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1 Introduction

The construction of the Yang-Baxter (YB) deformation [1–3] of the Metsaev-Tseytlin su-
percoset sigma model for semi-symmetric spaces [4, 5] has led to substantial interest in
integrable deformations of strings on AdS backgrounds. YB deformations can be grouped
into two classes: homogeneous and inhomogeneous, depending on whether the deforming
operator satisfies the classical YB equation or its modified counterpart. On the other hand,
the SL(2;R)×SU(2) principal chiral model, the sigma model with target space AdS3×S3, has
long been known to admit a hierarchy of integrable deformations — rational (undeformed),
trigonometric and elliptic [6].1 The adjectives refer to the periodicity of the spectral parameter
in the Lax connection. For a recent review on integrable deformations of sigma models, see [8].

The Metsaev-Tseytlin supercoset sigma model for Z4 permutation supercosets, a special
class of semi-symmetric spaces whose superisometry group is of product form, can be used to

1Recently, it has also been shown that it is possible to generalise and construct an elliptic deformation of
the principal chiral model for higher rank groups [7].
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describe strings on AdS3 backgrounds supported by Ramond-Ramond (R-R) fluxes in the
Green-Schwarz formulation [9].2 Starting from the inhomogeneous Drinfel’d-Jimbo bi-YB
deformation [11, 12] of the supercoset sigma model for the semi-symmetric space

PSU(1, 1|2) × PSU(1, 1|2)
SU(1, 1) × SU(2) , (1.1)

an integrable trigonometric deformation of strings on AdS3 × S3 × T4 was constructed
in [13, 14]. Motivated by these results, our goal in this paper is to investigate the existence
of an integrable elliptic deformation of strings on AdS3 × S3 × T4.

In the space of integrable string sigma models and their deformations, the AdS3 ×S3 ×T4

background has special properties stemming from the product structure of its superisometry
group PSU(1, 1|2) × PSU(1, 1|2).3 In particular, when only one factor is deformed, which we
refer to as a unilateral deformation, then at least half the supersymmetry will be preserved.
Moreover, for the unilateral inhomogeneous YB deformation constructed from the Drinfel’d-
Jimbo R-matrix, the resulting geometry is smooth with vanishing Ricci scalar and the dilaton
is constant [13, 14].

The unilateral inhomogeneous Drinfel’d-Jimbo YB deformation of the AdS3 × S3 su-
percoset sigma model is closely related to the trigonometric deformation of AdS3 × S3 [3].
The deformed bosonic sigma models are the same up to a total derivative. While the YB
deformation leads a particular choice of supporting R-R fluxes, by applying sequences of
TsT transformations in the 4-torus directions it is possible to write the background in an
SO(4)-invariant way [14], where SO(4) is locally isomorphic to the maximal compact sub-
group of the T-duality group of 6-d maximal supergravity.4 We refer to this model as the
trigonometric deformation of strings on AdS3 × S3 × T4.

The properties of the trigonometric deformation motivate us to investigate the existence
of an analogous elliptic deformation. Since an integrable elliptic deformation of the Metsaev-
Tseytlin supercoset sigma model is not known, our main approach will be to consider
the elliptically-deformed bosonic sigma model on AdS3 × S3 and investigate the tree-level
worldsheet S-matrix in uniform light-cone gauge.

In order to quantise the worldsheet sigma model in the Green-Schwarz formalism, one
approach is to fix a uniform light-cone gauge isolating the physical degrees of freedom [17–19].
This relies on a choice of two commuting isometries, with different choices leading to different
gauge-fixed theories related by T T̄ , JT̄ transformations and their relatives [20, 21]. Whatever

2More precisely, the supercoset sigma model describes the sector of the theory associated with the curved
part of the geometry, i.e. AdS3 × S3 in the case of the AdS3 × S3 × T4. To embed the supercoset in the
Green-Schwarz sigma model additional bosonic fields need to be included to describe the T4, along with
fermionic fields ensuring κ-symmetry. The integrability of the supercoset sigma model is expected to extend
to the Green-Schwarz sigma model as shown to second order in fermions in [10].

3The same is true of the closely related AdS3 × S3 × S3 × S1 background whose superisometry group is
D(2, 1; α) × D(2, 1; α).

4This can be extended to include the Neveu-Schwarz-Neveu-Schwarz (NS-NS) 3-form flux starting from
the unilateral inhomogeneous Drinfel’d-Jimbo bi-YB deformation [15] of the AdS3 × S3 mixed flux supercoset
sigma model [16]. Again by applying sequences of TsT transformations, the background can be written in an
SO(5)-invariant way [14], where SO(5) is locally isomorphic to the maximal compact subgroup of the U-duality
group of 6-d maximal supergravity.
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choice is made, the same string spectrum should eventually be the same. Typically, in the
study of strings on AdS3 × S3 × T4, the diagonal isometries U(1)diag ⊂ SL(2,R) × SL(2,R)
and U(1)diag ⊂ SU(2)× SU(2) are used to fix light-cone gauge, see, e.g., [22–25] and [26] for a
review. However, these do not correspond to symmetries of the elliptically-deformed AdS3×S3

sigma model, and we are forced to use different isometries. As a result, the undeformed
limit of our results differ from those in the literature by terms that can be interpreted in
terms of JT̄ deformations. Since our main interest is in the elliptic deformation, other than
observing the relation between the light-cone gauge-fixed models, we do not explore this
further. For a detailed study of the different choices of light-cone gauge for AdSn × Sn string
sigma models and their deformations, see [21].

After fixing light-cone gauge, the standard route to quantisation starts by decompactifying
and computing the scattering matrix for the transverse excitations on the worldsheet. When
the model is integrable, we can attempt to use symmetries and the quantum YB equation
to bootstrap an exact result, up to phase factors, valid to all orders in the inverse string
tension. To determine the phase factors additional physical constraints, such as unitarity,
crossing symmetry and analyticity properties need to be imposed, which has successfully been
accomplished for the AdS3 × S3 × T4 superstring [27, 28]. The bosonic worldsheet spectrum
consists of 4 gapped and 4 gapless modes, originating from AdS3 × S3 and T4 respectively.
Supersymmetry requires that there are similarly 4 gapped and 4 gapless fermionic modes.
The full S-matrix, which is a 256× 256 matrix, can be broken down into 4× 4 building blocks,
each describing the scattering of 1 boson and 1 fermion.

Deformations of these 4 × 4 blocks compatible with integrability have been classified
in [29, 30]. In particular, there are two families known as the 6vB and 8vB R-matrices, which
are of 6 vertex and 8 vertex type respectively. The former includes the building blocks of
the trigonometric deformation [11], while the latter is naturally expressed in terms of elliptic
functions. Therefore, the existence of the 8vB R-matrix provides an additional motivation
to investigate elliptic deformations of strings on AdS3 × S3 × T4.

In this paper, we compute the tree-level worldsheet S-matrix for the elliptic deformation
of the bosonic sigma model on AdS3 × S3. While we do not find agreement with either the
6vB or 8vB R-matrices of [29, 30],5 we do find a number of interesting features, including
a hidden U(1) symmetry of the tree-level S-matrix, which is not a global symmetry of the
light-cone gauge Lagrangian. We discuss different options for how our result could still be
extended to include fermions and remain compatible with integrability, or break integrability
mildly by a non-integrable twist.

In order to test these options, and for the light-cone gauge theory to describe a string
sigma model, we require an embedding of the deformed 6-d metric in type II supergravity.
With this in mind, we construct candidate embeddings with constant dilaton and homogeneous
fluxes, motivated by the backgrounds in [14]. While we leave the question of whether these
backgrounds preserve any supersymmetry or lead to an integrable string sigma model for the

5Let us note already that we do not necessarily expect to match with the 8vB R-matrix of [29, 30] that
motivated us to consider this model. Indeed, the 6vB and 8vB solutions to the quantum YB equation only
coincide at the undeformed AdS3 × S3 × T4 point, while we expect the trigonometric deformation to be a
special case of the elliptic deformation, assuming an integrable version of the latter exists.
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future, the tree-level scattering amplitudes of the gapped bosonic modes associated to the
deformed AdS3 × S3 will be unchanged by the fermionic and gapless modes, hence provide
a probe of the string sigma model.

The outline of this paper is as follows. In section 2 we recall the elliptic deformation
of the bosonic AdS3 × S3 sigma model and introduce our parametrisation. In section 3 we
light-cone gauge fix the theory. A discussion of the symmetries before and after light-cone
gauge fixing is given in appendix A. The presence of the deformation requires us to consider
an alternative light-cone gauge fixing to the one typically used in the literature, and we
comment on the relation between the gauge fixings in section 5. The tree-level S-matrix is
presented in section 4 and its relation to known integrable R-matrices is discussed in section 6.
Finally, in section 7 we present an embedding of the elliptic deformation of AdS3 × S3 in type
II supergravity, and conclude in section 8 with a summary of our results and future directions.

2 Elliptic deformation of AdS3 × S3

In this section we define the action and the metric of the elliptically-deformed AdS3 × S3

sigma model.

2.1 Action and metric

Both AdS3 and S3 are symmetric spaces, described by the cosets

AdS3 = SO(2, 2)
SO(1, 2)

∼=
SL(2;R) × SL(2;R)

SL(2;R) , S3 = SO(4)
SO(3)

∼=
SU(2) × SU(2)

SU(2) . (2.1)

Bosonic strings on AdS3 × S3 can then be described in two equivalent ways: either by the
symmetric space sigma model with group element g ∈ SL(2;R) × SL(2;R) × SU(2) × SU(2)
and local gauge symmetry g → gh with h ∈ SL(2;R)×SU(2), or more simply by the principal
chiral model (PCM) on G = SL(2;R) × SU(2), without any gauge symmetry. Here we will
adopt the latter description, which is particularly suited to introduce deformation parameters
into the action. We consider the elliptically-deformed sigma model action

S = 1
4

∫
dτdσ(γαβ + ϵαβ) Tr

[
g−1∂αgO g−1∂βg

]
, g ∈ G = SL(2;R) × SU(2) , (2.2)

where the indices α, β = 0, 1 label the time and space coordinates σ0 ≡ τ and σ1 ≡ σ on the
2-d string worldsheet, γαβ =

√
−hhαβ is the Weyl-invariant auxiliary metric on the worldsheet

and ϵαβ is the anti-symmetric Levi-Civita symbol with ϵ01 = −ϵ10 = 1. The deforming linear
operator O : g → g acts on the generators of g = sl(2;R) ⊕ su(2) = Lie(G) diagonally as

O(Lj) = −αjLj , O(Jj) = βjJj , j = 1, 2, 3 . (2.3)

The overall coupling, which corresponds to the string tension in the context of string theory,
has been absorbed into the real deformation parameters αj and βj . The sign convention
in (2.3) is such that αj = βj = 1 corresponds to the undeformed PCM. The minus sign in the
operator acting on the generators of sl(2;R) is associated to the non-compactness of the Lie
algebra. Alternatively, we could have defined the action (2.2) with the supertrace rather than
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the trace, in which case O would simply reduce to the identity in the undeformed case, allowing
the action (2.2) to be generalised to supergroups. Our choice for the generators of sl(2;R) is6

