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A B S T R A C T

We analyse shock wave behaviour in a hyperbolic diffusion system with a general forcing term which is
qualitatively not dissimilar to a logistic growth term. The amplitude behaviour is interesting and depends
critically on a parameter in the forcing term. We also develop a fully nonlinear acceleration wave analysis
for a hyperbolic theory of diffusion coupled to temperature evolution. We consider a rigid body and we show
that for three-dimensional waves there is a fast wave and a slow wave. The amplitude equation is derived
exactly for a one-dimensional (plane) wave and the amplitude is found for a wave moving into a region
of constant temperature and solute concentration. This analysis is generalized to allow for forcing terms of
Selkov–Schnakenberg, or Al Ghoul-Eu cubic reaction type. We briefly consider a nonlinear acceleration wave
in a heat conduction theory with two solutes present, resulting in a model with equations for temperature and
each of two solute concentrations. Here it is shown that three waves may propagate.
1. Introduction

There has been significant interest in the propagation of heat as a
wave, cf. [1–10]. However, recent studies have also focused on a hyper-
bolic formulation for solute transport rather than simply by diffusion,
cf. [11–14]. Our definition of hyperbolicity follows that of Whitham
[15, pages 113–142]. A rigorous thermodynamic derivation of a hy-
perbolic theory for temperature and diffusion of several constituents
is given by Morro [16,17]. Structural stability of the earliest of these
models was analysed by Ciarletta et al. [18]. Very notably, Al-Ghoul
[12] remarks,

The hyperbolicity of the evolution equations is a more desirable fea-
ture than the parabolicity, since disturbance characterizing waves in
macroscopic systems cannot propagate at infinite speeds, . . .

He also remarks,

In fact, we will show . . . the validity of the parabolic reaction–
diffusion equations, . . . , becomes questionable and hyperbolic
reaction–diffusion equations appear to be more suitable for describ-
ing underlying phenomena . . . .

It is worth drawing attention to the fact that hyperbolic theories
with partial differential equations have been successfully employed in a
variety of diverse areas of applied mathematics such as in diffusion with
chemical reactions, [12]; in virus spread, [19]; in vegetation patterns
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occurring on land, [20,21]; in evolution of a gene and a culture, [22];
in social systems, [23]; and in pollution studies, [24,25].

In this article we employ the mathematical theory of waves of
discontinuity in the concentration (temperature), or in the derivative
of these quantities, namely, shock waves or acceleration waves. While
the theory of discontinuity waves is well known it remains an exciting
way to develop an exact analysis for a fully nonlinear theory and is still
being used with great effect in many areas of continuum mechanics
and even in mathematical theories pertaining to anthropological or
social systems, see e.g. [1,3,6,7,23,26–32]. In particular, we encounter
and solve a Bernoulli equation for the wave amplitudes. We point
out that detailed analyses of such Bernoulli equations are contained
in Jeffrey [33], Chen [34, page 320], Whitham [15, page 132], Boillat
and Ruggeri [35], and Brini and Seccia [26], with much detail in
Ruggeri and Sugiyama [27, pages 67–106].

We commence our analysis with a generalization of the work of
Jordan [10] which developed shock evolution for a hyperbolic tempera-
ture model with a forcing term of logistic growth type. This has recently
been further extended by Jordan and Lambers [6] and Jordan et al.
[7]. Rather than employing simply a logistic term we employ a more
general relation due to Richards [36]. The relation of Richards [36]
allows for growth not dissimilar to logistic growth but encompasses a
greater variety of possible real life scenarios. We calculate the shock
speeds and the amplitude behaviour. The latter is very interesting and
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depends critically on a parameter present in Richards [36] model. For
some values of this parameter the shock amplitude may blow-up in a
finite time, whereas for other values the amplitude remains bounded,
regardless of the initial conditions.

We also initiate a study of nonlinear wave motion for a temperature
and solute concentration in a rigid body. We note that hyperbolic
diffusion with transport is also found in fluid and solid dynamics,
see e.g. Peshkov and Romenski [37], and Boyaval [38]. We employ
an acceleration wave analysis and fully determine the wavespeeds
and the amplitude equation. The solution to the amplitude equation
is derived, even when reactions are fully nonlinear such as those of
Selkov-Schnakenberg, or Al-Ghoul-Eu cubic reaction, cf. [12]. The pa-
per is completed by developing a nonlinear acceleration wave analysis
for a theory with a temperature field, and for two dissolved solutes. This
results in six coupled highly nonlinear partial differential equations.

2. Jordan-Cattaneo theory for hyperbolic diffusion with a
Richards’ term

Jordan [10] dealt with travelling waves and shock waves for a
solution to a hyperbolic version of the Fisher equation

𝜕𝑢
𝜕𝑡

= 𝐷 𝜕2𝑢
𝜕𝑥2

+ 𝑘𝑢
(

1 − 𝑢
𝑢𝑠

)

. (1)

He found the shock speeds via the Rankine–Hugoniot equations and
found an explicit expression for the shock amplitude equation which
he was able to solve exactly in analytical form. In (1), 𝑢 could be
temperature, concentration of a solvent, or even the density of a
biological species. The constants 𝐷, 𝑘 and 𝑢𝑠 are positive, 𝑢 = 𝑢(𝑥, 𝑡),
𝐷 is the diffusion coefficient, 𝑢𝑠 is a limiting value for 𝑢 in the logistic
term in (1), often referred to as the carrying capacity parameter.

If we employ a Cattaneo equation for the flux 𝐽 = 𝐽 (𝑥, 𝑡), then a
hyperbolic form of (1) may be taken to be
𝜕𝑢
𝜕𝑡

= − 𝜕𝐽
𝜕𝑥

+ 𝑓 (𝑢),

𝜕𝐽
𝜕𝑡

+ 𝐽 = −𝐷 𝜕𝑢
𝜕𝑥

,
(2)

where 𝜏 > 0 is a relaxation time, and 𝑓 (𝑢) is the nonlinear forcing term.
For a logistic term 𝑓 (𝑢) = 𝑘𝑢(1 − 𝑢∕𝑢𝑠), system (2) is analysed both
analytically and numerically by Jordan and Lambers [6] and Jordan
et al. [7]. These writers deal with calculating shock wave behaviour in
great detail.

