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1 Introduction

The double copy is a deep and intensely explored connection between Yang-Mills (YM) and
gravity.1 It has achieved its biggest successes in the context of scattering amplitudes [3–6],
which has prompted an expansion in a number of directions including the construction of
gravitational solutions from their YM counterparts.

In the perturbative formulation, the majority of results are found in a flat background,
where intuition can be imported from the scattering amplitudes program. An important
question is how much of the success of the double copy translates to curved backgrounds,
which would naturally be of great interest in applications to cosmology, or connections to
holography. For some works in this direction, see [7–27].

The convolutional double copy [28–39] can be seen most simply as a consequence of
the fact that the double copy is naturally a product in momentum space, which becomes
a convolution in coordinate space upon taking a Fourier transformation.2 Though only
formulated at the level of linearised fluctuations, it has the advantage of being a very direct
map, applicable for general, arbitrary fluctuations of YM and gravity, when working in the

1See reviews [1, 2] and references within.
2Certain families of classical solutions have been formulated as double copies via a position space product

(a programme which usually goes under the name of classical double copy [40, 41]). This is now understood to
be related to the additional symmetries present in these systems [42–44].
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Becchi-Rouet-Stora-Tyutin (BRST) formulation. It is also compatible with the symmetries
and dynamics of both theories, and allows for control in gauge choices. It has been explored in
flat backgrounds with some preliminary extensions to homogeneous manifolds [33, 36]. With
this tool in hand, we want to explore the extension of the double copy to other background
spacetimes. In this paper, we will specifically focus on (A)dS backgrounds, of obvious interest
to cosmology/holography.

To achieve this, we need a convolution in (A)dS space. Recall that the convolution
on a flat background

[f ⋆ g](x) =
∫

d4yf(0 + y)g(x − y) , (1.1)

relies heavily on both spatial and temporal translational symmetry, which acts transitively
on flat space. It is well known that there is no time translational symmetry in de Sitter
space, therefore, we will have to modify the convolution to capture the scaling symmetry
associated with the dilatation subgroup of the (anti) de Sitter group.

As pointed out in [45–49], following the discussion of AdS/CFT correspondence [50–52]
and the Mellin space representation developed in the context of CFT [53–57], the scaling
symmetry of (A)dS space indicates that the proper basis to analyze the mode functions in
the time direction is in Mellin space,

h(η) =
∫

ds

2πi
2h̃(s)η−2s+ d

2 , h̃(s) =
∫ ∞

0
dηh(η)η2s− d

2−1 . (1.2)

One can see that η−2s+ d
2 captures the scale symmetry h(λη) = λ∆h(η), where ∆ is the scaling

dimension. We therefore define the convolution along the time direction through

h(η) ≡ [f ⋆ g](η) =
∫

dτ

τ
f(1× τ)g

(
η

τ

)
. (1.3)

One can verify that the convolution h(η) in Mellin space is the product of f̃(s) and g̃(s),

h̃(s) = f̃(s)g̃(s) . (1.4)

Therefore, in (A)dS space, one should apply the Mellin transformation to the time direction,
and the normal 3D Fourier transformation to the spatial directions.

This requires a separation between the temporal components and the spatial components,
and we will see that the temporal gauge is best suited for this task. This is a non-covariant
gauge choice that has been well explored in the literature (see [58] for a nice review), and
was given several different names historically, including Weyl gauge [59], Heisenberg-Pauli
gauge [60], and synchronous gauge [61]. The last name is best known for the study of
cosmological perturbations and gravitational waves in the expanding universe ever since
Lifshitz in 1946 [62]. We will show later in section (3) that this is the correct gauge for us
to build the convolutional double copy in de Sitter space.

The paper is organised as follows: we will start in section (2) with a brief review of the
convolutional double copy in flat space. We extend earlier work to incorporate a general
gauge fixing term in the action. We then give the explicit double copy dictionary with two
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gauge choices, the Lorenz gauge and the temporal gauge. We continue by generalising the
discussion to curved space, mainly focusing on de Sitter space, in section (3). Here we discuss
the implementation of the temporal gauge, and the convolutional double copy dictionary
in de Sitter space, as well as the extension to anti de Sitter. In section (4), we use some
physical solutions as examples to illustrate our method. We recover the double copy between
the (dS-) Schwarzschild black hole solution and the point charge solution in gauge theory
in temporal gauge. Throughout the paper, we use the mostly plus signature.

2 BRST convolution in flat space with a general gauge-fixing functional

We begin with a review of the main properties of the flat space convolutional double copy.
This has been previously constructed in the BRST context with a Lorenz gauge fixing
functional. Here we will extend this to more general gauge choices, and in particular we
will allow ourselves to break Lorentz covariance.

A crucial aspect of the convolutional product is that it does not respect the Leibniz rule:

∂µ(f ⋆ g) = (∂µf) ⋆ g = f ⋆ (∂µg) . (2.1)

This will be important in deriving the gravitational symmetries via the double copy, and
will be another crucial consideration in the extension to curved backgrounds.

We also introduce the ◦ product, defined as

Aµ ◦ Aν ≡ Aa
µ ⋆

(
Φ−1

)aa′

⋆ Aa′
ν , (2.2)

where we have taken the convolution inverse of the biadjoint scalar field Φaa′ . This is the
appropriate building block for the double copy, as it connects with the amplitudes formulation,
as further detailed in [28, 35, 36]. It also gives the correct mass dimension, upon normalising
all physical fields to have dimension 1. This is easiest seen by going to momentum space,
where the convolution becomes a product.