L1 =
(
σ1 0
0 0

)
, L2 =

(
iσ2 0
0 0

)
, L3 =

(
σ3 0
0 0

)
, (2.4)

while for su(2) we choose

J1 =
(

0 0
0 iσ1

)
, J2 =

(
0 0
0 iσ2

)
, J3 =

(
0 0
0 iσ3

)
. (2.5)

To obtain the metric of the model we consider a specific parameterisation of the group-
valued field g,

g = eTL2eUL3eV L1eΦJ2eXJ3eY J1 . (2.6)

Gathering all the target space fields Ψµ = (T, U, V,Φ, X, Y )µ, the sigma model action (2.2)
takes the general form

S = −1
2

∫
dτdσ

(
γαβGµν∂αΨµ∂βΨν + ϵαβBµν∂αΨµ∂βΨν

)
, (2.7)

where the symmetric tensor Gµν denotes the metric on target space and the anti-symmetric
2-form Bµν is the B-field. It turns out that for the elliptically-deformed AdS3×S3 background
the B-field vanishes Bµν = 0, while the metric ds2 = GµνdΨµdΨν is given by

ds2 = ds2
a+ds2

b , (2.8)

ds2
a =

(
α1 sinh2 2U+cosh2 2U

(
−α2 cosh2 2V +α3 sinh2 2V

))
dT 2+α1dV

2+

+
(
α3 cosh2 2V −α2 sinh2 2V

)
dU2−2α1 sinh2UdTdV +(α3−α2)cosh2U sinh4V dTdU ,

ds2
b =

(
β1 sin2 2X+cos2 2X

(
β2 cos2 2Y +β3 sin2 2Y

))
dΦ2+β1dY

2+

+
(
β3 cos2 2Y +β2 sin2 2Y

)
dX2−2β1 sin2XdΦdY +(β3−β2)cos2X sin4Y dΦdX .

The metric decomposes into ds2
a and ds2

b , the metrics of elliptically-deformed AdS3 and S3

respectively. They are related by the analytic continuation

Φ → T , (X,Y ) → i(U, V ) , (β1, β2, β3) → (α1, α2, α3) , ds2
b → −ds2

a . (2.9)

The scalar curvature R of the metric ds2 is constant and given by

R = 2(α2
1 + α2

2 + α2
3)

α1α2α3
− 4

( 1
α1

+ 1
α2

+ 1
α3

)
− 2(β2

1 + β2
2 + β2

3)
β1β2β3

+ 4
( 1
β1

+ 1
β2

+ 1
β3

)
. (2.10)

6The Pauli matrices are given by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
.
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{α1, α2, α3} {γ̃1, γ̃2, γ̃3} Deformation type
α1 ̸= α2 ̸= α3 γ̃1 ̸= γ̃2 ̸= γ̃3 elliptic
α1 = α3 ̸= α2 γ̃1 ̸= γ̃3, γ̃2 = 0 trigonometric
α1 = α2 = α3 γ̃1 = γ̃3, γ̃2 = 0 rational (undeformed)

Table 1. Definition of the rational (undeformed), trigonometric and elliptic deformations.

Note that this vanishes when αj = βj for j = 1, 2, 3. For later convenience we also introduce
the alternative deformation parameters γ̃j and γj through the relations (assuming αj > 0
and βj > 0)

γ̃1 = α2√
α1α2α3

, γ̃2 = α1 − α3√
α1α2α3

, γ̃3 = α1 − α2 + α3√
α1α2α3

,

γ1 = β2√
β1β2β3

, γ2 = β1 − β3√
β1β2β3

, γ3 = β1 − β2 + β3√
β1β2β3

.

(2.11)

Our nomenclature for the different types of deformations is then defined according to table 1.

2.2 Remarks on the chosen parametrisation

When αj = βj = 1 for j = 1, 2, 3 the action (2.2) corresponds to the PCM on SL(2;R)×SU(2),
and we recover the metric of AdS3 × S3, albeit in a perhaps unfamiliar form,

ds2
0 = −dT 2 + dU2 + dV 2 − 2 sinh 2U dTdV + dΦ2 + dY 2 + dX2 − 2 sin 2XdΦdY . (2.12)

This metric follows from the usual embedding into R2,2 and R4 with

U0 = coshU coshV cosT −sinhU sinhV sinT , X1 = cosX cosY cosΦ+sinX sinY sinΦ ,
U1 = coshU coshV sinT +sinhU sinhV cosT , X2 = cosX cosY sinΦ−sinX sinY cosΦ ,
U2 = coshU sinhV sinT +sinhU coshV cosT , X3 = cosX sinY sinΦ+sinX cosY cosΦ ,
U3 = coshU sinhV cosT −sinhU coshV sinT , X4 = cosX sinY cosΦ−sinX cosY sinΦ ,

(2.13)
satisfying

−U2
0 − U2

1 + U2
2 + U2

3 = −1 , −dU2
0 − dU2

1 + dU2
2 + dU2

3 = ds2
a,0 ,

X 2
1 + X 2

2 + X 2
3 + X 2

4 = +1 , dX 2
1 + dX 2

2 + dX 2
3 + dX 2

4 = ds2
s,0 .

(2.14)

A possible solution of the equations of motion and Virasoro constraints for a point-like
(σ-independent) string propagating in the background (2.12) is given by

T = Φ = τ , U = V = X = Y = 0 . (2.15)

On this classical solution the embedding coordinates are

U0 = cos τ , U1 = sin τ , U2 = U3 = 0 ,
X1 = cos τ , X2 = sin τ , X3 = X4 = 0 .

(2.16)
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At this point it is useful to note that instead of (2.6) we could have chosen another parametri-
sation

g̃ = e
i
2 (t+ψ)L3earcsinhρL1e

i
2 (t−ψ)L3e

1
2 (ϕ+φ)J3earcsin r J1e

1
2 (ϕ−φ)J3 , (2.17)

which in the undeformed case leads to the metric of AdS3 × S3 in global coordinates,

ds̃2
0 = −(1 + ρ2)dt2 + dρ2

1 + ρ2 + ρ2dψ2 + (1 − r2)dϕ2 + dr2

1 − r2 + r2dφ2 . (2.18)

In terms of

u = ρ cosψ , v = ρ sinψ , x = r cosφ , y = r sinφ , (2.19)

the analytic continuation relating the metric of AdS3 and S3 in (2.18) is

ϕ→ t , (x, y) → i(u, v) , ds̃2
b → ds̃2

a , (2.20)

while a possible choice for the embedding coordinates is

Ũ0 =
√

1 + u2 + y2 cos t , X̃1 =
√

1 − x2 − y2 cosϕ ,

Ũ1 =
√

1 + u2 + y2 sin t , X̃2 =
√

1 − x2 − y2 sinϕ ,

Ũ2 = u , X̃3 = x ,

Ũ3 = v , X̃4 = y ,

(2.21)

satisfying the analogous relations to (2.14). Moreover, on the classical solution

t = ϕ = τ , u = v = x = y = 0 , (2.22)

the embedding coordinates are again given by (2.16) (now with tilded quantities on the
left-hand sides). Equating the embedding coordinates (2.13) and (2.21) one finds the change
of variables

t = arctan
(sin T + tanhU tanh V cosT

cosT − tanhU tanh V sin T

)
, ϕ = arctan

(sin Φ − tanX tan Y cos Φ
cos Φ + tanX tan Y sin Φ

)
,

u = coshU sinh V sin T + sinhU cosh V cosT , x = cosX sin Y sin Φ + sinX cosY cos Φ ,

v = coshU sinh V cosT − sinhU cosh V sin T , y = cosX sin Y cos Φ − sinX cosY sin Φ ,

(2.23)
which maps the classical solution (2.22) to the classical solution (2.15). Moreover, for small
excitations (u, v) and (x, y), and setting t = T = ϕ = Φ = τ the relation between the
transverse coordinates is a τ -dependent rotation(

u

v

)
=
(

cos τ sin τ
− sin τ cos τ

)(
U

V

)
,

(
x

y

)
=
(

cos τ sin τ
− sin τ cos τ

)(
X

Y

)
. (2.24)

In later sections, when computing the S-matrix describing the scattering of the transverse
excitations U, V,X, Y , we will analyse how this τ -dependent rotation of the excitations affects
the scattering. Let us note that this change of variables also applies when considering the
trigonometric deformation. Indeed, in the case

α1 = α3 = β1 = β3 = 1
1 + κ2 , α2 = β2 = 1 , (2.25)

– 7 –
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implementing the change of variables (2.23) in the metric (2.8) gives

ds2
κ = 1

1 + κ2

(
−(1 + ρ2)dt2 + dρ2

1 + ρ2 + ρ2dψ2 − κ2((1 + ρ2)dt− ρ2dψ)2
)

+ 1
1 + κ2

(
(1 − r2)dϕ2 + dr2

1 − r2 + r2dφ2 + κ2((1 − r2)dϕ+ r2dφ)2
)
,

(2.26)

which is simply the metric of the unilateral inhomogeneous YB deformation of AdS3×S3 [3, 11].

3 Light-cone gauge-fixed theory

To quantise the model and find the S-matrix it is necessary to remove the redundancies
in the definition of the action. In particular, the sigma model action is invariant under
reparametrisations of the string worldsheet. In the context of strings on AdS spaces, this
redundancy is typically removed by fixing uniform light-cone gauge [17]. In this section we
briefly review this light-cone gauge fixing, both in the Hamiltonian and Lagrangian formalism.
For further details the reader is invited to consult the review [18] as well as the paper [19]. We
then write down the gauge-fixed Lagrangians for the elliptically-deformed model, expanded
to quartic order in the transverse fields.

3.1 Classical solution

The first step in fixing uniform light-cone gauge is to identify a classical solution around which
the action can be expanded. For strings propagating in a background that is invariant under
shifts of two coordinates, this classical solution is usually a point-like string with the two
isometric directions identified with the worldsheet time coordinate τ . The only isometries left
after the elliptic deformation are shifts in T and Φ, associated to the left Cartan generators.
These can then be used to fix uniform light-cone gauge. Note that this does not correspond
to the standard gauge fixing for strings in (undeformed) AdS3. There, it is usually the global
time t and the angle φ in the S3, corresponding to the “diagonal” Cartan generators, that are
used for light-cone gauge fixing. As we will see, this alternative light-cone gauge fixing, which
is forced upon us by symmetries, leads to a modified dispersion relation for the excitations.
For later convenience (in particular to work with canonically-normalised quantities), we find
it convenient to assume positive deformation parameters

βj > 0 , αj > 0 , (3.1)

and rescale the fields as

T → T
√
α2

, U → U
√
α3

, V → V
√
α1

, Φ→ Φ√
β2
, X→ X√

β3
, Y → Y√

β1
.

(3.2)
One can then check that the point-like string parametrised by

T = Φ = λτ , U = V = X = Y = 0 , λ ∈ R , (3.3)

solves the equations of motion and the Virasoro constraints, including for the elliptically-
deformed model.

