |G : Lg| distinct
G-twist classes 6 € Irr (V) such that p € Irr(G | 5) Thus
Zo= X o= Y Gt X s
pelr(G) Gelrr(N) pelrr(G|0)

By Lemma 2.5, induction of G-twist classes from I/E;(Lg | ) to I/E;(G | 0) is a
bijective map. Therefore,

oM = ) (M1)-IG: Lg)
pelrr(G|) Xelrr(Lg]0)

and so

Zols)= 301G Lt Y 9(1“(28)_‘

Gelrr(N) Aelrr(Lg|0)
— Z |G:L5|*5*10(1)*Sf(L§7N75)(s)
Gelrr(N)
=S0UG L Y 0 g (9)-
LeS felrr(N)

Lz=L

If 6,6 € iy 1(N), then Ck, () = Ck,(¢") and Tp, x,r,(0) = To,.x,.r, ().
Thus, by Proposition 4.3, we have ]’”V(L N(;)(s) = f(L N (;,)(s). By the above expres-

sion for Zg(s), we can therefore write

Zo(s)=Y_ |G L7 > frer(8) 25 xr(s)

Ilée‘g c€H?(K,/N)
€ ’ 1
reg(k) c¢'€eH" (Ly/N,Fr /T)

where fz(};r (s):= f( L Nﬁ)(s) for some (equivalently, any) G-twist character triple
(L, N,0) such that 6 € It % (N).

From the assumption that Z]CVC,L e r(s) is rational in p—*

, it now follows that
Zg(s), and hence Zg(s)7 is virtually rational. Moreover, if G is pro-p, then |G : L|
is a power of p for any subgroup L, and likewise A(1) is a power of p, so f(L N 5)(3)
is a polynomial in p~*. Thus, when G is pro-p, Z(s), and hence E(;(s)7 is rational
in p~°. (I
5. RATIONALITY OF THE PARTIAL TWIST ZETA SERIES

The groups G, N, K, L, I', K, and L, are as in the previous two sections. We
shall show that, for each ¢ € H*(K,/N) and ¢ € H'(L,/N, Fg,/T',), the set of
twist classes Irr%f;(7F(N ) is in bijection with a set of equivalence classes under a
definable equivalence relation. We deduce from this that each partial twist zeta
series is rational in p~* and hence prove Theorem 1.1. Fix ¢ € H?(K,/N) and
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¢ € HY(L,/N, Fk,/T'},) throughout the section. In order to use Proposition 3.7 we

assume in this section that flfvrCLcI,(F(N) £ ().

5.1. Reduction of the predicate TLp»Kp’Fp (9) = ¢’ to degree one characters.
In this section we reduce the computation of 7, x,r,(f) to a statement on a
degree one character. Namely, if ¢ € H'(L,/N, Fg,/T',), our goal is to express

Tv,.k,r,(0) = ¢ with a statement involving only elements of N, conjugation by
elements of G, and a linear character of a finite-index subgroup of N.
We shall make use of the following notation from [21, Section 5]. We define

H(K,) ={H <K, | H open in K,, K, =HN},
and let Xk be the set of pairs (H, x) with H € H(K,), where:
i) (H, NN H,Yx) is a character triple.
i1) x is of degree one,
ii) Ind¥py x € Trrg (N).
We fix a pair (H,x) € Xx such that 6 = Ind¥;(x). We define
r=1|K,:N|, " =|L,: N|, and m = |G : N|.
Let (y1,-..,Ym) be a left transversal for N in G with y; = 1, and such that
Y1, Yr € Kp and Yry1,...,y» € Lp. Note that K, = HN implies that there
exist elements t1,...,t. € N such that (yit1,...,y-t,) is a left transversal for NN H
in H.
In view of proving definability in M, we shall express conjugation by elements

in G in terms of the associated automorphism of N. In order to do so, for i €
{1,...m}, we define @; to be the automorphism of N sending n to ymy;l and set

Ck,={eili=1,...,7}, C’Lp:{<pi|i:1,...,r’}, Co={pili=1,...,m}.

