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ABSTRACT Distributed Denial of Service (DDoS) attacks pose a significant threat to the Internet of
Vehicles, causing delays in driving operations and risking personal safety. With the emerging of Space-
Air-Ground Integrated Sixth-Generation (6G) networks, DDoS defense faces new challenges, especially
in open and complex Vehicle-to-Everything (V2X) connections. In this study, we reviewed the requisites
and challenges of DDoS defense in V2X and introduced a tailored access-side defense architecture for
Space-Air-Ground Integrated 6G V2X. The objective is to provide ultra-low latency and privacy-assured
services despite limited communication resources. Our architecture uses access-side control points (CPs)
for rapid attack responses, collaborating with local controllers to create a seamless defense perimeter at
the network edge. This prevents malicious traffic infiltration. Incorporating proactive defense strategies and
lightweight detection methods, our approach ensures high attack detection rates with low defense costs.
Simulation results confirm its efficacy and advantages in defense and network efficiency. We also discuss
open issues for future research to facilitate practical applications.

INDEX TERMS access-side defense architecture, distributed denial of service (DDoS), defense efficiency,
sixth generation (6G), vehicle-to-everything (V2X).

I. INTRODUCTION

W ITH the rapid development of driving assistance
technologies, vehicles have begun to transform from

a single transportation platform to a networked intelligent
terminal. The vehicle-to-everything (V2X) communication
network has become a key infrastructure for supporting fu-
ture autonomous driving applications [1]. Moreover, the de-
velopment of sixth-generation (6G) mobile communication,
especially low earth orbit (LEO) satellite communication
technology, is expected to further expand the coverage of
V2X networks to remote areas. The vision of 6G is to
establish a space-air-ground integrated network that supports
global wide area access [2]. A large collaborative network
made of trillions of interconnected vehicles, roadside in-
frastructure, sensors, and pedestrians is on the way [3].
However, in such a heterogeneous network, the risks of
vehicle operation safety, data privacy and network security
complicate the security of V2X communication. Network
security is the basic premise for ensuring the operational

safety of vehicles and an important fulcrum for realizing
data privacy, making network security a top priority for
ensuring V2X security [4]. Unfortunately, the ultra-large
scale of the 6G V2X network further expands the attack
surface of traditional mobile networks. Potential attackers
can launch more damaging attacks by compromising more
network devices and causing more serious damage.

In connected vehicle systems, denial of service (DoS)
attacks are a category of traditional security threats [5].
As the number of intelligent vehicles and on-board devices
connected to the network increases, the ways to launch
DoS attacks against vehicles are rapidly diversifying. Among
such threats, distributed denial of service (DDoS) attacks,
which involve the launching of malicious traffic from a large
number of compromised devices can directly destroy the
availability of connected vehicles, infrastructure and network
services and seriously threaten driving safety [6]. However,
DDoS defense is much more difficult than ever before. On
the one hand, the high complexity and heterogeneity of 6G
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V2X networks make it more difficult to achieve distributed
collaboration among different control domains. Traditional
defense methods based on centralized control strategies (such
as SDN-based methods) have difficulty achieving effective
defenses across different network domains and face the diffi-
culty of scalability and integration of heterogeneous network
devices [7]. DDoS defense methods based on uniformly
allocating network-wide resources are infeasible [8], [9]. It
is necessary to develop a new distributed DDoS malicious
traffic defense mechanism.

On the other hand, the unprecedented scale of attack
traffic in 6G V2X will make traditional defense methods
(such as traffic scrubbing) on the server side unsustainable
[10]. The server-side mitigation methods adopted by most
enterprises require investment in very expensive infrastruc-
ture and network bandwidth. The repeated construction of
security infrastructure leads to a great deal of resource
waste and is not affordable for small and medium-sized
enterprises (SMEs). In addition, server-side defense methods
allow malicious traffic to consume excessive communication
resources after entering a data network (DN). To overcome
both challenges and improve the effectiveness of DDoS
defense in V2X, it is necessary to push the defense surface
from the server side to the edge, i.e., the access side of
V2X. Therefore, developing an access-side DDoS defense
mechanism in 6G V2X networks is urgently needed to ensure
the driving safety of intelligent vehicles and support the rapid
development of the vehicle industry [11].