– 8 –
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3.2 Uniform light-cone gauge

We introduce the target-space light-cone coordinates

X+ = (1 − a)T + aΦ , X− = −T + Φ , T = X+ − aX− , Φ = X+ + (1 − a)X− ,

(3.4)
with free parameter a ∈ [0, 1]. In the Hamiltonian formalism, to fix uniform light-cone gauge
we introduce the conjugate momenta

P+ = PT +PΦ , P− = −aPT +(1−a)PΦ , PT = (1−a)P+−P− , PΦ = aP+ +P− ,

(3.5)
obtained from the sigma model action (2.2) in the usual way

Pµ = δ S
δ ∂τΨµ

= −γτβGµν∂βΨν , (3.6)

where we have set the B-field to vanish, and set

X+ = τ , P− = 1 . (3.7)

The light-cone gauge-fixed Hamiltonian is then given by

Hg.f. = −P+(Ψj , ∂σΨj , Pj) , (3.8)

obtained by solving the Virasoro constraints

Pµ∂σΨµ = 0 , GµνPµPν +Gµν∂σΨµ∂σΨν = 0 . (3.9)

The index j runs over all target-space coordinates except those involved in the light-cone
gauge fixing. In our case we have Ψj = (U, V,X, Y )j .

There is an equivalent way to obtain the light-cone gauge-fixed theory, working exclusively
in the Lagrangian formalism [31, 32]. The procedure is to T-dualise the sigma model in
X−, and set

X+ = τ , X̊− = σ , (3.10)

where X̊− is the T-dual coordinate. Recalling that we specialise to the case of vanishing
B-field, the light-cone gauge-fixed Lagrangian is then given by

Lg.f. = 2
√
− det

[
G̊µν∂αΨµ∂βΨν

]
, (3.11)

where here Ψµ = (X+, X̊−, U, V,X, Y )µ, and

G̊−− = 1
G−−

, G̊−µ̄ = G̊µ̄− = 0 , G̊µ̄ν̄ = Gµ̄ν̄ −
G−µ̄G−ν̄
G−−

, (3.12)

and the index µ̄ runs over all coordinates except the one involved in the T-duality.
The light-cone gauge-fixed Lagrangian and Hamiltonian are related through the Legendre

transform
Hg.f. = PjΨj − Lg.f. , Pj = ∂Lg.f.

∂(∂τΨj) . (3.13)
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To obtain the S-matrix we need to expand the gauge-fixed Lagrangian or Hamiltonian up
to quartic order in the transverse fields. It turns out that for the action (2.2) there are
no odd terms in the expansion

Lg.f. = Lg.f.
2 + Lg.f.

4 + . . . , Hg.f. = Hg.f.
2 + Hg.f.

4 + . . . . (3.14)

Henceforth, for convenience, we remove the g.f. superscript. In the next subsection the
Lagrangians and Hamiltonians will always be those of the light-cone gauge-fixed theory.

3.3 Light-cone gauge-fixed Lagrangians

Fixing light-cone gauge around the classical solution X = Y = U = V = 0 as described in
the previous subsection gives the following quadratic Lagrangian

L2 = 1
2
(
U̇2−Ú2+V̇ 2−V́ 2

)
+ 2(α1−α2)

α2α3
U2− 2(α2−α3)

α1α2
V 2−2

√
α1√
α2α3

UV̇ − 2(α2−α3)
√
α1α2α3

U̇V

+ 1
2
(
Ẋ2−X́2+Ẏ 2−Ý 2

)
+ 2(β1−β2)

β2β3
X2− 2(β2−β3)

β1β2
Y 2−2

√
β1√
β2β3

XẎ − 2(β2−β3)√
β1β2β3

ẊY ,

(3.15)
describing four real fields whose equations of motion are given by

Ü − U ′′ − 4(α1 − α2)
α2α3

U + 2(α1 − α2 + α3)
√
α1α2α3

V̇ = 0 ,

V̈ − V ′′ + 4(α2 − α3)
α1α2

V − 2(α1 − α2 + α3)
√
α1α2α3

U̇ = 0 ,

Ẍ −X ′′ − 4(β1 − β2)
β2β3

X + 2(β1 − β2 + β3)√
β1β2β3

Ẏ = 0 ,

Ÿ − Y ′′ + 4(β2 − β3)
β1β2

Y − 2(β1 − β2 + β3)√
β1β2β3

Ẋ = 0 .

(3.16)

At this point it is convenient to introduce complex variables

W = 1√
2

(U + iV ) , W = 1√
2

(U − iV ) , Z = 1√
2

(X + iY ) , Z = 1√
2

(X − iY ) .

(3.17)
The quadratic light-cone gauge-fixed Lagrangian L2 can then be rewritten, up to total
derivatives, as

L2 = |Ẇ |2 − |Ẃ |2 − iγ̃3
(
WẆ − ẆW

)
− (γ̃2

1 − γ̃2
2 − γ̃3

3)|W |2 + γ̃2γ̃3(W 2 +W
2)

+ |Ż|2 − |Ź|2 − iγ3
(
ZŻ − ŻZ

)
− (γ2

1 − γ2
2 − γ3

3)|Z|2 + γ2γ3(Z2 + Z
2) ,

(3.18)

where the alternative deformation parameters {γj , γ̃j}, j = 1, 2, 3 were introduced in eq. (2.11),
while the equations of motion become

EW := Ẅ −W ′′ − 2iγ̃3Ẇ + (γ̃2
1 − γ̃2

2 − γ̃2
3)W − 2γ̃2γ̃3W = 0 ,

EW := Ẅ −W
′′ + 2iγ̃3Ẇ + (γ̃2

1 − γ̃2
2 − γ̃2

3)W − 2γ̃2γ̃3W = 0 ,
EZ := Z̈ − Z ′′ − 2iγ3Ż + (γ2

1 − γ2
2 − γ2

3)Z − 2γ2γ3Z = 0 ,

EZ := Z̈ − Z
′′ + 2iγ3Ż + (γ2

1 − γ2
2 − γ2

3)Z − 2γ2γ3Z = 0 .

(3.19)
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The first two equations EW and EW as well as the last two equations EZ and EZ are coupled
differential equations. They become decoupled in the special case γ̃2γ̃3 = γ2γ3 = 0.

Contrary to L2, the quartic interaction Lagrangian L4 not only has terms depending
solely on the AdS3 coordinates {W,W} and solely on the S3 coordinates {Z,Z}, but it also
has mixed terms depending on all four fields {W,W,Z, Z}. In order to write L4 in a simple
form let us start by defining the TT -operator

OT T̄ = TττTσσ − TτσTστ , (3.20)

where Tµν denotes the energy-momentum tensor. The energy-momentum tensor gathers the
conserved currents associated to translation invariance on the worldsheet of the string, and,
to quadratic order, can be computed using the standard formula

Tµν = ∂L2
∂µΨj

∂νΨj − δµνL2 , (3.21)

where the sum is over all the fields Ψj = (W,W,Z, Z)j . Using the quadratic Lagrangian
in eq. (3.18) we then find the explicit expressions

Tττ = −|Ẇ |2 − |Ẃ |2 −
(
γ̃2

1 − γ̃2
2 − γ̃2

3

)
|W |2 + γ̃2γ̃3(W 2 +W

2)

− |Ż|2 − |Ź|2 −
(
γ2

1 − γ2
2 − γ2

3

)
|Z|2 + γ2γ3(Z2 + Z

2) ,

Tσσ = −|Ẇ |2 − |Ẃ |2 +
(
γ̃2

1 − γ̃2
2 − γ̃2

3

)
|W |2 − γ̃2γ̃3(W 2 +W

2) + iγ3(W ˙̄W − ẆW̄ )

− |Ż|2 − |Ź|2 +
(
γ2

1 − γ2
2 − γ2

3

)
|Z|2 − γ2γ3(Z2 + Z

2) + iγ3(ZŻ − ŻZ) ,

Tστ = −ẆẂ − ẂẆ − ŻŹ − ŹŻ ,

Tτσ = −ẆẂ − ẂẆ − ŻŹ − ŹŻ + iγ̃3(WẂ − ẂW ) + iγ3(ZŹ − ŹZ) .

(3.22)

With the above definitions we can write the quartic gauge-fixed Lagrangian as

L4 = Ľ4(W,W )+ L̂4(Z,Z)+ L̃4(W,W,Z,Z)−
(
a− 1

2

)
OT T̄

+ i(a−1)
2 (γ̃1 + γ̃2)(W 2−W 2)

(
ŻEZ + ŻEZ

)
+ ia

2 (γ1 +γ2)(Z2−Z2)
(
ẆEW +ẆEW

)
+ i(a−1)

2 (γ̃1 + γ̃2)(W 2−W 2)
(
ẆEW̄ + ˙̄WEW

)
+ ia

2 (γ1 +γ2)(Z2−Z2)
(
ŻEZ + ŻEZ

)
.

(3.23)
The remaining terms containing only AdS3 fields are given, up to total derivatives, by

Ľ4 = −2(γ̃2
1 − γ̃2

2 − γ̃2
3)|W |2|Ẇ |2 + i

2ξ1|W |2
(
WẆ −ẆW

)
+ξ2|W |4

− 1
2 γ̃3W

(
(γ̃1 + γ̃3)W − iẆ

)(
Ẇ 2−Ẃ 2

)
− 1

2 γ̃3W
(
(γ̃1 + γ̃3)W + iẆ

)(
Ẇ

2
−Ẃ

2)
− γ̃2γ̃3|W |2

(
Ẇ 2−Ẃ 2 +Ẇ

2
−Ẃ

2)
+2γ̃2γ̃3|Ẇ |2

(
W 2 +W

2)− 1
3 γ̃2ξ3

(
W 3W +WW

3)
−2iγ̃2ξ6|W |2

(
WẆ −WẆ

)
− 1

6 γ̃
2
2ξ4(W 4 +W

4)+ 1
12ξ0

(
W 3EW +W

3EW
)

+ 1
4ξ5

(
EWW

(
W 2−W 2−|W |2

)
+EWW

(
W

2−W 2−|W |2
))

,

(3.24)
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where the explicit form of the constants ξj , j = 0, 1, . . . , 5 in eq. (3.24) is

ξ0 = γ̃2
1 + 2γ̃2

2 + 3γ̃1γ̃2 + γ̃1γ̃3 ,

ξ1 = 2γ̃3
1 + 3γ̃2

1 γ̃3 − 7γ̃2
2 γ̃3 − 3γ̃3

3 − 2γ̃1(γ̃2
2 + γ̃2

3)
ξ2 = γ̃4

2 − γ̃3
1 γ̃3 + 4γ̃2

2 γ̃
2
3 + γ̃4

3 − γ̃2
1(γ̃2

2 + γ̃2
3) + γ̃1γ̃3(3γ̃2

2 + γ̃2
3) ,

ξ3 = 2γ̃3
1 + 3γ̃2

1 γ̃3 − 7γ̃2
2 γ̃3 − 2γ̃1γ̃

2
2 − 5γ̃1γ̃

2
3 − 6γ̃3

3 ,

ξ4 = γ̃2
1 − γ̃2

2 − 2γ̃1γ̃3 − 7γ̃2
3 ,

ξ5 = γ̃1(γ̃1 + γ̃2 + γ̃3) ,
ξ6 = γ̃2

1 − γ̃2
2 − 2γ̃1γ̃3 − 4γ̃2

3 .