Finally we need to express how conjugating by a coset representative acts on the
other coset representatives. To this end, we define
k:{l,...,m} x{L,...,m} —{1,...,m}, and d;; € N by
yi lyy = Y(i,)dij>
for all i € {1,...,7'} and j € {1,...,r}. The choice of using right conjugation
in the definition of k is more natural here, as it will only be needed to simplify
expressions in the argument of y.

Let 6 be a representative of 6, we need to choose a strong extension of 6. By
[21, Proposition 5.2], this may be done by inducing a strong extension x of x from
H to K. Since the definition of 7, x, r,(¢) is independent of the choice of strong
extension (of §), we may assume without loss of generality that ¥ is given by

X(yitin) = x(n),
forallme NNH and i € {1,...,7}.

The first step is to obtain an expression of the conjugate of ¥ by an element of
L,. This is done in the following lemma.

Lemma 5.1. Let z € L, and let n € N be such that z = y;n for some i €
{1,...,r'}. Let moreover n' € N and j € {1,...,r'} be such that y;n' € *H. Then

Z)A((yjn,) = X(t;(li7j)‘:0,:(1i’j)(nil)dijwi_l(n/)n)
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Proof. We have * (y;n') = n~y; 'y;n'y;n. Moreover
n”hy tyn'yin = 07y et (n)n
=" Y dije; | (n)n
= Yn(i) Py (0 )ligpy ()
= (i) trid) trgan ) Prgingy (0 )iy ()
The element y,i(i’j)@;(liyj)(n‘l)dijgoi_l(n’)n is in H by assumption so
t;(li,j)go;(lm)(nfl)dijcpi_l(n')n e NNH.

Therefore ¥(n~ty; 'y;n'yn) = x(t;(li,j)ga;(li’j)(n_l)dijcpfl(n’)). O

Next we need to be able to express when an element of K, belongs to a conjugate
of H in terms of conditions, which translate into a first order formula.

Definition 5.2. Let i,j € {1,...,r} and n,n’ € N. We define A;;(H, x,n,n’) to
be the predicate

(¥n" € "N ) 1 5" € i"(N N H))
A X e s (M) = (M e )

Lemma 5.3. Leti,j € {1,...,r} andn,n’ € N. Then y;n’ € Y""H if and only if
A;;j(H,x,n,n') holds.

Proof. Let M be the normaliser of N N ¥""H in K. We prove that
YitH = Stab s (Y"x).

This will be enough to conclude. Indeed A;; is the conjunction of two predicates:
the first expresses exactly that y;n’ € M and the second means that (y;n’ )~ fixes
vity. Let therefore

A = Stabys (Y").

Clearly NNY"H is normal in ¥""H and YI"H fixes ¥i™x, so Y""H C A. This inclusion
gives that K, = Y""HN = AN. Hence, by the second isomorphism theorem, we
have that |K, : N| =|A: NNA| = |¥"H : NN ¥Y"H|. Moreover, by Mackey’s
formula, N N ¥"H = NN A as ¥y induces irreducibly to N. Thus A = Y""H
because Y"""H C A and there is a subgroup that has the same index in both. O

We are now able to express Tz, k,.r,(f) = ¢’ in terms of the pair (H, x). Define
Z, = ZY(L,/N,Func(K, /N, W,)))
B, = BY(L,/N, Func(K, /N, W,))

By Lemma 3.1 every class H'(L,/N, Fg,) has a representative in Zp. Moreover,
let 0 € Zp NBY(L,/N, Fi,). Then there is an w € Fg, such that for any g € L,,
6(gN) = %ww™!. Since %ww™! has values in W,y we have %ww™ = (Yww™!)(,), so
by the properties of f(,) just before Lemma 3.2,

-1
5(gN) = gLU(p)w(p),
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hence § € B'(L,/N,Func(K,/N,W,)). Thus
Z,NBY(L,/N, Fy,) = BY(L,/N,Func(K,/N, W,)).
It follows that the inclusion of Zp in Z'(L,/N, Fk,) induces an isomorphism
HY(L,/N,Fk,) = Z,/B,.
We need the following definition for ease of notation.

