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1 Introduction

In the absence of direct new physics discoveries, Standard Model Effective Field The-
ory (SMEFT) [1–3] enables to describe in a model-independent fashion small deviations from
Standard Model (SM) predictions. SMEFT calculations can be systematically improved by
including quantum corrections as well as higher-order terms in the expansion in the new
physics scale Λ. The investigation of next-to-leading order (NLO) corrections in dimension-six
SMEFT has been a focus of recent studies. While NLO QCD corrections have been fully
automated [4], NLO electroweak (EW) corrections and, in a few instances next-to-next-
to-leading order (NNLO) QCD corrections, have been calculated on a case-by-case basis
for specific processes [5–55].

An essential ingredient common to all NLO calculations is the choice of the EW input
scheme. In the recent work [56], we systematically examined at NLO in SMEFT the commonly
employed α, αµ, and LEP schemes, which are defined in table 1 and use combinations of
the Fermi constant GF , the masses of the W and Z bosons, MW and MZ , as well as
the electromagnetic coupling α as the three independent EW input parameters. This
involved cataloguing the set of Wilson coefficients entering finite parts of observables after
the cancellation of UV divergences in different schemes, identifying dominant sets of universal
corrections associated with contributions from top-quark loops, and providing a methodology
for including these scheme-dependent universal NLO corrections in the LO results, thus
extending previous discussions of EW input schemes in SMEFT [57, 58].

In the SM, several studies have proposed EW input schemes which use the effective
leptonic weak mixing angle sin θℓ

eff as an input parameter [59–64]. The effective leptonic weak
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mixing angle has been measured with per-mille level precision at LEP [65], the Tevatron [66]
and the LHC [67–70]. Its numerical precision is (more than an order of magnitude) below that
of other commonly used input values such as the mass of the W boson. Future experiments,
such as the P2 experiment at MESA [71], as well as the Møller [72] and SoLID [73, 74]
experiments at Jefferson Laboratory, will test this quantity with similar precision at lower
energy scales.

In spite of the past and recent interest in EW input schemes involving sin θℓ
eff, a discussion

in the context of SMEFT has not yet appeared in the literature. The aim of this paper is to
fill this gap by incorporating the {GF , sin θℓ

eff,MZ} and {α, sin θℓ
eff,MZ} input schemes into

the methodology of [56]. We find that an attractive feature of these schemes is that large
corrections from top-quark loops appearing in other schemes are absorbed into the definition
of the effective weak mixing angle. On the other hand, the renormalisation condition which
achieves this involves a large number of flavour-specific SMEFT couplings between the Z
boson and charged leptons, motivating simple flavour assumptions such as minimal flavour
violation for practical applications.

We structure the discussion as follows. In section 2 we cover the construction of
UV counterterms in these schemes, assembling and calculating the ingredients needed to
implement them into NLO calculations in dimension-6 SMEFT. Then, in section 3 we
present a short study of numerical results for a select set of electroweak precision observables,
including comparisons between all five EW input schemes listed in table 1 at NLO in the
SM and SMEFT, before concluding in section 4. In addition, some explicit results for
SMEFT expansion coefficients for derived quantities such as the W -boson mass are given in
appendix A, and a short description of minimal flavour violation is provided in appendix B.

The discussion in this paper is focused on providing the building blocks needed for NLO
SMEFT calculations in the input schemes involving sin θℓ

eff. Of course, an essential part of
the actual implementation is calculating the loop diagrams (and real emission corrections)
needed in the renormalisation process and its application to specific observables, which even
for the modest set of processes considered in this work involves a large number of Feynman
diagrams and dozens of dimension-6 operators. We have carried out these calculations using
an in-house FeynRules [75] implementation of the SMEFT Lagrangian and cross-checked
our results with SMEFTsim [76, 77]. For the calculation of matrix elements we employed
FeynArts and FormCalc [78–80] and we extracted analytic results for Feynman integrals with
PackageX [81]. Numerical results were obtained with LoopTools [79]. Analytic results for
the observables in the veff

µ and veff
α schemes studied in section 3 are provided as electronic

files with the arXiv submission of this work.

2 Using sin θℓ
eff as an input parameter

In this section we discuss renormalisation in two EW input schemes involving sin θℓ
eff:

(1) The “veff
µ scheme”, which uses as inputs {GF , sin θℓ

eff,MZ}, where GF is the Fermi
constant as measured in muon decay and MZ is on the on-shell Z-boson mass.

(2) The “veff
α scheme”, which uses as inputs {α, sin θℓ

eff,MZ}, where α is the fine-structure
constant renormalised in a given scheme.
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scheme inputs
veff

µ GF , sin θℓ
eff, MZ

veff
α α, sin θℓ

eff, MZ

αµ GF , MW , MZ

α α, MW , MZ

LEP GF , α, MZ

Table 1. Nomenclature for the EW input schemes considered in this work.

In what follows, we shall refer to these two schemes collectively as the “veff
σ schemes”, where

the choice σ ∈ {α, µ} can be used to select between them.
Our treatment of the veff

σ schemes follows closely the notation and procedures introduced
in [56]. We write the SMEFT Lagrangian up to dimension six as

L = L(4) + L(6) ; L(6) =
∑

i

CiQi , (2.1)

where L(4) is the SM Lagrangian and L(6) denotes the dimension-six Lagrangian consisting
of the operators Qi in the Warsaw basis [3] and the corresponding Wilson coefficients Ci,
which are inherently suppressed by two powers of the new physics scale Λ. We list the 59
independent operators, which generally carry flavour indices, in table 8. We expand all
quantities up to linear order in the dimension-six Wilson coefficients throughout this work.

In order to implement the veff
σ schemes in a unified notation, we first write the tree-level

Lagrangian in terms of {vT ,MW ,MZ}, where vT is the vacuum expectation value (vev) of
the SU(2) doublet Higgs field H

⟨H†H⟩ = v2
T

2 . (2.2)

The renormalised Lagrangian is obtained by interpreting the tree-level quantities as bare ones
which are replaced by renormalised parameters plus counterterms in a particular scheme.
For the inputs common to the two schemes, we relate the bare and renormalised parameters
according to

MZ,0 =MZ (1 + ∆MZ) ,

sw,0 =
√
1− c2

w,0 = sin θℓ
eff (1 + ∆sw) ≡ sw (1 + ∆sw) , (2.3)

where here and throughout the paper we indicate bare parameters with a subscript 0, and
cw,0 =MW,0/MZ,0. The quantities ∆MZ and ∆sw appearing on the right-hand side of the
above equations are counterterms, which are calculated in a SMEFT expansion in loops and
operator dimension, including tadpoles in the FJ tadpole scheme [82].