We will be working in the BRST formalism, with the YM BRST complex (Aµ, c, c̄), where
c and c̄ denote the ghost and anti-ghost, respectively. The Lagrangian, upon integrating out
the Lautrup-Nakanishi Lagrange multiplier field, can be written as

L = Tr
(
−1
4F µνFµν + 1

2ξ
(nµAµ)2 − c̄ nµ∂µc − jµAµ − c̄jc̄ − cjc

)
. (2.3)

Note that we have been agnostic in our choice of the BRST gauge-fixing functional:

G[Aµ] = nµAµ , (2.4)

where nµ denotes either a differential operator or a (Lorentz-breaking) constant vector. For
the Lorenz gauge fixing functional, we will have nµ = ∂µ, whereas the axial gauge or temporal
gauge will be denoted by a constant vector nµ. We also note that the Lagrangian is a slightly
modified version of the standard BRST one, as it includes sources for the ghosts. These
were shown to be important in disentangling the degrees of freedom of the gravitational
fields resulting from the double copy [28, 35, 36].
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The Lagrangian (2.3) is invariant under the BRST transformations

QAµ = ∂µc, Qc = 0, Qc̄ = 1
ξ

nµAµ , (2.5)

and the goal is to write a dictionary for the gravitational fields, built out of terms of the
type given in (2.2), which can reproduce the appropriate gravitational BRST symmetries
upon using (2.5). The gravity BRST system will comprise the graviton hµν , together with
its ghost cµ and anti-ghost c̄µ, as well as the dilaton. The two-form sector can be avoided
by choosing the two YM complexes entering the double copy to be identical.3

We propose the following dictionary in the presence of a general BRST gauge-fixing
functional:4

hµν = a1Aµ ◦ Aν + a2
1

n∂
∂(µAν) ◦ nA + a3

∂µ∂ν

(n∂)2 nA ◦ nA + a4
n(µ∂ν)
n2n∂

nA ◦ nA

+ a5
∂µ∂ν

□
Aρ ◦ Aρ + a6ξ

∂µ∂ν

n∂
c ◦ c̄ + a7ξ

n(µ∂ν)
n2 c ◦ c̄

+ ηµν

(
a8

[
Aρ ◦ Aρ −

1
□

∂A ◦ ∂A

]
+ a9

1
n2 [nA ◦ nA + 2ξ n∂c ◦ c̄]

)
,

φ = b1

[
Aρ ◦ Aρ −

1
□

∂A ◦ ∂A

]
+ b2

1
n2 [nA ◦ nA + 2ξ n∂c ◦ c̄] ,

(2.6)

where we used the shorthands n∂ ≡ nρ∂ρ, nA ≡ nρAρ and n2 ≡ nρnρ. The above is chosen
such that all the arbitrary numerical parameters (a1, . . .) are dimensionless.5 The virtue
of (2.6) is that it reproduces

Qhµν = ∂µcν + ∂νcµ, Qφ = 0 , (2.7)

as needed, upon applying (2.5) to the factors. It also allows us to read off the gravity
ghost dictionary

cµ =
(
a1 + 1

2a2
)

c◦Aµ+
(

1
2a2 + a3 − 1

2a6
) ∂µ

n∂
c◦nA+

(
a4 − 1

2a7
) nµ

n2 c◦nA+a5
∂µ

□
c◦∂A , (2.8)

satisfying, as required

Qcµ = 0 , (2.9)

where we assumed c ◦ nρAρ = nρ (c ◦ Aρ), which is satisfied both when nµ is a differential
operator or a constant vector. The anti-ghost is then obtained by conjugating the factors:

c̄µ =
(
a1 + 1

2a2
)

c̄ ◦Aµ +
(

1
2a2 + a3 − 1

2a6
) ∂µ

n∂
c̄ ◦nA+

(
a4 − 1

2a7
) nµ

n2 c̄ ◦nA+ a5
∂µ

□
c̄ ◦ ∂A .

(2.10)
3Up to a proportionality constant.
4We have assumed the norm of nµ is non-zero. A different approach would be needed for e.g. light-cone

gauge, where nµ is null.
5Allowing the gauge-fixing operator nµ to have arbitrary mass dimension dn, we have

[Aµ] = 1 , [c] = 0 , [c̄] = 3 − dn , [ξ] = 2dn − 2 .
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At this point we pause to explain the difference between the BRST notion of gauge
fixing, and the classical notion encountered for example in the study of classical solutions.
Note that the BRST gauge fixing consists of adding a gauge-symmetry breaking term to the
Lagrangian (see (2.3)), without imposing a condition on the gauge field. One of the upshots
of the convolutional dictionary above is that it allows us to derive the gravitational BRST
gauge fixing from the YM one [35, 36]. This is achieved by recalling the transformation rule

Qc̄µ = 1
ξ

Gµ[hµν , φ] , (2.11)

which allows us to read off the gravitational BRST gauge-fixing functional by direct com-
putation from (2.10), upon making use of the dictionaries in (2.6).

Additionally, when studying classical solutions, we may wish to impose that physical
gauge fixing is preserved by the convolutional double copy. This means that we require
plugging YM fields satisfying

G[Aµ] = nµAµ = 0 (2.12)

results in a gravity field satisfying a desired gauge choice

Gµ[hµν , φ] = 0 . (2.13)

This will typically impose some constraints on the parameters (a1, . . .) appearing in the
dictionary eq. (2.6). The procedure was described for YM Lorenz and gravity de Donder
gauge, respectively, in [35]. We will briefly summarise the results in section 2.1. Then in
section 2.2 we will extend this to the temporal gauge [63–69], where nµ = (1, 0, 0, 0), and
thus the temporal component of the gauge field is set to zero. This is the first example of
adopting non-covariant gauge choices [58, 70] in the convolutional double copy dictionary,
and will help us to generalize to curved spacetimes.

2.1 Example I: Lorenz gauge (nµ = ∂µ)

We give a brief review of the convolution dictionary in Lorenz gauge for YM, which corresponds
to setting nµ = ∂µ. This has been extensively studied in previous literature [28–39], with
the physical gauge fixing specifically discussed in [35].