Definition 5.4. Let 4,5 € {1,...,7} and k € {1,...,7'}. Let also ¢ € Lin(G),
v ely, and n,n’ € N. We define By, (H, x,¥,v,n,n’) to be the predicate

Xty dger () =
1eN) Yty N) - 3N (i) N) - V(Y N) - () (1)
Xty Pty (0 Ddige;  (n)n).
Proposition 5.5. Let (H,x) € Xk be a pair corresponding to 0 € Irr g (N). Let
¢ e H'(L,/N, Fg,/Ty). Fiz ju € Z, such that, the 1-cocycle in Z'(L,/N, Fi, /T))

defined by g — p(gN)Tp is in the class /. Then Evapypp(a) = c if and only if
there is a coboundary § € Ep such that, for allk =1,... 1, there are

a) i€{l,...,r} andn € N,
b) a character ¢ € Lin(G),
¢) a homomorphism v € T'),

such that, for all j € {1,...,r} andn’ € N
Al](H’ X7n7n/) A Akj(H7X7 17n/) = Bijk(H7Xa ¢a Z/,TL,TL/).

Proof. We define fy : Z2(H/(NNH)) — Z?(K,/N) to be the isomorphism induced
by pulling back cocycles along the isomorphism K,/N — H/(N N H). Let a be

the factor set of X. Let & be the (unique) cocycle in H?(K),) descending to fH(a).
The projective character

(5.1) 0 = Indy", %

is a strong extension of §. We therefore have 71, i, r,(0) = ¢’ if and only if there
is a coboundary 6 € B'(L,/N, Fg,) such that, for all ¢, € Cy,, there are a degree
one character ¢ € Lin(G) and a homomorphism v € T', such that

"0 =0 u(yn N3y N1,
Substituting (5.1) in the last equation we obtain
Yk . .
(5.2) “(Indgy; %) = (Indy’ X) - wyeN)o (N )i, -
Let /3 be the factor set of “*f. The left-hand side is equal to

Ky Yk
Indtpk(H)”@ X

The right-hand side is equal to

Indy;" (X (s N)3 (g N ) ).
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Note that p(yxN)d(yeN)v has factor set Sa—! because of (5.2). By Mackey’s
intertwining formula we therefore have that equation (5.2) holds if and only if there
aren € N and i € {1,...,7} such that

Y Uoe s ()= "X or (g () 7 (1N ) (i N )W) (o (1) i (1)) -
In other words, since v and 1 are fixed by K,,, equation (5.2) holds if and only if

(5.3) “x(yn') =
Y (yin') - (YN ) Wi ) N) - 0(UrN) Wiy N) - v(y;N) - 0 (y;)0(n'),

for all n’ € N and j € {1,...,r} such that y;n’ € ¢x(H)N;("H). By Lemma 5.1
we have

ykf((n/yj) = X(t;(lkmj)dkj@;;l (n/))

PR y5) = Xty Py (0 Ddiger (n)n).

Substituting in (5.3) gives Bjx(x, ¥, v,n,n’). Moreover, by Lemma 5.3, y;n’ €
o (H) if and only if ¢;("'n) € gx(N N H) and

X (2, n™))) = x(e5  (n")

for all n” € ¢i(N N H). These two conditions form Ay;(H,x,n,n'). Similarly,
y;n’ € "p;(H) if and only if A;;(H,x,n,n’) holds.

We finish the proof observing that x,, u(yxN') and v all have values in W(,).
Thus if there is § € BY(L, /N, Fk,) satisfying the conditions above, then necessarily

b€ Ep. We may therefore restrict to § € B, in the equivalence statement. O

5.2. Definable sets for degree one characters of subgroups of G. For the
rest of this paper L., will denote the analytic Denef-Pas language and M., will
be the Lyn-structure M,y = (Qp, ZU {00}, F,, ... ) (see [21, Section 2.2] for precise
definitions). The aim of the last sections is showing that the predicates we derived
thus far are expressible as first order formulas in £,,,. We will often derive formulas
for the language of uniform pro-p groups £y described in [18, Definition 1.13] and
then use the fact that the £y-structure (N,...) is definably interpretable in M.,
(see [21, Lemma 2.4]).