It will often be convenient to work with the quantity

M eff
W ≡ cwMZ , cw =

√
1− s2

w . (2.4)
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The relation between M eff
W and the bare mass can be derived using eq. (2.3). Writing

MW,0 =M eff
W

(
1 + ∆M eff

W

)
, (2.5)

one finds

∆M eff
W = ∆MZ −

s2
w

c2
w

[
∆sw +∆MZ∆sw + 1

2c2
w

(∆sw)2
]
+ . . . , (2.6)

where the . . . indicates terms not needed to NLO in the dimension-6 SMEFT expansion.
In addition to the counterterms for sw and MZ , we also need those for vT . In the

veff
µ scheme, one uses

1
v2

T,0
= 1
v2

µ

(
1−∆veff

µ

)
≡ 1
v2

µ

(1−∆vµ) , (2.7)

while in the veff
α scheme one has instead

1
v2

T,0
= 1

(veff
α )2

(
1−∆veff

α

)
≡ 1
v2

α

(1−∆vα) , (2.8)

where we have defined

vµ ≡
(√

2GF

)− 1
2 , veff

α ≡ vα ≡
2M eff

W sw√
4πα

. (2.9)

To streamline the notation needed for discussing the veff
σ schemes, our definitions above

suppress the superscript “eff” on all quantities except for the scheme names and M eff
W , in

order to distinguish it from the on-shell W -boson mass MW . It is important to emphasize,
however, that the SMEFT expansion coefficients of ∆vα and ∆vµ are not identical to those
in the α and αµ input schemes defined in table 1 and discussed in [56], where MW instead of
sw is used as an input parameter. In the following two subsections we discuss renormalisation
in the veff

σ schemes to NLO in SMEFT.

2.1 The veff
µ scheme

In this section we give results for the SMEFT expansion of the counterterms needed for
renormalisation in the veff

µ scheme, structuring the discussion in such a way that most results
in the veff

α scheme can be obtained by a simple set of substitutions.
We begin with the determination of the counterterm ∆sw. To this end, consider the

amplitude for Z → ℓℓ decay, where ℓ ≡ ℓi ∈ {e, µ, τ}. We can write the bare amplitude
to NLO in SMEFT in the form

A0(Z → ℓℓ) = N0
[
Aℓ

L,0SL +Aℓ
R,0SR

]
+ . . . , (2.10)

where we have introduced the spinor structures

SL = [ū(pℓ−)γνPLv(pℓ+)] ϵ∗ν(pZ) , SR = [ū(pℓ−)γνPRv(pℓ+)] ϵ∗ν(pZ) , (2.11)
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with PL = (1−γ5)/2 and PR = (1+γ5)/2. The ellipsis in eq. (2.10) refers to spinor structures
appearing beyond LO in the SMEFT expansion, which do not interfere with those above in
the limit of vanishing lepton masses, and the overall factor N0 is defined by

N0 = MZ,0
vT,0

(
1−

v2
T,0
4 CHD,0

)
(1 + δQED) , (2.12)

where δQED refers to QED corrections.
We can write the SMEFT expansion of the bare amplitudes as

Aℓ
L/R,0 = A(4,0)

L/R,0 + v2
T,0A

ℓ(6,0)
L/R,0 +

1
v2

T,0
A(4,1)

L/R,0 +A
ℓ(6,1)
L/R,0 , (2.13)

where the superscript (i, j) labels the operator dimension i contribution to the j-loop diagram,
and we have pulled out explicit factors of vT,0 such that the coefficients A(i,j) do not depend
on vT,0.1 The notation makes clear that the dimension-6 amplitudes depend on the lepton
species ℓ while those in the SM do not.

Suppressing the subscript 0, the tree-level SM amplitudes read

A(4,0)
L = −1 + 2s2

w ≡ −c2w, A(4,0)
R = 2s2

w , (2.14)

while in SMEFT

Aℓ(6,0)
L/R = G(6,0) + g

ℓ(6,0)
L/R , (2.15)

where the explicit results for decay into lepton species ℓi are

G(6,0) = −c2
wCHD − 2cwswCHW B ,

g
ℓ(6,0)
L = −C(1)

Hl
ii

− C(3)
Hl
ii

,

g
ℓ(6,0)
R = −CHe

ii
. (2.16)

Consider now the definition of the effective weak mixing angle

sin2 θℓ
eff = −1

2 Re
(

Gℓ
R(M2

Z)
Gℓ

L(M2
Z)−Gℓ

R(M2
Z)

)
, (2.17)

where the Gℓ
L,R are experimentally measured form factors at q2 = M2

Z [65–70]. The coun-
terterm ∆sw in eq. (2.3) is determined to all orders in the SMEFT expansion through the
renormalisation condition

sin2 θℓ
eff = s2

w . (2.18)

To implement this renormalisation condition order by order in SMEFT, we first substitute
the Gℓ

L(Gℓ
R) in eq. (2.17) with the coefficients of SL(SR) in eq. (2.10), and replace the

1An implicit dependence on vT in the (6, 1) coefficients occurs through the Class-1 coefficient CW .
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bare quantities with renormalised ones plus associated counterterms. We write the SMEFT
expansions of ∆sw and ∆vµ in the veff

µ scheme as

∆sw = v2
µ∆s(6,0)

w + 1
v2

µ

∆s(4,1)
w +∆s(6,1,µ)

w ,

∆vµ = v2
µ∆v(6,0)

µ + 1
v2

µ

∆v(4,1)
µ +∆v(6,1)

µ . (2.19)

The superscripts (6, 0) and (4, 1) have the same meaning as in eq. (2.13), while the coefficient
∆s(6,1,µ)

w contains an extra superscript µ to indicate that vT has been renormalised as in
eq. (2.7). Isolating the dependence on ∆vµ allows us to write

∆s(6,1,µ)
w = ∆s(6,1)

w −∆s(4,1)
w ∆v(6,0)

µ +∆s(6,0)
w ∆v(4,1)

µ , (2.20)

where the coefficient ∆s(6,1)
w does not depend on the renormalisation scheme for vT .

The construction of renormalised Z → ℓℓ decay amplitudes also requires the on-shell
wavefunction renormalisation factors of the external Z-boson and lepton fields. For the lepton
fields, we can write the SMEFT expansion of the wavefunction renormalisation factors as

ℓL/R,0 =
[
1 + 1

2v2
T,0

∆Zℓ(4,1)
L/R,0 +

1
2∆Z

ℓ(6,1)
L/R,0

]
ℓL/R

=
[
1 + 1

2v2
µ

∆Zℓ(4,1)
L/R + 1

2
(
∆Zℓ(6,1)

L/R −∆v(6,0)
µ ∆Zℓ(4,1)

L/R

)]
ℓL/R . (2.21)

In the first line all terms are expressed in terms of the bare parameters vT,0, sw,0, while in
the second renormalised parameters are used. The notation is such that

∆Zℓ(4,1)
L/R = ∆Zℓ(4,1)

L/R,0

∣∣∣∣
sw,0→sw

,

∆Zℓ(6,1)
L/R = ∆s(6,0)

w sw
∂

∂sw
∆Zℓ(4,1)

L/R +∆Zℓ(6,1)
L/R,0

∣∣∣∣
sw,0→sw

, (2.22)

where the derivative in the SMEFT counterterm arises from replacing the implicit dependence
on sw,0 in the SM counterterm ∆Zℓ(4,1)

L/R,0 with the right-hand side of eq. (2.19) and performing
a SMEFT expansion. We emphasise that the ∆Zℓ

L/R do not include QED corrections, which
are instead contained in the factor δQED in eq. (2.12). Wavefunction renormalisation graphs
related to the Z-boson two-point function can be absorbed into the factor N0 in eq. (2.10).
Since N0 drops out of the ratio in eq. (2.17) we do not discuss these two terms further. On
the other hand, contributions from the Zγ two-point function, where γ denotes the photon,
are included in the definition of Aℓ

L/R,0.
Performing a tree-level SMEFT expansion on eq. (2.17) using the above equations yields