Setting nµ = ∂µ reduces the dictionary in (2.6) to

hµν = a1Aµ ◦ Aν + a2
1
□

∂(µAν) ◦ ∂A + (a3 + a4)
∂µ∂ν

□2 ∂A ◦ ∂A + a5
∂µ∂ν

□
Aρ ◦ Aρ

n + (a6 + a7) ξ
∂µ∂ν

□
c ◦ c̄ + ηµν

(
a8Aρ ◦ Aρ + (a9 − a8)

1
□

∂A ◦ ∂A + 2a9ξ c ◦ c̄

)
,

φ = b1Aρ ◦ Aρ + (b2 − b1)
1
□

∂A ◦ ∂A + b22ξ c ◦ c̄ . (2.14)

These indeed match the most general covariant dictionary, as given in [35], upon some
relabeling of the numerical parameters. As shown in [35], requiring that Lorenz gauge for YM
leads to de Donder gauge for gravity (both at the level of BRST symmetry and in the physical
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sense), leads to a constraint on a subset of the parameters in eq. (2.14). The remaining free
parameters can then be chosen to give a simple dictionary

h̄µν = 2Aµ ◦ Aν − 2
□

∂(µAν) ◦ ∂A , φ = 2Aρ ◦ Aρ + 4ξc ◦ c̄ , (2.15)

where we used the notation h̄µν = hµν − 1
2ηµνhρ

ρ, so that the de Donder gauge condition
is given by ∂µh̄µν = 0.

Then it is clear that the dictionary in (2.15) satisfies

∂A = 0 ⇒ ∂µh̄µν = 0 . (2.16)

As an example, it was shown in [35] that the point charge in pure Yang-Mills theory,

Aa
µ = gαa

4πr
uµ , uµ = (1, 0, 0, 0) , (2.17)

where αa is a normalised constant color vector, together with the choice of ghosts:

ca = gDαa

4πr
, c̄a = gD̄αa

4πr
, (2.18)

where D and D̄ are constant Grassmann numbers, and spectator field

Φaa′ = gδaa′

4πr
, (2.19)

can reproduce the JNW solution:

h̄ = κ

2
M

4πr
uµuν , φ = −κ

2
Y

4πr
, (2.20)

with M and Y being constant parameters. In particular, it is possible to choose D and D̄

such that Y vanishes, so that we can recover the Schwarzschild solution in de Donder gauge.

2.2 Temporal gauge (nµ = (1, 0, 0, 0))

Temporal gauge is a special case of non-covariant gauges, with nµ = (1, 0, 0, 0) being a
constant vector. We will see later in section 3 that it allows us to generalize to de Sitter
space. We will start with a discussion of temporal gauge in flat space as a warm-up.

Inserting nµ = (1, 0, 0, 0), the BRST Lagrangian in eq. (2.3) now becomes

L = Tr
(
−1
4F µνFµν + 1

2ξ
(A0)2 − c̄ ∂0c − jµAµ − c̄jc̄ − cjc

)
. (2.21)

This is invariant under the BRST transformations

QAµ = ∂µc , Qc = 0 , Qc̄ = 1
ξ

nA = 1
ξ

A0 . (2.22)

The dictionary in (2.6) becomes

hµν = a1Aµ ◦ Aν + a2
1
∂0

∂(µAν) ◦ A0 + a3
∂µ∂ν

(∂0)2 A0 ◦ A0 − a4
n(µ∂ν)

∂0
A0 ◦ A0

+ a5
∂µ∂ν

□
Aρ ◦ Aρ + a6ξ

∂µ∂ν

∂0
c ◦ c̄ − a7ξn(µ∂ν)c ◦ c̄

+ ηµν

(
a8

[
Aρ ◦ Aρ −

1
□

∂A ◦ ∂A

]
− a9 [A0 ◦ A0 + 2ξ ∂0c ◦ c̄]

)
,

φ = b1

[
Aρ ◦ Aρ −

1
□

∂A ◦ ∂A

]
− b2 [A0 ◦ A0 + 2ξ ∂0c ◦ c̄] ,

(2.23)
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where nµ = (−1, 0, 0, 0). This again reproduces the appropriate transformations (2.7) and
the associated graviton ghost takes the form

cµ =
(
a1 + 1

2a2
)

c◦Aµ+
(

1
2a2 + a3 − 1

2a6
) ∂µ

∂0
c◦A0−

(
a4 − 1

2a7
)

nµc◦A0+a5
∂µ

□
c◦∂A , (2.24)

which satisfies Qcµ = 0, as needed. We then read off the anti-ghost in this gauge

c̄µ =
(
a1 + 1

2a2
)

c̄◦Aµ+
(

1
2a2 + a3 − 1

2a6
) ∂µ

∂0
c̄◦A0−

(
a4 − 1

2a7
)

nµc̄◦A0+a5
∂µ

□
c̄◦∂A . (2.25)

This allows us to proceed to the gauge fixing in gravity via

Qc̄µ = 1
ξ

Gµ[hµν , φ]

= 1
ξ

[ (
a1 + 1

2a2
)

A0 ◦ Aµ +
(

1
2a2 + a3 − 1

2a6
) ∂µ

∂0
A0 ◦ A0 −

(
a4 − 1

2a7
)

nµA0 ◦ A0

+ a5
∂µ

□
A0 ◦ ∂A + ξ

(
a1 + a2 + a3 + a5 − 1

2a6
)

∂µ (c ◦ c̄)− ξ
(
a4 − 1

2a7
)

nµ∂0 (c ◦ c̄)
]

.

(2.26)
Then we require that the BRST gauge-fixing functional for the graviton is also in the

temporal form, i.e

Gµ[hµν , φ] = h0µ . (2.27)

Using the dictionary (2.23), one can show that this is achieved if we impose the following
constraints on the parameters:

a4 = −a6 , a5 = 0 , a7 = 2 (a1 + a2 + a3)− 3a6 ,

a8 = 0 , a9 = − (a1 + a2 + a3) + a6 , (2.28)

leading to the restricted dictionary

hµν = a1Aµ ◦ Aν + a2
1
∂0

∂(µAν) ◦ A0 + a3
∂µ∂ν

(∂0)2 A0 ◦ A0 + a6
n(µ∂ν)

∂0
A0 ◦ A0

+ a6ξ
∂µ∂ν

∂0
c ◦ c̄ − [2 (a1 + a2 + a3)− 3a6] ξn(µ∂ν)c ◦ c̄

+ [(a1 + a2 + a3)− a6] ηµν ([A0 ◦ A0 + 2ξ ∂0c ◦ c̄]) ,

φ = b1

[
Aρ ◦ Aρ −

1
□

∂A ◦ ∂A

]
− b2 [A0 ◦ A0 + 2ξ ∂0c ◦ c̄] .