From now onwards N will be a uniform open normal subgroup of G. We fix
a minimal set of topological generators nq,...,nq for N. By [7, Proposition 3.7],
N is in bijection with Zg via the map (A1,...,Aq) — n}? -~-n2‘d. If g e Nis
such that g = ni‘l -~-n2d for some A1,...,A\q € Z, we say that (A1,...,\q) are
its Z,-coordinates (with respect to n1,...,nq). We recall that, as proved in [18],
every open subgroup of N admits a special set of d topological generators called a
good basts (cf. [21, Definition 6.1]). This is key to expressing H(K),) as a definable

subset of ZZ“”T). We recall the definition of basis for a subgroup in H(XK,) from [18,
Definition 2.10] and [17, p. 261] (note that we use left cosets instead of du Sautoy’s
right coset convention).

Definition 5.6. Let H € H(K,). A (d+7)-tuple (h1,...,hq,t1,...,t,) of elements
in N is called a basis for H if

i) (hi,...,hq) is a good basis for N N H, and
it) (yit1,...,yrty) is a (left) transversal for NN H in H.
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We shall now show how to interpret predicates that involve quantifying on Lin(G)
and other groups of characters. For this (and also for later), we need the following
definition (taken from [21, Proposition 6.9]). Note that here (and later) we have
denoted by ¢, the isomorphism Q,/Z, — W, defined as a/p™ + Z;, e2mia/p™

Definition 5.7. Let ¢ € H?(K,/N), we define D¢ as the set of pairs (X, §), X €
Max (d4r)(Zp), § = (§1,...,8a) € (@g such that:
i) the columns of A are the Z,-coordinates with respect to ni,...,nq of a
basis (h1,...,hq,t1,...,t,) for some subgroup H € H(K,).
it) The function {h1,...,ha} = Qp/Zy, h; — & +Z,, extends to a (necessarily
unique) continuous H-invariant homomorphism
x: NNH — Q,/Z,.

ii) nd¥ (o x) € g (N),
i) C(H,(tox)) =c.

Proposition 6.9 in [21] shows that D¢ is a definable subset of Qg(dHH) in May.

5.2.1. Definable set for twisting characters. We show that characters 7 € Lin(N),
such that 7 = ¢|n for some 9 € Lin(G), may be definably parametrised in M.,
in a way that keeps track of the values of ¢ (y;) for ¢ = 1,...,r. Notice that, since
K, is a pro-p group, every 1 € Lin(G) is such that ¢ (y;) € W, foralli =1,... 7.
For the following lemma, and for later use, we define a function
(5.4) v:{l,...,m}*> = {1,...,m} and a;; € N by
' YilYi = Yry(ij)%ij-
Lemma 5.8. Let 7 € Lin(N) and let 01,...,0, € W(,y. Then 7 = 1|y for
some 1 € Lin(G) such that ¢¥(y;) = o; for i = 1,...,r, if and only if there are
Orits- - 0m € Wiy, such that, fori,j € {1,...,m} and alln,n" € N,

Jv(m)r(aijgaj_l (n)n') = ojoj7(n)T(n).

Proof. We have

!/

(5.5) yinyin' = yiy;y; nyn’ = yiyie;t (n)n' = gy aie; (n)n'.
Assume that 1 € Lin(G) restricts to 7. Then, since K}, is a pro-p group, ¢ and v,
restrict to the same character of K (hence also v, restricts to 7). Set o; = ¥,) (v:)
(for i =1,...,m). On the one hand, ¥(y;ny;n') = o,0;7(n)7(n’) and, on the other
hand,
G(yinyn') = o .5)7(aije; H(n)n')

by (5.5).