∆s(6,0)
w = − 1

4s2
w

[
G(6,0) + 2s2

wg
ℓ(6,0)
L + c2wg

ℓ(6,0)
R

]
= 1

4s2
w

[
c2

wCHD + 2cwswCHW B + 2s2
w

(
C

(3)
Hl
ii

+ C
(1)
Hl
ii

)
+ c2wCHe

ii

]
, (2.23)
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while the one-loop result in the SM is

∆s(4,1)
w = −1

2 Re
[
A(4,1)

L,0 + c2w

2s2
w

A(4,1)
R,0 + c2w

(
∆Zℓ(4,1)

R −∆Zℓ(4,1)
L

)]
. (2.24)

The part of the one-loop SMEFT result which is independent of the renormalisation scheme
for vT is

∆s(6,1)
w =− 1

2 Re
{
A(6,1)

L,0 +A(6,0)
L ∆Zℓ(4,1)

L + c2w

2s2
w

(
A(6,1)

R,0 +A(6,0)
R ∆Zℓ(4,1)

R

)
+ c2w

(
∆Zℓ(6,1)

R,0 −∆Zℓ(6,1)
L,0

)}
+ 1

2ϵv
2
µ∆ṡ(6,0)

w

−∆s(4,1)
w

(
∆s(6,0)

w + 1
2CHD −

c2w

2cwsw
CHW B

)
+∆s(6,0)

w

[
sw

∂

∂sw
∆s(4,1)

w − 1
2s2

w

A(4,1)
R,0 −∆Zℓ(4,1)

R

]
. (2.25)

A couple of comments are in order concerning the form of this counterterm. First, the quantity
∆ṡ(6,0)

w is obtained from ∆s(6,0)
w through the replacement Ci → Ċi, where Ċi ≡ dCi/d lnµ;

the term involving this quantity arises from MS renormalisation of the Wilson coefficients
in d = 4 − 2ϵ dimensions, and the Ċi were calculated at one loop in [83–85].2 Second,
the final two lines are related to using eq. (2.19) in the lower-order amplitudes and then
performing the SMEFT expansion.

To evaluate the full NLO SMEFT result ∆s(6,1,µ)
w in eq. (2.20) requires also the coun-

terterm ∆vµ. This counterterm, including tadpoles and without flavour assumptions, was
determined at NLO in SMEFT in the αµ scheme in [56], thus generalising the earlier result
from [25]. Calling the expansion coefficients eq. (2.19) in that scheme ∆vαµ(i,j)

µ , the relation
with the present work is

∆v(6,0)
µ = ∆vαµ(6,0)

µ = C
(3)
Hl
11

+ C
(3)
Hl
22
− C ll

1221
,

∆v(4,1)
µ = ∆vαµ(4,1)

µ

∣∣∣∣
MW →Meff

W

,

∆v(6,1)
µ = ∆s(6,0)

w sw
∂

∂sw
∆v(4,1)

µ +∆vαµ(6,1)
µ

∣∣∣∣
MW →Meff

W

. (2.26)

It will be useful later on to have an expression for the large-mt limit of the loop corrections
to the counterterm ∆sw. Here and below, the large-mt limit of a given quantity means the
approximation where only terms proportional to positive powers of the top-quark mass mt in
the limit mt →∞ are kept. In the SM, top-quark loops contribute to ∆s(4,1)

w in eq. (2.24)
only through the Zγ-mixing contribution to the bare amplitudes A(4,1)

L/R,0. It is easy to show,
however, that this two-point function vanishes in the large-mt limit, so

∆s(4,1)
w,t = 0 , (2.27)

2The Ċi typically depend on a large number of Wilson coefficients, so it is convenient to use the electronic
implementation in DsixTools [86, 87]. As they are one-loop corrections they thus scale as 1/v2

µ and so the
counterterm is independent of vµ.
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where here and below the subscript t refers to the large-mt limit of a given quantity. In
SMEFT, there are three contributions in the large-mt limit, which arise from Zγ mixing, top-
loop corrections from four-fermion operators, and a scheme-dependent correction proportional
to ∆v(4,1)

µ,t . The result can be written in the form

∆s(6,1,µ)
w,t = ∆sZγ(6,1)

w,t +∆s4f(6,1)
w,t +∆s(6,0)

w ∆v(4,1,µ)
µ,t + . . . , (2.28)

where the . . . refers to divergent and tadpole contributions, which drop out of physical
observables. An explicit calculation yields

∆sZγ(6,1)
w,t =

√
2cw

3sw

MZ

mt
∆ρ(4,1)

t

[
cwCuB

33

(
−3 + 16s2

w

)
+ swCuW

33

(
−11 + 16s2

w

)]
ln
(
µ2

m2
t

)
,

∆s4f(6,1)
w,t = ∆ρ(4,1)

t

[
C

(3)
lq

ii33
− C(1)

lq
ii33

+ C lu
ii33

+ c2w

2s2
w

(
C eu

ii33
− C qe

33ii

)]
ln
(
µ2

m2
t

)
,

∆v(4,1)
µ,t = −∆ρ(4,1)

t

[
1 + 2 ln

(
µ2

m2
t

)]
, (2.29)

where as above we omitted divergent and tadpole contributions, and quoted the results
in units of

∆ρ(4,1)
t ≡ 3

16π2m
2
t . (2.30)

2.2 The veff
α scheme

The veff
α scheme differs from the veff

µ scheme through the renormalisation of vT , which is
performed as in eq. (2.8). The SMEFT expansion coefficients of that counterterm, as well as
those of ∆sw in this scheme, are defined as in eq. (2.19) after the replacement µ→ α.

In order to calculate the expansion coefficients of ∆vα, we will need those for MZ and
electric charge renormalisation. We define these as

MZ,0 =MZ

(
1 + 1

v2
α

∆M (4,1)
Z +∆M (6,1)

Z −∆v(6,0)
α ∆M (4,1)

Z

)
,

e0 = e

(
1 + 1

v2
α

∆e(4,1) +∆e(6,1) −∆v(6,0)
α ∆e(4,1)

)
, (2.31)

where the coefficients with superscript (6, 1) are calculated as in eq. (2.22). It will also be
useful to work with expansion coefficients of the derived counterterm ∆M eff

W . We define
these coefficients as

MW,0 =M eff
W

[
1 + v2

α∆M
eff(6,0)
W + 1

v2
α

∆M eff(4,1)
W +∆M eff(6,1,α)

W

]
. (2.32)

Performing a SMEFT expansion on eq. (2.6) leads to

∆M eff(6,0)
W = −s

2
w

c2
w

∆s(6,0)
w ,

∆M eff(4,1)
W = ∆M (4,1)

Z − s2
w

c2
w

∆s(4,1)
w ,

∆M eff(6,1,α)
W = ∆M eff(6,1)

W −∆M eff(4,1)
W ∆v(6,0)

α +∆M eff(6,0)
W ∆v(4,1)

α , (2.33)

– 8 –



J
H
E
P
0
4
(
2
0
2
4
)
0
7
3

where

∆M eff(6,1)
W = ∆M (6,1)

Z − s2
w

c2
w

[
∆s(6,1)

w +∆s(6,0)
w ∆M (4,1)

Z + 1
c2

w

∆s(6,0)
w ∆s(4,1)

w

]
. (2.34)

With this notation at hand, we can present a compact result for the expansion coefficients
of ∆vα. They read