(3.25)

The terms containing only S3 fields can be obtained from the AdS3 ones in the following way,

L̂4 = −Ľ4
∣∣∣
W→Z,γ̃i→γi

. (3.26)

Finally, the mixed terms in eq. (3.23) are given by

L̃4 =
(
(γ2

1 − γ2
2 − γ2

3)|Z|2 − γ2γ3(Z2 + Z
2)
) (

|Ẇ |2 + |Ẃ |2
)

−
(
(γ̃2

1 − γ̃2
2 − γ̃2

3)|W |2 − γ̃2γ̃3(W 2 +W
2)
) (

|Ż|2 + |Ź|2
)

+ i

2γ3
(
(γ̃2

1 − γ̃2
2 − γ̃2

3)|W |2 − γ̃2γ̃3(W 2 +W
2)
)

(ZŻ − ŻZ)

− i

2 γ̃3
(
(γ2

1 − γ2
2 − γ2

3)|Z|2 − γ2γ3(Z2 + Z
2)
)

(WẆ − ẆW )

+ i

2γ3
(
ZŻ − ŻZ

) (
ẆẆ + ẂẂ

)
− i

2γ3
(
ZŹ − ŹZ

) (
ẆẂ + ẂẆ

)
− i

2 γ̃3
(
WẆ − ẆW

) (
ŻŻ + ŹŹ

)
− i

2 γ̃3
(
WẂ − ẂW

) (
ŻŹ + ŹŻ

)
.

(3.27)

When γ2 = γ̃2 = 0 (corresponding to α1 = α3 and β1 = β3 in the original set of deformation
parameters, hence describing both the undeformed and trigonometric deformed cases) both
the quadratic and quartic Lagrangians in (3.18) and (3.23) are invariant under the two
u(1) transformations

W → eiϵW , Z → eiϵ
′
Z . (3.28)

As we will see later, these additional symmetries can be used to perform a time-dependent
rotation of the transverse fields and bring the quadratic and quartic gauge-fixed Lagrangians
to their usual undeformed and YB-deformed form.

4 Light-cone gauge S-matrix

With the knowledge of the gauge-fixed Lagrangian we can compute the tree-level S-matrix.
The first step is to make a plane-wave ansatz for the fields in order to define asymptotic
incoming and outgoing scattering states that solve the equations of motion of the quadratic
Lagrangian L2. The second step is to use L4 to deduce the interactions between these states.
As we will see, the tree-level S-matrix is diagonal and immediately satisfies the classical YB
equation, which is in agreement with the fact that the elliptically-deformed model is integrable.
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Oscillator Particle H Jw Jz Type

a†+
∣∣a†+〉 ωa+ +1 0 AdS3

a†−
∣∣a†−〉 ωa− −1 0 AdS3

b†+
∣∣b†+〉 ωb+ 0 +1 S3

b†−
∣∣b†+〉 ωb− 0 −1 S3

Table 2. Conventions for the oscillators. The charges under the two u(1) generators refer to the
rational and trigonometric limits.

4.1 Oscillators

To solve the equations of motion (3.19) it is useful to go to momentum space and make
the following plane-wave ansatz for the fields

W = 1√
2

∫
dp
(
A+e

−iωa
+τ+ipσa+ +A−e

−iωa
−τ+ipσa−+B+e

+iωa
+τ−ipσa†+ +B−e

+iωa
−τ−ipσa†−

)
,

(4.1)

W = 1√
2

∫
dp
(
B+e

−iωa
+τ+ipσa+ +B−e

−iωa
−τ+ipσa−+A+e

+iωa
+τ−ipσa†+ +A−e

+iωa
−τ−ipσa†−

)
,

(4.2)

Z = 1√
2

∫
dp
(
C+e

−iωb
+τ+ipσb+ +C−e

−iωb
−τ+ipσb−+D+e

+iωb
+τ−ipσb†+ +D−e

+iωb
−τ−ipσb†−

)
,

(4.3)

Z = 1√
2

∫
dp
(
D+e

−iωb
+τ+ipσb+ +D−e

−iωb
−τ+ipσb−+C+e

+iωb
+τ−ipσb†+ +C−e

+iωb
−τ−ipσb†−

)
.

(4.4)

One can check that W and Z are complex conjugates of W and Z respectively. To quantise
the fields we introduce four sets of annihilation and creation operators. For excitations in
AdS3 we have the pairs (a+, a

†
+) and (a−, a†−), while for excitations in S3 we have (b+, b

†
+)

and (b−, b†−), see also table 2 for the states created by these operators. The coefficients
(A±, B±, C±, D±) are fixed by requiring that the equations of motion are satisfied and that
the annihilation and creation operators satisfy the canonical commutation relations. For the
fields to satisfy the equations of motion we find the constraints

Ma
±

(
A±
B±

)
= 0 , M b

±

(
C±
D±

)
= 0 , (4.5)

with matrices Ma
± = M(ωa±, γ̃j) and M b

± = M(ωb±, γj) where

M(ω, γj) =
(
−ω2 + p2 + (γ2

1 − γ2
2 − γ2

3) − 2ωγ3 −2γ2γ3
−2γ2γ3 −ω2 + p2 + (γ2

1 − γ2
2 − γ2

3) + 2ωγ3

)
.

(4.6)
For this system of equations to have a solution we must have detMa

± = detM b
± = 0, which

leads to the dispersion relations (we are free to exchange the definition of ω+ and ω−)√
ωa±(p)2 + γ̃2

2 =
√
p2 + γ̃2

1 ± γ̃3 ,
√
ωb±(p)2 + γ2

2 =
√
p2 + γ2

1 ± γ3 . (4.7)
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For these expressions to be well-defined we have assumed we are in the regime where

0 < (α1, α3) ≤ α2 , 0 < (β1, β3) ≤ β2 ,

γ2
1 ≥ γ2

3 , (γ1 ± γ3)2 ≥ γ2
2 , γ̃2

1 ≥ γ̃2
3 , (γ̃1 ± γ̃3)2 ≥ γ̃2

2 .
(4.8)

Using the dispersion relations (4.7), the normalisation coefficients in eqs. (4.1)–(4.4) are
obtained by solving the equations in (4.5) and imposing that the creation and annihilation
operators satisfy the canonical commutation relations. Up to phases this fixes

A± = A± =

√√
ωa±(p)2 + γ̃2

2 − γ̃2 ∓
√√

ωa±(p)2 + γ̃2
2 + γ̃2

2
√
ωa±(p)

√
ω̄a(p)

, (4.9)

B± = B± =
±
√√

ωa±(p)2 + γ̃2
2 − γ̃2 +

√√
ωa±(p)2 + γ̃2

2 + γ̃2

2
√
ωa±(p)

√
ω̄a(p)

, (4.10)

C± = C± =

√√
ωb±(p)2 + γ2

2 − γ2 ∓
√√

ωb±(p)2 + γ2
2 + γ2

2
√
ωb±(p)

√
ω̄b(p)

, (4.11)

D± = D± =
±
√√

ωb±(p)2 + γ2
2 − γ2 +

√√
ωb±(p)2 + γ2

2 + γ2

2
√
ωb±(p)

√
ω̄b(p)

, (4.12)

where
ω̄a(p) =

√
p2 + γ̃2

1 , ω̄b(p) =
√
p2 + γ2

1 . (4.13)

Note that the coefficients have a non-trivial dependence on the momentum. The oscillator
representation of the conjugate momenta follows from the definitions

PW = Ẇ + iγ̃3W , PW = Ẇ − iγ̃3W , PZ = Ż + iγ3Z , PZ = Ż − iγ3Z . (4.14)

We can then check that the quadratic Hamiltonian takes the canonical form

H2 =
∫
dp
(
ωa+(p)a†+(p)a+(p) + ωa−(p)a†−(p)a−(p) + ωb+(p)b†+(p)b+(p) + ωb−(p)b†−(p)b−(p)

)
,

(4.15)
and proceed to write the quartic Hamiltonian in terms of oscillators. It turns out that, upon
imposing the dispersion relation, the only surviving terms are of the form

H4 =
∑

I,J,K,L

∑
â,b̂

∫
dp1dp2

−ω′(p1) + ω′(p2)T
KL
IJ b̂†L(p2)â†K(p1)b̂J(p2)âI(p1) , (4.16)

where I, J,K,L ∈ {±} and â, b̂ ∈ {a, b}. T KL
IJ is then the tree-level S-matrix, obtained from

the exact S-matrix through the expansion

S = 1 + iT + · · · , (4.17)

where, as in the rest of the paper, we omit the overall coupling or string tension.
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4.2 Tree-level S-matrix

For the AdS3 × S3 superstring and its YB deformation, the bosonic tree-level worldsheet
S-matrix in the standard light-cone gauge is diagonal [23, 33, 34]. After elliptically deforming
and using our non-standard choice of gauge, the scattering remains diagonal with the only
non-trivial elements given by

T
∣∣a†µ1(p1)a†µ2(p2)

〉
= (−2Aaa

µ1µ2 − Baaµ1µ2 −Daa
µ1µ2)

∣∣a†µ1(p1)a†µ2(p2)
〉
, (4.18)

T
∣∣b†µ1(p1)b†µ2(p2)

〉
= (+2Abb

µ1µ2 + Bbbµ1µ2 −Dbb
µ1µ2)

∣∣b†µ1(p1)b†µ2(p2)
〉
, (4.19)

T
∣∣a†µ1(p1)b†µ2(p2)

〉
= (+2Gabµ1µ2 −Dab

µ1µ2)
∣∣a†µ1(p1)b†µ2(p2)

〉
, (4.20)

T
∣∣b†µ1(p1)a†µ2(p2)

〉
= (−2Gbaµ1µ2 −Dba

µ1µ2)
∣∣b†µ1(p1)a†µ2(p2)

〉
, (4.21)

with coefficients

Ac1c2
µ1µ2 = 1

4
p2

1ω
c2
µ2(p2)2 + p2

2ω
c1
µ1(p1)2 − 2p2

1p
2
2

p1ω
c2
µ2(p2) − p2ω

c1
µ1(p1) , (4.22)

Gc1c2
µ1µ2 = 1

4
(
p1ω

c2
µ2(p2) + p2ω

c1
µ1(p1)

)
, (4.23)

Dc1c2
µ1µ2 =

(
a− 1

2

)
(p1ω

c2
µ2(p2) − p2ω

c1
µ1(p1)) , (4.24)

and

Baaµ1µ2 = µ1µ2
(
(γ̃1 − γ̃3)2 − γ̃2

2

) (√p2
1 + γ̃2

1 − µ1γ̃1

)(√
p2

2 + γ̃2
1 − µ2γ̃1

)
p1ωaµ2(p2) − p2ωaµ1(p1) , (4.25)

