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ABSTRACT
Using pose estimation with video recordings, we apply an action recognition machine learning
algorithm to demonstrate the use of the movement information to classify singers and the ragas
(melodic modes) they perform. Movement information is derived from a specially recorded video
dataset of solo Hindustani (North Indian) raga recordings by three professional singers each per-
forming the same nine ragas, a smaller duo dataset (one singer with tabla accompaniment) as well
as recordings of concert performances by the same singers. Data is extracted using pose estimation
algorithms, both 2D (OpenPose) and 3D. A two-pathway convolutional neural network structure is
proposed for skeleton action recognition to train a model to classify 12-second clips by singer and
raga. Themodel is capable of distinguishing the three singers on the basis ofmovement information
alone. For each singer, it is capable of distinguishing between the nine ragaswith amean accuracy of
38.2% (with the most successful model). The model trained on solo recordings also proved effective
at classifying duo and concert recordings. These findings are consistent with the view that while the
gesturingof Indian singers is idiosyncratic, it remains tightly linked topatternsofmelodicmovement:
indeed we show that in some cases different ragas are distinguishable on the basis of movement
information alone. A series of technical challenges are identified and addressed, with code shared
alongside audiovisual data to accompany the paper.
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Introduction

Music and gesture studies (Godoy & Leman, 2009; Grit-
ten & King, 2011) explores the relationship between
manual gesture and musical performance in ways analo-
gous to the relationship between gesture and spoken lan-
guage (Goldin-Meadow, 2003; Kendon, 2004; McNeill,
1992, 2005). Indian vocal performance offers a rich
field for such study since singers typically use a wide
range of expressive and/or functional hand gestures to
accompany their own singing. Rahaim’s Musicking Bod-
ies (2012) takes an ethnographic and phenomenologi-
cal approach to the khyal genre of Hindustani music,1

exploring the idea that gesture can offer information
complementary to sound and help us to understand
singers’ musical intentions. Clayton’s (2007b) empirical
study of performance video recordings addresses the var-
ious functions of gesture in a khyal performance and
the relationship between melodic and gesture phrases.
Further studies by Leante and Clayton have combined
observation and interview data in the interpretation of

CONTACT Martin Clayton martin.clayton@durham.ac.uk Department of Music, Durham University, Palace Green, Durham DH1 3RL, UK

1 Khyal and dhrupad are two of the major vocal genres of Hindustani (North Indian) classical music.
2 The analysis for Clayton et al. (2022) was carried out after that reported here.

khyal singers’ gestures (Dahl et al., 2009; Fatone et al.,
2011; Leante, 2009, 2013a, 2013b, 2018). Paschalidou
used motion capture recordings of Hindustani dhru-
pad vocalists to explore relationships between sound
and gesture, particularly in terms of perceived effort
and apparent manipulation of imagined objects by the
singers (Paschalidou & Clayton, 2015; Paschalidou et al.,
2016). Pearson (2013) explored the sound-gesture rela-
tionship in teaching contexts in the related Karnatak
(South Indian)music tradition: Pearson andPouw (2022)
explore gesture–vocal coupling in the same tradition
using motion capture data: although not the main focus
of the paper, they report an attempt to classify Karnatak
ragas using a machine learning approach with motion
capture data; they find more success classifying singers
than their ragas based on movement data, supporting
the idea that singer idiosyncrasy is an important factor.
Clayton et al. (2022) explore the same dataset consid-
ered in this paper using multimodal machine learning
methods.2
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It is clear from these studies that gesture is almost
ubiquitous in Indian classical singing; that it has many
and overlapping functions and referents in relation to
the musical sound (i.e. it can accompany the ‘flow’ of
melodic movement but also punctuate the music rhyth-
mically or afford inter-performer communication); and
that there are few or no standardised gestures. Gesturing
is quite idiosyncratic, but nonetheless common themes
do emerge from qualitative study – Leante’s work with
Rag Shree, for example, highlights the pervasive use of
emphatic hand-raising gestures accompanying melodic
slides between scale degrees Re and Pa (∧2b–∧5) (2009).
Given the labour-intensiveness and subjectivity of man-
ual annotation of performance videos and the paucity
of motion capture data, this is an area of research that
should benefit from the use of computer vision to study
movement in video recordings.

Work on movement in Indian music has also looked
at topics such as entrainment and performer interaction
(Clayton, 2007a; Clayton et al., 2019, 2020;Moran, 2013).
This work features both manual annotation and auto-
mated movement tracking in the study of video record-
ings. However, to date no studies have been produced
using the pose estimation algorithms that have emerged
in recent years, which can produce full skeleton move-
ment, richer data than that employed, for instance, for the
tracking of musicians’ head movements by Jakubowski
et al. (2017).

Action recognition is a basic application in computer
vision. Given a video that contains people performing a
specific action, e.g. walking or jumping, action recogni-
tion models identify the correct class label of the action.
Early research focused on extracting hand-crafted fea-
tures which contain the necessary signature of different
actions, for example, using the temporary trajectories
of the sparse feature points (Ghamdi et al., 2012) and
the optical flow (Ji et al., 2013). Recent research has
found that deep neural networks are able to extract robust
visual features from images and videos. For example,
2-dimensional Convolutional Neural Network (CNN)
architecture can be utilised to compute the feature map
for a single RGB or optical flow image, and then temporal
features can be extracted from the feature map sequence
(Simonyan & Zisserman, 2014); using 3-dimensional
CNN, models can process an image sequence directly
(Tran et al., 2015).

The main drawback of recognising actions directly
from videos is that non-salient RGB information may
cause bias. For example, when identifying a person play-
ing football or riding a bicycle, the model may pay more
attention to the background than the movement itself.
To avoid this, skeleton-based action recognitionmethods
are attracting increasing attention from researchers.

Pose estimation applies machine learning approaches
to estimate the position of a human skeleton on the basis
of a single photographic image: by repeating the process
on successive video frames it is possible to estimate the
movement of a human body over the course of a video.
Skeleton data such as those derived from pose estima-
tion algorithms are represented as a sequence of point
coordinates, where each point denotes a body part of the
detected person. A direct way to use the skeleton is draw-
ing the points (body parts, many of them joints) as well
as the edges connecting these points (bones) in one frame
into an imagewith a black background, and then process-
ing the image sequence using deep learning-based meth-
ods (Liu et al., 2017; Zhang et al., 2017). However, these
methods still have large costs in terms of computational
complexity since every pixel needs to be computed.