(2.29)

We will additionally require temporal gauge in YM to map to temporal gauge in gravity
in the physical sense, i.e.

A0 = 0 ⇒ h0µ = 0 , (2.30)

which imposes an additional constraint on the parameters,

a6 = 2 (a1 + a2 + a3) ≡ 2a123 , (2.31)
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that further restricts our dictionary to

hµν = a1Aµ ◦ Aν + a2
1
∂0

∂(µAν) ◦ A0 + a3
∂µ∂ν

(∂0)2 A0 ◦ A0 + 2a123
n(µ∂ν)

∂0
A0 ◦ A0

+ 2a123ξ
∂µ∂ν

∂0
c ◦ c̄ + 4a123ξn(µ∂ν)c ◦ c̄ − a123ηµν ([A0 ◦ A0 + 2ξ ∂0c ◦ c̄]) ,

φ = b1

[
Aρ ◦ Aρ −

1
□

∂A ◦ ∂A

]
− b2 [A0 ◦ A0 + 2ξ ∂0c ◦ c̄] .

(2.32)

Implementing the temporal gauge, we are left with the reduced dictionary

hij = a1Ai ◦ Aj + 2a123ξ
∂i∂j

∂0
c ◦ c̄ − 2a123δijξ ∂0c ◦ c̄ ,

φ = b1

[
Ai ◦ Ai −

1
∂i∂i

∂jAj ◦ ∂kAk

]
− 2b2ξ ∂0c ◦ c̄ ,

(2.33)

where we replaced the □ in the denominator of the dilaton dictionary with the spatial ∂2
i to

preserve the (residual) BRST symmetry after choosing the temporal gauge.
As we will see in the next section, this reduced dictionary prepares us for a straightforward

extension to dS backgrounds. Note that if we had chosen the axial gauge, for example,
nµ = (0, 0, 0, 1), the analysis would have been very similar to the temporal gauge choice. As
we will show later, nµ = (0, 0, 0, 1) turns out to be helpful for generalization to AdS space.

3 dS space

After studying the convolutional double copy dictionary in flat space with temporal gauge
choice, we are ready to generalize the discussion to de Sitter space. We will work with the
conformal metric in the flat slicing coordinate

ds2 =
(
− 1

Hη

)2 (
−dη2 + dx⃗2

)
, (3.1)

where H is the Hubble constant denoting the size of the observable universe.6

We will take the metric perturbation hµν and the gauge field Aµ to live on this fixed
dS background.7 The Maxwell action with the temporal gauge fixing term on the de Sitter
background is

SA =
∫

d4x
√
−ḡ

(
−1
4F µνFµν + 1

2ξ
(A0)2 + c̄∇0c − jµAµ − c̄jc − cjc̄

)
, (3.2)

where ḡ is the background metric for dS space, and F µν = ∇µAν −∇νAµ is the field strength
in the curved spacetime. For a conformal metric, the first term in the above action reduces
to the flat space expression. However, this is not true for the gauge-fixing and source terms.
For simplicity, we use ∇ instead of ∇̄ to represent the covariant derivative with respect
to the background metric.

6This conformal flat metric can be generalized to the FLRW metric with flat spatial geometry; we leave
this for future study.

7This corresponds to the Type B double copy in the classification of [10].
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For the gravitational sector, we use the linearized Einstein-Hilbert action

SGR =
∫

d4x
√
−ḡ

(
− 1

4hµνEµν + 1
2ξ(h)

(h0µ)2 − 1
4(∇φ)2 + c̄µ∇0cµ + c̄µ∇µc0

−Tµνhµν − c̄µjcµ − cµjc̄µ

)
, (3.3)

where φ is the dilaton, and Eµν is the linearized Einstein tensor that takes the form

Eµν = 1
2
(
−R̄hµν −∇µ∇νh + ḡαβ (∇α∇µhνβ +∇α∇νhµβ)

−∇2hµν + ḡµν

(
hαβR̄αβ −∇α∇βhαβ +∇2h

))
. (3.4)

R̄ = 12H2 is the Ricci curvature in 4D dS background, 1
2ξ(h)

(h0µ)2 is the temporal gauge
fixing term, and cµ, c̄µ are the corresponding graviton ghost and anti-ghost, respectively.

We now wish to construct a convolutional double copy appropriate for dS space. As
discussed in the introduction, due to the scale factor in the metric, the time translational
symmetry is broken. To describe the gauge fields and metric perturbations in dS space, we
can only apply the Fourier transformation on the spatial directions. The temporal coordinate
will have to be treated differently. To best capture the scale symmetry in dS space, we apply
the Mellin transformation (1.2). A nice comparison between the Mellin transform and the
Fourier transform can be found in [48].

To obtain the dictionary in dS space, we combine the standard convolution with a
convolution in Mellin space (1.3) as follows

h(η, x) = [f ⋆ g](η, x) =
∫

dτ

τ

∫
d3yf(1× τ, 0 + y)g

(
η

τ
, x − y

)
. (3.5)

Here the unit 1 in the time direction indicates the scaling symmetry, and the unit 0 in the
spatial directions indicates the translational symmetry. One can easily check that in the
Mellin-Fourier space, the convolution defined above is simply the product,

h̃(s, k) = f̃(s, k)g̃(s, k) . (3.6)

The convolutional double copy can be defined similarly through the ◦ product,

Aµ ◦ Aν ≡ Aa
µ ⋆

(
Φ−1

)aa′

⋆ Aa′
ν , (3.7)

with the spectator field Φ serving as the kernel.
An important requirement on our dictionary is that it reproduces the correct gravity