Conversely, assume there exist o1, ...,0, € W(,) such that for 4,5 € {1,...,m},
and all n,n’ € N, Uv(i’j)T(aijcpj_l(n)n’) = 0;0;7(n)7(n’). Then

Y(yin) = o;7(n) neN,i=1,...,m
defines a homomorphism G — W,,). Indeed,
Uy(i,j)T(aijSDfl(”)”/) = UinT(n)T(nl) = 'l/)(yin)w(yjn/)'

Moreover, ¥(y;ny;n’) = av(i’j)T(aijgoj_l(n)n’) by 5.5. Thus we get ¥(y;ny;n’) =
P(yin)p(y;n'). Clearly ¢|y= 7 and we conclude. a
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Let Ao € M(44+r)xd(Qp) whose rows correspond to the Z, coordinates of a basis
of K, (as an element of H(K,)). Let D be the projection on the £&-component of
the set

{(X€) €D | X=X}
where D! is as in Definition 5.7 for K = G. Clearly D¢ is a definable subset of Qg
in May,. By definition, the first d rows of Ag are the Z,-coordinates of a good basis
of N. Thus D is precisely the set of d-tuples & such that the function

{nl,...,nd}—>Qp/Zp, ni’—>§i+zp7

extends to a (necessarily unique) continuous homomorphism 7: NNH — Q,,/Z,,
such that ¢ o 7 = 9|y for some ¢ € Lin(G). We are now able to introduce the
definable set parametrising twisting characters. For ease of notation we introduce
the following definition.

Definition 5.9. An L,,-formula whose free variables are exactly z1, ..., x, is called
an L.,-condition on T1,...,T,.

Proposition 5.10. Let Dgp be the set of tuples of the form (&1,...,&4,01,...,0,) €
QI+ such that the function

{ymj \z':l,...,r,jzl,...,d}%Qp/ZP, Ying '—>Ji+€j+Zpa

extends to o (necessarily unique) continuous homomorphism o : G — Qp/Z,. Then
Dgp is a definable set of QIt" in May.

Proof. By Lemma 5.8, a tuple (&1,...,84,01,...,0,) is in Dﬁp if and only if

i) €= (&1,...,&) € DY,
ii) and, denoting by 7 : N — Q,/Z, the homomorphism defined by &, there
are oy41,...,0m € Q, such that for i,j € {1,...,m} and all n,n’ € N,

(0y(i) — 0i — 0j) + Ly = T(n) +7(n) — T(aijgoj_l(n)n’),
where v and a;; are as in (5.4).

Clearly, i) is a definable condition because D% is definable. By the definable inter-
pretation of My in My, and using & to express the values of 7, we see that also
i1) is given by an L,,-condition on (&1,...,84,01,...,0). O
5.2.2. Definable set for FKp - By definition of D¢ there is a surjective map V¥ :
D¢ — C~1(c) defined by (A, &) — (H,x) where H € H(K,) is the subgroup corre-
sponding to the basis (hi,...,hq4,t1,...,t,) in [21, Proposition 6.9 (i)] and x is as
in [21, Proposition 6.9 (ii)].

Let (X, &) € D¢ and let (H,x) = ¥(A,€). Set § = IndYN -, x. We shall now

produce a definable set that will be used to interpret predicates quantifying over

Ty 7

Definition 5.11. We define D,y as the set of tuples (o1, ...,0,) € Q giving a
function K,/N — Q,/Z, defined by

yiN — v, + Z,, forie{1,...,r},
extending to a homomorphism K,/N — Q,/Z,.

Clearly v € Dk, /n if and only if for 4,5 € {1,...,7}, 0y j) = 0; +0; mod Z,.
Thus Dk, /v is a definable set.
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Lemma 5.12. Let Dg, (X, §) be the set of tuples of the form (v1,...,v,) € Q) such
that the function v : K,/N — Q,/Z, defined by

YilN — v, + Zy forie{l,...,r},
is a homomorphism such that Lo U € I‘Kp g- Then Dg, (X, §) is a definable subset

of Qg m Man.