The more efficient way to deal with the skeleton data
is using a graph model, where the body parts and bones3
can be regarded as the vertices and edges. Graph Con-
volutional Networks can efficiently access the irregular
skeleton key points and extract their features in the spa-
tial–temporal domain (Yan et al., 2018). Liu et al. (2020)
proposed a multi-scale spatial–temporal graph convo-
lutional network (MS-G3D), which considers different
orders of neighbour for each key point in the graph in
action recognition.4

A number of research groups are currently work-
ing with pose estimation algorithms in music-related
projects (e.g. Potempski et al., 2021), but to date no other
large-scale studies on musicians’ movement derived in
this way have been published.5 The current paper asks
whether a combination of pose estimation algorithms
and MS-G3D networks can be used to classify video
clips of khyal singers to enable the singer and/or raga
performed to be identified. On the basis of the existing
literature cited above, we predict that:

(1) Given the idiosyncratic nature of khyal singers’ ges-
tures, it should be possible to recognise individual
singers on the basis of their extracted movement
alone.

(2) Given the qualitative observations that gestures are
related to melodic motion – particularly in alap sec-
tions which involve neither explicit rhythmic struc-
ture nor co-performer interaction6 – the differences

3 In many cases these ‘bones’ represent actual bones, as between the wrist
and elbow; exceptions would include the link between the ‘nose’ and ‘ear’
points.

4 For example, the right elbow is the first order neighbour of the right wrist,
while the right shoulder is the second order neighbour of the right wrist.

5 See however Clayton et al. (2022), which analyses the same dataset as the
current paper.

6 Alap is the free-rhythm introduction to a raga performed at the start of a
rendition of Hindustani music. In a khyal concert situation this would be
performed with melodic accompaniment on harmonium or sarangi, which
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in melodic movements between ragas mean that for
a given singer, ragas may be identified from the
singer’s movement alone. However, since we believe
that gestures typical of ragas (at least for a partic-
ular singer) occur only occasionally, and much of
the gesture in between these moments may be more
generic, the accuracy of raga recognition may be
only slightly above chance level.

(3) Gesture idiosyncrasy means that the task of identi-
fying ragas sung by one singer using a model trained
on other singers’ movements will be much more
difficult, and results are likely to be no better than
chance.

These hypotheses and the analyses reported below
represent the first step in exploring singers’ gestures using
machine learning approaches with video data. The study
offers a proof of concept, demonstrating that movement
data extracted using pose estimation software can enable
further explorations of singers’ gestures through video
recordings. We demonstrate the use of 2D and 3D pose
estimation data to study the upper-body movement of
Indian classical singers: three singers each perform a
common set of nine ragas (melodic modes) in the khyal
style. Movement data is extracted using OpenPose (2D
pose estimation) and occlusion-robust pose-maps (3D
pose estimation). A version of the MS-G3D model is
applied in a set of action-recognition tasks: building on
the original MS-G3Dwe add to the position data velocity
vectors for each body part, testing whether this improves
the accuracy of classification. Here, each raga is regarded
as an action class, and all the video clips created from
one video share the same class label. In classifying singers
from the movement data, each singer is regarded as an
action class.

The specific tasks attempted are as follows:

(A) Identify a singer from their skeleton movement
(which of three singers is performing in an unseen
clip?)

(B) Identify which raga a particular singer is performing
(if the system is trained on a set of recordings by the
same singer)

(C) Identify a raga, irrespective of which singer is per-
forming

(D) Compare the accuracy of classification models
between 2D and 3D pose data

(E) Test whether adding velocity vectors to the input
data increases recognition accuracy, using two dif-
ferent strategies

is absent in this solo dataset. (Singing in a similar style but with drum
accompaniment, as is common in khyal, is also referred to as singing alap.)

The intention is therefore both to explore the nature
of gestures made accompanying Hindustani vocal music,
and to explore the robustness of different approaches to
the application of pose estimation and action recognition
deep learning methods in the investigation of musicians’
gestures. The aim of this research is not to produce recog-
nition systems based on video data alone, since in real-
life situations audio data would almost always be avail-
able alongside video. Rather, our intention is to explore
empirically the complementary notions that singers’ ges-
tures may contain raga-specific information, and that
singers’ gestures are idiosyncratic. Is there enough raga-
specific information for this to potentially aid automatic
classification (for example distinguishing between two
ragas with similar pitch profiles)? On the other hand, are
they sufficiently idiosyncratic that their main usefulness
would be in searching for videos of particular singers? For
either or both of these future tasks, what kind of approach
is likely to be most effective? Beyond the question of pos-
sible applications of such a system, of course, our aim is
to shed light on musical gesturing that can feed back also
into qualitative studies.

Data

Music recordings

Clayton and colleagues have to date published 17 com-
plete raga performances Hindustani (North Indian) raga
music, featuring multitrack audio, static video shots and
annotations (Clayton et al., 2021a). These recordings
have the advantage that they are taken from real-life per-
formances, mostly in front of live audiences. They do not
however allow a systematic comparison between singers’
gesturing while performing a common set of ragas. The
new solo recording collection created for this study fills
this lacuna: three professional singers were asked to per-
form unaccompanied alap renditions of nine Hindus-
tani ragas in khyal style, for approximately 3 min each.
They were also asked to perform a set of shorter ‘snap-
shots’ of each raga, labelled pakad (‘catch’). In most cases
two takes of each raga alap were recorded, producing a
collection of 55 3-minute raga performances (duration
165–221 s) and 27 pakad clips (9–96 s).7 Three cameras
were used: one central and one each to the right and left
of centre (only the central view is used in this study).
The singers are Apoorva Gokhale (henceforth AG), Chi-
ranjeeb Chakraborty (CC) and Sudokshina Chatterjee
(SCh). Recordings were made and edited in the studios
of the Durham University Music Department by Simone
Tarsitani. Musicians were informed of the purpose for

7 In one case only one take was usable, while in a couple of cases three usable
takes of one raga were captured. See Table 1 for details.
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Figure 1. Singers, from left to right: Apoorva Gokhale (AG), Chiranjeeb Chakraborty (CC), and Sudokshina Chatterjee (SCh). Video stills
(detail).

which their performances were recorded; they gave their
informed consent in writing for the recordings to be used
for academic research, including publication for educa-
tional and not-for-profit purposes and deposit in data
repositories or archives for not-for-profit educational and
research use only (Figure 1).