Fortunately, the development of new technologies has also
provided many opportunities for DDoS defense. Blockchain
and advanced authentication technologies in 6G will provide
a unique and reliable identity for all network elements in
V2X [12], [13]. This approach enables trust evaluation-
based DDoS detection. The deployment of multiaccess edge
computing (MEC) will provide the necessary computing
infrastructures for edge intelligence [14]. This makes it
viable to deploy traffic control points (CPs) on the network
access side to defend against DDoS attacks. Such access-
side CPs usually refer to software modules that are de-
ployed on edge computing servers in the access network.
They actively extract necessary information from the pass-
ing traffic, detect potential attack behaviors and implement
predefined security strategies, thus improving the network
security performance. On this basis, federated learning tech-
niques can avoid excessive communication overhead and
provide privacy-preservation [15]. The detection accuracy
of malicious traffic at access-side CPs can therefore be
significantly improved [16]. Digital twin technology enables
the network controller to monitor the working status of
network devices in real time and detect abnormal statuses to
prevent intrusions [17], [18]. In addition, the development
of integrated spatial-terrestrial network technology in 6G
will also bring new opportunities for DDoS defense [19].
For example, space-ground collaboration provides a more
efficient method for defense strategy distribution and attack

information sharing [20]. The simplified network topology
of long-distance communication can also support a wider
range of collaborative defenses.

Motivated by the above observations, this article aims
to improve the DDoS defense efficiency in V2X by taking
advantage of new 6G technologies. The main contributions
of this work are as follows.

• We explore the requirements and challenges associated
with implementing DDoS defense in 6G V2X at the
network layer and identify the design goals of the
corresponding security architecture.

• We propose a comprehensive access-side defense archi-
tecture against DDoS traffic. This architecture promotes
horizontal collaboration among CPs at the access side to
deter potential attackers and establish long-term defense
strategies.

• We detail four key technologies that need to be con-
sidered when implementing this architecture. These
technologies involve formulating a unified strategy co-
ordination mechanism among CPs by combining proac-
tive and reactive defense methods, enabling efficient
DDoS detection through multi-domain collaboration
and reducing detection costs through packet sampling.

• We implement a set of simulations and verify the
effectiveness and efficiency of the proposed access-
side DDoS defense architecture through comparative
analysis. To the best of our knowledge, this article is the
first attempt to systematically discuss the DDoS defense
requirements in 6G V2X and provide a comprehensive
defense architecture at the access side.

The remainder of this article is organized as follows. We
analyze the requirements and challenges in DDoS defense
in Section II. In Section III, we introduce the access-side
DDoS defense architecture in terms of its components, col-
laboration mechanism and security performance. We discuss
the key technologies involved in the proposed access-side
defense architecture in Section IV. Numerical results on the
defense performance are illustrated in Section V. We present
some open issues for further research in Section VI. Section
VII concludes the article.

II. Requirements and Challenges
A. 6G V2X ARCHITECTURE
To improve road safety and traffic efficiency, connected
vehicles need to communicate frequently with other vehicles,
roadside units (RSUs), pedestrians, remote control centers,
global navigation satellite systems (GNSSs), and other cloud
services via an in-vehicle communication unit, a.k.a, an on-
board unit (OBU). The ubiquitous connectivity of 6G spawns
a large collaborative network. A typical space-air-ground
integrated 6G V2X architecture is shown in Fig. 1.

The architecture can be divided into four layers. The
bottom layer is the access layer, which consists of vehicles,
pedestrians, and various intelligent transportation devices,
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FIGURE 1. A typical scenario of the space-air-ground integrated 6G V2X architecture.

such as traffic lights, cameras, and other environmental sens-
ing devices. The access equipment includes base stations,
terrestrial satellite access points (TSAPs) and RSUs. Vehicles
in remote areas can connect to satellite networks via TSAPs
or relayed by unmanned aerial vehicles (UAVs) [21]. The
second layer is the edge. Edge nodes can be servers or edge
devices with enough computing power, such as macro base
stations and satellite local controllers (SLCs). Due to the
low propagation latency, edge computing is widely used to
support latency-sensitive services for computational offload-
ing and data caching in V2X applications. The third layer is
the transition network, which consists of the terrestrial 6G
core network and satellites in space. The efficiency of the
transition network has a significant impact on the quality of
service (QoS) in the cloud. The last layer is the data network
which provides cloud-based services, such as remote control,
weather forecasting, and entertainment systems.