∆v(6,0)
α = ∆vα(6,0)

α − 2c2w

s2
w

∆M eff(6,0)
W ,

∆v(4,1)
α = 2

(
∆M eff(4,1)

W +∆s(4,1)
w −∆e(4,1)

)
,

∆v(6,1)
α = 2

(
∆M eff(6,1)

W +∆s(6,1)
w −∆e(6,1)

)
−∆v(6,0)

α ∆v(4,1)
α

+ 2
cwsw

[
CHW B + cw

2sw
CHD

]
∆s(4,1)

w

+ 2
s2

w

[
−s2

w∆M
eff(4,1)
W + c2

w∆s(4,1)
w

]
∆M eff(6,0)

W

− v2
α

cw

sw

1
ϵ

[
ĊHW B + cw

4sw
ĊHD

]
. (2.35)

In the above, we have denoted the tree-level α-scheme result as

∆vα(6,0)
α = −2cw

sw

[
CHW B + cw

4sw
CHD

]
, (2.36)

which leads to the following tree-level results in the veff
α scheme:

∆v(6,0)
α = −1

2CHD −
1

cwsw
CHW B −

c2w

c2
w

(
g

ℓ(6,0)
L + c2w

2s2
w

g
ℓ(6,0)
R

)
. (2.37)

The implementation of the veff
α scheme also requires to specify the renormalisation scheme

for α. One possible choice is the MS definition α(µ) in five-flavour QED×QCD, where
EW scale contributions are included through decoupling constants [35] and perturbative
uncertainties can be estimated through scale variations. In the current paper we adopt
instead the more conventional on-shell definition α(MZ) [88]. It is simple to convert between
these two schemes using the perturbative relation

α(µ) = α(MZ)

1 + α(MZ)
π

∑
f ̸=t

Nf
c

3 Q2
f

(
5
3 + ln µ2

M2
Z

)
= α(MZ)

[
1 + α(MZ)

π

(
100
27 + 20

9 ln µ2

M2
Z

)]
, (2.38)

where Qf is the charge of the fermion and Nf
c = 3 (Nf

c = 1) for quarks (leptons).

3 Numerical results

In this section we present a brief numerical analysis of select electroweak precision observables
in the veff

σ schemes, covering derived input parameters in section 3.1 before turning to heavy
EW boson decays in section 3.2. We study perturbative convergence and the number of
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mt 172.9GeV vµ 246.2 GeV
MW 80.38GeV vα 246.5 GeV
MZ 91.19GeV (sin θe

eff)2 0.23166
mH 125.1GeV α(MZ) 1/128.946

Table 2. Input parameters employed throughout the paper. Note that vα is a derived parameter.

Wilson coefficients associated with these schemes, and make qualitative and quantitative
comparisons with the widely used α, αµ, and LEP schemes.

In all cases we use the numerical input parameters given in table 2. Furthermore, we
approximate the CKM matrix by the unit matrix. Experimentally, sin2 θℓ

eff is typically
averaged over measurements involving electrons and muons. In SMEFT, using an average
leads to some difficulties because it would require a combination of first and second-generation
Wilson coefficients entering the counterterms, depending on the ratio of electron and muon
data entering the combination. To avoid this issue, we use the most precise available
measurement of sin θℓ

eff from the couplings to electrons only, namely the ATLAS measurement
with one central and one forward electron [68].

Results in SMEFT also depend on the renormalisation scale µ appearing in the Wilson
coefficients Ci ≡ Ci(µ). When variations of this renormalisation scale are used as a measure
of perturbative uncertainties, we use the following fixed-order expression for the RG running,

Ci(µ) = Ci(µdef) + ln
(

µ

µdef

)
Ċi(µdef) , (3.1)

where µdef is the default scale for the particular analysis, and the one-loop expressions for
Ċi are taken from [83–85].

3.1 Derived parameters

In each of the five input schemes in table 1, two parameters in the set {MW , α, GF , sin θℓ
eff}

are derived parameters which can be calculated in a SMEFT expansion. For instance, in
the veff

σ schemes, the on-shell W -boson mass MW is given by

MW =M eff
W (1 + ∆W ) =M eff

W

(
1 + v2

σ∆
(6,0)
W + 1

v2
σ

∆(4,1)
W +∆(6,1,σ)

W

)
, (3.2)

where ∆W is a finite shift. Similarly, the vσ themselves are related according to
1
v2

µ

= 1
v2

α

[
1 + ∆reff

]
= 1
v2

α

[
1 + v2

σ∆reff(6,0) + 1
v2

σ

∆reff(4,1) +∆reff(6,1)
]
, (3.3)

where in the second equality we made explicit that the expansion coefficients are the same
whether vµ or vα is used. The form above allows to determine GF in the veff

α scheme after
setting σ = α, whereas α in the veff

µ scheme is easily obtained after setting σ = µ. We derive
the SMEFT expansions for ∆W and ∆reff , including explicit results in the large-mt limit,
in appendix A. Results for sin θℓ

eff in the α, αµ and LEP schemes are obtained by evaluating
eq. (2.17), while results for all other derived parameters have been given in [56].3

3We have converted factors of α(µ) used in that work to the on-shell definition α(MZ) using eq. (2.38).
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Ms
W

MW
− 1 αs

α − 1 Gs
F

GF
− 1 sin2 θℓ,s

eff
sin2 θℓ

eff
− 1

veff
µ

LO −0.56% 0.21% — —
NLO 0.05% 0.23% — —

veff
α

LO −0.56% — −0.21% —
NLO 0.04% — −0.23% —

αµ
LO — −2.44% — −3.72%
NLO — 0.51% — 0.34%

α
LO — — 2.50% −3.72%
NLO — — −0.67% 0.45%

LEP LO −0.51% — — −0.30%
NLO 0.09% — — −0.32%

Table 3. SM results for derived parameters in scheme s relative to the experimental values in table 2.

The derived parameters are useful for two reasons. First, from a practical perspective,
they are the simplest examples of EW precision observables and therefore play an important
role in global analyses of data. Second, they are the key ingredients for converting results
and understanding differences between EW input schemes. For example, if one calculates a
quantity in the αµ scheme, one can convert it to the veff

µ scheme by substituting MW with
eq. (3.2) with σ = µ and performing a SMEFT expansion. In the SM, if the derived value of
MW in the veff

µ agrees well with the measured value at a given order, then results for other
observables in the αµ and veff

µ scheme will show similar level of numerical agreement. This
should also be true in SMEFT, but in that case the derived value of MW depend on the
Wilson coefficients, whose values are not precisely known and are left symbolic. Differences
in observables between schemes show up in non-trivial patterns of Wilson coefficients and
the level of agreement between schemes is less obvious. In the remainder of this section we
examine derived parameters in the SM across all schemes, and use the prediction of MW in
the veff

σ schemes to illustrate some of their important features.

SM. In table 3 we show LO and NLO results for derived parameters in the SM, where
NLO is defined as LO plus the NLO correction. In all cases, the NLO and measured values
agree to roughly half a percent or better. In the veff

σ schemes, the deviation between the
derived parameters and the experimental values is already below the per-mille level at LO,
while the α and αµ schemes involve percent-level NLO corrections to sin θℓ

eff, α or GF . Such
corrections originate mainly from large-mt corrections to the counterterm for sw in those
schemes; for instance, in the αµ scheme the one-loop SM result is

s2
w,0 = (sαµ

w )2

1 + (cαµ
w

s
αµ
w

)2 ∆ρ(4,1)
t

v2
µ

+ . . .