Proof. We start by expressing the definition of T'. 7 in terms of (H,x). To do

Kp,0

this, we need to fix a strong extension 6 of 6 (all strong extensions are equally good

as the definition of I';. 5 does not depend on this choice). We choose the strong
Py

extension obtained by inducing to K, the projective character X of H defined by
X(itin) = x(n),
foralln € NN H and i € {1,...,7}. To say that v € Lin(K,/N) belongs to I',. 7
is to say that there is ¢ € Lin(G) such that
Ov = Oz Ky
By Mackey’s formula, this happens if and only if there exist ¢ € Lin(G), i €
{1,...,7} and n € N such that
(""" V) anving= (X &)|Hnvin.
In other words, if and only if there exist € € Lin(G), i € {1,...,r} and n € N such
that for all j € {1,...,7} and all n’ € N we have
(5.6) yn' € HNY"H = Y (y;n")v(y;) = X(y;n")e(y;)e(n).
We now rewrite (5.6) in a way that involves only quantifying over N and Lin(G),
conjugation by the chosen coset representatives of N in K, and values of x on
N N H. First we observe that, by Lemma 5.3 we may replace the antecedent with
the predicate
Alj (Ha X 17 Tl/) A Aij (Hv X, 1, n/)‘

Secondly, by Lemma 5.1, we may replace the consequent in (5.6) by the predicate
Cij(H,x,v,e,n,n') defined as

Nt et (0 iy (W )m)wlyy) = x(5 ' )e ()= ()
We obtain that v € '), 7 if and only if the following predicate is true

(5.7) Felin@): \/ (an eN

/\ (Vn' € N : Ap;(H,x,1,n")AA;(H, x,n,n") = C;;(H, x,n,n, v, 5)))
je{1,...,r}
The last predicate may be written as an L,,-condition on v and (X, €):

- we use the interpretation of My in M,, to express elements in N.
- We use tuples in Dk /y to express the values of v.
- We interpret Je € Lin(G) as

&, €a,01,-.,00) €DE
using (&1,...,&q) to express € on N and (o1, ...,0,) to express

E(yl)’ e 75(yr)'
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- We interpret multiplication in W,y as addition in Q,/Z, and equality in

Wipy as equality in Q,/Z, via ¢.
Writing (5.7) with these rules gives an La,-condition on vy, ..., v,; thus, Dg, (A, §)
is definable. O

5.3. Definable sets for Zp and Ep. In this subsection we describe the definable
sets used to interpret predicates quantifying over Z, and B,,.

Lemma 5.13. Let 2 be the surjective map from the set of matrices M, (Qp) to
the set of functions L,/N — Fk,, defined by

Q(zi5)) = [liN — 1o f;],  forie{l,...,r"}.
where for each i, f; : Kp,/N — Qp/Z, is the function y; N — z;j + Zy, for j €
{1,...,r}. Define Z = QY(Z,) and B = Q" Y(B,). Then Z and B are definable
m Man.

Proof. We prove that the set Z is definable. Let z € My, (Qp). Then Q(z) € Zp if
and only if the following definable predicate in M., holds: for all ¢,5 € {1,...,7'}
and k € {1,...,7},

Zoy(i,j) k = Zjk T Zr(i,f) k mod L.
This is obtained by just pulling back the 1-cocycle identity through 2. More pre-
cisely, by definition, (z) is a 1-coboundary if, for all i, 5 € {1,...,7'},

Q(z)(yiy; N) = Uz)(y:iN) " Qz) (y; N);
that is, if f,( ;) = fj + fx(i,j)- This in turn is equivalent to the condition that, for
all k e {1,...,r},
S W) = Fi(We) + Fuiig) (W),
or equivalently, zy(; jyr = 2jk + Zx(i,j)x MOd Zy.

We prove that B is definable. We need to express the condition for being a
1-coboundary. To this end, we parametrise a function K,/N — Q,/Z, by the
r-tuple (b1,...,b.) € Q) representing its values on y1N,...,y.N. Writing the
1-coboundary condition in terms of by,...,b, we obtain that Q(z) € f?p is a 1-
coboundary if and only if there is (b1, ...,b,) € Q) such that, for all 7 € {1,...,7'}
and j € {1,...,r},

Zij = bn(i,j) — bj mod Zp.
This predicate in M, is given by an L,, condition on the z;;’s and the b;’s; thus,
the set is definable. O