B. DDOS DEFENSE REQUIREMENTS IN 6G V2X
Information exchange in V2X has enabled a large variety
of applications, including remote driving, platooning, map
sharing, cooperative awareness, cooperative sensing, and co-
operative collision avoidance. The new security requirements
of the V2X can be investigated in terms of confidentiality,

authenticity, integrity, and availability. There have been some
research efforts on the security requirements of 6G networks,
including V2X networks. Hafi et al. discussed the require-
ments, solutions, challenges, and application scenarios of
deploying Split Federated Learning in 6G networks [22].
Li et al. proposed a security reference architecture named
SecCDV for Cybertwin-Driven 6G V2X, primarily focusing
on data security and privacy at the application layer [23].
However, these works did not delve deeply into DDoS
attacks at the network layer in V2X or address access-side
security. In this work, we concentrate on network domain
security, comprehensively analyzing the characteristics of
various DDoS attacks in V2X and the challenges faced
by access-side defense. Among the many kinds of security
requirements, the availability of V2X services is essential
for road safety and is directly related to the personal and
property safety of passengers. DDoS attacks that seriously
hinder the availability of V2X services should be given
priority in the security design of 6G V2X. According to the
type of victim, DDoS attacks in V2X can be divided into
the following categories.

(1) DDoS attacks in access networks
Vehicles in the existing Internet of Vehicles (IoT) can

communicate with each other directly via 802.11p-based
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FIGURE 2. DDoS attacks in access networks.

technologies, LTE PC5 [24], the 5G New Radio (NR)
Sidelink interface [25], or base stations using interfaces
such as LTE-Uu. Vehicle-to-vehicle (V2V) communication
enhances information collaboration between vehicles. How-
ever, they also allow DDoS attackers to directly orchestrate
compromised V2X devices to launch attacks against targets
in the access network. According to whether the attack traffic
passes through the base station, DDoS attacks in the access
network can be divided into two categories, as shown in Fig.
2(a) and Fig. 2(b). The red arrows indicate the attack traffic.

V2V direct communication is feasible only in the short
range. The DDoS attack traffic relay by the base stations is
limited by the coverage of the base stations. The number
of available bots within this range is limited. The defense
strategy of such DDoS attacks has been fully studied in
vehicle ad hoc networks (VANETs) by previous researchers
[26]–[29]. In addition, the victims of DDoS attacks in the
access network can also be RSUs or base stations, as shown
in Fig. 2(c). The attack distance is limited by the physical
signal coverage of the victim. The base stations and RSUs
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FIGURE 3. DDoS attacks on an edge server.

have sufficient service capabilities for connected vehicles, so
such attacks should not paralyze them.

(2) DDoS attacks on network edges
Edge servers provide low-latency services for vehicle

users. Because edge servers are resource restricted, they
are more vulnerable to DDoS attacks than cloud servers.
DDoS attacks on network edges are illustrated in Fig. 3.
The coordinated bots concurrently send service requests
to the edge server through the base stations. The server
is overloaded and unable to provide services. Such DDoS
attacks will significantly increase service delays over a wide
range and seriously affect driving safety. These conditions
are most harmful to the security of V2X communication
systems.

(3) DDoS attacks on transition networks
The 6G core network is envisioned to follow the service-

based architecture (SBA) of 5G networks. The SBA intro-
duces vulnerabilities in network function registration, dis-
covery and authorization. Network function services and
interfaces can easily become the target of DDoS attacks.
In addition, hybrid software-defined networking (SDN) may
be a key enabler for 6G [30]. The SDN controller can be
an important target for DDoS attacks. Furthermore, satellite-
ground links and intersatellite links will also become targets
of DDoS attacks. A DDoS attack scenario on transition
networks of 6G V2X is shown in Fig. 4. In V2X, bot nodes
may move at high speed, and their access points may change
rapidly, making defense against them much more difficult.