BRST transformations

Qhµν = ∇µcν +∇νcµ, Qφ = 0 , (3.8)

from the YM transformations:

QAµ = ∇µc, Qc = 0, Qc̄ = 1
ξ

nA = 1
ξ

A0 . (3.9)
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Notice that the covariant derivative does not have the nice flat space property, eq. (2.1),
since only the spatial partial derivatives pass through the convolution. This poses an apparent
issue for a standard convolutional dictionary satisfying (2.1), since a term of the form Aµ ◦Aν

will transform as

Q(Aµ ◦ Aν) = ∂µc ◦ Aν + Aµ ◦ ∂νc = ∂µ (c ◦ Aν) + ∂ν (Aµ ◦ c) , (3.10)

and it is unclear how to reproduce the full covariant derivative in (3.8). To find the dictionary
in de Sitter space, we need to resolve the mixing between the temporal components and the
spatial ones as inherited from the covariant derivative,

∇0A0 = ∂0A0 −
1
η

A0 ,∇iA0 = ∂iA0 +
1
η

Ai ,

∇0Ai = ∂0Ai +
1
η

Ai ,∇iAj = ∂iAj +
1
η

A0 .
(3.11)

It is straightforward to see that restricting to fields satisfying temporal gauge A0 = 0
eliminates the mixing between temporal components with the spatial components when
taking the covariant derivative, and the YM BRST residual transformations essentially
reduce to flat ones

QAi = ∂ic, Qc = 0, Qc̄ = 0 . (3.12)

Then, choosing the temporal gauge for gravity, h0µ = 0, together with c0 = 0, we see
that (3.8) reduces to

Qhij = ∂icj + ∂jci, Qφ = 0, (3.13)

which follows from (3.12).
The flat space dictionary in temporal gauge, eq. (2.33), can be directly extended to dS

space with the modified convolution law given in eq. (3.7) and (3.5),8

hij = a1Ai ◦ Aj + 2a123ξ
∂i∂j

∂0
c ◦ c̄ − 2a123δijξ ∂0c ◦ c̄ ,

φ = b1H2η2
(

δij [Ai ◦ Aj ]−
1

∂i∂i
[∂kAk ◦ ∂mAm]

)
− 2b2ξ ∂0c ◦ c̄ ,

(3.14)

where the repeated indices indicate the summation over spatial dimensions. We will later
apply this dictionary to physical solutions in section 4, and show that it correctly generalises
the known flat-space results.

To conclude this section, we briefly comment on the generalisation to AdS space. The
AdS spacetime is also conformally flat,

ds2
AdS = 1

z2 (−dη2 + dx⃗2) , (3.15)

8Let us comment on the term ∂0c appearing in the dilaton dictionary. In order to preserve the gauge choice
A0 = 0, we expect this to vanish everywhere except perhaps in a localised region of spacetime. This can be
achieved by an appropriate choice of source jc in (3.2). This is analogous to the situation in Lorenz gauge,
where we have □c ∝ δ3(x⃗). However, such terms are not negligible from the perspective of the convolution,
which integrates over the whole of spacetime, which explains its appearance in the dictionary.
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with the conformal factor being a function of radial direction z. Here we will consider
a different constant vector in the gauge fixing term, nµ = (0, 0, 0, 1), which sets A3 = 0.
Following the same process, we obtain the following dictionary

hij = a1Ai ◦ Aj + 2a123ξ
∂i∂j

∂z
c ◦ c̄ − 2a123δijξ ∂zc ◦ c̄ ,

φ = b1H2z2
(

ηij [Ai ◦ Aj ]−
1

η∂i∂i
ηklηmn [∂kAl ◦ ∂mAn]

)
− 2b2ξ ∂zc ◦ c̄ ,

(3.16)

where now i, j = 0, 1, 2, and ηij = −1 when i = j = 0, ηij = 1 when i = j = 1, 2, and
vanishes otherwise.

We will now study some examples of physical solutions, in particular the (dS-)Schwarzschild
metric and the point-like charge in gauge theory.

4 Solutions

4.1 Flat space Schwarzschild

In this subsection, we discuss a specific example of the convolution double copy in flat space.
We will relate the point-source Maxwell solution with the Schwarzschild BH solution. This
has already been done in [35] in Lorenz and de Donder gauge, respectively. Here, we will re-do
the calculation in temporal gauge, in order to set the stage for the Schwarzschild solution in
a de Sitter background, which will be explored in the next subsection.

We start with the linearised YM field for the point charge solution,

Aa
µ = gαa

4πr
(1, 0, 0, 0) , (4.1)

with αa a normalised constant color vector. We can put this in temporal gauge by applying
the gauge transformation in eq. (B.1), to get

(Aa
0)

′ = 0 , (Aa
i )

′ = gt

4π

xi

r3 αa . (4.2)

We will also need the spectator field

Φaa′ = gδaa′

r
, (4.3)

for the kernel of the convolutional double copy.
On the other hand, the Schwarzchild BH solution takes the form

ds2 = −
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1
dr2 + r2dθ2 + r2 sin2 θdφ2 , (4.4)

where rs is the Schwarzchild radius of the black hole. We do the coordinate transform to the
isotropic coordinates and find the metric perturbation takes the form,

h00 = rs

r
, h0i = 0 , hij = rs

r
δij , (4.5)

where r =
√

x2 + y2 + z2 is the radius outside the horizon [71].
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We now go to temporal gauge, h0µ = 0, see details in appendix B. The spatial graviton
in this gauge takes the form

h′
ij = rs

r
δij −

t2rs

2

(
δij

r3 − 3xixj

r5

)
− t2rs

δij

3 2πδ3(x⃗) . (4.6)

We will neglect the notation ′ in the gauge field and graviton field from now on.
We would like to find the dictionary for this physical solution, both for the graviton

field and for the vanishing dilaton field that does not show explicitly in the Schwarzschild
solution. To compute the dilaton dictionary, we first notice the Fourier transform of the
gauge field takes the form,

F(Aa
i ) = gπ

δ(k0)
k0

ki

k2 αa , (4.7)

with αa a normalised constant color vector as before. Therefore, the convolution Ai ◦ Aj

takes the form

Ai ◦ Aj = gπ

4
δ(k0)

k2
0

kikj

k2 , (4.8)

where we used the fact that the Fourier transform of the spectator scalar field is gδ(k0)4π
k2 δaa′ .