These solo recordings are complemented by a set of
duo recordings of the same nine ragas by SCh with tabla
player Subrata Manna. The purpose of these recordings
was to test whether the same singer and ragas could
be identified by the action recognition models in the
duo format, where we would expect SCh’s gesture to be
affected by the different musical context (the presence of
a regular beat and a co-performer), and the camera angle
and distance from the singer would also be different.
These recordings, made by the musicians themselves in
Kolkata, follow a common format of a brief alap followed
by a short performance of a khyal in slow ektal.8

Finally, we also make use of concert recordings made
in Durham in a public concert format, featuring the
singers accompanied by the most common instruments
used in khyal: tabla and harmonium. SCh’s performance
is ofMiyan kiMalhar, one of our set of nine ragas. AG’s is
of Raga Yaman and CC’s of Raga Bhatiyar, which are not
part of the 9-raga set and therefore do not allow us to test
the raga recognition model.

The ragas selectedwere, in alphabetical order, Bageshree,
Bahar, Bilaskhani Todi, Jaunpuri, Kedar, Marwa, Miyan
ki Malhar, Nand, and Shree. The selection, decided by
Clayton and Laura Leante, was intended to cover a
wide range of possibilities in terms of time of perfor-
mance (morning to night),9 mood (light to serious),

8 Ektal is themost common tala (metre) used for slow tempokhyals. Its 12 time
units (matras) typically span 40–60 s.

9 Hindustani ragas are associatedwith particular times of day, or in some cases
seasons.

typical velocity and directness of melodic movement,
and favoured pitch range (upper or lower tetrachord)
(Table 1).

Pose estimation and post-processing

2Dpose estimationwas carried out usingOpenPose (Cao
et al., 2021) to extract the key points (hands, head, shoul-
ders, wrists, mid hip, elbows, etc.) of the musicians (see
Figure 4 below).

As OpenPose runs most efficiently on Graphics Pro-
cessing Units (GPUs), a Google Colab10 notebook was
created to enable OpenPose to be run on a remote GPU.
This allows the software to be run from any location
via a web browser, automating the installation of Open-
Pose on the remote server and removing the need for
users to have a GPU. The Colab notebook also provides
a user interface to allow parameters for post processing
to be selected. All of the relevant code is shared on a
GitHub repository (Clarke et al., 2021) linked to theOpen
Science Framework project containing the audiovisual
recordings (Clayton et al., 2021b).

The extracted data was then further processed as fol-
lows:

• As the musicians were seated on the floor, the lower
body parts were removed from the data.

• The key points were connected by lines representing
the ‘bones’ to allow more intuitive visualisation.

• In order for the further post-processing steps to be
able to rely on previous frames, the person number-
ing had to be made consistent by sorting individuals

10 Google Colab, website (last visited August 2021) https://research.google.
com ’colaboratory

https://research.google.com
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Table 1. Solo, duo and concert videos.

Code Singer Raga Type

AG_1a_Jaun Apoorva Gokhale Jaunpuri Solo alap
AG_1b_Jaun Apoorva Gokhale Jaunpuri Solo alap
AG_2a_Marwa Apoorva Gokhale Marwa Solo alap
AG_2b_Marwa Apoorva Gokhale Marwa Solo alap
AG_3a_Bag Apoorva Gokhale Bageshree Solo alap
AG_3b_Bag Apoorva Gokhale Bageshree Solo alap
AG_4a_Nand Apoorva Gokhale Nand Solo alap
AG_4b_Nand Apoorva Gokhale Nand Solo alap
AG_5a_MM Apoorva Gokhale Miyan ki Malhar Solo alap
AG_5b_MM Apoorva Gokhale Miyan ki Malhar Solo alap
AG_6a_Bilas Apoorva Gokhale Bliaskhani Todi Solo alap
AG_6b_Bilas Apoorva Gokhale Bliaskhani Todi Solo alap
AG_7a_Bahar Apoorva Gokhale Bahar Solo alap
AG_7b_Bahar Apoorva Gokhale Bahar Solo alap
AG_8_Kedar Apoorva Gokhale Kedar Solo alap
AG_9a_Shree Apoorva Gokhale Shree Solo alap
AG_9b_Shree Apoorva Gokhale Shree Solo alap
CC_1a_Bilas Chiranjeeb Chakraborty Bliaskhani Todi Solo alap
CC_1b_Bilas Chiranjeeb Chakraborty Bliaskhani Todi Solo alap
CC_2a_Jaun Chiranjeeb Chakraborty Jaunpuri Solo alap
CC_2b_Jaun Chiranjeeb Chakraborty Jaunpuri Solo alap
CC_3a_MM Chiranjeeb Chakraborty Miyan ki Malhar Solo alap
CC_3b_MM Chiranjeeb Chakraborty Miyan ki Malhar Solo alap
CC_4a_Nand Chiranjeeb Chakraborty Nand Solo alap
CC_4b_Nand Chiranjeeb Chakraborty Nand Solo alap
CC_5a_Shree Chiranjeeb Chakraborty Shree Solo alap
CC_5b_Shree Chiranjeeb Chakraborty Shree Solo alap
CC_6a_Kedar Chiranjeeb Chakraborty Kedar Solo alap
CC_6b_Kedar Chiranjeeb Chakraborty Kedar Solo alap
CC_7a_Marwa Chiranjeeb Chakraborty Marwa Solo alap
CC_7b_Marwa Chiranjeeb Chakraborty Marwa Solo alap
CC_8a_Bag Chiranjeeb Chakraborty Bageshree Solo alap
CC_8b_Bag Chiranjeeb Chakraborty Bageshree Solo alap
CC_9a_Bahar Chiranjeeb Chakraborty Bahar Solo alap
CC_9b_Bahar Chiranjeeb Chakraborty Bahar Solo alap
SCh_1a_Bilas Sudokshina Chatterjee Bilaskhani Todi Solo alap
SCh_1b_Bilas Sudokshina Chatterjee Bilaskhani Todi Solo alap
SCh_2a_Jaun Sudokshina Chatterjee Jaunpuri Solo alap
SCh_2b_Jaun Sudokshina Chatterjee Jaunpuri Solo alap
SCh_3a_MM Sudokshina Chatterjee Miyan ki Malhar Solo alap
SCh_3b_MM Sudokshina Chatterjee Miyan ki Malhar Solo alap
SCh_3c_MM Sudokshina Chatterjee Miyan ki Malhar Solo alap
SCh_4a_Nand Sudokshina Chatterjee Nand Solo alap
SCh_4b_Nand Sudokshina Chatterjee Nand Solo alap
SCh_5a_Shree Sudokshina Chatterjee Shree Solo alap
SCh_5b_Shree Sudokshina Chatterjee Shree Solo alap
SCh_6a_Kedar Sudokshina Chatterjee Kedar Solo alap
SCh_6b_Kedar Sudokshina Chatterjee Kedar Solo alap
SCh_6c_Kedar Sudokshina Chatterjee Kedar Solo alap
SCh_7a_Marwa Sudokshina Chatterjee Marwa Solo alap
SCh_7b_Marwa Sudokshina Chatterjee Marwa Solo alap
SCh_8a_Bag Sudokshina Chatterjee Bageshree Solo alap
SCh_8b_Bag Sudokshina Chatterjee Bageshree Solo alap
SCh_9a_Bahar Sudokshina Chatterjee Bahar Solo alap
SCh_9b_Bahar Sudokshina Chatterjee Bahar Solo alap
AG_P1_MM Apoorva Gokhale Miyan ki Malhar Solo pakad
AG_P2_Jaun Apoorva Gokhale Jaunpuri Solo pakad
AG_P3_Kedar Apoorva Gokhale Kedar Solo pakad
AG_P4_Bahar Apoorva Gokhale Bahar Solo pakad
AG_P5_Shree Apoorva Gokhale Shree Solo pakad
AG_P6_Nand Apoorva Gokhale Nand Solo pakad
AG_P7_Bag Apoorva Gokhale Bageshree Solo pakad
AG_P8_Marwa Apoorva Gokhale Marwa Solo pakad
AG_P9_Bilas Apoorva Gokhale Bliaskhani Todi Solo pakad
CC_P1a_Bilas Chiranjeeb Chakraborty Bliaskhani Todi Solo pakad
CC_P1b_Bilas Chiranjeeb Chakraborty Bliaskhani Todi Solo pakad
CC_P2_Jaun Chiranjeeb Chakraborty Jaunpuri Solo pakad
CC_P3_MM Chiranjeeb Chakraborty Miyan ki Malhar Solo pakad