(4) DDoS attacks on data networks
Since most digital assets on the Internet are concentrated

in data centers, cloud platforms have long been an important
target for DDoS attacks. Cloud platforms also possess most
of the DDoS defense resources in the existing network. Edge
devices can share the workload of clouds, but their role
as critical infrastructures of information and communication
technology (ICT) will not change over the next decade. In
this situation, DDoS attacks will continue to proliferate in
6G V2X.

Based on the requirement analysis, we are motivated
to make great efforts to seek a long-term, efficient and
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systematic solution to address potential DDoS attack threats.
For DDoS attacks in access networks and edges, centralized
local detection and mitigation can be performed based on
the existing DDoS defense methods. In this article we focus
on DDoS attacks on transition networks and data networks
that involve collaboration among multiple entities.

C. NEW DDOS DEFENSE CHALLENGES IN 6G V2X
There are still few studies on DDoS defense methods for
V2X. The existing methods can be categorized into two
kinds. One kind includes DDoS defense mechanisms in
traditional VANETs. The attack scenarios in such methods
are usually simple. Only V2V and Vehicle-to-Infrastructure
(V2I) communications are considered [30]. The customized
defense methods for VANETs cannot meet the DDoS de-
fense requirements in 6G V2X since they cannot adapt
to highly complex attack scenarios. The other kind of
approach involves transplanting traditional DDoS defense
methods in centrally controlled networks (e.g., SDN), to
V2X through adaptive improvement [27]. These methods
usually lack consideration of the special characteristics of
V2Xs, such as bot mobility. Especially in satellite-terrestrial
integrated networks (STINs), in-depth and detailed research
on overcoming the topological dynamics and heterogeneity
of V2Xs is still lacking. New DDoS defense challenges in
6G V2X are summarized as follows.

(1) Limited commutation resources
An intelligent vehicle is a complex system. There are

various types of in-vehicle devices that require considerable
communication resources, such as access infrastructures, link
bandwidths, and power. The majority of V2X services are
accessed through wireless communication channels [31].
Although the communication resources in 6G mobile net-
works will be further enriched, the applications of V2X
will be more diversified and resource-consuming. 6G V2X
applications involve not only urban areas with sufficient
communication resources but also rural areas, mountains
and even deserts with limited communication resources.
An uneven distribution of communication resources will
continue to exist [32]. This limitation puts forward two
major challenges for the DDoS defense architecture. First,

the defense architecture must work with limited network
resources. In security architectures based on traditional ma-
chine learning methods, the model training process requires
the transmission of a large amount of traffic data and
historical information. This consumes considerable network
bandwidth. Due to the rapid changes in security situations,
continuous model updating will result in considerable com-
munication resource consumption. How to apply traditional
DDoS defense methods in resource-constrained scenarios has
become an open problem [33].

Second, traditional server-side DDoS defense methods,
such as the next generation firewall (NGFW) and intrusion
detection system (IDS), cannot detect attack traffic until they
reach the target network. DDoS attack traffic consumes a
large amount of communication resources in transmission.
To improve defense efficiency, the defense architecture must
block malicious traffic at the network entrance to preserve
downstream network resources. The selection of access-
side CPs and their collaboration mechanism have become
additional open problems. Therefore, the defense architecture
in V2X communication should reduce additional resource
consumption as much as possible, and block malicious traffic
at the access side to save communication resources.