We point out that when 𝜏 = 0, system (2) reduces to one based on
Fick’s law and Eq. (1) is found. Shock waves in a system like (2) are
referred to as Jordan-Cattaneo waves, cf. [39]. The Cattaneo version
which involves Eq. (2)2 avoids an infinite speed of propagation and
may be thought of as introducing a delay into the physical system. Such
a delay has recently been shown to be physically relevant in chemical
reaction processes involving a Schnakenberg reaction, see [40]. Care
must be taken with the mathematical representation of a time delay,
however, as is shown by Jordan et al. [41], and Christov and Jordan
[42].

Richards [36] has argued that one may employ a generalization
of the logistic law for 𝑓 (𝑢) to obtain an accurate representation of
biological growth. In our notation Richards [36] form would involve

𝑓 (𝑢) = 𝑘𝑢
(

1 −
{

𝑢
𝑢𝑠

}𝑚)

, (3)

here 𝑚 ∈ R, although we restrict 𝑚 ∈ N. The parameter 𝑚 gives one
xtra flexibility to fit bio-chemical behaviour but the behaviour is not
ualitatively dissimilar to logistic growth.

Our goal in the first part of this article is to study the behaviour of
shock wave governed by (2) but with 𝑓 given by the Richards [36]

unction 𝑓 , namely to study the system

𝜕𝑢
𝜕𝑡

= − 𝜕𝐽
𝜕𝑥

+ 𝑘𝑢
(

1 −
{

𝑢
𝑢𝑠

}𝑚)

,

𝜏 𝜕𝐽 + 𝐽 = −𝐷 𝜕𝑢 .
(4)
2

𝜕𝑡 𝜕𝑥 v
For (4) we may think of a shock wave as a plane wave in 3-D moving
along the 𝑥 -axis. We suppose 𝑢 and 𝐽 are continuous everywhere in 𝑥
and 𝑡 except across a surface S at a point 𝑥. On S , 𝑢 and 𝐽 possess a
finite discontinuity. This surface is called a shock wave.

Let [𝑓 ] be the jump of 𝑓 across S , i.e.

[𝑓 ] = 𝑓− − 𝑓+

where 𝑓−(𝑥, 𝑡) = lim𝑥→𝑥− 𝑓 (𝑥, 𝑡) and 𝑓+(𝑥, 𝑡) = lim𝑥→𝑥+ 𝑓 (𝑥, 𝑡) where
𝑥 ∈ S and the − sign indicates the limit from the left whereas the
+ sign indicates the limit from the right.

The Rankine–Hugoniot relations for (4) yield

−𝑈 [𝑢] + [𝐽 ] = 0

−𝜏𝑈 [𝐽 ] +𝐷[𝑢] = 0
(5)

where 𝑈 is the shock speed, cf. Whitham [15]. From (5) we see that
𝑈 = ±

√

𝐷∕𝜏 which shows there is a backward and a forward moving
shock.

Now the Hadamard relation, see [43],
𝛿
𝛿𝑡
[𝑓 ] = [𝑓𝑡] + 𝑈 [𝑓𝑥], (6)

and the product relation

[𝑓𝑔] = 𝑓+[𝑔] + 𝑔+[𝑓 ] + [𝑓 ][𝑔], (7)

re necessary. In (6), 𝛿∕𝛿𝑡 is the intrinsic derivative and is the rate of
hange as witnessed by an observer at the wavefront. Define the wave
mplitudes 𝑃 and 𝑄 by

(𝑡) = [𝑢], 𝑄(𝑡) = [𝐽 ].

hen take the jumps of Eqs. (4) to see that
𝛿𝑃
𝛿𝑡

− 𝑘𝑃 + 𝑘
𝑢𝑚𝑠

[𝑢𝑚+1] − 𝑈 [𝑢𝑥] + [𝐽𝑥] = 0,

𝜏 𝛿𝑄
𝛿𝑡

+𝑄 − 𝑈𝜏[𝐽𝑥] +𝐷[𝑢𝑥] = 0.
(8)

Eliminate [𝑢𝑥] and [𝐽𝑥] from (8) using the fact that 𝑈 = ±
√

𝐷∕𝜏 and
then after use of (5) one may show that
𝛿𝑃
𝛿𝑡

+ 1
2

( 1
𝜏
− 𝑘

)

𝑃 + 𝑘
2𝑢𝑚𝑠

[𝑢𝑚+1] = 0. (9)

Next, use the product rule (7) to show that

𝑢𝑚+1] = [𝑢]𝑚+1 +
𝑚
∑

𝑘=1

𝑚+1𝐶𝑘[𝑢]𝑘(𝑢+)𝑚+1−𝑘, (10)

here 𝑚+1𝐶𝑘 is the combinatorial symbol. Utilizing this in (9) leads to
he amplitude equation

𝛿𝑃
𝛿𝑡

− 𝛼𝑃 + 𝑘
2𝑢𝑚𝑠

(

𝑃𝑚+1 +
𝑚
∑

𝑘=1

𝑚+1𝐶𝑘(𝑢+)𝑚+1−𝑘𝑃 𝑘

)

= 0, (11)

here 𝛼 = (𝑘− 𝜏−1)∕2. If we know 𝑢+ ahead of the shock then Eq. (11)
may be solved numerically for any 𝑚.