(continued)
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Table 1. Continued

Code Singer Raga Type

CC_P4_Nand Chiranjeeb Chakraborty Nand Solo pakad
CC_P5_Shree Chiranjeeb Chakraborty Shree Solo pakad
CC_P6_Kedar Chiranjeeb Chakraborty Kedar Solo pakad
CC_P7_Marwa Chiranjeeb Chakraborty Marwa Solo pakad
CC_P8_Bag Chiranjeeb Chakraborty Bageshree Solo pakad
CC_P9_Bahar Chiranjeeb Chakraborty Bahar Solo pakad
SCh_P1a_Bilas Sudokshina Chatterjee Bliaskhani Todi Solo pakad
SCh_P1b_Bilas Sudokshina Chatterjee Bliaskhani Todi Solo pakad
SCh_P2a_Jaun Sudokshina Chatterjee Jaunpuri Solo pakad
SCh_P2b_Jaun Sudokshina Chatterjee Jaunpuri Solo pakad
SCh_P3a_MM Sudokshina Chatterjee Miyan ki Malhar Solo pakad
SCh_P3b_MM Sudokshina Chatterjee Miyan ki Malhar Solo pakad
SCh_P4a_Nand Sudokshina Chatterjee Nand Solo pakad
SCh_P4b_Nand Sudokshina Chatterjee Nand Solo pakad
SCh_P5a_Shree Sudokshina Chatterjee Shree Solo pakad
SCh_P5b_Shree Sudokshina Chatterjee Shree Solo pakad
SCh_P6a_Kedar Sudokshina Chatterjee Kedar Solo pakad
SCh_P6b_Kedar Sudokshina Chatterjee Kedar Solo pakad
SCh_P7a_Marwa Sudokshina Chatterjee Marwa Solo pakad
SCh_P7b_Marwa Sudokshina Chatterjee Marwa Solo pakad
SCh_P8a_Bag Sudokshina Chatterjee Bageshree Solo pakad
SCh_P8b_Bag Sudokshina Chatterjee Bageshree Solo pakad
SCh_P9a_Bahar Sudokshina Chatterjee Bahar Solo pakad
SCh_P9b_Bahar Sudokshina Chatterjee Bahar Solo pakad
SCh_Duo_Bilas Sudokshina Chatterjee Bilaskhani Todi Duo ektal
SCh_Duo_Jaun Sudokshina Chatterjee Jaunpuri Duo ektal
SCh_Duo_MM Sudokshina Chatterjee Miyan ki Malhar Duo ektal
SCh_Duo_Nand Sudokshina Chatterjee Nand Duo ektal
SCh_Duo_Shree Sudokshina Chatterjee Shree Duo ektal
SCh_Duo_Kedar Sudokshina Chatterjee Kedar Duo ektal
SCh_Duo_Marwa Sudokshina Chatterjee Marwa Duo ektal
SCh_Duo_Bag Sudokshina Chatterjee Bageshree Duo ektal
SCh_Duo_Bahar Sudokshina Chatterjee Bahar Duo ektal
NIR_SCh_Malhar Sudokshina Chatterjee Miyan ki Malhar Concert

by x-coordinate (which generally did not change due
to the seated position of the musicians).11

• A confidence threshold was used to improve the
smoothness of the prediction.Any key point candidate
with a confidence level, given by the pose detection
software, that was lower than a certain threshold was
replaced by the same key point from the previous
frame if that had a higher confidence.