 ≈ (sαµ
w )2 [1 + 3.3% + . . . ] , (3.4)

where the . . . refers to terms which are subleading in the large-mt limit, and cαµ
w =MW /MZ .

The same result holds in the α scheme after the replacement vµ → 2MW s
αµ
w /
√
4πα.
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A noticeable feature of the veff
σ schemes is that the NLO corrections to GF or α are

extremely small. These corrections are related to ∆reff(4,1) in eq. (3.3), and an estimate from
the top-loop contribution in eq. (A.11) gives −∆ρ(4,1)

t /v2
σ ≈ −1%. To understand why this

estimate breaks down, we split the one-loop SM correction into component parts according to

1
v2

α

∆reff(4,1) = 1
v2

α

∆reff(4,1)
t + 1

v2
α

∆reff(4,1)
rem + α(MZ)

π

100
27

= (−0.9348 + 0.0049 + 0.9143)% = −0.0156% , (3.5)

where the ordering of the numerical terms on the second line matches those of the analytic
expressions above. We note an accidental cancellation between the large-mt limit result and
that related to the running of α in the on-shell scheme;4 the latter correction can be eliminated
by converting to the MS definition as in eq. (2.38). By contrast, the NLO corrections to MW

in the veff
σ scheme do not depend on the counterterm for α. The top-loop contribution in

eq. (A.5) is a good estimate for the NLO correction, as seen in the result

M
veff

σ
W =M eff

W

[
1 + 1

v2
σ

(1
2∆ρ

(4,1)
t +∆(4,1)

W,rem.

)]
= 79.93GeV [1 + 0.00468 + 0.00137] = 80.42GeV , (3.6)

where the order of numerical contributions in the second line matches that on the first and
we set vσ = vµ to obtain the numerical value.

SMEFT. Results for derived parameters in SMEFT depend on a number of Wilson
coefficients and are thus quite lengthy. For brevity, we focus the discussion on MW in the
veff

σ schemes, leaving a comparison of observables across schemes to the heavy-boson decay
rates presented in section 3.2.

We show in figure 1 the LO and NLO SMEFT corrections to MW in the veff
σ schemes.

The numerical contribution from each Wilson coefficient at the scale µ = MZ is obtained
by making the choice Ci(MZ) = 1/v2

σ, and the results are given in units of M eff
W ; in other

words, we are quoting results for the expansion coefficients of ∆W as defined in eq. (3.2).
A remarkable feature is the large number of Wilson coefficients contributing to MW for
arbitrary flavour structure; the exact number of coefficients at LO (NLO) is 5 (63) in both
schemes. Out of these, 34 Wilson coefficients appearing at NLO correspond to different
flavour structures of ten four-fermion operators. The number of Wilson coefficients is reduced
when we employ additional flavour assumptions. For concreteness, we consider the scenario
of minimal flavour violation (MFV) where the top Yukawa [89] is the only source of the
breaking of the U(3)5 symmetry in SMEFT, see appendix B. Under the MFV assumption, 34
Wilson coefficients contribute to ∆W at NLO, 16 of which correspond to different flavour
structures of the ten four-fermion operators.

It is clear from figure 1 that many of the NLO SMEFT corrections to MW are numerically
small when all Wilson coefficients are set to a common value. In table 4, we give numerical
results at LO and NLO (defined as the sum of LO plus the NLO correction) for those SMEFT

4A similar cancellation occurs in the NLO correction to sin2 θℓ
eff in the LEP scheme, whose large-mt

correction is obtained from eq. (3.4) by the replacement c2
w/s2

w → −c2w/c2
w and is roughly −1.5% numerically.
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Figure 1. SMEFT corrections to the W boson mass in the veff
µ (top) and veff

α (bottom) schemes,
with ∆sw determined from Z → ee decay, so that ℓ = 1. The Wilson coefficients are evaluated at
Ci = 1/v2

σ. The flavour indices i and j run over values j ∈ 1, 2, and i ∈ 1, 2, 3.

operators whose NLO contribution is larger than 1% for the default choice Ci(MZ) = 1/v2
σ.

All of these coefficients receive NLO corrections from top loops, and to show their significance
we give results where only the large-mt limit of these corrections is used (NLOt in the table).
In each case, we include scale uncertainties obtained by evaluating the prediction for the three
scale choices µ ∈ [MZ , 2MZ , MZ/2], using eq. (3.1) to express the results in terms of Ci(MZ).
In most cases there is a good convergence between LO and NLO when scale uncertainties are
included. The large-mt limit results are generally an improvement for central values, but come
with small scale uncertainties which do not always overlap with the complete NLO result.

3.2 Heavy boson decays at NLO

In this section we analyse W → τν and Z → ττ decays, focussing on a comparison between
input schemes. We define SMEFT expansion coefficients for the decay X → f1f2 in input
scheme s as

Γ(X → f1f2) = Γs(4,0)
Xf1f2

+ Γs(6,0)
Xf1f2

+ Γs(4,1)
Xf1f2

+ Γs(6,1)
Xf1f2

. (3.7)
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CHW B CHD CHe
11

C
(3)
Hl
11

LO veff
σ −0.275+0.009

−0.009 −0.250+0.017
−0.017 −0.175+0.004

−0.004 −0.151+0.003
−0.003

NLO veff
µ −0.290+0.001

−0.000 −0.269+0.003
−0.000 −0.180+0.000

−0.000 −0.161+0.000
−0.000

veff
α −0.276+0.000

−0.000 −0.266+0.002
−0.000 −0.185+0.000

−0.000 −0.159+0.000
−0.000

NLOt
veff

µ −0.280+0.003
−0.002 −0.261+0.006

−0.003 −0.178+0.000
−0.000 −0.158+0.001

−0.001

veff
α −0.272+0.002

−0.002 −0.261+0.006
−0.003 −0.183+0.000

−0.000 −0.158+0.001
−0.001

C
(1)
Hl
11

CHu
33

C
(1)
Hq
33

C
(3)
Hq
33

LO veff
σ −0.151+0.004

−0.004 0.000+0.026
−0.026 0.000+0.026

−0.026 0.000+0.001
−0.001

NLO veff
µ −0.156+0.000

−0.000 0.023+0.000
−0.007 −0.019+0.006

−0.000 0.012+0.000
−0.002

veff
α −0.160+0.000

−0.000 0.023+0.000
−0.006 −0.019+0.006

−0.000 0.012+0.000
−0.002

NLOt
veff

µ −0.154+0.000
−0.000 0.024+0.000

−0.005 −0.024+0.005
−0.000 0.009+0.000

−0.002

veff
α −0.158+0.000

−0.000 0.024+0.000
−0.005 −0.024+0.005

−0.000 0.009+0.000
−0.002

Table 4. The numerical prefactors of the Wilson coefficients in the veff
µ and veff

α schemes contributing
to ∆W for the LO, NLO and NLOt (large-mt limit) perturbative approximations. The SM tree-level
approximation along with v2

µ has been factored out. The results have been evaluated at µ = MZ

and varied up and down by a factor of 2 to give the uncertainties. Only Wilson coefficients whose
numerical prefactor is greater than 1% at NLO have been included.