In the case where 𝑢+ = 0 then (11) becomes
𝛿𝑃
𝛿𝑡

− 𝛼𝑃 + 𝑘
2𝑢𝑚𝑠

𝑃𝑚+1 = 0. (12)

his is a Bernoulli equation which has exact solution

𝑚(𝑡) =
𝑃𝑚(0)𝑒𝛼𝑚𝑡

1 + �̂�
𝛼 (𝑒

𝛼𝑚𝑡 − 1)𝑃𝑚(0)
, (13)

here �̂� = 𝑘∕2𝑢𝑚𝑠 . The solution (13) has some very interesting conse-
uences. We here allow only 𝑚 = 1, 2,… Eq. (13) shows that |𝑃 (𝑡)|
emains bounded whenever 𝑚 is even. When 𝑚 is odd then it is possible
or 𝑃 (0) < 0 to have 𝑃 (𝑡) → −∞ in a finite time. Thus, the choice of
arameter in Richards [36] Eq. (3) is crucial. This shows that one has
o be very careful with any generalization of the logistic law to include
Richards term and it emphasizes that the modelling in such a case is

ery important.
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3. Temperature diffusion acceleration waves

We now consider the problem of a concentration of solute or species
density in a non-isothermal situation. Let 𝑇 (𝐱, 𝑡) and 𝐶(𝐱, 𝑡) be the
temperature and concentration of a solute in a rigid body. Let 𝑄𝑖(𝐱, 𝑡)
and 𝐽𝑖(𝐱, 𝑡) be the corresponding heat flux and flux of solute. Then the
relevant hyperbolic equations may be taken to be, cf. Morro [44], [18],

𝜌1𝑇,𝑡 +𝑄𝑖,𝑖 = 0,

𝐶,𝑡 + 𝐽𝑖,𝑖 = 0,

𝜏𝑄𝑖,𝑡 +𝑄𝑖 + 𝑘𝑇,𝑖 + 𝐹𝐶,𝑖 = 0,

𝜏𝐶𝐽𝑖,𝑡 + 𝐽𝑖 +𝐷𝐶,𝑖 + 𝑆𝑇,𝑖 = 0.

(14)

In these equations 𝜌1 = 𝜌𝑐𝑝 where 𝜌 is density and 𝑐𝑝 is the specific
heat at constant pressure, 𝜏 and 𝜏𝐶 are relaxation coefficients, 𝑘 and 𝐷
are thermal conductivity and diffusion coefficient, and 𝐹 and 𝑆 are the
Dufour and Soret coefficients. We make the realistic assumption that
𝑘, 𝐹 ,𝐷 and 𝑆 may depend on 𝑇 and 𝐶. Standard indicial notation is
mployed with , 𝑡 ≡ 𝜕∕𝜕𝑡 and , 𝑖 ≡ 𝜕∕𝜕𝑥𝑖.

.1. Acceleration waves and speeds

We suppose 𝑇 , 𝐶, 𝐽𝑖 and 𝑄𝑖 are continuous everywhere in 𝐱 and 𝑡.
owever, there is a surface S across which the derivatives of 𝑇 , 𝐶, 𝐽𝑖
nd 𝑄𝑖 possess a finite discontinuity. This surface S is called an
cceleration wave.

Define the amplitudes 𝐴,C ,𝐻𝑖 and 𝐵𝑖 by

= [𝑇,𝑡], C = [𝐶,𝑡], 𝐻𝑖 = [𝐽𝑖,𝑡], 𝐵𝑖 = [𝑄𝑖,𝑡]. (15)

We make use of the Hadamard relation, cf. [43], in the form

0 = 𝛿
𝛿𝑡
[𝑄𝑖] = [𝑄𝑖,𝑡] + 𝑈𝑁 [𝑄𝑖,𝑗𝑛𝑗 ],

0 = 𝛿
𝛿𝑡
[𝑇 ] = [𝑇,𝑡] + 𝑈𝑁 [𝑇,𝑖𝑛𝑖],

where 𝑛𝑖 is the unit outward normal to the wave surface. Next, take the
jumps of Eqs. (14) and use the Hadamard and compatibility relations,
see [43, eq. (176.10)], to obtain

𝜌1𝐴 −
𝐵𝑖𝑛𝑖
𝑈𝑁

= 0,

C −
𝑛𝑖𝐻𝑖
𝑈𝑁

= 0,

𝜏𝐵𝑖 − 𝑘𝑛𝑖
𝐴
𝑈𝑁

− 𝐹𝑛𝑖
C
𝑈𝑁

= 0,

𝐶𝐻𝑖 −𝐷𝑛𝑖
C
𝑈𝑁

− 𝑆𝑛𝑖
𝐴
𝑈𝑁

= 0.

(16)

From Eqs. (16)3,4 we observe that 𝐵𝑖 = 𝐵𝑛𝑖 and 𝐻𝑖 = 𝐻𝑛𝑖, i.e. the wave
s longitudinal. Eqs. (16) yields a system in (𝐴,𝐵,C ,𝐻) and requiring

non-zero amplitudes leads to the wavespeed equation

(𝑈2
𝑁 − 𝑈2

𝐶 )(𝑈
2
𝑁 − 𝑈2

𝑇 ) = 𝐾2, (17)

where 𝑈2
𝐶 = 𝐷∕𝜏𝐶 , 𝑈2

𝑇 = 𝑘∕𝜌1𝜏 and

𝐾2 = 𝑆𝐹
𝜌1𝜏𝜏𝐶

. (18)

he quantities 𝑈2
𝐶 and 𝑈2

𝑇 are the squares of the wavespeeds for a
iffusion wave in an isothermal situation and a temperature wave in
he absence of a solvent.

From (18) we see that 𝐾2 > 0 and then (17) leads to a fast and a
low wave with speeds 𝑈1 and 𝑈2 where
2
1 < {𝑈2

𝐶 , 𝑈
2
𝑇 } < 𝑈2

2 . (19)

urthermore, Eq. (17) yields

𝑈2 = 𝑈2 + 𝑈2 ±
√

(𝑈2 − 𝑈2 )2 + 4𝐾2.
3

𝑁 𝑇 𝐶 𝑇 𝐶 𝑇
Rewrite the quantity under the root sign as (𝑈2
𝑇 +𝑈2

𝐶 )
2 +4(𝐾2 −𝑈2

𝑇𝑈
2
𝐶 ),

nd this shows there are two waves provided

2
𝐶𝑈

2
𝑇 > 𝐾2

r

𝑘 > 𝐹𝑆. (20)

e observe that system (14) can be put in the form

0(𝑈 )𝑈,𝑡 + 𝐴𝑖(𝑈 )𝑈,𝑖 +𝐷(𝑈 ) = 0

ith 𝑈 = (𝑇 ,𝑄𝑖, 𝐶, 𝐽𝑖), where 𝐷(𝑈 ) = (0, 𝑄𝑖, 0, 𝐽𝑖) and

0(𝑈 ) =

⎛

⎜

⎜

⎜

⎜

⎝

𝜌1 . . .
. 𝜏𝐈 . .
. . 1 .
. . . 𝜏𝐶 𝐈

⎞

⎟

⎟

⎟

⎟

⎠

,

𝑖(𝑈 ) =

⎛

⎜

⎜

⎜

⎜

⎝

. 𝐞𝑇𝑖 . .
𝑘𝐞𝑖 . 𝐹 𝐞𝑖 .
. . . 𝐞𝑇𝑖

𝑆𝐞𝑖 . 𝐷𝐞𝑖 .