• Existing jitter in the detectedmovements, due to inac-
curacies in the pose detection, was smoothed using a
Savitzky–Golay filter (Savitzky & Golay, 1964).12

• The output was rendered as videos for visual inspec-
tion, with skeletons either overlaid on the video, or
shown on their own against a black background.

The output files from OpenPose, which creates one
JSONfile per frame, were combined into a single CSV file
for each person detected in the video, with one row per
frame. Parameters for the post-processing were selected
manually, and aim to produce a smoothness ofmovement
which matches that observable in the videos themselves:

11 A more complex script for identifying multiple people is shared as part of
our code as ‘run_openpose_adaptive.py’. In the current study, since musi-
cians remained seated and there were no occlusion issues, this was not
required.

12 Using a smoothing window of 13 frames and second order polynomial.

in other words, to remove the noise inherent in the pose
estimation process without eliminating smaller move-
ments that are visible to the naked eye. (It is also found
that if movement is smoothed over too long a window, a
time lag between the video and the skeleton movement
becomes apparent to the viewer.)

Visual inspection suggests that the combination of
OpenPose’s pose detection and post-processing produces
an accurate result. Areas of weakness include some insta-
bility in the estimation of the elbow positions compared
to the more stable shoulder and wrist points, and a ten-
dency for the Mid Hip point to be estimated slightly
off-centre.

To extract the 3D skeleton from the monocular RGB
input, the method proposed by Mehta et al. (2018) is
introduced. ACNN-basedmodel is trained to predict the
3D skeleton coordinates of multiple persons in one input
image. The post-processing operation of the 3D results is
exactly the same as that described above for 2D results
from OpenPose.

Normalisation

If the movement data extracted by pose estimation algo-
rithms is used for the action recognition model, the
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Figure 2. Directly normalising the absolute coordinates to [0, 1] will distort the skeleton and amplify the horizontal movement with
respect to the vertical.

absolute size of the skeleton (in pixels) may bias the clas-
sification: the differences between movements are subtle,
thus a skeleton of the same size may be a more salient
factor in classification. This is likely to make singer iden-
tification more accurate when working within the solo
dataset, for example, but less accurate when mixing solo,
duo and concert videos. To counteract this problem and
make the model more robust, the following normalisa-
tion process is implemented.

Here the normalisation of 2-dimensional skeleton data
is described as an example. We use the minimum and
maximum absolute coordinates to obtain a bounding box
including all body parts over awhole long video. A simple
normalisation can be obtained by dividing the absolute
coordinates of each body part by the width and height of
the bounding box. However, this may change the ratio of
the height and width of the body shape, which is illus-
trated in the Figure 2. Moreover, the horizontal move-
ment is magnified compared to the vertical movement if
we normalise in this way.

In order to preserve the aspect ratio of in the origi-
nal video, we extend the bounding box from the rect-
angle to the square. In detail, the coordinates of the
k-th body part in one video are denoted as Xk =
{xk,1, xk,2, . . . , xk,T}, Yk = {yk,1, yk,2, . . . , yk,T}, where T is
the maximum frame index of this video. Then the set
of all key points in this video can be denoted as X =
{X1,X2, . . . ,XK} and Y = {Y1,Y2, . . . ,YK}, where K is
the number of body parts detected. The bounding box
of the musician can be determined by the coordinate of
the top-left and bottom-right points.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xmax = max(xk,t), xk,t ∈ X
xmin = min(xk,t), xk,t ∈ X
ymax = max(yk,t), yk,t ∈ Y
ymin = min(yk,t), yk,t ∈ Y

(1)

The width and height of the bounding box can be calcu-
lated by {

w = xmax − xmin

h = ymax − ymin
(2)

To ensure that the ratio of horizontal or vertical move-
ments will not change, we let

l = max(w, h) (3)

and {
x̃min = xmin − (l−w)

2
ỹmin = ymin − (l−h)

2
(4)

A square bounding box can be denoted by (x̃min, ỹmin, l, l),
where the person stays in the centre of the box. The
normalised coordinates can be calculated as{

x̃k,t = (xk,t−x̃min)
l

ỹk,t = (yk,t−ỹmin)
l

(5)

By transforming the coordinates using Equations (1)–(5),
we obtain the relative coordinate values, while the ratio
of the movement in horizontal and vertical dimensions
is also preserved. More importantly, the influence of
resolution of the different videos will be avoided. The
only difference with the 3-dimesional skeleton is com-
puting an additional coordinate z̃k,t following Equations
(1)–(5). Examples of the resulting square boxes are illus-
trated in Figure 3.

Division into clips

The machine learning model used for action recognition
(MS-3GD) requires video clips with a fixed number of
frames. In many action recognition problems, clips are
quite short: for example, an ‘action’ lasting 2–3 s might
be cut into clips of 1-second each, using a sliding window
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Figure 3. The bounding box in different videos of SCh. As we normalise the coordinates into [0, 1] by dividing the length of the square,
the influence of the different size of the image in the video frame is avoided.

advancing one frame at a time (Tao & Papadias, 2006).
In khyal singing, vocal phrases often last 10 s or more,
thus we chose to use longer clips in case the identify-
ing movement patterns evolved over a longer time-scale.
Therefore, each long video is split into 12-second clips (25
fps video, thus each includes 300 frames). To improve the
diversity of the training data, the temporal stride between
two clips is set at 40 frames, where a small random value
(from −20 to 20) is added to adjust the index of the start
frame. Following this procedure, more than 7,200 clips
were generated, about 80% of which are from solo videos
and the rest are from duo or concert videos. (In prac-
tice, the musicians’ pose information is extracted from
the whole videos, and the ‘clips’ are created by segment-
ing the CSV files of movement data by using a sliding
window.)

Shared dataset

The full dataset is publicly shared on OSF (Clayton et al.,
2021b) and includes the following:

(1) All solo, duo and concert raga videos, as recorded
and with final movement data (2D skeleton, upper
body parts from OpenPose) overlaid13

(2) 3D movement data visualised with black back-
ground for all solo, duo and concert raga takes

(3) Both 2D and 3D JSON files containing the output of
pose estimation algorithms (before post-processing)

(4) Both 2Dand 3DCSVfiles (post-processed, single file
per take per musician)

(5) Duo and concert videos with predicted labels for
singer and raga printed in the top-left corner

(6) CoLab notebook and entimement-openpose python
library (linked to GitHub)

(7) Details of parameters and initial values for models

13 Although only one view is analysed here, all three views are shared in the
OSF dataset.

Method

Training and tests sets (splits)

In order to explore our five main tasks, after the set of
movement data for each of the 12-second video clips is
generated, six different splits of training and test set are
considered.