Bbbµ1µ2 = µ1µ2
(
(γ1 − γ3)2 − γ2

2

) (√p2
1 + γ2

1 − µ1γ1

)(√
p2

2 + γ2
1 − µ2γ1

)
p1ωbµ2(p2) − p2ωbµ1(p1) . (4.26)

In the tree-level S-matrix, only the combination A + 1
2B appears. In A, G and D the

deformation parameters and the charges of the excitations only appear implicitly through the
dispersion relation, while B depends explicitly on γj , γ̃j and µ1, µ2. Because the scattering
is diagonal, the classical YB equation

[T23, T13] + [T23, T12] + [T13, T12] = 0 , (4.27)

is automatically satisfied. In eq. (4.27) the indices denote the embedding of the scattering
matrix in the tensor product space

T12 = T ⊗ 1 , T23 = 1 ⊗ T , T13 = P23T12P23 = P12T23P23 ,

where Pjk is the permutation operator.
A second consequence of the diagonal scattering is that the tree-level S-matrix is invariant

under a u(1) ⊕ u(1) symmetry where a†± and b†± have charges (±1, 0) and (0,±1) respectively.
While in the rational and trigonometric limits this follows from a global symmetry of the
light-cone gauge-fixed Lagrangian, as shown in appendix A, in the elliptic case there is
no such global symmetry. We can see this explicitly in the quadratic Lagrangian (3.18).
This hidden u(1) ⊕ u(1) symmetry only becomes manifest in the tree-level S-matrix once
appropriate asymptotic states, with momentum-dependent coefficients, are identified. It
would be interesting to see if this hidden symmetry persists for higher-point scattering.
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5 Limits and relation to JT̄ and T T̄ deformations

In this section we analyse the S-matrix for different choices of the deformation parameters.
We restrict to the case in which AdS3 and S3 are deformed in the same way, i.e. we set
αj = βj for j = 1, 2, 3. In the rational (α1 = α2 = α3) and trigonometric (α1 = α3) limits,
the S-matrix is related to the standard rational and trigonometric S-matrix for strings on
AdS3 × S3 by a JT̄ deformation due to our non-standard choice of gauge [20, 21].

5.1 Rational limit

In the limit αj = βj = 1, or equivalently γ1 = γ̃1 = γ3 = γ̃3 = 1 and γ̃2 = γ2 = 0, the
dispersion relations become

ωa±(p) = ωb±(p) = ω̄ ± 1 , ω̄ =
√
p2 + 1 . (5.1)

The coefficients in the oscillator expansion (4.1)–(4.4) then simplify considerably to

A+ = B− = C+ = D− = 0 , A− = B+ = C− = D+ = 1√
ω̄
, (5.2)

which prompts the identification∣∣a†+〉 =
∣∣W 〉

,
∣∣a†−〉 =

∣∣W 〉
,

∣∣b†+〉 =
∣∣Z〉 , ∣∣b†−〉 =

∣∣Z〉 . (5.3)

The scattering matrix elements (4.18)–(4.21) can be written as

T
∣∣a†µ1a

†
µ2

〉
=
(
−2Āµ1µ2 − a(p1µ2 − p2µ1) − D̄

) ∣∣a†µ1a
†
µ2

〉
, (5.4)

T
∣∣a†µ1a

†
µ2

〉
=
(
+2Āµ1µ2 − (a− 1)(p1µ2 − p2µ1) − D̄

) ∣∣b†µ1b
†
µ2

〉
, (5.5)

T
∣∣a†µ1b

†
µ2

〉
=
(
+2Ḡ − (a− 1)p1µ2 + ap2µ1 − D̄

) ∣∣a†µ1b
†
µ2

〉
, (5.6)

T
∣∣b†µ1a

†
µ2

〉
=
(
−2Ḡ − ap1µ2 + (a− 1)p2µ1 − D̄

) ∣∣b†µ1a
†
µ2

〉
, (5.7)

with

Āµ1µ2 = 1
4

(µ2p1 + µ1p2)2

p1ω̄2 − p2ω̄1
, Ḡ = 1

4(p1ω̄2 + p2ω̄1) ,

D̄ =
(
a− 1

2

)
(p1ω̄2 − p2ω̄1) , ω̄j = ω̄µj (pj) .

(5.8)

The first terms in each expression above reproduce the usual tree-level S-matrix for AdS3 ×S3

in the standard light-cone gauge [23]. To better understand the additional terms, it is useful
to use the relation between the excitations (u, v, x, y) of the standard “diagonal” light-cone
gauge fixing and (U, V,X, Y ) of our “unilateral” gauge fixing, discussed in section 2. With
the τ -dependent rotation

W = w eiτ , Z = z eiτ , (5.9)

the quadratic Lagrangian (3.15) becomes, up to total derivatives, the same as the canon-
ical one,

Lr2 = |ẇ|2 − |ẃ|2 − |w|2 + |ż|2 − |ź|2 − |z|2 , (5.10)
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describing two free gapped complex fields, with dispersion relation ω̄ =
√
p2 + 1, and

equations of motion given by

Ew := ẅ − w′′ + w = 0 , Ew̄ := ¨̄w − w̄′′ + w̄ = 0 ,
Ez := z̈ − z′′ + z = 0 , Ez̄ := ¨̄z − z̄′′ + z̄ = 0 .

(5.11)

To write the quartic Lagrangian it is useful to look at the symmetries of Lr2 and derive
the corresponding conserved currents. The energy-momentum tensor gathers the conserved
currents associated to translation invariance on the worldsheet of the string. For the Lr2 the
energy-momentum tensor is symmetric, with its components given by

T rττ = −|ẇ|2 − |ẃ|2 − |w|2 − |ż|2 − |ź|2 − |z|2 ,
T rσσ = −|ẇ|2 − |ẃ|2 + |w|2 − |ż|2 − |ź|2 + |z|2 ,
T rτσ = T rστ = −ẇ ´̄w − ẃ ˙̄w − ż ´̄z − ź ˙̄z .

(5.12)

In addition, there are also the conserved currents associated to the u(1) symmetries realised
as w → eiϵw and z → eiϵ

′
z. These read

Jwτ = w ˙̄w − ẇw̄ , Jwσ = w ´̄w − ẃw̄ , Jzτ = z ˙̄z − żz̄ , Jzσ = z ´̄z − źz̄ . (5.13)

Using these we can then construct the following T T̄ and JT̄ operators

Or
T T̄

= T rττT
r
σσ − T rτσT

r
στ , Or

JT̄
= JτT

r
σσ − JσT

r
τσ . (5.14)

There are two different JT̄ operators, one where the current is taken to be J = Jw and the
other where it is taken to be J = Jz. Note that the energy-momentum tensor (5.12) is related
to the energy-momentum (3.22) after rotating the fields through the relations

Tττ → T rττ−iJwτ −iJzτ , Tτσ → T rτσ , Tστ → T rστ−iJwσ −iJzσ , Tσσ → T rσσ , (5.15)

which in particular implies that upon rotation

−
(
a− 1

2

)
OT T̄ → −

(
a− 1

2

)
Or
T T̄

+ iaOr
JwT̄

+ i(a− 1)Or
JzT̄

− i

2O
r
JwT̄

+ i

2O
r
JzT̄

. (5.16)

The quartic Lagrangian can then be written

Lr4 = −2|w|2|ẃ|2 + 2|z|2|ź|2 − |w|2|ż|2 + |ẇ|2|z|2 − |w|2|ź|2 + |ẃ|2|z|2

−
(
a− 1

2

)
Or
T T̄

+ iaOr
JwT̄

+ i(a− 1)Or
JzT̄

+ . . .
(5.17)

where the ellipses denote terms that explicitly depend on worldsheet time τ , but vanish on
the equations of motion. The term proportional to (a− 1

2) corresponds to a T T̄ deformation,
which is usually encountered when fixing uniform light-cone gauge [35, 36]. Due to the
non-standard light-cone gauge fixing, we encounter two new terms: one proportional to a

corresponding to a JT̄ deformation with current J = Jw, and one proportional to (a − 1)
corresponding to a JT̄ deformation with current J = Jz. These additional terms also appear
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in the S-matrix (5.4)–(5.7). Indeed, the effect of a T T̄ deformation on the S-matrix of a 2-d
integrable model is known, and given by dressing by a phase

S(p1, p2) → ei(a−
1
2 )(p1ω̄2−p2ω̄1)S(p1, p2) , (5.18)

which in the tree-level S-matrix gives the term proportional to (a − 1
2) in eq. (5.4)–(5.7).

The effect of the JT̄ deformation is a twist involving momentum and the u(1) charge of the
excitations, which produces the middle terms on the right-hand side of (5.4)–(5.7). For a
discussion on the connections between different gauge choices and JT̄ deformations see [20, 21].

5.2 Trigonometric limit

If we choose the deformation parameters

α1 = α3 = β1 = β3 = 1
1 + κ2 , α2 = β2 = 1 , (5.19)

or equivalently

γ̃1 = γ1 = 1 + κ2, γ̃2 = γ2 = 0, γ̃3 = γ3 = 1 − κ2 , (5.20)

the dispersion relation becomes

ωa±(p) = ωb±(p) = ω̄± ± 1 , ω̄± =
√
p2 + (1 + κ2)2 ∓ κ2 . (5.21)

As expected ω̄± is the dispersion relation of the unilateral YB deformation.7 The coefficients
in the mode expansion again simplify, with

A+ = B− = C+ = D− = 0 , A− = B+ = C− = D+ = 1
(p2 + (1 + κ2)2)

1
4
, (5.22)

prompting the same identification as in the rational case between fields and oscillators (5.3).
The scattering elements can then be written as

T
∣∣a†µ1(p1)a†µ2(p2)

〉
= (−2Āµ1µ2 − a(p1µ2 − p2µ1) − D̄µ1µ2)

∣∣a†µ1(p1)a†µ2(p2)
〉
, (5.23)

T
∣∣b†µ1(p1)b†µ2(p2)

〉
= (+2Āµ1µ2 − (a− 1)(p1µ2 − p2µ1) − D̄µ1µ2)

∣∣b†µ1(p1)b†µ2(p2)
〉
, (5.24)

T
∣∣a†µ1(p1)b†µ2(p2)

〉
= (+2Ḡµ1µ2 − (a− 1)p1µ2 + ap2µ1 − D̄µ1µ2)

∣∣a†µ1(p1)b†µ2(p2)
〉
, (5.25)

T
∣∣b†µ1(p1)a†µ2(p2)

〉
= (−2Ḡµ1µ2 − ap1µ2 + (a− 1)p2µ1 − D̄µ1µ2)

∣∣b†µ1(p1)a†µ2(p2)
〉
, (5.26)

with

Āµ1µ2 = 1
4

(µ2p1 + µ1p2)2 + 2κ2(µ2ω̄1 + µ1ω̄2)2 − 2κ2(µ1µ2ω̄1ω̄2 + 1)(µ1ω̄1 + µ2ω̄2)
p1ω̄2 − p2ω̄1

,

Ḡµ1µ2 = 1
4(p1ω̄2 + p2ω̄1) , D̄µ1µ2 =

(
a− 1

2

)
(p1ω̄2 − p2ω̄1) , ω̄j = ω̄µj (pj) .