⎞

⎟

⎟

⎟

⎟

⎠

,

𝐞𝑖 are the coordinate axes’ unit vectors). The wavespeeds 𝑈𝑁 are the
olutions of the equation

et[𝐴𝑖(𝑈 )𝑛𝑖 − 𝑈𝑁𝐴0(𝑈 )] = 0

nd beyond the solutions already obtained, we also get a solution
𝑁 = 0 of algebraic multiplicity four. Given that the matrix 𝐴𝑖(𝑈 )𝑛𝑖
as rank four, independently of the wave number 𝐧 and the state 𝑈,
e can conclude that the system is strongly hyperbolic.

.2. Wave amplitude equation

We now proceed to calculate and solve exactly an equation for
he wave amplitudes. We restrict attention to a plane wave moving
long the 𝑥 -axis to avoid the differential geometry involved in the
hree-dimensional calculation obscuring the essential physics.

It is convenient to rewrite Eqs. (14) in one-dimension and dispense
ith the comma notation, so e.g. 𝑇𝑡 ≡ 𝑇,𝑡 and 𝑇𝑥 ≡ 𝑇,𝑥. Eqs. (14) become

𝜌1𝑇𝑡 +𝑄𝑥 = 0,

𝐶𝑡 + 𝐽𝑥 = 0,

𝜏𝑄𝑡 +𝑄 + 𝑘𝑇𝑥 + 𝐹𝐶𝑥 = 0,

𝐶𝐽𝑡 + 𝐽 +𝐷𝐶𝑥 + 𝑆𝑇𝑥 = 0.

(21)

n the one-dimensional case it is also convenient to redefine the
mplitudes in an equivalent way, namely

= [𝑇𝑥], 𝐵 = [𝑄𝑥], C = [𝐶𝑥], 𝐻 = [𝐽𝑥].

We begin by differentiating each of Eqs. (21) with respect to 𝑥 and
ake the jumps of the result. This leads to

𝜌1[𝑇𝑥𝑡] + [𝑄𝑥𝑥] = 0,

[𝐶𝑡𝑥] + [𝐽𝑥𝑥] = 0,

𝜏[𝑄𝑡𝑥] + [𝑄𝑥] + 𝑘𝑇 [𝑇 2
𝑥 ] + (𝑘𝐶 + 𝐹𝑇 )[𝐶𝑥𝑇𝑥]

+ 𝐹𝐶 [𝐶2
𝑥 ] + 𝑘[𝑇𝑥𝑥] + 𝐹 [𝐶𝑥𝑥] = 0,

𝐶 [𝐽𝑡𝑥] + [𝐽𝑥] +𝐷𝐶 [𝐶2
𝑥 ] + (𝐷𝑇 + 𝑆𝐶 )[𝑇𝑥𝐶𝑥]

+ 𝑆𝑇 [𝑇 2
𝑥 ] +𝐷[𝐶𝑥𝑥] + 𝑆[𝑇𝑥𝑥] = 0.

(22)

We restrict attention now to the fast wave which we suppose is
dvancing into a region where 𝑇 is constant and 𝐶 is constant. Thus,
+ = 0, 𝐶+ = 0.
𝑥 𝑥
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One employs the Hadamard relation to find

[𝑇𝑥𝑡] =
𝛿𝐴
𝛿𝑡

− 𝑉 [𝑇𝑥𝑥]

[𝑄𝑥𝑡] =
𝛿𝐵
𝛿𝑡

− 𝑉 [𝑄𝑥𝑥]

𝐶𝑥𝑡] =
𝛿C
𝛿𝑡

− 𝑉 [𝐶𝑥𝑥]

[𝐽𝑥𝑡] =
𝛿𝐻
𝛿𝑡

− 𝑉 [𝐽𝑥𝑥]

(23)

here 𝑉 is now the wavespeed. These relations are used in (22) and we
hen form the combination 𝛯 ≡ (22)1+𝜆(22)2+𝜉(22)3+𝜁(22)4 for con-
tant 𝜆, 𝜉, 𝜁 at our disposal. We select 𝜉 = 1∕𝜏𝑉 𝜆 = (𝜌1𝜏𝐶∕𝑆)(𝑉 2 − 𝑉 2

𝑇 )
and 𝜁 = (𝜌1∕𝑆𝑉 )(𝑉 2 − 𝑉 2

𝑇 ). In this way we employ the wavespeed equa-
tion

(𝑉 2 − 𝑉 2
𝑇 )(𝑉

2 − 𝑉 2
𝐶 ) = 𝐾2,

where 𝑉𝑇 ≡ 𝑈𝑇 and 𝑉𝐶 ≡ 𝑈𝐶 , to remove the resulting terms in
[𝑇𝑥𝑥], [𝐶𝑥𝑥], [𝐽𝑥𝑥] and [𝑄𝑥𝑥].

From the jumps of (21) one has

𝜌1𝑉 𝐴 = 𝐵,

𝑉 C = 𝐻,

−𝜏𝑉 𝐵 + 𝑘𝐴 + 𝐹C = 0,

−𝜏𝐶𝑉 𝐻 +𝐷C + 𝑆𝐴 = 0.

(24)

In this manner we may write 𝐵,𝐶 and 𝐻 as linear functions in 𝐴, in
form (24)1, and

C =
𝜌1𝜏
𝐹

(𝑉 2 − 𝑉 2
𝑇 )𝐴,

=
𝑉 𝜌1𝜏
𝐹

(𝑉 2 − 𝑉 2
𝑇 )𝐴.