Then the first two terms in the dilaton dictionary can be obtained from the above expressions,

Ai ◦ Ai −
1

∂i∂i
∂jAj ◦ ∂kAk = gπ

4
δ(k0)

k2
0

+ 1
−k2

gπ

4
δ(k0)

k2
0

k2 = 0 . (4.9)

Then we set the coefficient of the ghost-antighost term in the dilaton dictionary in (3.14)
to vanish in order to get a zero dilaton, i.e. b2 = 0.

To map with the Fourier transformation of the graviton

F(hij) = rs8π2 δ(k0)
k2

0

kikj

k2 + rs8π2 δijδ(k0)
k2 , (4.10)

we need a ghost-antighost term which behaves like

ξ∂0c ◦ c̄ = gπ

4
δ(k0)
−k2 . (4.11)

Plugging it back in the graviton dictionary, we have

a1Ai ◦ Aj + 2a123

(
∂i∂j

∂2
0

− δij

)
ξ∂0c ◦ c̄

= (a1 − a123)
gπ

4
δ(k0)

k2
0

kikj

k2 + a123
gπ

4
δijδ(k0)

k2 . (4.12)

We therefore require the following mapping between the coefficients
gπ

4 a123 = 8π2rs ,
gπ

4 a1 = 16π2rs , (4.13)

in order to reproduce the Schwarzchild solution. The details of the various Fourier transfor-
mations used have been saved for appendix (A). For flat space, one can also start from the
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full dictionary, eq. (2.32), in the absence of physical gauge fixing. Imposing the vanishing
of the dilaton will in this case result in a non-trivial ghost contribution, as expected. We
present the corresponding calculation in appendix (C).

We conclude with a remark on the spectator scalar (4.3). We note that the convolution
inverse of this spectator should not be thought of as a stand-alone object (indeed it would be
divergent), but rather as a formal operator acting on one of the Ai factors. Note that the
δ(k0) in the Fourier transform of the spectator scalar has been chosen exactly as to cancel
the δ(k0) dependence in one of the Ai factors in the product Ai ◦ Aj ≡ Aa

i ⋆
(
Φ−1)aa′

⋆ Aa′
j ,

yielding a finite final result by construction. Alternatively, in certain cases one can circumvent
the issue and have a mathematically well defined spectator inverse by choosing both the
spectator and one of the YM factors to be of the form of a full 4-dimensional delta function
δ4(x) (which is its own convolution inverse) [30, 38, 39].9 Here we have chosen both YM
factors to be of the form (4.1)–(4.2), in order to connect with other double copy proposals for
classical solutions in the literature, which inevitably leads to a spectator of the form (4.3),
and the formal operator interpretation.

4.2 dS-Schwarzschild

We now want to seek a solution for de Sitter space. The linearised YM equation in a dS
background with a point source is

∇µF µνa = gδ(3)(x⃗)δν
0 αa , (4.14)

and the solution in temporal gauge is

Aa
0 = 0, Aa

i = gxi(−η)
r3 αa = −g(−η)∂i

(1
r

)
αa . (4.15)

For the gravitational sector, we start from the dS-Schwartzchild solution in the static
chart,10

ds2 = −
(
1− rs

r
− Λr2

3

)
dt2 +

(
1− rs

r
− Λr2

3

)−1

dr2 + r2 dΩ2 , (4.16)

where Λ is the cosmological constant that relates to the Hubble constant via Λ/3 = H2, and
rs is the Schwarzschild radius of the black hole. We then expand the metric to O(rs) and
apply the coordinate transformation to the flat slicing coordinate. The metric turns to

ds2 = 1
H2η2

(
−dη2 + dx⃗2

)
− rs

r

dη2

Hη

(
1 + r2

η2

)
(
1− r2

η2

)2 + 4rs

r

xidxidη

Hη2

(
1− r2

η2

)−2

− rs

r3Hη

(
1 + r2

η2

)
(
1− r2

η2

)2 (xidxi)2 ,

9For further remarks on circumventing analytical issues that might arise in the convolution product see
also [72].

10For the classical Kerr-Schild double copy for this solution see [10, 11].
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and one can read off the graviton from the above expression. Following appendix B, we then
go to temporal gauge h0µ = 0, where the new spatial h′

ij takes the form

h′
ij = rsxixj(−η)

Hr5 − rsδij(−η)
3Hr3 + 4π

rsη

9H
δijδ3(x⃗) (4.17)

= rs(−η)
3H

∂i∂j

(1
r

)
. (4.18)

Notice the δ3(x⃗) function is coming from the Laplacian operator
∑

i

∂i∂i

(1
r

)
= −4πδ3(x⃗) , (4.19)

which is essential to capture the trace of graviton.
The gauge field and graviton field in Mellin space and Fourier space take the form

Ãa
i (s, k) =

∫ ∞

0
d(−η)

∫
d3x⃗(−g)∂i

(−η)
r

eik⃗·x⃗(−η)2s− d
2−1αa

= 4πg
ki

k2 2πδ

(
2s − d

2 + 1
)

αa , (4.20)

h̃ij(s, k) = − rs

3H
2πiδ

(
2s − d

2 + 1
) 4πkikj

k2 . (4.21)

With a spectator field

Φaa′(η, x) = −gη
δaa′

r
, Φ̃aa′(s, k) = g

4π

k2 2πi

(
2s − d

2 + 1
)

δaa′
, (4.22)

the convolution becomes

Ai ◦ Aj = −2πiδ

(
2s − d

2 + 1
)

g4π
kikj

k2 , (4.23)

which matches our graviton in Mellin/Fourier space obtained in eq. (4.21). Comparing to the
general dictionary (3.14), we see that the double copy works with a vanishing ghost term.
The convolution therefore takes a particularly simple form,

hij = a1Ai ◦ Aj , a1 = rs

3Hg
. (4.24)

And one can check that the dilaton field automatically vanishes with b2 = 0.
It is remarkable that we do not need the ghost to contribute in the convolutional

dictionary in de Sitter space, which indicates that the temporal gauge is the proper gauge
choice for de Sitter.