(5.27)

The scattering amplitudes Ā, B̄ and D̄ are precisely those corresponding to the unilateral
YB deformation, where we again recall that compared to some literature µ → −µ. As

7Note that ω̄+ and ω̄− are interchanged with respect to some literature, in particular [33] and [34].
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expected, they can be directly obtained starting from (2.26) and performing the standard
light-cone gauge fixing in t and φ. As in the rational case, the additional terms correspond
to JT̄ deformations.

This relation can again be seen at the level of the light-cone gauge-fixed Lagrangians.
Implementing the same τ -dependent rotation as in the rational case, namely

W = weiτ , Z = zeiτ , (5.28)

gives the quadratic Lagrangian8

Lr2 = |ẇ|2−|ẃ|2−(1+2κ2)|w|2+iκ2(w ˙̄w−ẇw̄)+|ż|2−|ź|2−(1+2κ2)|z|2+iκ2(z ˙̄z−żz̄) , (5.29)

which indeed corresponds to the quadratic Lagrangian of the unilateral YB deformation.
The corresponding equations of motion are given by

Ew := ẅ−w′′+2iκ2ẇ+(1+2κ2)w= 0 , Ew̄ := ¨̄w− w̄′′−2iκ2 ˙̄w+(1+2κ2)w̄= 0 ,
Ez := z̈−z′′+2iκ2ż+(1+2κ2)z = 0 , Ez̄ := ¨̄z− z̄′′−2iκ2 ˙̄z+(1+2κ2)z̄ = 0 .

(5.30)

Computing the conserved charges for this theory gives

T rττ = −|ẇ|2 − |ẃ|2 − (1 + 2κ2)|w|2 − |ż|2 − |ź|2 − (1 + 2κ2)|z|2 ,
T rσσ = −|ẇ|2 − |ẃ|2 + (1 + 2κ2)|w|2 − iκ2(w ˙̄w − ẇw̄)

− |ż|2 − |ź|2 + (1 + 2κ2)|z|2 − iκ2(z ˙̄z − żz̄) ,
T rτσ = −ẇ ´̄w − ẃ ˙̄w − iκ2(w ´̄w − ẃw̄) − ż ´̄z − ź ˙̄z − iκ2(z ´̄z − źz̄) ,
T rστ = −ẇ ´̄w − ẃ ˙̄w − ż ´̄z − ź ˙̄z ,

(5.31)

for the energy-momentum tensor and

Jwτ = w ˙̄w − ẇw̄ − 2iκ2|w|2 , Jzτ = z ˙̄z − żz̄ − 2iκ2|z|2 ,
Jwσ = w ´̄w − ẃw̄ , Jzσ = z ´̄z − źz̄ ,

(5.32)

for the conserved currents associated with the u(1) symmetries. We can now define the T T̄
and JT̄ operators as in eq. (5.14). With this, the quartic Lagrangian Lr4 can again be written
in such a way that the terms proportional to (a− 1

2) are given by the T T̄ operator, the terms
proportional to a by a JT̄ deformation associated to the current in AdS3 and the terms
proportional to (a− 1) by a JT̄ operator associated to the current in S3. Explicitly we can
write, up to total derivatives and terms proportional to the equations of motion,

Lr4 = Ľr4 + L̂r4 + L̃r4 −
(
a− 1

2

)
Or
T T̄

+ iaOr
JwT̄

+ i(a− 1)Or
JzT̄

+ . . . , (5.33)

8Note that we can make a further time-dependent rotation such that the quadratic Lagrangian (5.29)
canonically describes two gapped complex fields with mass 1 + κ2.
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with

Ľr4 = −2κ2|w|2|ẇ|2−2(1+κ2)|w|2|ẃ|2−κ2|w|4 + 3
2 iκ

2|w|2(w ˙̄w− ẇw̄)

+ 1
2κ

2
(
w(w+ iẇ)( ˙̄w2− ´̄w2)+ w̄(w̄− i ˙̄w)(ẇ2− ẃ2)

)
, (5.34)

L̂r4 = − Ľr4
∣∣∣
w→z

, (5.35)

L̃r4 = (1+2κ2)
(
|z|2|ẇ|2 + |z|2|ẃ|2−|w|2|ż|2−|w|2|ź|2

)
+ iκ2

2
(
(w ˙̄w− ẇw̄)(|ż|2 + |ź|2 +(1+2κ2)|z|2)−(z ˙̄z− żz̄)(|ẇ|2 + |ẃ|2 +(1+2κ2)|w|2)

)
− iκ2

2
(
(w ´̄w− ẃw̄)(ż ´̄z+ ź ˙̄z)−(z ´̄z− źz̄)(ẇ ´̄w+ ẃ ˙̄w)

)
. (5.36)

The three terms Ľr4 + L̂r4 + L̃r4 constitute the quartic Lagrangian obtained in the standard
light-cone gauge fixing with a = 1

2 .

6 Factorisation and comparison to an exact elliptic S-matrix

For the AdS3 × S3 superstring and its YB deformation, the exact S-matrix computed in
the standard light-cone gauge (involving global time t in AdS3 and the “diagonal” angle φ
in S3) can be bootstrapped on symmetry grounds and is given by the tensor product of a
factorised S-matrix (up to dressing factors)

S = S ⊗ S . (6.1)

The factorised S-matrix S is invariant under the centrally-extended algebra A = [su(1|1)L ⊕
su(1|1)R]c.e.. This factorisation also applies to the asymptotic states, which are given by
the tensor products∣∣b†+〉 =

∣∣ϕ+ ⊗ ϕ+
〉
,

∣∣b†−〉 =
∣∣ϕ− ⊗ ϕ−

〉
,

∣∣a†+〉 =
∣∣ψ+ ⊗ ψ+

〉
,

∣∣a†−〉 =
∣∣ψ− ⊗ ψ−

〉
,

(6.2)
where (ϕ+|ψ+) and (ϕ−|ψ−) transform in fundamental (“left” and “right”) representations of
A. The other tensor products describe the gapped fermions. Recalling that we only consider
the gapped sector of AdS3 × S3 × T4, S further decomposes into the direct sum of four 4 × 4
blocks describing the left-left, left-right, right-left and right-right scattering.

In this section we would like to understand if we can find a similar factorisation for
the elliptically-deformed model that is also compatible with known results in the rational
and trigonometric limits. The perturbative computation in section 4 fixes the diagonal
tree-level entries of the 4 × 4 blocks. However, in the rational and trigonometric limits, the
tree-level factorised S-matrix is not purely diagonal. To directly determine the off-diagonal
entries in the elliptic case, we would need to compute the tree-level scattering of the gapped
fermions. We will instead follow an indirect approach, which is to assume that the tree-level
factorised S-matrix solves the classical Yang-Baxter equation, and then attempt to solve for
the non-vanishing unknown entries. As we will see, we find that there is no such solution
indicating that either factorisation, the direct sum structure or integrability is broken upon
including fermions.
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In the rational and trigonometric cases, the 4 × 4 blocks are known to be of 6-vertex
type, and are contained in the 6vB R-matrix of [30]. A deformation of the rational case built
from four 8-vertex blocks, the 8vB R-matrix, and conjectured to correspond to an elliptic
integrable deformation has been constructed in [30]. As the name suggests, this S-matrix
has eight non-vanishing entries. In the left-left or right-right sectors we have

S
∣∣ϕ±(p1)ϕ±(p2)

〉
= r1,±±

∣∣ϕ±(p1)ϕ±(p2)
〉

+ r8,±±
∣∣ψ±(p1)ψ±(p2)

〉
,

S
∣∣ϕ±(p1)ψ±(p2)

〉
= r2,±±

∣∣ϕ±(p1)ψ±(p2)
〉

+ r6,±±
∣∣ψ±(p1)ϕ±(p2)

〉
,

S
∣∣ψ±(p1)ϕ±(p2)

〉
= r3,±±

∣∣ψ±(p1)ϕ±(p2)
〉

+ r5,±±
∣∣ϕ±(p1)ψ±(p2)

〉
,

S
∣∣ψ±(p1)ψ±(p2)

〉
= r4,±±

∣∣ψ±(p1)ψ±(p2)
〉

+ r7,±±
∣∣ψ±(p1)ψ±(p2)

〉
,

(6.3)

while for the left-right and right-left sectors we have

S
∣∣ϕ±(p1)ϕ∓(p2)

〉
= r1,±∓

∣∣ϕ±(p1)ϕ∓(p2)
〉

+ r8,±∓
∣∣ψ±(p1)ψ∓(p2)

〉
,

S
∣∣ϕ±(p1)ψ∓(p2)

〉
= r2,±∓

∣∣ϕ±(p1)ψ∓(p2)
〉

+ r6,±∓
∣∣ψ±(p1)ϕ∓(p2)

〉
,

S
∣∣ψ±(p1)ϕ±(p2)

〉
= r3,±∓

∣∣ψ±(p1)ϕ∓(p2)
〉

+ r5,±∓
∣∣ϕ±(p1)ψ∓(p2)

〉
,

S
∣∣ψ±(p1)ψ±(p2)

〉
= r4,±∓

∣∣ψ±(p1)ψ∓(p2)
〉

+ r7,±∓
∣∣ψ±(p1)ψ∓(p2)

〉
.

(6.4)

The case r7,±± = r8,±± = r5,±∓ = r6,±∓ = 0 corresponds to the 6-vertex limit. Again
expanding the factorised S-matrix as

S = 1 + iT + . . . , (6.5)

we denote the entries of the tree-level S-matrix T by r̃j,µ1,µ2 . Expanding (6.1) we find

T
∣∣a†µ1a

†
µ2

〉
= 2r̃4,µ1µ2

∣∣a†µ1a
†
µ2

〉
⇒ r̃4,µ1µ2 = −Aaa

µ1µ2 −
1
2B

aa
µ1µ2 −

1
2D

aa
µ1µ2 ,

T
∣∣b†µ1b

†
µ2

〉
= 2r̃1,µ1µ2

∣∣b†µ1b
†
µ2

〉
⇒ r̃1,µ1µ2 = +Abb

µ1µ2 + 1
2B

bb
µ1µ2 −

1
2D

bb
µ1µ2 ,

T
∣∣a†µ1b

†
µ2

〉
= 2r̃3,µ1µ2

∣∣a†µ1b
†
µ2

〉
⇒ r̃3,µ1µ2 = +Gabµ1µ2 −

1
2D

ab
µ1µ2 ,

T
∣∣b†µ1a

†
µ2

〉
= 2r̃2,µ1µ2

∣∣b†µ1a
†
µ2

〉
⇒ r̃2,µ1µ2 = −Gbaµ1µ2 −

1
2D

ba
µ1µ2 .

(6.6)

Therefore, at tree-level we cannot distinguish between 6-vertex and 8-vertex since the
additional matrix entries r5, r6, r7, r8 do not contribute at this order in the boson-boson
scattering.