(25)

The equation 𝛯 = 0 may be written as

𝜌1
𝛿𝐴
𝛿𝑡

+ 𝜆𝛿C
𝛿𝑡

+ 𝜉
(

𝜏 𝛿𝐵
𝛿𝑡

+ 𝐵 + 𝑘𝑇𝐴
2

+ (𝑘𝐶 + 𝐹𝑇 )𝐴C + 𝐹𝐶C 2
)

+ 𝜁
(

𝜏𝐶
𝛿𝐻
𝛿𝑡

+𝐻 +𝐷𝐶C 2

+ 𝑆𝑇𝐴
2 + (𝐷𝑇 + 𝑆𝐶 )𝐴C

)

= 0.

(26)

One now uses 𝜆, 𝜉 and 𝜁 together with (24) in (26) and after some
calculation one may arrive at the amplitude equation
𝛿𝐴
𝛿𝑡

+ 𝜁1𝐴 + 𝜁2𝐴
2 = 0, (27)

here

1 =

𝑉 2 − 𝑉 2
𝐶

𝜏
+ 1

𝜏𝐶
2(2𝑉 2 − 𝑉 2

𝐶 − 𝑉 2
𝑇 )

,

𝜁2 =
𝜉1
𝜉2

,

here

1 =
𝑘𝑇
𝜏𝑉

+ (𝑉 2 − 𝑉 2
𝑇 )

{

𝜌1𝑆𝑇
𝑆𝑉

+
𝜌1(𝑘𝐶 + 𝐹𝑇 )

𝐹𝑉

}

+ (𝑉 2 − 𝑉 2
𝑇 )

2

{

𝜌21𝜏
𝑉 𝑆𝐹

(𝐷𝑇 + 𝑆𝐶 ) +
𝜌1𝐹𝐶
𝑉 𝐹

}

+ (𝑉 2 − 𝑉 2
𝑇 )

3

{

𝜌21𝜏𝐷𝐶

𝑉 𝑆𝐹

}

,

𝜉2 = 2𝜌1

[

1 +
𝑉 2 − 𝑉 2

𝑇

𝑉 2 − 𝑉 2
𝐶

]

.

Once 𝐴 is found from (27) then 𝐵,C and 𝐻 follow from (24).
4

The solution to Eq. (27) is

𝐴(𝑡) = 1
𝑒𝜁1𝑡

𝐴(0)
+

𝜁2
𝜁1

(𝑒𝜁1𝑡 − 1)
, (28)

If 𝐴(0) < 0 then 𝑇 −
𝑥 < 0 which is a compressive wave which blows up

at time

𝑇 = 1
𝜁1

log
[

𝜁2𝐴(0)
𝜁1 + 𝜁2𝐴(0)

]

. (29)

This is associated with the formation of a temperature shock wave and
a diffusion shock wave.

Remark. One may employ the Jordan [10] technique to investigate
shock waves for system (21). A fast and a slow wave is predicted.
However, when one proceeds to calculate the amplitude of the shock,
one is impeded by the problem pointed out by Fu and Scott [45], where
the amplitude equations continue to include terms of weaker waves,
and those do not disappear naturally as in the case in Section 2.

4. Generalized temperature-diffusion waves

We now give brief details of an extension to system (14) where the
right hand sides of (14)1 and (14)2 allow for reaction terms. While we

rite system (14) in terms of 𝑇 and 𝐶 it could easily represent two
ndependent concentrations of chemical 𝐶1 and 𝐶2.

Thus, instead of (14) we consider

𝜌1𝑇,𝑡 +𝑄𝑖,𝑖 = E (𝑇 , 𝐶),

𝐶,𝑡 + 𝐽𝑖,𝑖 = F (𝑇 , 𝐶),

𝜏𝑄𝑖,𝑡 +𝑄𝑖 + 𝑘𝑇,𝑖 + 𝐹𝐶,𝑖 = 0,

𝐶𝐽𝑖,𝑡 + 𝐽𝑖 +𝐷𝐶,𝑖 + 𝑆𝑇,𝑖 = 0,

(30)

here E and F are reaction terms. For the Selkov-Schnakenberg
ystem the terms E and F may be taken to have form

E = 𝛾(𝑎 − 𝑇 + 𝜆𝐶 + 𝑇 2𝐶),

= 𝛾(𝑏 − 𝜆𝐶 − 𝑇 2𝐶),

here 𝛾, 𝑎, 𝑏, 𝜆 are positive constants, cf. Gentile and Torcicollo [46].
or the Al-Ghoul-Eu cubic reaction system one may write E and F as

E = 𝑘2𝐶𝑇 2 − 𝑘−2𝑇
3 − 𝑘3𝑇 + 𝑘3𝜌𝐵 ,

= 𝑘1𝜌𝐴 − 𝑘−1𝐶 − 𝑘2𝐶𝑇 2 + 𝑘−2𝑇
3,

here 𝑘−1, 𝑘1, 𝑘2, 𝑘3, 𝑘−2, 𝜌𝐴 and 𝜌𝐵 are positive constants, cf. Al-Ghoul
12].

An analysis analogous to that of Section 3.2 shows that the wave
peeds of an acceleration wave for (30) are given by Eq. (17). Thus the
avespeeds satisfy the same restrictions as in Section 3.2.

To derive the amplitude equation for (30) one proceeds as in
ection 3.2 to find that the amplitude 𝐴 satisfies Eq. (27) with the same
alue for 𝜁2 but 𝜁1 must be changed to 𝜁1, where

̂1 = 𝜁1 −
(

E𝛼 + F𝛼
𝛽

)

,

where

E𝛼 = 𝜕E
𝜕𝑇

+ 𝜕E
𝜕𝐶

(

𝜏 − 𝜌1𝑘
𝜌1𝐹

)

,

F𝛼 =
{

𝜕F
𝜕𝑇

+ 𝜕F
𝜕𝐶

(

𝜏 − 𝜌1𝑘
𝜌1𝐹

)}

𝜌1𝜏𝐶
𝑆

(𝑉 2 − 𝑉 2
𝑇 ),

nd

= 𝜌1 +
1

𝜌1𝑉
+

2𝜏𝐶𝜌1
𝐹𝑆

(

𝜏
𝜌1

− 𝑘
)

(𝑉 2 − 𝑉 2
𝑇 ).