(1) Singers separate: The model is initialised for each of
the three singers separately. One take of each raga
is used for the test set and all other takes (including
the Pakad clips that are longer than 12 s) are used
to train the model.14 In this way, we test whether
theMS-G3Dmodel can successfully classify ragas as
sung by a specific singer, andwhether this task is eas-
ier with some singers than others. If successful, this
would demonstrate that singers’ gesturingwhile per-
forming different ragas is different, and that there is
some consistency in this distinction between takes.
This split is used to address task B (can we identify
which raga a specific singer is singing?).

(2) Unseen singer: All takes for one singer are used for
the test set, while all other takes are used for the
training data. This model tries to classify the raga
sung by a new musician who was totally unseen
before. If successful, this approach would demon-
strate consistency between the raga-specific gestur-
ing of different singers. Given that Indian singers’
gestures are understood to be highly idiosyncratic,
this is expected to be much more challenging that
split 1. This split helps us to address task C (can we
identify a raga irrespective of the singer?), in the par-
ticularly difficult case in which the singer used in the
test stage has not been employed to train the model.

(3) Duos: All solo clips are used for training data, and
the singer’s movement in the Duo clips (SCh) are

14 We only have one usable take of AG’s Raga Kedar, which is included in
the test data: this is likely to affect the accuracy of identification for this
singer/raga combination.
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used as the test data. If successful, this would demon-
strate that distinctions between gesturing with dif-
ferent ragas is robust not only between takes, but
also in the presence of an accompanist (and thus
when gestures communicating to the co-performer
would be expected), and with a different recording
set-up (camera angle, etc.). This split is used to fur-
ther address task B (can we identify which raga a
specific singer is singing?), but does not restrict the
data to a single camera set-up.

(4) Concert: All solo clips are used for training data, and
the singer in the concert clips is used for the test data.
All concert clips are used for singer recognition, but
only SCh’s concert clips are used for the raga recog-
nition. The singers now have two accompanists, and
the camera angles are different (although they are
still frontal shots). Like theDuo split, this one is used
to further address task B, but does not restrict the
data to a single camera set-up.

(5) Random solo: A split of the solo video clips only,
for which we randomly selected nine takes (one take
for each raga and three for each musician) for the
test. This split can be used for evaluating the perfor-
mance of both raga andmusician identification. This
split enables us to address task A (can we identify the
singer?) and C (can we identify a raga irrespective of
the singer?).

(6) Random all: A random split of solo, duo and concert
clips. Since the training set now includes duo and
concert as well as solo clips, the model is expected
to be more robust for musician identification
(task A).

Tasks D (comparing 2D and 3D data) and E (testing
the impact of using velocity data) are explored across the
various splits.

Training the action recognitionmodel

In this paper, a skeleton-based action recognitionmethod
is proposed to identify the ragas and musicians. Firstly,
the output of our post-processed data from OpenPose
comprises 17 key points (from index 0 to 16) for one
person, which are shown on the left side of Figure 4.
Specifically, the related body parts of the key points are
nose, neck, right shoulder, right elbow, right wrist, left
shoulder, left elbow, left wrist, middle hip, right eye, right
ear, left eye, left ear, right knee, right ankle, left knee and
left ankle. Since the singers sit cross-legged on the floor,
themovement of lower body parts (the knees and ankles)
contains little useful information, and in any case is esti-
mated very poorly by OpenPose. Moreover, the detection
of the ears is unreliable because of occlusion. Therefore,

Figure 4. The skeleton detected (left) and input into the model
(right).

these six parts are dropped when we train the skeleton-
based model. The simplified skeleton is shown on the
right in the Figure 4, where the 11 orange circles repre-
sent the key points that are finally considered when we
generate the position and velocity vectors.

The input of the model consists of two channels, the
position and velocity. The input in the position channel is
a tensorwith dimension (C0,T,K), whereC0 equals 3 in a
2-dimensional skeleton, containing the normalised hori-
zontal and vertical coordinates, and the confidence value
returned by OpenPose. For the 3-dimensional skeleton,
the depth coordinate is included, thusC0 equals 4.T is the
total number of frames in each video clip, which equals
300. K denotes the total number of body parts, which
is 11.

The distinction between movement patterns in the
ragas is much less obvious than that between actions
such as running and jumping used in general action
recognition tasks, and it may be that velocity of move-
ment is sometimes a distinguishing factor in our case.
In this paper therefore, velocity information is added as
an independent input, so that the model can use this
information.

The velocity vector is therefore considered in the sec-
ond channel. Specifically, the horizontal, vertical and
depth velocity values of the k-th body part in t-th frame
is defined as

⎧⎪⎨
⎪⎩
ẋk,t = x̃k,t − x̃k,t−�

ẏk,t = ỹk,t − ỹk,t−�

żk,t = z̃k,t − z̃k,t−�

(6)

respectively, where� is the frame interval for calculating
the velocity vector. When t ≤ �, we simply let

⎧⎪⎨
⎪⎩
ẋk,t = ẋk,�+1

ẏk,t = ẏk,�+1

żk,t = żk,�+1

(7)
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Figure 5. The early fusion strategy.

Figure 6. The late fusion strategy.

Therefore, the input of the velocity channel is a tensor
with dimension (C0 − 1,T,K), similar to the position
channel.

In order to combine the position and velocity infor-
mation, two fusion strategies are evaluated in the paper,
termed ‘early fusion’ and ‘late fusion’, and compared to
the originalMS-G3Dmodel. For the early fusion, the ten-
sors of position and velocity are concatenated to form a
new tensor with dimension (2C0 − 1,T,K). This tensor
is fed into the MS-G3D module, which captures com-
plex regional spatial–temporal joint correlations as well
as long-range spatial and temporal dependencies. In the
following stage, a linear classifier is implemented to pre-
dict the class label (raga or musician) of the short clips
(Figure 5).