Moreover, we write LO and NLO results as

Γs
Xf1f2,LO ≡ Γs(4,0)

Xf1f2
+ Γs(6,0)

Xf1f2
,

Γs
Xf1f2,NLO ≡ Γs

Xf1f2s,LO + Γs(4,1)
Xf1f2

+ Γs(6,1)
Xf1f2

. (3.8)

The LO results for s ∈ {veff
µ , veff

α } are given by

Γs
W τν,LO = M eff

W

12π


(
M eff

W

vσ

)2

+ (M eff
W )2

[
2C(3)

Hl
33

+ 3∆(6,0)
W −∆v(6,0)

σ

] ,

Γs
Zττ,LO = MZ

24π

{
M2

Z

v2
σ

(
1− v2

σ

2 CHD

)
g(4,0) +M2

Z

[ (
2
(
g

ℓ(6,0)
R − gℓ(6,0)

L

)
−∆v(6,0)

σ

)
g(4,0)

+ 2c2w

(
g

τ(6,0)
L − gℓ(6,0)

L

)
+ 4s2

w

(
g

τ(6,0)
R − gℓ(6,0)

R

) ]}
, (3.9)

where ℓ ≡ ℓi is the charged lepton species used in the definition of ∆sw and

g(4,0) = 1− 4s2
w + 8s4

w . (3.10)

To derive the result for W decay we have written W -mass dependence arising both through
two-body phase-space and in the matrix element squared in terms of M eff

W . Note that in
Z decay the flavour-independent coupling G(6,0) given in eq. (2.16) has dropped out of
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Γs
W ℓν/ Γexp

W ℓν − 1 Γs
Zℓℓ/Γ

exp
Zℓℓ − 1

veff
µ

LO −1.30% −0.70%
NLO 0.16% 0.12%

veff
α

LO −1.51% −0.91%
NLO −0.06% −0.11%

αµ
LO 0.37% −0.08%
NLO 0.03% −0.07%

α
LO 2.87% 2.41%
NLO −0.66% −0.74%

LEP LO −1.17% −0.66%
NLO 0.31% 0.16%

Table 5. Deviations of the SM predictions for Z → ℓℓ and W → ℓν decay rates in scheme s from the
experimental measurements of Γexp

Zℓℓ = 83.98MeV and Γexp
W ℓν = 226.4MeV [88].

CHD CHW B CHe
33

CHu
33

C
(3)
Hq
33

veff
µ

LO −0.500+0.033
−0.033 0.000+0.000

−0.000 −1.843+0.048
−0.048 0.000+0.052

−0.052 0.000+0.000
−0.000

NLO −0.527+0.005
−0.000 0.004+0.000

−0.000 −1.905+0.004
−0.000 0.048+0.000

−0.013 0.022+0.000
−0.004

veff
α

LO 0.000+0.000
−0.000 2.370+0.081

−0.081 −1.843+0.050
−0.050 0.000+0.003

−0.003 0.000+0.005
−0.005

NLO −0.001+0.000
−0.000 2.439+0.000

−0.006 −1.903+0.004
−0.000 0.005+0.000

−0.001 0.002+0.000
−0.000

αµ
LO −0.169+0.011

−0.011 0.355+0.012
−0.012 −1.764+0.046

−0.046 0.000+0.018
−0.018 0.000+0.001

−0.001

NLO −0.289+0.009
−0.007 0.258+0.003

−0.004 −1.897+0.006
−0.002 0.018+0.011

−0.016 0.006+0.000
−0.002

α
LO 1.573+0.108

−0.108 4.088+0.143
−0.143 −1.764+0.050

−0.050 0.000+0.162
−0.162 0.000+0.008

−0.008

NLO 1.408+0.002
−0.019 3.869+0.002

−0.013 −1.898+0.006
−0.002 −0.142+0.030

−0.000 −0.073+0.014
−0.000

LEP LO −0.600+0.040
−0.040 −0.474+0.016

−0.016 −1.837+0.048
−0.048 0.000+0.062

−0.062 0.000+0.001
−0.001

NLO −0.631+0.005
−0.000 −0.475+0.001

−0.000 −1.899+0.004
−0.000 0.057+0.000

−0.015 0.025+0.000
−0.005

Table 6. Selected SMEFT contributions to the Z → ττ decay rate including scale variation in the
five schemes.

the decay rate due to a cancellation against ∆s(6,0)
w . Further simplifications occur only if

ℓ = τ or a flavour symmetry such as MFV is imposed, in which case the contribution in
the final line vanishes.

The LO and NLO results for W and Z decay in the SM are shown in table 5, where we
have normalised the results to the experimentally measured values. The NLO corrections in
the SM bring results from all five schemes into close numerical agreement. These corrections
are at the 1.5% level for W decay in the veff

σ and LEP schemes, where MW is not an input
and hence factors of 3∆s(4,1)

W /v2
σ arise compared to the αµ scheme. Corrections of around

−3% arise in the α scheme, which are mainly due to the top-loop corrections to sw shown
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in eq. (3.4). As explained in section 3.1, the close agreement between decay rates at NLO
different schemes is a consequence of that for the derived parameters in table 3.

The situation in SMEFT is different, because in that case the relations between input
parameters in different schemes depend on the Wilson coefficients and there can be non-trivial
interplay with other, process-dependent contributions. Therefore, in general, the numerical
prefactor multiplying a particular Wilson coefficient can be very different across schemes.
This point is seen in table 6, where the LO and NLO contributions for an illustrative sample
of Wilson coefficients are shown for the decay Z → ττ , using ℓi = e to determine the ∆sw

counterterm in the veff
σ schemes. The results include perturbative uncertainties obtained

by varying the default scale choice µdef = MZ up and down by a factor of two. We note
the following features:

• The contributions from the coefficients CHD and CHW B have rather different prefactors
in each scheme, and convergence between LO and NLO also differs markedly from case
to case — especially in the αµ scheme the NLO corrections are large and well outside
the LO scale uncertainties.

• By contrast, at LO the coefficient CHe
33

appears only in the Z → ττ matrix element.
The dominant NLO corrections arise from SM counterterms on this LO vertex, and tend
to push the NLO results in different schemes to similar values. The NLO corrections in
the α and αµ schemes are outside the LO scale uncertainties.

• The coefficients CHu
33

and C(3)
Hq
33

first appear at NLO for fixed µ. The contribution of the

former is well estimated by LO scale uncertainties through the running of CHD (driven
by the top-loop contribution shown in eq. (A.9)), while that of the latter is unrelated
to RG running and requires a genuine NLO calculation.

Regarding the first two points, NLO corrections in the veff
σ schemes tend to be milder than

in the α or αµ schemes because in the latter case ∆sw gets scale-independent corrections of
the type shown in eq. (3.4). In that case including universal corrections from the large-mt

limit using the procedure outlined in [56] can improve convergence between orders.5 The
specific pattern of contributions described above is specific to Z decay, but the important
point that the size of SMEFT contributions related to a particular Wilson coefficient is
highly scheme specific is general.