The 6-vertex 6vB and 8-vertex 8vB R-matrices, which describe deformations of the
undeformed 4 × 4 blocks, both satisfy the free-fermion condition [37]

r1r4 − r2r3 = r5r6 − r7r8 . (6.7)

In particular, all known AdS3×S3 S-matrices in the literature and their integrable deformations
satisfy this condition.9 Expanding the free-fermion condition imposes the following constraint
on the tree-level scattering elements

r̃1,µ1µ2 + r̃4,µ1µ2 = r̃2,µ1µ2 + r̃3,µ1µ2 . (6.8)
9The presence of the free-fermion condition in S-matrices related to AdS backgrounds had previously been

noticed in [38] and [39].
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From the expressions in (6.6) it follows that the free-fermion condition is satisfied for the
elliptically deformed S-matrix computed in section 4 provided that αj = βj for j = 1, 2, 3.
In other words, AdS3 and S3 should be deformed in the same way.

Let us now address the question of whether our elliptic model is of 6-vertex or 8-vertex
type, or neither, by directly solving the classical YB equation. In order to do this we assume
that for µ1 = µ2 = +1, r̃j with j = 1, 2, 3, 4 are given by eq. (6.6). We then substitute them,
together with unspecified r̃k for k = 5, 6, 7, 8, into the classical YB equation (4.27). Finally,
we try to solve for the unknown functions r̃k such that the classical YB equation is satisfied.

For the 6-vertex case, namely the case with r̃7 = r̃8 = 0, we quickly find an inconsistency.
When solving the equations, the expression for r̃5(p1, p3)r̃6(p1, p3) is equal to another expres-
sion that depends on p2. We checked that this is the case both algebraically and numerically,
and also observed that the inconsistency disappears in the rational and trigonometric limits.
The calculation for the 8-vertex case (r̃7 ̸= 0 and r̃8 ̸= 0) is more involved and needs to
be done numerically, but it ultimately leads to the same type of inconsistencies. These
results indicate that if there exists an integrable string sigma model admitting the tree-level
S-matrix (4.18)–(4.21) as its bosonic truncation, then the exact S-matrix does not take the
factorised form (6.1) with S of 6-vertex or 8-vertex type as considered in [29, 30]. In turn
this suggests that either the full S-matrix cannot be factorised or the factorised S-matrix
itself cannot be written as a direct sum of 4 × 4 blocks.

A further possibility is that integrability is broken. The 8vB R-matrix of [29, 30] is
not a deformation of the q-deformed S-matrix in [11, 33], which describes the trigonometric
deformation of AdS3×S3×T4, whereas the elliptically-deformed sigma model is a deformation
of the trigonometric one. In order for the 8vB R-matrix to have the q-deformation as a limit
an extra twist is necessary. However, the introduction of this twist breaks integrability. This
opens up the possibility that including fermions breaks integrability in a controlled way with
the elliptic deformation studied here related to the twisted 8vB R-matrix.

In order to include fermions we need to embed the elliptic deformation of the bosonic
AdS3 × S3 sigma model in type II supergravity. In the following section we construct such
embeddings, however we postpone the inclusion of fermions in the S-matrix computation
to future work.

7 Supergravity solutions

In section 3 we considered the light-cone gauge fixing of the bosonic model (2.2). In order
for the light-cone gauge-fixed theory to make sense beyond tree-level, we would like to
find a 10-d type II supergravity embedding of the bosonic background (2.8). We start by
completing the 6-d elliptic deformation of AdS3 × S3 with a 4-torus, i.e. adding four free
compact bosons to (2.2).

Since we know that the bosonic model is integrable, we would like to find a deformed
supergravity background that describes an integrable string sigma model. We take the
undeformed background to be AdS3 × S3 × T4 supported by pure R-R 3-form flux, which has
PSU(1, 1|2)×PSU(1, 1|2) global symmetry, preserving half the maximal 10-d supersymmetry,
i.e. 16 supercharges. The elliptic deformation preserves the left-acting SL(2,R) × SU(2)
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global symmetry, Therefore, ideally our deformed background would also preserve one copy
of PSU(1, 1|2).

Such backgrounds for trigonometric deformations were studied in detail in [14], and our
construction is motivated by that paper. In particular, we look for a type IIB supergravity
background that takes the following form

ds2 = gµν(Ψρ)dΨµdΨν +
4∑
r=1

dΨrdΨr , H3 = 0 , Φ = 0 ,

F1 = 0 , F3 = F
(4)
3 (Ψρ) , F5 =

3∑
i=1

F
(i)
3 (Ψρ)∧J (i)

2 ,

(7.1)

where H3 is the NS-NS flux, F1,3,5 are the R-R fluxes and Φ is the dilaton.10 The index
µ, ν, ρ, · · · = 0, . . . , 5 runs over the AdS3 and S3 directions, i.e. {Ψρ} = {T, U, V,Φ, X, Y },
while r, . . . = 6, . . . , 9 labels the 4-torus directions. The 2-forms

J
(1)
2 = dΨ6 ∧ dΨ7 − dΨ8 ∧ dΨ9 ,

J
(2)
2 = dΨ6 ∧ dΨ8 + dΨ7 ∧ dΨ9 ,

J
(3)
2 = dΨ6 ∧ dΨ9 − dΨ7 ∧ dΨ8 ,

(7.2)

are three orthogonal self-dual 2-forms on the 4-torus. Finally, the 3-form and 5-form R-R
fluxes are parametrised in terms of four closed 3-forms, F (i)

3 , i = 1, . . . , 4, which we take to
only depend on the AdS3 and S3 directions. We furthermore assume that they are self-dual
⋆6F

(i)
3 = F

(i)
3 , implying that (d ⋆6 F

(i)
3 = 0) = |F (i)

3 |2 = 0, and that they are orthogonal,
i.e. F (i)

3 · F (j)
3 = 0 for i ̸= j. Under these assumptions the type IIB supergravity equations

simplify to

Rmn −
1
4

( 4∑
i=1

(F (i)
3 )mkl(F

(i)
3 )kln

)
= 0 . (7.3)

Introducing the (SL(2,R) × SU(2))-invariant vielbein for the elliptically-deformed
AdS3 × S3

e0 =
√
α2
2 Tr(g−1dg · L2) =

√
α2(− cosh 2U cosh 2V dT − sinh 2V dU) ,

e1 =
√
α1
2 Tr(g−1dg · L1) =

√
α1(− sinh 2U dT + dV )

e2 =
√
α3
2 Tr(g−1dg · L3) =

√
α3(cosh 2U sinh 2V dT + cosh 2V dU) ,

e3 =
√
β2
2 Tr(g−1dg · J2) =

√
β2(− cos 2X cos 2Y dΦ + sin 2Y dX) ,

e4 =
√
β1
2 Tr(g−1dg · J1) =

√
β1(sin 2X dΦ − dY ) ,

e5 =
√
β3
2 Tr(g−1dg · J3) =

√
β3(− cos 2X sin 2Y dΦ − cos 2Y dX) ,

(7.4)

10We have set the constant dilaton Φ to zero since it is straightforward to restore its dependence.
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where the generators Li and Ji, and the group element g are defined in eqs. (2.4)–(2.6),
we have that

gµν(Ψρ)dΨµdΨν = −(e0)2 + (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2 . (7.5)

Let us introduce the following basis of 3-form fluxes

f
(1)
3 = d(e1 ∧ e4) = 2

(
−

√
α1√
α2α3

e0 ∧ e2 ∧ e4 +
√
β1√
β2β3

e1 ∧ e3 ∧ e5
)
,

f
(2)
3 = d(e0 ∧ e3) = 2

(
−

√
α2√
α1α3

e1 ∧ e2 ∧ e3 −
√
β2√
β1β3

e0 ∧ e4 ∧ e5
)
,

f
(3)
3 = d(e2 ∧ e5) = 2

(
−

√
α3√
α1α2

e0 ∧ e1 ∧ e5 +
√
β3√
β1β2

e2 ∧ e3 ∧ e4
)
,

f
(4)
3 = 2(e0 ∧ e1 ∧ e2 + e3 ∧ e4 ∧ e5) .

(7.6)

Requiring these to be self-dual implies that

β1 = α1 , β2 = α2 , β3 = α3 . (7.7)

Moreover, contracting the equation of motion (7.3) with gµν , we see that this implies the
Ricci scalar should vanish. This is indeed the case if we take αi and βi to be related as
in eq. (7.7). From this point on we will assume that eq. (7.7) holds, i.e. AdS3 and S3 are
deformed in the same way.

We now take the following ansatz for our four 3-form fluxes

F
(i)
3 =

√
α2α3√
α1

x(1)
i f

(1)
3 +

√
α1α3√
α2

x(2)
i f

(2)
3 +

√
α1α2√
α3

x(3)
i f

(3)
3 + x(4)

i f
(4)
3 . (7.8)

Substituting into the equation of motion (7.3), we find that it is solved if we set

||x(1)||2 = α2 + α3 − α1
α2α3

− ||x(4)||2 , x(1) · x(4) = x(2) · x(3) ,

||x(2)||2 = α2 − α1 − α3
α1α3

+ ||x(4)||2 , x(2) · x(4) = x(1) · x(3) ,

||x(3)||2 = α2 + α1 − α3
α1α2

− ||x(4)||2 , x(3) · x(4) = x(1) · x(2) .

(7.9)

Note that since the equation of motion (7.3) is invariant under rotations of the four 3-form
fluxes F (i)

3 amongst themselves, this solution is SO(4) invariant, i.e. if we have one solution
we can freely apply an SO(4) transformation to find a new solution. This corresponds to
the freedom to apply TsT transformations in the 4-torus directions. Furthermore, if we
had allowed for a non-zero NS-NS flux satisfying the same properties as F (i)

3 , then the type
IIB supergravity equations simplify to

Rmn −
1
4H3mklH3

kl
n − 1

4

( 4∑
i=1

(F (i)
3 )mkl(F

(i)
3 )kln

)
= 0 , (7.10)

which is invariant under rotations of the five 3-form fluxes H3 and F
(i)
3 amongst themselves.

Therefore, starting from the solution (7.8) with (7.9), we can apply SO(5) transformations to
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find new solutions with non-vanishing NS-NS flux. The simplicity of these solutions, with
constant dilaton and homogeneous fluxes, suggests they are good candidates to describe
an integrable string sigma model.

Given the form of the solution in (7.9), it is important to ask if there exist real solutions.
Indeed, if we look at the undeformed limit α1 = α2 = α3 = Tstr, we find

||x(1)||2 = −||x(2)||2 = ||x(3)||2 = T−1
str − ||x(4)||2 . (7.11)

To ensure that the solution is real, we immediately see that we need to take

||x(4)||2 = T−1
str , x(1) = x(2) = x(3) = 0 . (7.12)

This corresponds to the familiar AdS3 × S3 × T4 background supported by pure R-R flux
with 16 supercharges with Tstr playing the role of the string tension.