5.4. Definability of the predicate 7, k, r, (5) = . We are now ready to give
an interpretation of I;rCLC]l( r(N) in the structure M,,. In this subsection we will

construct a definable set D¢ corresponding to IrA/rCLCI/{F (N) up to a definable equiv-
alence relation (which we shall introduce in the next subsection). This correspon-
dence will be explicit and we will have a definable function (also introduced in the
next subsection) giving the degree of the corresponding character for every element
in D&

We start with the following lemma which can be proved using the fact that
twisting by degree one characters and induction are compatible (see for instance
the proof of [10, Lemma 8.6(b)]).
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Lemma 5.14. Let M be a finite index subgroup of N, x € Lin(M) and ¢ € Lin(G).
Then, for all g € G,

?(tnd ] x) ¥ | v= Ind 2y, (9| o).

Moreover if M’ is another finite index subgroup of N and x,x' are degree one
characters of M and M’ respectively, such that Ind%x and Indﬁ\v/[, X' are irre-
ducible, then (IndJ\N4 X)Y|N= Indﬁ\v/p X' if and only if there exists g € N such that

(Res oanar 2X)¥|snsnne = Reshioag X'

Proposition 5.15. Let D be the set of pairs (X, &) € D¢ with the property that,
for (H,x) = W(\,§), x induces to a character 6 of N such that 6 € Irry% (N).
Then D¢ is a definable subset of Qg(dHH) n Man.

Proof. Since (X, €) € D¢, we have that 6 € I,rvrCL;l(F(N) if and only if
i) Stabg(8) =L
i) T y=T
iii) Tr, x,r,(0) = .
Let v/ = |L : N|. Up to reordering (y1,...,ym), we may assume that
(y17 e Yrs Yr1y e 7yu’)
is a left transversal of N in L. We let ¢; : N — N be the the conjugation by y; for
i={1,...,u'} and we define
Cr={pi|i=1,...,u}.
By Lemma 5.14, Stabg(g) = L if and only the following statement holds:
(5.8) VpeC(Cg :
(aw € Lin(G) ((IndN g X)tb|n=TndY yrpy X0 071) <= p € CL).

Fix ¢ € Cg. Lemma 5.14 with M = NNH, M’ = (NN H) and y' = yo !
implies that (Ind% - x)¥|v= Indg(]va) x o ¢~ if and only if

dg € N, Vh € NNH : (h € (NN H) = x(h)w(h) = xo e '(h)).
We interpret 3¢ € Lin(G) as

3(1/’17--~71/’d) € DG)

using (¢1,...,%aq) to express ¢ on N. We interpret multiplication in W, as ad-
dition in Q,/Z, and equality in W, as equality in Q,/Z,. Substituting in (5.8)
shows that there is an L,,-condition on (X, £) expressing Stabg (6) = L.

Next we show how to express I Ki= I’ with an L,,-condition on (A, &). First
of all we notice that, by Proposition 3.7, ' = I', if and only if I’K’9~ =T. Thus
it suffices to show that FKP,5 =TI, gives rise to an Lan-condition on (X, €). This is
done using the definable set D, (A, §) in Lemma 5.12. Indeed, Iy 5=To if and
only if, for all v € Lin(K,/N),

(5.9) vel, g« vel)

Let Qg,/n be a set of representatives of the equivalence classes mod Z, in Dk, /N
The set Qg /v is finite and therefore it is definable in M.,,. Notice that for all
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v € Lin(K,/N), the set Qg ,n contains a unique tuple v € D, /n such that v lov
is the function
Kp/N—>Qp/Zp7 yiN’—>I/i+Zp.
Let I') be the subset of Qg v consisting of the tuples that correspond to the
homomorphisms in I',. This allows us to express (5.9) as an L,,-condition on
(X, &), namely
Y e Qk, NV EDk,(NE) <= vel,

We prove that iii) is given by an L,,-condition (on (X, £)). Fix p € Z, such that, the
1-cocycle on L, /N defined by g — p(gN)T', is in the class ¢/. By Proposition 5.5,

T, .k,.r,(0) = if and only if

WeB,: N ImeNIeLn(G)Iverl,:

ke{l,...,r"}
\/ (Ak](H7 X 1a TL/) A Al](Ha X5 T, n/) = BZ]k(H7 X 1/)7 v,n, n/)> .
ie{l,...,r}

Now it suffices to write the last predicate as L,,-condition on (X, §):
- we use the interpretation of My in My, to express elements and group
operations in N.
- We use £ to express the values of x, as explained in [21, Proposition 6.9].