It should be noted that the reaction terms E and F do not alter the
quadratic term in (27). However, they play a major role in amplitude
behaviour since 𝜁 in (28) and (29) must be replaced by 𝜁 .
1 1
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5. Temperature, concentration, reaction systems

There are many real life systems where two (or more) concentra-
tions of a chemical (or biological species) are present simultaneously,
and the evolution of these is critically temperature dependent. We
now consider an extension of (30) to include two concentrations 𝐶,𝐺,
and an equation for the evolution of the temperature 𝑇 . In the cross
iffusion terms we restrict attention to the Soret effect, rather than
nclude cross reaction between 𝐶 and 𝐺. Thus, we consider a system
f equations of form

1𝑇,𝑡 = −𝑄𝑖,𝑖,

𝐶,𝑡 = −𝐽𝑖,𝑖 + E (𝐶,𝐺),

𝐺,𝑡 = −𝐾𝑖,𝑖 + F (𝐶,𝐺),

𝜏𝑄𝑖,𝑡 +𝑄𝑖 = −𝜅𝑇,𝑖 − 𝐹1𝐶,𝑖 − 𝐹2𝐺,𝑖,

𝜏1𝐽𝑖,𝑡 + 𝐽𝑖 = −𝐷1𝐶,𝑖 − 𝑆1𝑇,𝑖,

𝜏2𝐾𝑖,𝑡 +𝐾𝑖 = −𝐷2𝐺,𝑖 − 𝑆2𝑇,𝑖.

(31)

Here, 𝜌1, 𝜏, 𝜏1, 𝜏2 are constants. The coefficients 𝜅, 𝐹1, 𝐹2, 𝐷1, 𝐷2, 𝑆1,
𝑆2 may depend on 𝐶,𝐺 and 𝑇 .

One may define an acceleration wave for (31) as in Sections 3 and
4. By taking the jumps of the equations in (31) and using the Hadamard
and compatibility relations one may show that the wavespeed 𝑈𝑁 of a
three-dimensional acceleration wave satisfies

(𝑈2
𝑁 − 𝑈2

𝜏 )(𝑈
2
𝑁 − 𝑈2

1 )(𝑈
2
𝑁 − 𝑈2

2 ) =
𝑆1𝐹1
𝜌1𝜏𝜏1

(𝑈2
𝑁 − 𝑈2

2 )

+
𝑆2𝐹2
𝜌1𝜏𝜏2

(𝑈2
𝑁 − 𝑈2

1 ).
(32)

As this is a cubic equation in 𝑈2
𝑁 we may deduce that in general there

are three forward and backward moving waves. Moreover, proceeding
as for system (14), we also have a solution 𝑈𝑁 = 0, in this case of
algebraic multiplicity six. Again, it is easy to prove by direct calculation
that the corresponding matrix has rank six, so the system is strongly
hyperbolic.

One may progress to develop an amplitude equation for (31). How-
ever, we do not do this here as the calculations become very involved
and we do not wish the paper to become excessively long.

6. Conclusions

We have analysed shock wave behaviour in a system of equations
which allows for a growth of a species more general than logistic
behaviour. This topic has been the subject of intense investigation
by Jordan [10], Jordan and Lambers [6] and Jordan et al. [7]. The
extension to the forcing terms of Richards [36] leads to surprising
results.

We also analysed acceleration wave behaviour in a system of two
equations for temperature and a species concentration or for two
independent species concentrations. It is shown that, in general, two
separate waves will propagate, and the amplitude of the leading wave
is calculated. We additionally proposed a model for temperature depen-
dent evolution of a set of reaction–diffusion equations for two separate
species or concentrations. In this case it is shown that, in general, three
separate waves may propagate.

CRediT authorship contribution statement

Michele Ciarletta: Writing – review & editing, Writing – origi-
nal draft, Validation, Supervision, Methodology, Investigation, Formal
analysis, Conceptualization. Brian Straughan: Writing – review &
editing, Writing – original draft, Validation, Supervision, Methodology,
Investigation, Formal analysis, Conceptualization. Vincenzo Tibullo:
Writing – review & editing, Writing – original draft, Validation, Super-
5

vision, Methodology, Investigation, Formal analysis, Conceptualization.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

We are indebted to two anonymous referees who diligently read the
manuscript and pointed out various points, attention to which has led
to marked improvements.

References

[1] I.C. Christov, Nonlinear acoustics and shock formation in lossless barotropic
Green–Naghdi fluids, Evol. Equ. Control Theory 5 (2016) 349–365.

[2] I. Christov, P. Jordan, S. Chin-Bing, A. Warn-Varnas, Acoustic traveling waves
in thermoviscous perfect gases: Kinks, acceleration waves, and shocks under
the Taylor–Lighthill balance, Math. Comput. Simulation 127 (2016) 2–18, http:
//dx.doi.org/10.1016/j.matcom.2013.03.011.

[3] S. Carillo, P.M. Jordan, On the propagation of temperature-rate waves and
travelling waves in rigid conductors of the Graffi–Franchi–Straughan type, Math.
Comput. Simul. 176 (2020) 120–133.

[4] F. Franchi, Wave propagation in heat conductive dielectric solids with thermal
relaxation and temperature dependent electric permittivity, Riv. Mat. Univ.
Parma 11 (1985) 443–461.

[5] I. Christov, P. Jordan, On the propagation of second-sound in nonlinear media:
Shock, acceleration and traveling wave results, J. Therm. Stresses 33 (2010)
1109–1135, http://dx.doi.org/10.1080/01495739.2010.517674.

[6] P.M. Jordan, J.V. Lambers, On the propagation and bifurcation of singular
surface shocks under a class of wave equations based on second-sound flux
models and logistic growth, Int. J. Non-Linear Mech. 132 (2021) 103696.