5 Discussion and conclusion

In this paper, we have shown that the convolutional double copy can be extended to (anti) de
Sitter backgrounds. We found that arbitrary gravitational fluctuations in temporal gauge, as
well as their residual symmeteries, can be constructed from counterparts in the YM theory.
As an example, we demonstrated how the Schwarzschild solution in a dS background follows
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from an electromagnetic potential sourced by a point charge. Encouragingly, this agrees
with the known results in the flat space limit.

We have found the temporal gauge to be necessary in formulating the simplest extension
of the flat-space convolution to de Sitter. Of course, it would be interesting to construct a
more general convolution product on an (A)dS background, which could deal with arbitrary
gauge choices.

On a more practical note, it would also be worthwhile to explore more general spacetimes
of interest to cosmology. For example, we note that the subset of FLRW metrics with
vanishing scalar curvature of the 3-space is conformally flat. The conformal factor is a
simple generalisation of that in eq. (3.1), again depending only on the time coordinate, thus
making it a good candidate for a similar double copy construction in the temporal gauge.
It is known that the non-spinning black hole solution in a general conformal spacetime can
be described by the McVittie metric [73], and it would be very interesting to reproduce
this via the double copy.

Another direction for generalising our work is to go beyond the point like charge sources to
higher multipole moments and study the corresponding gauge/gravity response. Additionaly,
as (A)dS spacetime has an interesting asymptotic behavior, it would be of interest to generalize
the results obtained in [74, 75] for flat spacetime. Finally, in flat space, there has been progress
in understanding how double copy formulations for fields and classical solutions connect with
the amplitudes formulation. Another possible direction would then be to connect with the
correlator double copy programme [12–26], which we leave for future work.
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A Fourier transformation

In this section, we list some useful integral formulas following the conventions in [76]. The
expressions involving vector indices are derived by taking the derivative with respect to
the spatial coordinate,

∫
ddk⃗

(2π)d

eik⃗·x⃗(
k⃗2
)α = 1

(4π)d/2
Γ(d/2− α)

Γ(α)

(
r⃗2

4

)α−d/2

∫
ddk⃗

(2π)d

ki(
k⃗2
)α eik⃗·x⃗ = ixi

Γ(d/2− α + 1)
2(4π)d/2Γ(α)

(
r⃗2

4

)α−d/2−1

∫
ddk⃗

(2π)d

kikj(
k⃗2
)α eik⃗·r⃗ = Γ(d/2− α + 1)

(4π)d/2Γ(α)

(
δij

2 + (α − d/2− 1)xixj

r⃗2

)(
r⃗2

4

)α−d/2−1

, (A.1)
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where the second equation is obtained by taking derivative −i∂i = −i ∂
∂xi on both sides of

the first equation, and similarly for the third equation. It is worth pointing out that the
above standard Fourier transforms only hold when we are away from the origin, r = 0.
As is well known, the Laplacian acting on the 1/r gives us the δ function, which is zero
everywhere away from the origin. When acting with derivatives −∂i∂j on the first equation,
one should also recover the δ -behavior when taking the trace. This leads to a special formula
that we will use in eq. (4.10),∫

d3k⃗

(2π)3
kikj

k2 eik⃗·r⃗ = 1
4π

(
δij

r3 − 3xixj

r5

)
+ δij

3 δ3(x⃗) , (A.2)

where the δ3(x⃗) function can also be moved to the left hand side as a constant.
The inverse Fourier transformation takes the form,∫

ddx⃗
e−ik⃗·x⃗

(x⃗2)α = πd/2Γ(d/2− α)
Γ(α)

(
k⃗2

4

)α−d/2

∫
ddx⃗

x⃗i

(x⃗2)α e−ix⃗·⃗k = ikiπ
d/2Γ(d/2− α + 1)

2Γ(α)

(
k⃗2

4

)α−d/2−1

∫
ddx⃗

x⃗ix⃗j

(x⃗2)α e−ix⃗·⃗k = πd/2Γ(d/2− α + 1)
Γ(α)

(
δij

2 + (α − d/2− 1)kikj

k⃗2

)(
k⃗2

4

)α−d/2−1

. (A.3)

As to the Fourier transformations involving time, we treat them in the following way,

f(t) = t2 , f(t) =
∫

dk0
2π

eik0tf̃(k0) , (A.4)

inversely,
f̃(k0) =

∫
dte−ik0tf(t) . (A.5)

We have

2 = d2

dt2 f(t) =
∫

dk0
2π

d2

dt2 eik0tf̃(k0) = −
∫

dk0
2π

k2
0eik0tf̃(k0) . (A.6)

Since the constant under the Fourier transformation gives us the δ function, we can express
f̃(k0) as −4πδ(k0)/k2

0. Though this expression is not well-defined as a distribution function,
one should think of it from the perspective of the derivative operation. Similarly. for
f(t) = t, we have

1 = d

dt
f(t) =

∫
dk0
2π

d

dt
eik0tf̃(k0) = i

∫
dk0
2π

k0eik0tf̃(k0) . (A.7)

Its Fourier transformation is 2πδ(k0)/(ik0).

B Temporal gauge

B.1 Flat space

In this section, we show how to apply gauge transformations in order to write our solutions
in temporal gauge. We start with the flat space. Here we will leave the gauge index implicit,
as it does not affect the calculations at linear level.
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We start from the solution in Lorenz gauge eq. (4.1), and perform the following gauge
transformation,

A′
0 = A0 + ∂0Λ = 0, Λ = − g t

4πr
+ f(r), A′

i =
g t

4π

xi

r3 + f ′(r)xi

r
, (B.1)

where f(r) denotes the redundant gauge degree of freedom that will be set to zero for
simplicity here, and ′ denotes the derivative with respect to r.