The discussion so far highlights the non-trivial pattern of perturbative convergence across
schemes. It is also interesting to study the number of Wilson coefficients characteristic of
each scheme. In table 7, we show the total number of Wilson coefficients contributing to
W and Z decay at LO and NLO in the five input schemes for different flavour assumptions.
For both decays, significantly more coefficients are involved in the veff

σ schemes than in the
others, when no flavour restrictions are made; this is because the counterterm for sw is
determined from Z → ee decay amplitudes, and involves a number of flavour specific left and
right-handed fermion gauge couplings in addition to four-fermion operators, which would
not otherwise appear in Z → ττ decay. Indeed, if we consider the decay Z → ee instead,

5A similar procedure could be followed for the veff
σ schemes using eq. (A.11) as a starting point.
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ΓW τν ΓZττ (ΓZee) Total # unique WC
gen MFV gen MFV gen MFV

veff
µ

LO 8 6 9 (6) 4 10 6
NLO 69 34 93 (63) 33 93 34

veff
α

LO 6 5 7 (4) 4 8 5
NLO 68 34 92 (63) 34 92 34

αµ
LO 4 1 8 (7) 6 8 6

NLO 25 14 67 (64) 34 67 34

α
LO 3 3 5 (5) 5 5 5

NLO 35 22 63 (63) 34 63 34

LEP LO 6 4 8 (7) 6 8 6
NLO 39 22 67 (64) 34 67 34

Table 7. Number of Wilson coefficients appearing in heavy boson decay rates under general flavour
assumptions and MFV. Note that assuming MFV the number of operators appearing in ΓZττ and
ΓZee is the same and hence only one value is given.

the number of Wilson coefficients appearing throughout all five schemes is far more similar.
The same statement applies if MFV is used — in fact, the number of Wilson coefficients
entering the combination of the two decays is the same.

In a full analysis of electroweak precision observables including gauge-boson decays to
quarks and Z decay to neutrinos, the total number of Wilson coefficients appearing is further
increased through contributions from four-quark operators. For MFV the total number of
operators appearing grows from 34 in the leptonic Z and W decays considered here to 56
in the full set of electroweak precision observables [52].

4 Conclusions

We have implemented to NLO in SMEFT two EW input schemes involving sin θℓ
eff as an input

parameter. These “veff
σ schemes” share as common inputs sin θℓ

eff and MZ , but differ through
the use of the fine structure constant α (veff

α scheme) or the Fermi constant GF (veff
µ scheme)

as the third independent input parameter. Details of the renormalisation procedure in these
schemes were given in section 2, and numerical results for a select set of electroweak precision
observables, including comparisons with the other commonly used EW input schemes listed
in table 1, were given in section 3. Analytic results in the veff

σ schemes which form that basis
of that numerical analysis are given in electronic form in the arXiv submission of this paper.

An attractive feature of the veff
σ schemes in SMEFT is that sizeable corrections to the sine

of the Weinberg angle related to top-quark loops appearing in other schemes are absorbed
into the definition of the parameter sin θℓ

eff. On the other hand, the renormalisation conditions
for sin θℓ

eff are implemented at the level of form factors for two-body Z → ℓℓ decay, and are
thus subject to a large number of flavour-specific Z-fermion SMEFT couplings, including
four-fermion operators. For instance, the SMEFT expansion for MW in these schemes receives
contributions from five Wilson coefficients at LO, but 63 already at NLO, and as shown in
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table 7 even a simple process such as Z → ττ is subject to roughly 90 coefficients at NLO.
Flavour assumptions on the SMEFT Wilson coefficients imposed by symmetries such as
MFV may therefore be an essential ingredient to practical implementations of this scheme
in global fits to data.

Regarding such fits, observables in each input scheme are subject to a different pattern
of higher-order corrections in both loops and operator dimensions. Therefore, performing fits
in multiple EW input schemes can provide an important estimate on the significance of such
missing corrections, and is a valuable consistency check on the results in any one scheme.
The results of this paper provide an important new component for such analyses.
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A Expansion coefficients and large-mt limit of ∆W and ∆reff

In this section we derive the SMEFT expansions of ∆W and ∆reff , which are used to predict
MW , GF , and α in the veff

σ schemes. We also give explicit results in the large-mt limit.

A.1 SMEFT expansion of MW

A simple way to derive the quantity ∆W defined in eq. (3.2) is to use the bare mass MW,0
as an intermediary:

MW,0 =M eff
W

(
1 + ∆M eff

W

)
=MW (1 + ∆MW ) . (A.1)

After expressing the expansion coefficients of the on-shell counterterm ∆MW in terms of
M eff

W following the notation of eq. (2.22), one finds

∆(6,0)
W = ∆M eff(6,0)

W ,

∆(4,1)
W = ∆M eff(4,1)

W −∆M (4,1)
W ,

∆(6,1,σ)
W = ∆(6,1)

W −∆(4,1)
W ∆v(6,0)

σ +∆(6,0)
W

(
∆v(4,1)

σ − 2∆M (4,1)
W

)
, (A.2)

with

∆(6,1)
W = ∆M eff(6,1)

W −∆M (6,1)
W +∆(6,0)

W ∆M (4,1)
W . (A.3)

To derive the large-mt limit results we first note the SM results

∆s(4,1)
w,t = ∆e(4,1)

t = 0 ,

∆v(4,1)
α,t = 2∆M eff(4,1)

W,t = 2∆M (4,1)
Z,t ,

∆v(4,1)
µ,t = 2∆M (4,1)

w,t . (A.4)
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One then has for the SM correction to ∆W in this limit

∆(4,1)
W,t = ∆M (4,1)

Z,t −∆M (4,1)
W,t = 1

2∆ρ
(4,1)
t . (A.5)

The result in SMEFT can be written in the form

∆(6,1,σ)
W,t = ∆(6,1)

W,t +∆(4,1)
W,t

(
2∆(6,0)

W δσα −∆v(6,0)
σ

)
, (A.6)

where δσα is the Kronecker delta. An explicit calculation shows that

∆(6,1)
W,t = 2∆(4,1)

W,t

[
C

(3)
Hq
33
−
√
2M eff

W

mt
CuW

33
− 1

2∆
(6,0)
W

]
− v2

σ∆̇
(6,0)
W,t ln µ

mt
, (A.7)

where the logarithmic dependence is governed by

∆̇(6,0)
W,t = −1

4 ĊHD,t −
sw

2cw
ĊHW B,t +

s2
w

2c2
w

ġ
ℓ(6,0)
L,t + c2w

4c2
w

ġ
ℓ(6,0)
R,t , (A.8)

with

v2
σĊHD,t = 8∆ρ(4,1)

t

[
CHD + 2C(1)

Hq
33
− 2CHu

33

]
,

v2
σĊHW B,t = 4∆ρ(4,1)

t

[
CHW B −

√
2MZ

mt

(
cwCuB

33
+ 5

3swCuW
33

)]
,

v2
σ ġ

ℓ(6,0)
L,t = 4∆ρ(4,1)

t

[
g

ℓ(6,0)
L − C(1)

lq
ii33

+ C
(3)
lq

ii33
+ C lu

33ii

]
,

v2
σ ġ

ℓ(6,0)
R,t = 4∆ρ(4,1)

t

[
g

ℓ(6,0)
R + C eu

ii33
− C qe

33ii

]
. (A.9)

A.2 SMEFT expansions of GF and α

The expansion coefficients for ∆reff defined in eq. (3.3) are calculated similarly to those for
MW , except this time using vT,0 as an intermediary. In particular, by equating eq. (2.7)
with eq. (2.8) one finds

∆reff(6,0) = ∆v(6,0)
µ −∆v(6,0)

α ,

∆reff(4,1) = ∆v(4,1)
µ −∆v(4,1)