[7] P.M. Jordan, J.V. Lambers, Revisiting Manne, et al., A reformulation and
alternative interpretation under the modified internal energy theory of second
sound, Wave Motion 105 (2000) 102756, (2021).

[8] V. Zampoli, P. Jordan, Second-sound phenomena in type II conductors with
Stefan–Boltzmann source, Mech. Res. Commun. 126 (2022) http://dx.doi.org/
10.1016/j.mechrescom.2022.103998.

[9] R. Brunnhuber, P. Jordan, On the reduction of Blackstock’s model of thermo-
viscous compressible flow via Becker’s assumption, Int. J. Non-Linear Mech. 78
(2016) 131–132, http://dx.doi.org/10.1016/j.ijnonlinmec.2015.10.008.

[10] P. Jordan, Growth, decay and bifurcation of shock amplitudes under the type-II
flux law, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007) 2783–2798,
http://dx.doi.org/10.1098/rspa.2007.1895.

[11] V. Gorodtsov, Finite speed of diffusion propagation in a two-component contin-
uous medium, J. Appl. Math. Mech. 65 (2001) 353–356, http://dx.doi.org/10.
1016/S0021-8928(01)00039-9.

[12] M. Al-Ghoul, Generalized hydrodynamics of reaction–diffusion systems and
dissipative structures, Phil. Trans. R. Soc. A 362 (2004) 1567–1581, http://dx.
doi.org/10.1098/rsta.2004.1396.

[13] D. Jou, P.K. Galenko, Fluctuations and stochastic noise in systems with
hyperbolic mass transport, Physica A 366 (2006) 149–158.

[14] M. Grasselli, H. Petzeltova, G. Schimperna, Asymptotic behavior of a nonisother-
mal viscous Cahn–Hilliard equation with inertial term, J. Differential Equations
239 (2007) 38–60.

[15] G.B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974.
[16] A. Morro, Governing equations in non-isothermal diffusion, Int. J. Non-Linear

Mech. 55 (2013) 90–97.
[17] A. Morro, Classical and quantum models of diffusion, Recent Prog. Mater. 3

(2021) 1–17.
[18] M. Ciarletta, B. Straughan, V. Tibullo, Christov–Morro theory for non-isothermal

diffusion, Nonlinear Anal. Real World Appl. 13 (2012) 1224–1228.
[19] E. Barbera, C. Currò, G. Valenti, A hyperbolic reaction–diffusion model for

the hantavirus infection, Math. Methods Appl. Sci. 31 (2008) 481–499, http:
//dx.doi.org/10.1002/mma.929.

[20] G. Consolo, C. Currò, G. Valenti, Supercritical and subcritical turing pattern
formation in a hyperbolic vegetation model for flat arid environments, Physica
D 398 (2019) 141–163.

[21] G. Grifò, G. Consolo, C. Currò, G. Valenti, Rhombic and hexagonal pattern
formation in 2D hyperbolic reaction–transport systems in the context of dryland
ecology, Physica D 449 (2023) http://dx.doi.org/10.1016/j.physd.2023.133745.

[22] B. Straughan, Gene-culture shock waves, Phys. Lett. Sect. A 377 (2013)
2531–2534, http://dx.doi.org/10.1016/j.physleta.2013.07.025.

http://refhub.elsevier.com/S0093-6413(24)00034-X/sb1
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb1
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb1
http://dx.doi.org/10.1016/j.matcom.2013.03.011
http://dx.doi.org/10.1016/j.matcom.2013.03.011
http://dx.doi.org/10.1016/j.matcom.2013.03.011
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb3
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb3
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb3
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb3
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb3
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb4
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb4
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb4
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb4
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb4
http://dx.doi.org/10.1080/01495739.2010.517674
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb6
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb6
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb6
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb6
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb6
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb7
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb7
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb7
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb7
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb7
http://dx.doi.org/10.1016/j.mechrescom.2022.103998
http://dx.doi.org/10.1016/j.mechrescom.2022.103998
http://dx.doi.org/10.1016/j.mechrescom.2022.103998
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.10.008
http://dx.doi.org/10.1098/rspa.2007.1895
http://dx.doi.org/10.1016/S0021-8928(01)00039-9
http://dx.doi.org/10.1016/S0021-8928(01)00039-9
http://dx.doi.org/10.1016/S0021-8928(01)00039-9
http://dx.doi.org/10.1098/rsta.2004.1396
http://dx.doi.org/10.1098/rsta.2004.1396
http://dx.doi.org/10.1098/rsta.2004.1396
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb13
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb13
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb13
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb14
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb14
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb14
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb14
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb14
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb15
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb16
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb16
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb16
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb17
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb17
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb17
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb18
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb18
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb18
http://dx.doi.org/10.1002/mma.929
http://dx.doi.org/10.1002/mma.929
http://dx.doi.org/10.1002/mma.929
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb20
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb20
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb20
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb20
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb20
http://dx.doi.org/10.1016/j.physd.2023.133745
http://dx.doi.org/10.1016/j.physleta.2013.07.025


Mechanics Research Communications 137 (2024) 104274M. Ciarletta et al.
[23] B. Straughan, Shocks and acceleration waves in modern continuum mechanics
and in social systems, Evol. Equ. Control Theory 3 (2014) 541–555, http:
//dx.doi.org/10.3934/eect.2014.3.541.

[24] E. Barbera, C. Currò, G. Valenti, A hyperbolic model for the effects of
urbanization on air pollution, Appl. Math. Model. 34 (2010) 2192–2202.

[25] M. Gentile, B. Straughan, Hyperbolic diffusion with Christov–Morro theory, Math.
Comput. Simulation 127 (2016) 94–100.

[26] F. Brini, L. Seccia, Acceleration waves in rational extended thermodynamics of
rarefied monatomic gases, Fluids 5 (2020) 139.

[27] T. Ruggeri, M. Sugiyama, Classical and Relativistic Rational and Extended
Thermodynamics of Gases, Springer, Cham, 2021.

[28] M. Ciarletta, B. Straughan, V. Tibullo, Acceleration waves in a nonlinear Biot
theory of porous media, Int. J. Non-Linear Mech. 103 (2018) 23–26.