In flat space, the gravitational perturbation transforms under the linearized diffeomor-
phism through

h′
µν = hµν + ∂µξν + ∂νξµ . (B.2)

To go to the temporal gauge where h′
0µ vanishes, we first apply the transformation on the

temporal component such that

h′
00 = h00 + 2∂0ξ0 = 0 . (B.3)

This is gives a differential equation for the gauge parameter ξ0, with solution

ξ0 = −1
2

∫
dt h00 + F (r) = −1

2
rs

r
t + F (r) , (B.4)

where F (r) as a function of spatial coordinates serves as the integration constant, and
represents the redundant gauge. The next step is to transform h′

0i to zero,

h′
0i = h0i + ∂0ξi + ∂iξ0 = 0 , (B.5)

which gives

ξi = −
∫

dt h0i −
∫

dt ∂iξ0 = − t2

4
rsxi

r3 − tF ′(r)xi

r
+ Fi(r) , (B.6)

where the Fi(r) are functions of r and serve as the redundant gauge in spatial components.
This gives the spatial graviton after the gauge transform,

h′
ij = rs

r
δij −

t2rs

2

(
δij

r3 − 3xixj

r5

)
, (B.7)

where we have set the redundant gauges F (r) and Fi(r) to zero.

B.2 de Sitter space

In de Sitter space, the diffeomorphism involves the covariant derivatives,

hµν → h′
µν +∇µξν +∇νξµ . (B.8)

δh00 = 2∂0ξ0 +
2
η

ξ0, δh0i = ∂0ξi + ∂iξ0 +
2
η

ξi, δhij = ∂iξj + ∂jξi +
2δij

η
ξ0 . (B.9)
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Now we want h′
00 = 0, which means

2∂0ξ0 +
2
η

ξ0 = δh00 = −h00 = rs

r

1
Hη

(
1 + r2

η2

)
(
1− r2

η2

)2 ,

ξ0 = rs

2Hr

(
1 + r2

r2 − η2

)
− rs

Hη
tanh−1 η

r
+ F (x)

η
. (B.10)

The next step is to make h′
0i = 0, this implies that

2rs

r

xi

Hη2

(
1− r2

η2

)−2

+∂0ξi+
2
η

ξi+∂iξ0 =0 , (B.11)

ξi =
rsxi

2r(−Hη)−
rsxi(−η)
6Hr3 − rsxir

2(−Hη)(η2−r2)+
rsxi

Hη2 tanh
−1 η

r
−xiF

′(r)
2r

+Fi(r)
η2 . (B.12)

With the ξµ obtained above, we get

h′
ij = hij + ∂iξj + ∂jξi =

rsxixj(−η)
Hr5 − rsδij(−η)

3Hr3 + 4π
rsη

9H
δijδ3(x⃗) , (B.13)

which are the new spatial components in temporal gauge used in eq. (4.17).
One can check that the above solutions in temporal gauge satisfy the equations of motion

of gauge fields and gravitational fields,

H2η2

∂2
0Ai − ∂2

j Ai +
3∑

j=1
∂j∂iAj

 = ji ,

H2η2∂0∂iAi = j0 , (B.14)

where the second line should be treated as a constraint equation from the EoM of the
temporal component A0.

In a similar way, we can obtain the EoM for the graviton as

1
2
(
∂2h − ∂i∂jhij

)
+ 2

η2 h + 1
η

∂0h = T00
H2η2 , (B.15)

where h ≡
∑

k=1,2,3 hkk is the trace of the graviton. For h0i, the EoM is

1
2∂0 (∂ih − ∂jhij) +

1
η
(∂ih − ∂jhij) =

T0i

H2η2 . (B.16)

For the spatial part hij , the EoM is

hij − η∂0hij −
1
2η2∂2

0hij −
1
2η2

(
∂k∂ihjk + ∂k∂jhik − ∂i∂jh − ∂2

khij

)
+δij

(
−h + η∂0h + 1

2η2∂2
0h − 1

2η2∂2
l h + 1

2η2∂k∂lhkl

)
= Tij

H2 . (B.17)
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C Dilaton derivation

In this section, we recover the vanishing dilaton in flat space without fixing the temporal
gauge in the dictionary itself, but rather treating the physical solution as one that happens
to have a vanishing A0. The dilaton dictionary contains the contribution

A ◦ A − 1
□

∂A ◦ ∂A = gπ

4
δ(k0)

k2
0

+ 1
k2

0 − k2
g2π

4
δ(k0)

k2
0

k2 = g2π

4
δ(k0)

k2
0 − k2 , (C.1)

where we utilize eq. (4.8). Therefore, to get a vanishing dilaton, the ghost-antighost term
should behave as

ξ∂0c ◦ c̄ = b1
2b2

gπ

4
δ(k0)

k2
0 − k2 . (C.2)

Notice under the inverse Fourier transformation, δ(k0) picks up the k0 = 0 phase, and the
above expression is equivalent to

ξ∂0c ◦ c̄ = b1
2b2

gπ

4
δ(k0)
−k2 , (C.3)

which will behave like 1/r in coordinate space. Plugging this ghost-antighost term back
in the graviton’s dictionary, we have

a1Ai ◦ Aj + 2a123

(
∂i∂j

∂2
0

− δij

)
=
(
a1 −

b1
b2

a123

)
gπ

4
δ(k0)

k2
0

kikj

k2 + b1
b2

a123
gπ

4
δijδ(k0)

k2 . (C.4)

To map with the Fourier transformation of the graviton

F(hij) = rs8π2 δ(k0)
k2

0

kikj

k2 + rs8π2 δijδ(k0)
k2 , (C.5)

obtained from eq. (4.6), we have

gπ

4
b1
b2

a123 = 8π2rs ,
gπ

4 a1 = 16π2rs . (C.6)

This gives an example of a convolution double copy through a general dictionary.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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