(2) Ultralow latency
Different kinds of services carried by V2X communication

have different delay requirements. In particular, automatic
driving decision-making, vehicle-road coordination, vehicle-
vehicle coordination, and satellite-terrestrial coordination are
sensitive to delays. The development of services requires
the entire communication network to achieve millisecond
(ms)-level delays. For example, a new radio vehicle aims
to achieve 3 ms or lower latency and 99.999% reliability
[30]. The duration of new types of DDoS, such as pulse
attacks, can usually be shortened to a few seconds for
each round. However, traditional defense mechanisms fail to
respond quickly. In addition, due to the high-speed mobility
of vehicles, the frequent switching of network access points
and local network environments also brings challenges to
the delivery delay of services. Existing security architectures
face the following difficulties in meeting ultralow latency
requirements. 1) Propagation delay of the defense policy.
In existing security architectures, even if countermeasures
are deployed at the network edge, remote cloud centers
usually make defense decisions and then forward them to the
edge. Round-trip propagation results in significant delays and
affects the timeliness of defense decision implementation.
2) Processing delay of the traffic data. For attack traffic
detection, intensive computing power is necessary to process
a large amount of network raw traffic data. At the edge,
the delay of high-throughput traffic processing will greatly
increase due to the limited computing power. Online process-
ing is therefore difficult to achieve. Alternatively, the offline
processing mode of mirrored traffic in clouds will affect the
real-time performance of the defense system. Therefore, the
defense architecture of the 6G V2X must make distributed

VOLUME , 5



Xu Chen et al.: Preparation of Papers for IEEE OPEN JOURNALS

decisions at the access side. Defense decisions need to adopt
lightweight detection methods to achieve online processing
of large-scale traffic and meet the requirements of delay-
sensitive applications.

(3) Privacy-preserving requirements
Data processing in V2X involves sensitive information

such as passengers’ locations, personal preferences, and even
identities, which requires high privacy-preserving perfor-
mance. The existing security architecture of V2X usually
adopts pseudonym, anonymity, or data aggregation-based
obfuscation operations to improve user privacy in the cloud
[34]. However, it is still difficult to prevent malicious users
from probing users’ privacy through data mining. Moreover,
it is usually necessary to use information such as the Vehicle
Identification Number or International Mobile Equipment
Identity (IMEI) in attack traffic tracing or trust management-
based DDoS detection methods. Moreover, users’ privacy is
difficult to preserve. To address this dilemma, user identity-
related information can be kept at the edge for processing
instead of in the cloud. By taking advantage of this approach,
the access-side defense architecture is promising for prevent-
ing privacy data leakage.

To this end, defense against DDoS attacks at the ac-
cess side needs to solve two problems. First, we need to
construct a distributed collaborative defense architecture.
It is necessary to deploy many CPs in different network
domains for DDoS detection at the access layer of V2X.
These CPs must collaborate horizontally via a feasible cross-
domain collaboration mechanism. When no attack incident
is reported, these CPs perform routine collaborative defense
strategies to form a seamless defense surface to jointly deter
potential attackers. When an attack event is reported, the
relevant CPs activate the emergency response mechanism
to quickly detect and efficiently block attack traffic in col-
laboration. To reduce bandwidth consumption, collaboration
should avoid large-scale information exchange. Therefore,
the collaborative mechanism among CPs is the primary
problem.

Second, access-side defense methods must be lightweight
and adaptive. These devices should be able to flexibly adapt
to heterogeneous edge computing devices. Since the com-
puting power at the edge nodes is limited, defense methods
cannot consume too much computing resources. Low-latency
V2X applications also require that the defense architecture
respond quickly, which limits the time complexity of DDoS
detection methods. On this basis, considering that the packet
throughput of the access-side network node may be large, the
task load of packet processing should be reduced as much
as possible to avoid excessive processing delay.

Therefore, the tradeoff between detection accuracy and
response delay is the second problem to be solved. More-
over, privacy protection requirements should be implemented
throughout architectural design. The information exchange
in the collaborative strategy should not transmit sensitive
user information, and the information used for attack traffic
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FIGURE 5. Control architecture of space-air-ground integrated 6G V2X.

detection should also be limited to local storage to avoid
uploading to the cloud or spreading it in a large area.

III. Access-side DDoS Defense Architecture in 6G V2X
Due to the heterogeneity of user equipment (UE) in 6G
V2X, it is difficult to construct a unified application layer
security architecture based on UE resources. We pay atten-
tion to the network layer, specifically the edge, to defend
against DDoS attacks. Access-side defense measures can be
deployed to the nearest computing nodes from UEs, such as
the RSUs, base stations, TSAPs, or edge servers. Note that
the security architecture of the 6G networks is envisioned to
perform strict UE identity authentication. Unauthorized UEs
will be identified and sent out before network sessions are
established to suppress DDoS attack traffic. Therefore, we
assume that DDoS in V2X is initiated by legitimate UEs.