[29] R. Keiffer, P. Jordan, I. Christov, Acoustic shock and acceleration waves in
selected inhomogeneous fluids, Mech. Res. Commun. 93 (2018) 80–88, http:
//dx.doi.org/10.1016/j.mechrescom.2017.11.003.

[30] B. Straughan, V. Tibullo, Thermal effects on nonlinear acceleration waves in
the Biot theory of porous media, Mech. Res. Commun. 94 (2018) 70–73, http:
//dx.doi.org/10.1016/j.mechrescom.2018.08.001.

[31] B. Straughan, V. Tibullo, A. Amendola, Nonlinear acceleration wave propagation
in the DKM theory, Mech. Res. Commun. 104 (2020) http://dx.doi.org/10.1016/
j.mechrescom.2020.103482.

[32] B. Straughan, Porous convection with local thermal non-equilibrium temperatures
and with cattaneo effects in the solid, Proc. R. Soc. Lond. Ser. A 469 (2013)
20130187.

[33] A. Jeffrey, The development of jump discontinuities in nonlinear hyperbolic
systems of equations in two independent variables, Arch. Ration. Mech. Anal.
14 (1963) 27–37.

[34] P.J. Chen, Growth and decay of waves in solids, in: C. Truesdell (Ed.), Handbuch
der Physik, Springer, Heigelberg, 1973.
6

[35] G. Boillat, T. Ruggeri, On the evolution law of weak discontinuities for hyperbolic
quasi - linear systems, Wave Motion 1 (1969) 149–152.

[36] F. Richards, A flexible growth function for empirical use, J. Exp. Bot. 10 (1959)
290–301, http://dx.doi.org/10.1093/jxb/10.2.290.

[37] I. Peshkov, E. Romenski, A hyperbolic model for viscous Newtonian flows,
Contin. Mech. Thermodyn. 28 (2016) 85–104.

[38] S. Boyaval, Viscoelastic flows of Maxwell fluids with conservation laws, ESAIM
Math. Model. Numer. Anal. 55 (2021) 807–831.

[39] B. Straughan, Heated and salted below porous convection with generalized
temperature and solute boundary conditions, Trans. Porous Media 131 (2020)
617–631.

[40] H. Alfifi, Stability analysis for Schnakenberg reaction–diffusion model with gene
expression time delay, Chaos Solitons Fractals 155 (2022) http://dx.doi.org/10.
1016/j.chaos.2021.111730.

[41] P.M. Jordan, W. Dai, R.E. Mickens, A note on the delayed heat equation;
instability with respect to initial data, Mech. Res. Commun. 35 (2008) 414–420.

[42] I.C. Christov, P. Jordan, On an instability exhibited by the ballistic-diffusive heat
conduction model of Xu and Hu, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng.
Sci. 470 (2013) http://dx.doi.org/10.1098/rspa.2013.0557.

[43] C. Truesdell, R. Toupin, The classical field theories, in: S. Flügge (Ed.), Principles
of Classical Mechanics and Field Theory, in: Encyclopedia of Physics, vol. III/1,
Springer-Verlag, Berlin Heidelberg GmbH, 1960, pp. 226–793.

[44] A. Morro, Evolution equations and thermodynamic restrictions for dissipative
solids, Math. Comput. Model. 52 (2010) 1869–1876.

[45] Y.B. Fu, N.H. Scott, One-dimensional shock waves in simple materials with
memory, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 428 (1990) 547–571,
http://dx.doi.org/10.1098/rspa.1990.0047.

[46] M. Gentile, I. Torcicollo, Nonlinear stability analysis of a chemical reaction–
diffusion system, Ric. Mat. (2023) http://dx.doi.org/10.1007/s11587-023-
00793-x.

http://dx.doi.org/10.3934/eect.2014.3.541
http://dx.doi.org/10.3934/eect.2014.3.541
http://dx.doi.org/10.3934/eect.2014.3.541
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb24
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb24
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb24
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb25
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb25
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb25
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb26
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb26
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb26
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb27
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb27
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb27
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb28
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb28
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb28
http://dx.doi.org/10.1016/j.mechrescom.2017.11.003
http://dx.doi.org/10.1016/j.mechrescom.2017.11.003
http://dx.doi.org/10.1016/j.mechrescom.2017.11.003
http://dx.doi.org/10.1016/j.mechrescom.2018.08.001
http://dx.doi.org/10.1016/j.mechrescom.2018.08.001
http://dx.doi.org/10.1016/j.mechrescom.2018.08.001
http://dx.doi.org/10.1016/j.mechrescom.2020.103482
http://dx.doi.org/10.1016/j.mechrescom.2020.103482
http://dx.doi.org/10.1016/j.mechrescom.2020.103482
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb32
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb32
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb32
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb32
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb32
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb33
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb33
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb33
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb33
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb33
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb34
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb34
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb34
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb35
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb35
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb35
http://dx.doi.org/10.1093/jxb/10.2.290
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb37
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb37
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb37
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb38
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb38
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb38
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb39
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb39
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb39
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb39
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb39
http://dx.doi.org/10.1016/j.chaos.2021.111730
http://dx.doi.org/10.1016/j.chaos.2021.111730
http://dx.doi.org/10.1016/j.chaos.2021.111730
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb41
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb41
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb41
http://dx.doi.org/10.1098/rspa.2013.0557
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb43
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb43
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb43
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb43
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb43
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb44
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb44
http://refhub.elsevier.com/S0093-6413(24)00034-X/sb44
http://dx.doi.org/10.1098/rspa.1990.0047
http://dx.doi.org/10.1007/s11587-023-00793-x
http://dx.doi.org/10.1007/s11587-023-00793-x
http://dx.doi.org/10.1007/s11587-023-00793-x

	Discontinuity waves in temperature and diffusion models
	Introduction
	Jordan-Cattaneo theory for hyperbolic diffusion with a Richards' term
	Temperature diffusion acceleration waves
	Acceleration waves and speeds
	Wave amplitude equation

	Generalized temperature-diffusion waves
	Temperature, concentration, reaction systems
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