The trigonometric deformation discussed in [14] corresponds to taking α1 = α3 = 1
1+κ2Tstr

and α2 = Tstr, for which

||x(1)||2 = ||x(3)||2 = (1 + κ2)T−1
str − ||x(4)||2 , ||x(2)||2 = (−1 + κ2)(1 + κ2)T−1

str + ||x(4)||2 .
(7.13)

In this case a real solution only exists if we take (1−κ2)(1 +κ2)T−1
str ≤ ||x(4)||2 ≤ (1 +κ2)T−1

str ,
which requires κ2 ≥ 0. Moreover, in order to preserve 8 supercharges, we find that we
also need to set ||x(4)||2 = (1 + κ2)T−1

str , in which case we exactly recover the integrable
background of [14]. This implies that if there is a choice of fluxes (7.8) supporting the
6-d elliptic deformation of AdS3 × S3 preserving 8 supercharges then this will require an
additional restriction on top of (7.9).

8 Conclusions

In this paper we computed the bosonic tree-level S-matrix for an elliptic deformation of the
SL(2;R)×SU(2) sigma model, which, after adding the 4-torus directions, can be thought of as
an elliptic deformation of the AdS3 ×S3 ×T4 string. This deformation only preserves two u(1)
isometries, which we used to fix uniform light-cone gauge. While the quadratic and quartic
light-cone gauge Lagrangians do not have any manifest symmetries, after defining appropriate
asymptotic states the tree-level S-matrix only exhibits diagonal scattering. The classical
YB equation is then trivially satisfied, in agreement with the integrability of the elliptic
model. We checked that in the rational and trigonometric deformation limit our results are in
agreement with the known perturbative S-matrix for strings propagating in AdS3×S3 [23] and
YB-deformed AdS3 × S3 [33] respectively. Since the two u(1) isometries used to fix uniform
light-cone gauge do not correspond to the usual global time in AdS3 and great circle in S3,
our results are related to the standard perturbative S-matrices by a JT̄ deformation [20, 21].
To pave the way to analysing elliptic deformations of the AdS3 × S3 × T4 superstring we also
constructed an explicit embedding of the elliptically-deformed metric in type IIB supergravity.

An interesting open problem is the formulation of an exact elliptically-deformed S-matrix
that solves the quantum YB equation and reproduces our tree-level results in the large tension
limit. Such an exact S-matrix can in general be bootstrapped from the symmetries of the
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light-cone gauge-fixed theory, up to overall dressing factors whose construction relies on
additional physical input [40, 41]. In particular, for superstrings on AdS3 × S3 ×T4 quantised
in the standard uniform light-cone gauge, the original psu(1, 1|2) ⊕ psu(1, 1|2) algebra is
broken to a centrally-extended [su(1|1) ⊕ su(1|1)]⊕2

c.e. algebra [24]. For the trigonometric
deformation, only the four u(1)s are manifestly realised in the sigma model. Fortunately,
there is a hidden quantum-group symmetry [42, 43] which again makes it possible to bootstrap
the S-matrix [11]. In the elliptic case, a careful study of the symmetries of the deformed
sigma model and its gauge-fixed version remains to be carried out.

Another approach to finding an exact S-matrix is through a classification of solutions to
the quantum YB equation, as initiated in [29]. For strings on AdS3 × S3 × T4 in standard
light-cone gauge, the full 64 × 64 S-matrix describing the scattering in the gapped sector
can be written as a restricted tensor product of two factorised 16 × 16 S-matrices. This
factorised S-matrix can further be decomposed into four 4 × 4 blocks SLL, SLR, SRL and
SRR. In [30], assuming that SLL and SRR are both of 6-vertex or 8-vertex type, the space
of possible integrable 16 × 16 S-matrices was explored. The standard AdS3 string S-matrix
and its trigonometric deformation lie in the 6-vertex case. A new elliptic S-matrix built out
of 8-vertex blocks was also found. However, our perturbative results do not appear to be
compatible with the large tension expansion of this 8-vertex S-matrix. Since the classification
in [30] is complete, this implies that at least one of the three assumptions made there does
not apply to our model after including fermions. Namely, either the full S-matrix does
not factorise, the factorised S-matrix cannot be written as a direct sum of 4 × 4 blocks,
or integrability is broken. To gain a better understanding of this it would be insightful
to compute the tree-level S-matrix for the supergravity embedding of section 7 to see if
integrability is still present once the fermions are included.

Another interesting possibility is to add an additional B-field to the construction. Strings
on AdS3 can be supported by a mixture of R-R and NS-NS fluxes, preserving their integrabil-
ity [16]. The symmetry algebra of the theory, hence also the structure of the S-matrix, is the
same across the moduli space [44]. However, the representation parameters used to match the
exact S-matrix with the perturbative results [45, 46] depend on the amount of NS-NS flux.
The dressing phases also need to be modified, and are yet to be fully determined, although
see [47] for recent progress in this direction. In the case of the trigonometric deformation, it
is known that it is possible to add a B-field while preserving integrability [15, 48] and the
embedding in type II supergravity was found in [14]. However, how the exact S-matrix is
affected by this additional contribution is not yet clear. Indeed, the tree-level S-matrix for a
three-parameter deformation of the AdS3 × S3 × T4 string, which includes the trigonometric
case with B-field, was constructed in [34], but has not yet been matched to an exact S-matrix.
For elliptic deformations it is not known if it is possible to add a B-field to the construction
while preserving integrability.

Finally, other deformations of the SL(2;R) × SU(2) sigma model can be considered,
in particular the λ-deformation [49–52], which is related to the trigonometric deformation
considered in this paper through Poisson-Lie duality [53–57]. The λ-deformation can be
generalised to Z4 permutation supercosets [58], giving rise to a model preserving two mani-
fest u(1) symmetries and 8 supersymmetries. An explicit supergravity embedding for this
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supersymmetric model has been proposed in [59]. Bosonic scattering for the λ-deformed
SL(2;R) × SU(2) sigma model was analysed in [60], and it would be interesting to include
fermions. It is an open question if there is a notion of Poisson-Lie duality and an associated
λ-deformation for the elliptic model.
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A Symmetries

In this appendix we analyse in more detail the symmetries of the action (2.2) and its
metric (2.8). Since the AdS3 part of the action can be obtained by analytic continuation,
we focus on S3.

Undeformed symmetries before light-cone gauge fixing. The undeformed action
is invariant under left- and right-multiplications by global SU(2) elements. Infinitesimally,
the left transformations act on the fields as

δ1
L = {Φ→Φ+ϵ sin(2Φ)tan(2X),X→X+ϵcos(2Φ),Y → Y +ϵ sin(2Φ)sec(2X)} , (A.1)
δ2

L = {Φ→Φ+ϵcos(2Φ)tan(2X),X→X−ϵ sin(2Φ),Y → Y +ϵcos(2Φ)sec(2X)} , (A.2)
δ3

L = {Φ→Φ+ϵ,X→X,Y → Y } . (A.3)

The undeformed metric (2.12) is invariant under these transformations (up to O(ϵ2) terms),
which can be shown to explicitly satisfy an su(2) algebra. For the right symmetry the
transformation rules are similar,

δ1
R = {Φ→Φ+ϵ sin(2Y ) sec(2X),X→X+ϵcos(2Y ),Y → Y +ϵ sin(2Y ) tan(2X)} , (A.4)
δ2

R = {Φ→Φ+ϵcos(2Y ) sec(2X),X→X−ϵ sin(2Y ),Y → Y +ϵcos(2Y ) tan(2X)} , (A.5)
δ3

R = {Φ→Φ,X→X,Y → Y +ϵ} . (A.6)

The associated conserved charges are Q =
∫
dσQ with

Q1
L = −pX cos(2Φ) − sec(2X) sin(2Φ)(pY + pΦ sin(2X)) , (A.7)

Q2
L = +pX sin(2Φ) − sec(2X) cos(2Φ)(pY + pΦ sin(2X)) , (A.8)

Q3
L = −pΦ , (A.9)
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and

Q1
R = −pX cos(2Y ) − sec(2X) sin(2Y )(pΦ + pY sin(2X)) , (A.10)

Q2
R = +pX sin(2Y ) − sec(2X) cos(2Y )(pΦ + pY sin(2X)) , (A.11)

Q3
R = −pY . (A.12)

Assuming canonically normalised fields, {Ψ(σ), PΨ(σ′)} = iδ(σ− σ′) at equal time τ , we have

{Qα
L(σ),Qβ

R(σ′)} = 0 , (A.13)

{Qα
L(σ),Qβ

L(σ′)} = 2iϵαβγQγ
L(σ)δ(σ − σ′) , (A.14)

{Qα
R(σ), QβR(σ′)} = 2iϵαβγQγ

R(σ)δ(σ − σ′) . (A.15)

As expected, we recover the su(2)L ⊕ su(2)R algebra.

Undeformed symmetries after light-cone gauge fixing. Upon light-cone gauge fixing

pΦ = ap+ + p− , p− = 1 , p+ = −H , (A.16)

the conserved charges associated to right multiplications do not depend explicitly on X+ = τ ,
hence Poisson-commute with the worldsheet Hamiltonian, as follows from the conservation law

0 = dQ

dτ
= ∂Q

∂τ
+ {Q,H} . (A.17)

Therefore the su(2)R algebra survives the light-cone gauge fixing. For the left charges,
Q3

L = −pΦ = aH − 1 trivially commutes with the worldsheet Hamiltonian H. The other two
charges Q1

L and Q2
L depend explicitly on Φ, hence are broken by the light-cone gauge fixing.

Deformed symmetries. In the presence of the deforming operator O with generic defor-
mation parameters, only the left su(2)L symmetry remains before light-cone gauge fixing.
The infinitesimal transformation rules leaving the action invariant are the same as in the
undeformed case above, and the conserved charges take the same form when written in
terms of the fields and their conjugate momenta. As before, with the exception of Q3

L,
which is just a constant plus a term proportional to the Hamiltonian, the left charges do
not survive the light-cone gauge fixing. The only non-trivial symmetries in the light-cone
gauge-fixed action arise from right multiplications. For the right symmetry, applying the
above transformation rules we find that

δL1
R ∼ β1 − β2 , δL2

R ∼ β1 − β3 , δL3
R ∼ β2 − β3 . (A.18)

When all the deformation parameters are equal we recover the undeformed case described
above with an su(2)R symmetry. If two deformation parameters are equal, then there is a
surviving u(1)R symmetry. In particular, for the trigonometric deformation with β1 = β3,
the charge Q ≡ −Q2

R is conserved. Its expansion in terms of oscillators gives a quadratic
contribution

Q2 = b†+b+ − b†−b− , (A.19)
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indicating that the excitations generated by b†+ and b†− carry charge +1 and −1 respectively.
For generic deformation parameters (all different from each other), the symmetry is completely
broken. We thus naively do not expect any remaining u(1) symmetry in the light-cone gauge-
fixed theory and its S-matrix. However, our results obtained in section 4 suggest that the
S-matrix still possesses a hidden u(1) symmetry once appropriate asymptotic states, with
momentum-dependent coefficients, are identified.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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