A. ANALYSIS OF EXISTING DDOS DEFENSE
ARCHITECTURES
The access-side DDoS defense aims to detect attacks as
early as possible, thereby minimizing potential damage.
However, three challenges hinder the detection of DDoS
attack traffic at the access side. Firstly, parsing application
layer information is challenging due to source encryption
and other factors, resulting in limited available information
for detection. Secondly, attack traffic is often dispersed and
small in scale, making it difficult to detect before causing
harm. Thirdly, security modules at the access side typically
operate under constraints of limited communication and
computing resources, complicating the execution of complex
security operations like traffic scrubbing.

Existing DDoS defense architectures based on edge com-
puting can be classified into three categories: passive mit-
igation, online detection, and proactive defense. Passive
mitigation methods mitigate DDoS attack damage through
optimized task offloading or resource allocation [16], [35].
This typically involves transferring some service requests
to neighboring edge servers [36] or coordinating traffic
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scrubbing [37]. Based on available defense resources, these
schemes can mostly be implemented through software-level
settings and configurations, offering advantages in deploy-
ability and compatibility. However, their defense efficiency
is constrained by the total amount and distribution of edge
resources, and the scalability is also limited.

In online detection methods, detection modules based
on machine learning (ML) are used to detect and defend
against malicious traffic [38]. The advantages of such meth-
ods include high detection accuracy and promoted security
performance. However, additional training costs and com-
putational requirements are introduced, which reduce their
compatibility and deployability. In addition, some online
ML methods need to inspect all packets forwarded by the
edge server, which is expensive and non-scalable [38], [39].
The application of federated learning (FL) technology could
reduce the computing and communication overhead at a
single node [40], [41]. However, due to the differences in
traffic components and distributions among edge detection
nodes, the model aggregation of FL models may deteriorate
the detection performance of the local models. Both kind
of methods mentioned above are effective against known
attacks but may falter against potential or unknown attacks.

Proactive defense methods are mostly based on game
models and Moving target Defense (MTD). By flexibly
deploying potential targets and dynamically changing sys-
tem configurations, the MTD method can create cognitive
barriers for attackers, increasing the difficulty of launching
attacks or reducing attack effectiveness. This architecture
is often effective, especially for zero-day attacks and ad-
vanced persistent threats (APTs) [42]. However, the cost of
hardware and software deployment and target migration is
usually high, requiring special security design. Alternatively,
the game model-based methods usually derive the optimal
defense strategy [43]. The disadvantage of this method is that
the defense efficiency is limited by the modeling accuracy
and parameter settings. The tradeoff between modeling com-
plexity and practical feasibility should be carefully balanced.

Different from the above work, we build a novel DDoS de-
fense architecture for 6G V2X with the following character-
istics. (1) Low cost. It is deployable and can be implemented
only through software configuration, without introducing
additional hardware or excessive computing/communication
overhead. (2) Scalable. It can be applied to different types of
DDoS attacks and can be deployed on large-scale networks.
(3) Proactive. It can distinguish different defense require-
ments, flexibly adjust defense strategies, and actively deter
potential attackers.

B. OVERVIEW OF THE NEW ARCHITECTURES
We first explain the control architecture of the 6G V2X
network. As a space-air-ground-sea integrated network, 6G
is envisioned to adopt an SDN-based hierarchical control
architecture to facilitate efficient operation and manage-
ment in the integrated network [30]. SDN controllers in

urban/remote scenarios should be organized hierarchically
for scalability considerations, as shown in Fig. 5. The entire
network is logically divided into multiple nonoverlapping
control domains. An SDN local controller (LC) is deployed
in each control domain. The central controller (CC) performs
network-wide resource management for service delivery and
seamless coverage even in high mobility situations as a
coordinator for local controllers. We build a collaborative
defense architecture based on the control domains of SDN
LCs.