- We interpret the predicate 3§ € B), as 36 € B and we use dy, (;,5) to express
the value 5(ykN) (yn(i,j)N)-
- By ii) we replace 3v € ', with Jv € [y, g and we interpret the latter as

v € Dk, (A, §), using (v1,...,1,) to express the values of v.
- We interpret 3¢ € Lin(G) as
A1,y Td, 01, ..,00) € Dﬁp,

using (71,...,74) to express ¥ on N and (o1,...,0,) to express ¥(y1),...,

Y(yr)-

- We interpret multiplication and equality in W, via ..

This concludes the proof because the sets B, Dk, (A, §), and D[%J are definable in
Mn. O

Proposition 5.15 shows that ¥ : (X, &) — (H, x) is a surjection from D¢ to the
set of pairs (H,x) € Xx such that § = Ind ., x satisfies 6 € ey % n(N).

5.5. Finishing the proof of Theorem 1.1. We write the partial zeta series as
a generating function enumerating the equivalence classes of a family of definable
equivalence relations. We conclude rationality of the partial twist zeta series by
[21, Theorem 2.7]. Theorem 1.1 then follows from Proposition 4.4.

We start by constructing a definable equivalence relation on D¢ whose equiv-
alence classes will be in bijection with I,HCLCI/(F (N). Let (X, €), (XN, &) € D¢ and
let (H,x) = (A, €) and (H',x') = ¥(N,&'). We define an equivalence relation &
on D¢ by

(A €),(N, &) € € < T € Lin(Q), IndNx = mdN 0 (X 0| n).
Lemma 5.16. The relation & is definable in M,y
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Proof. Let (H,x), (H',x') be as above. By Lemma 5.14, we have that IndX ., x =
Ind% 5 X' (1| ) for some ¢ € Lin(G) if and only if

J¢ € Lin(G), 3ge N, Vhe NNH (he NnH = x(h) = (X'¥|n)(°h)) .

Using Proposition 5.10 to parametrise 9|y for ¢ € Lin(G) by points in Df(p and
writing the above formula in the Z,-coordinates of N we obtain an L,,-formula

defining £. Note that, as done before, we interpret multiplication and equality in
W(p) via L. O

Composing ¥ with the surjective map Xg — Irrg(N) of [21, Corollary 5.3]
induces a bijection between the set of equivalence classes D¢ /€ and I’H"ECI/{F(N ).
We now use this bijection to produce a definable family of equivalence relations
giving the partial zeta series. For (X, &) € D¢ write (hi(A),...,ha(N)) for the
good basis associated with A by [21, Proposition 6.9].

Let Ny denote the set of non-negative integers. The function f : Do 5 Ny
given by

d
(A, €) — Z (w(hs(N) — 1)

is definable in M,,, as w is interpreted as a definable function in M,, by [21,
Lemma 2.4]. If U(X, &) = (H, x), then p/*#) is the degree of Ind%p x-

The graph of f gives a definable family D% of subsets of QZ(‘HTH) and the
equivalence relation Eo¢ C Do x D¢ defined by

((z,n), (',n')) € B¢ < (z,2') €&

is a definable family of equivalence relations on D¢, Note that, n = n/ whenever
(x,2') € £ and so it is not necessary to add this condition to the definition of E¢¢ .

Since, for all n € Ny, the fibre f~!(n) is a union of equivalence classes for E,
the set Df;c/ /Ef;c/ is in bijection with the subset of characters of degree p" in
IrA}ECI,(F(N ). It follows that

Zyiar(s) = D #(Dye /By )p.

neNy

Applying [21, Theorem 2.7] to the series above we deduce that ZJCVC/L K’F(s) is a
rational function in p~*°. This concludes the proof.
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