α ,

∆reff(6,1) = ∆v(6,1)
µ −∆v(6,1)

α + 2∆v(4,1)
µ ∆reff(6,0) . (A.10)

Following the discussion of universal corrections in [56], we write the results in the large-mt

limit in the form

∆reff(i,j)
t = K(i,j)

α −K(i,j)
µ . (A.11)

Results for the Kµ can be read off from [56] (after adapting to our notation), while the results
for Kα are new. The one-loop result in the SM is

K(4,1)
σ = −∆ρ(4,1)

t δασ . (A.12)
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The SMEFT answer takes the form

K(6,0)
σ = −∆v(6,0)

σ ,

K(6,1)
σ = −1

2v
2
σK̇

(6,0)
σ,t ln µ2

m2
t

+ k(6,1)
σ . (A.13)

One has, for the non-logarithmic pieces

k(6,1)
µ = ∆ρ(4,1)

t

∑
j=1,2

[
C

(3)
Hl
jj

− C(3)
lq

jj33

]
,

k(6,1)
α = 2K(4,1)

α

(
K(6,0)

α + C
(3)
Hq
33

)
, (A.14)

whereas the dependence on the renormalisation scale µ is governed by

v2
σK̇

(6,0)
µ,t = −4∆ρ(4,1)

t

∑
j=1,2

[
C

(3)
Hl
jj

− C(3)
lq

jj33

]
,

v2
σK̇

(6,0)
α,t = 1

2 ĊHD,t +
1

cwsw
ĊHW B,t +

c2w

c2
w

(
ġ

ℓ(6,0)
L,t + c2w

2s2
w

ġ
ℓ(6,0)
R,t

)
. (A.15)

All components needed to evaluate the latter result were given in eq. (A.9).

B Minimal flavour violation

The calculations in this work have been performed with no assumptions on the flavour
structure of the SMEFT operators. To reduce the number of free parameters, we can make
the assumption of minimal flavour violation (MFV). In this appendix, we give details on
this flavour scenario.

In the SM, the U(3)5 symmetry for the SM fermions

U(3)5 ≡ U(3)q ×U(3)l ×U(3)u ×U(3)d ×U(3)e , (B.1)

is broken only by the Yukawa couplings [90, 91]. The MFV scenario extends this requirement
to SMEFT [89]. Since we consider all fermions except the top quark to be massless, we only
thus only allow the breaking of the U(3)5 symmetry by the top Yukawa coupling Yt. In
the MFV case, we thus distinguish Wilson coefficients involving the top quark from those
involving first and second-generation up-type quarks.

We change from the flavour-general scenario to MFV by making a set of replacements on
the Wilson coefficients, see e.g. [52]. For operators with two flavour indices involving leptons
or down-type quarks, we can suppress the flavour indices

Cx
ii
→ Cx, for Cx ∈ CHe, C

(1)
Hl , C

(3)
Hl , CHd . (B.2)
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For the Wilson coefficients with two flavour indices involving up-type quark fields, we
explicitly distinguish top-quark couplings

C x
jj
→ Cx for j ∈ 1, 2 , CHu

33
→ CHt, C

(1)
Hq
33
→ C

(1)
HQ, C

(3)
Hq
33
→ C

(3)
HQ . (B.3)

For CuB and CuW only Wilson coefficients with third-family indices contribute in the first
place so no replacement is necessary.

For four-fermion operators with two different fermion bilinears as well as Cee, which
is simplified by a Fierz identity, there is a single coefficient contributing under the MFV
assumption when no up-type quarks are involved

C x
iijj
→ Cx for Cx ∈ Cee, Cle, Cld, Ced . (B.4)

In Wilson coefficients involving up-type quark fields we distinguish the third generation

C x
iijj
→ Cx for j ∈ 1, 2, C

(1)
lq

ii33
→ C

(1)
lQ , C

(3)
lq

ii33
→ C

(3)
lQ , C lu

ii33
→ Clt,

C qe
jjii
→ Cqe for j ∈ 1, 2, C qe

33ii
→ CQe . (B.5)

For Cll, which involves two fermion currents of the same species and chirality, there are two
U(3)5 symmetric combinations, which we distinguish with a prime

C ll
iijj
→ Cll, C ll

ijji
→ C ′

ll, C ll
iiii
→ Cll + C ′

ll . (B.6)
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

Q
G̃

fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH□ (H†H)□(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)
5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GA
µνG

Aµν

Q
HG̃

H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνB
µν

Q
HB̃

H†H B̃µνB
µν

QHW B H†σIHW I
µνB

µν

Q
HW̃ B

H†σIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)σIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσ
µνTAur)H̃ GA

µν

QuW (q̄pσ
µνur)σIH̃ W I

µν

QuB (q̄pσ
µνur)H̃ Bµν

QdG (q̄pσ
µνTAdr)H GA

µν

QdW (q̄pσ
µνdr)σIHW I

µν

QdB (q̄pσ
µνdr)H Bµν

7 : ψ2H2D

Q
(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q
(3)
Hl (H†i

←→
D I

µH)(l̄pσIγµlr)

QHe (H†i
←→
D µH)(ēpγ

µer)

Q
(1)
Hq (H†i

←→
D µH)(q̄pγ

µqr)

Q
(3)
Hq (H†i

←→
D I

µH)(q̄pσ
Iγµqr)

QHu (H†i
←→
D µH)(ūpγ

µur)

QHd (H†i
←→
D µH)(d̄pγ

µdr)

QHud + h.c. i(H̃†DµH)(ūpγ
µdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q
(1)
qq (q̄pγµqr)(q̄sγ

µqt)

Q
(3)
qq (q̄pγµσ

Iqr)(q̄sγ
µσIqt)

Q
(1)
lq (l̄pγµlr)(q̄sγ

µqt)

Q
(3)
lq (l̄pγµσ

I lr)(q̄sγ
µσIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγ
µet)

Quu (ūpγµur)(ūsγ
µut)

Qdd (d̄pγµdr)(d̄sγ
µdt)

Qeu (ēpγµer)(ūsγ
µut)

Qed (ēpγµer)(d̄sγ
µdt)

Q
(1)
ud (ūpγµur)(d̄sγ

µdt)

Q
(8)
ud (ūpγµT

Aur)(d̄sγ
µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγ
µet)

Qlu (l̄pγµlr)(ūsγ
µut)

Qld (l̄pγµlr)(d̄sγ
µdt)

Qqe (q̄pγµqr)(ēsγ
µet)

Q
(1)
qu (q̄pγµqr)(ūsγ

µut)

Q
(8)
qu (q̄pγµT

Aqr)(ūsγ
µTAut)

Q
(1)
qd (q̄pγµqr)(d̄sγ

µdt)

Q
(8)
qd (q̄pγµT

Aqr)(d̄sγ
µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q
(1)
quqd (q̄j

pur)ϵjk(q̄k
sdt)

Q
(8)
quqd (q̄j

pT
Aur)ϵjk(q̄k

sT
Adt)

Q
(1)
lequ (l̄jper)ϵjk(q̄k

sut)

Q
(3)
lequ (l̄jpσµνer)ϵjk(q̄k

sσ
µνut)

Table 8. The 59 independent baryon number conserving dimension-six operators built from Standard
Model fields, in the notation of [83]. The subscripts p, r, s, t are flavour indices, and σI are Pauli ma-
trices.
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