For the late fusion strategy, tensors of position and
velocity are processed by two separate MS-G3D mod-
ules to extract semantic visual features, where the out-
put dimension in both channels is (C1,T/2,K). Features
from the two channels are concatenated to a new tensor
with dimension (2C1,T/2,K). Next, the fusion feature is
fed to another MS-G3D module as well as the classifier,
to predict the score of all the actions that are required to
be identified. The illustration of the late fusion model is
shown in Figure 6.

To train the model, the mini-batch gradient descent
(Li et al., 2014) is used for optimising the parameters.
Specifically, one batch that contains several short clips

is input to the model, and the predictions of these clips
are calculated by the forward inference process. Then the
training loss is computed between the ground truth (i.e.
the real raga labels of these clips) and the prediction,
which is further utilised to update the parameters by a
backward propagation process. For each training epoch,
the training data is fed to the model once in a random
order. In the experiments, 16 samples are processed in
parallel and the number of training epoch is set to 50
empirically.

Results

In order to evaluate the performance of methods for an
action recognition task, classification accuracy is used:
the percentage of correctly predicted clips in the test set is
calculated. In the results reported below, the originalMS-
G3D method is compared to the proposed two-pathway
models, including early fusion and late fusion strategies.
Both 2D and 3D skeletons are fed into these threemodels,
allowing us to compare six sets of results for the two clas-
sification tasks (raga and musician) across six different
splits of the data.

Singer classification

The performance of the musician classification for the
different methods are reported for splits 3–6 (Table 2).
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Table 2. Accuracy of singer classification on splits 3–6.

Split 3 Split 4 Split 5 Split 6
Duo Concert Random solo Random all

2D MS-G3D 48.6% 61.0% 100.0% 77.5%
2D early fusion 93.6% 66.0% 99.8% 86.7%
2D late fusion 87.6% 55.0% 100.0% 57.1%
3D MS-G3D 59.0% 65.3% 100.0% 72.9%
3D early fusion 56.8% 61.0% 100.0% 83.3%
3D late fusion 50.6% 54.7% 100.0% 77.1%

The easiest case is split 5 (random solo), where themodel
is trained and tested on clips from the solo dataset: in this
case all the models show very good performance (close
to 100% accuracy). In splits 3 and 4, the model is trained
on solo clips and tested on the other datasets (duo and
concert clips). In split 3 (duos) the accuracy varies signifi-
cantly between the different models, with 2D early fusion
the best performing (93.6%). Only SCh appears in Duo
videos, and the unbalanced test data may account for the
variability in the results. In split 4 (concerts) the number
of clips of different musicians in the test set was balanced
by randomly excluding some clips of SCh, since a longer
video clip for SCh was used; a similar process was used to
balance the sample in split 6. The variation is much less
for split 4, with the same model (2D early fusion) again
performing best. Results on split 6 (random all) are better
than that on split 4, as expected since all camera angles are
represented in both training and test sets. In this case the
2D data gives slightly higher accuracy (86.7 vs 83.3%).

Raga classification

Results of the raga classification for different musicians
in split 1 – in which the model is trained and tested on
each singer’s solo clips separately – are shown in Table 3.
The average classification accuracy using 2D pose data is
about 8% better than that using 3D data. The mean accu-
racy for the raga classification ranges from 26.9 to 38.2%
according to different models; the mean accuracy of all
models is 32.6%, compared to the random guess accuracy
of 11.1% (one of nine ragas).15 The early fusion strategy
in the two-pathway method achieves the highest mean
classification accuracy, from which two conclusions are
supported. Firstly, adding the velocity information only
marginally improves the mean accuracy of classification.
Secondly, the early fusion performs better than the late
fusion in this task. Last but not least, the accuracy is high-
est for SCh, suggesting greater consistency between takes
than is the case for AG and CC.

The confusion matrices (Stehman, 1997) of the clas-
sification results for musicians (Figure 7) show that the

15 Clayton et al. (2022), attempting the same task using a different approach
and data from the two wrists only, report similar results: 36.3, 31.8 and
39.2% accuracy for the respective singers (mean accuracy 35.8%).

Table 3. Accuracy of raga classification for different musicians in
split 1 (singers separate).

AG CC SCh Mean

2D MS-G3D 29.0% 33.7% 49.0% 37.2%
2D early fusion 35.3% 33.0% 46.4% 38.2%
2D late fusion 37.7% 25.1% 45.1% 34.6%
3D MS-G3D 28.0% 20.7% 39.1% 29.2%
3D early fusion 30.2% 25.4% 33.3% 29.6%
3D late fusion 27.1% 19.5% 34.2% 26.9%

singers differ somewhat in which ragas are easier and
which harder to classify. Specifically, Bilaskhani Todi
and Jaunpuri sung by AG are successfully classified, but
Marwa, Kedar and Shree not so. CC’s Bahar, Bageshree
and Miyan Malhar are easier to identify; Marwa and
Kedar are again poorly classified alongside Bilaskhani
Todi. For SCh, most ragas are well identified except the
Miyan Malhar and Shree.

Results of the raga classification on splits 2–5 are
displayed in Table 4. According to results using split 2
(unseen singer), identifying the raga performed by a new
singer is challenging since the prediction is only slightly
better than the random guess. Classification accuracies
on split 3 (duos) are higher than random guess but lower
than that on split 1. The training set of split 4 (concert)
is the same as that of the split 3; therefore, we tested the
model directly with parameters trained in the split 3. Split
4 results show that themodels performwell in identifying
the raga of the SCh concert video (Miyan Malhar). Split
5 (random solo) achieves a higher accuracy than split 1,
where training and testing is restricted to the same singer.

Discussion

Pose estimation seems to offer a robust way to extract
movement information frommusic performance videos,
which can then be used to explore music performance.
Machine learning approaches based on existing action
detection systems proved capable of classifying both
ragas and musicians, with varying degrees of accuracy.
We outlined three specific tests above:

(1) Given the idiosyncratic nature of khyal singers’ ges-
tures, it should be possible to recognise individual
singers on the basis of their extracted movement
alone.

This was demonstrated. In the easiest split (using solo
videos only) accuracy was close to 100%. In the hardest
split, where the system is trained on solo videos and tested
on group videos, accuracy was still high, at 68.8–73.0%,
using the early fusion approach (random guess would
be 33%). This indicates that the model is able to gen-
eralise to different camera angles and video resolution
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Figure 7. Confusion matrices, from left to right: AG, CC and SCh.

Table 4. Accuracy of the raga classification on splits 2–5.

Split 2 Split 3 Split 4 Split 5
Unseen singer Duo Concert Random solo

2D MS-G3D 10.0% 25.9% 96.0% 42.7%
2D early fusion 16.7% 28.4% 95.2% 39.7%
2D late fusion 16.8% 20.7% 84.7% 40.5%
3D MS-G3D 17.2% 16.1% 76.7% 38.8%
3D early fusion 15.8% 24.0% 100.0% 32.2%
3D late fusion 15.9% 21.2% 94.5% 26.3%

(at least after normalisation). It is worth noting that for
SCh, the models worked very well in identifying her in
the duo clips, but very poorly in the concert clips. This
could be due either to the bigger difference in camera
angle (the concert clips are taken from a high camera
looking down on the stage), and/or due to some differ-
ences in her gesturing (in the concert clips she interacts
much more with her accompanists). Both of these fac-
tors apply also to the AG and CC concert clips, however,
where the model nonetheless performed much better in
singer identification.

(2) For a given singer, ragas may be identified from the
singer’s movement alone, but accuracy may be only
slightly above chance level.

The possibility of identifying ragas from a singer’s
movements has been demonstrated. In the best case in
split 1 the classification accuracy reached 49%,more than
slightly above the random guess level of 11%. However,
the results are patchy: they are better for some singers
than others; for each singer some ragas are classified
with very high accuracy, and others very poorly. For each
singer, then, movement consistency between takes seems
to be greater for some ragas than others.

To help to interpret the results, we created versions
of the duo and concert videos with the model pre-
dictions printed in the top-left corner (all visualisation
use the output of the ‘2D early fusion’ model, which

achieves the best accuracy in most cases). We note the
following:

In some cases, accuracy is affected by the inclusion of
passages where the singer is moving very little or not at
all. In AG’s concert video, for example, the first 47 s (in
which she has hardly begun to gesture) aremis-labelled as
CC: this alone accounts for 26% of the AG concert clips.
In the duo recordings, the start of each video is labelled
as Jaunpuri: the model seems to default to this raga when
the singer is moving minimally, and this helps to explain
the remarkably high prevalence of Jaunpuri (as shown in
the confusion matrix in Figure 8).

The case of SCh in the concert video (which featured
RagMiyanMalhar only) is instructive:MiyanMalharwas
very poorly classified when one solo take was used for
testing and the other two for training, it was better for
the duo videos (see Figure 8), but when all solo takes were
used for training and concert clips for testing the success
was very high. Given that the system failed to identify the
singer in this video, it is possible thatwhatever caused this
also affected the raga classification, and that the excellent
raga identification was due to chance.

(3) Identifying ragas sung by one singer using a model
trained by other singers’ movements will be much
more difficult, and results are likely to be no better
than chance.

As expected, the classification accuracy was much
lower in this case (split 2). However, five of the sixmodels
performed a little above random guess level (15.8–17.2%,
as opposed to 11%).

The results do not tell us directly how the model
achieves its classification accuracy, and this is not triv-
ial to interpret. The t-distributed stochastic neighbour
embedding (t-SNE) method (Maaten & Hinton, 2008) is
introduced here to visualise how the machine learning
system works. This is a powerful tool for compressing
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Figure 8. Confusion matrix of the duo videos.

the high dimensional features into a low (e.g. 2) dimen-
sional space, where the data structure is retained as much
as possible. In Figure 9, each point in the 2-dimensional
space denotes the skeleton data for a short solo clip, and
different ragas or musicians are represented in different
colours. Machine learning methods train linear or non-
linear classifiers that can divide inputs into classes. From
the distributions in Figure 9, it is clear that there are large
overlaps between different ragas, which are very difficult
to discriminate. In contrast, clips of different musicians
form obvious clusters, thus identifying the musicians is
much easier than the ragas.

This exploration also allows us to evaluate which
approach might be most effective for future studies of
this nature: 2D or 3D pose, using the original MS-G3D
or an early or late fusion 2-path model? Regarding the
difference between 2D and 3D the results are somewhat
mixed, but the 2Ddata gives better prediction accuracy in
the majority of cases. This may indicate that the 2D data
extraction is more reliable than the 3D, although we are
not able to check that directly in the absence of a ground
truth.

As for the usefulness of the velocity vector informa-
tion, incorporating the velocity information in the early
fusion model gives the best results for singer classifica-
tion, For raga classification the picture is more mixed,
but the early fusion model again performs better in the
majority of cases. One possible explanation for this is
that the number of parameters in the late fusion model is
twice as that of the early fusion, thus the late fusionmodel
is more like to cause overfitting. This means the param-
eters tend to converge to a local optimum that performs
well only for the training set but cannot generalised to the
test set.

The results reported here demonstrate that the use
of pose estimation to gather movement information,
together with action recognition models, can be pro-
ductive in the analysis of musical performance. They
confirm the findings of qualitative studies that Indian
singers’ gestures are idiosyncratic, but that singers
show a degree of consistency in the ways they dis-
tinguish different ragas through their movement. The
fact that classification accuracy varied very consider-
ably between singer-raga pairings reflects the fact that
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Figure 9. The visualisation of the features of different ragas (left) or musicians (right).

the approach taken here avoided using any prior knowl-
edge about the different ragas, and did not attempt
to incorporate human observation (for example, apply-
ing an observation that singers may raise their hands
more quickly, or more directly, in a certain raga
and trying to hand-craft a feature to capture this
computationally).

Future studies would benefit from the use of even
larger datasets to train the machine learning models.
Given the impracticality of creating datasets an order of
magnitude larger, a more realistic approach may be to
use specially-crafted datasets such as our solo recordings
to develop approaches that can then be generalised to
publicly-available data such as YouTube videos. Future
research may also start to build on our simple bottom-
up approach to classification in different ways. One way
to do so would be data-driven, using clustering tech-
niques to identify commonmovement patterns. Another
would be to use expert knowledge to identify features
visually, and then train computational systems to recog-
nise them. In these ways future research should be able to
ask questions of video performance data that are driven
by musicological, psychological and movement science
concerns.
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