In industrial applications, satellite Local Controllers
(SLCs) are deployed in various configurations, utilizing
different hardware platforms such as GEO satellites, LEO
satellites, ground stations, Network Control Centers (NCCs),
Network Management Centers (NMCs), and even terrestrial
cloud centers. GEO satellite-based controllers provide stable
connections with ground stations but have limited coverage,
especially in polar areas. Additionally, their computing re-
sources constrain network scale. LEO satellite-based con-
trollers communicate with terrestrial access points only when
flying over stations, resulting in increased signaling delay for
network state collection and control message distribution.
Limited onboard resources also pose scalability challenges.
NCC/NMC-based controllers face similar limitations. In our
paper, we assume that the SLC is deployed at a ground
station or network control center to minimize transmission
delay in space-ground link for transmitting attack informa-
tion and distributing security strategies.

According to the defense objectives of the V2X, we
distinguish between two different defense scenarios: routine
defense and emergency defense. Routine defense means that
when the LC does not receive an attack event report, the CPs
randomly inspect the traffic forwarded by their associated
edge servers to detect potential attacks based on the security
strategies provided by the LC. The primary goal of routine
defense is to deter potential attackers while minimizing
the cost of defense. In emergency defense, when an attack
incident is reported, the LC instructs the CPs to quickly
activate the defense countermeasures, detect and block attack
traffic as soon as possible, and minimize defense costs.

As shown in Fig. 6, the entire defense architecture has
three layers. The bottom layer consists of UEs, which include
vehicles, cameras, traffic lights and other roadside sensors.
Some of these devices are compromised by attackers. At-
tack traffic originates from these compromised UEs, passes
through the CP, and enters the downstream network. The
defense surface is deployed in the middle as the second
layer, which consists of all the CPs. All upstream traffic
passes through this layer, including both normal and attack
traffic. The attack traffic detection module is deployed on
each control point. The forwarded traffic can be detected
according to the defense strategy distributed by the upper-
layer LC. CPs are the main entities of defense strategy
execution in this architecture, and they are also the core
components of the defense surface. DDoS attacks targeting
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FIGURE 6. Access-side collaborative DDoS defense architecture in 6G
V2X.

devices in the access network and edge can be detected
and mitigated by each CP, which is consistent with the
traditional DDoS defense architecture and does not involve
collaboration issues. The top layer is divided into two parts:
the control plane and the data plane. The control plane
consists of all the LCs and the CC. The LC is the decision
maker for defense strategies and the mediator of CPs in each
control domain. The CC is the coordination medium of LCs
for facilitating interdomain collaboration. The data plane
refers to the network elements in the transition network and
the DNs in which the potential victims reside. It is usually
the destination domain of attack traffic.

Note that Fig. 6 only illustrates the logical division of the
defense architecture. The physical network domain division
may be slightly different. For example, the victim, LC and
CPs may all be located in the same SDN control domain.
In addition, this article considers attacks on only upper-layer
victims through the uplink and does not consider attacks on
edge nodes or UEs through the downlink. This is because
the attack traffic in V2X mainly comes from UEs. Edge
nodes mostly use intranet addresses or randomly allocated
addresses from the IP address pool. These addresses are
unknown to public users. The mobility of UEs may lead
to address switching, which makes them difficult to target.
It is unfeasible for attackers to control malicious UEs to send
attack traffic, uplink through the core network/DN, and then
downlink to attack edge nodes/UEs.

To clearly explain the operation mechanism and demon-
strate the advantages of this new architecture, we compare
it with the traditional server-side DDoS defense methods in
Table 1.

(1) Computing support devices. As mentioned above,
server-side defense methods are deployed at border gate-
ways, firewalls, or cloud centers in the target network. These
devices are usually rich in computing resources. Access-side
defense methods can be deployed only on access points or

edge servers. Their resources are mostly poor. Therefore,
lightweight defense methods need to be developed.

(2) Available information. Server-side defense methods
can directly use application layer and network layer informa-
tion. The application layer information cannot be used due to
traffic encryption. High-precision detection requires mining
information from other sources. Multi-domain information
mining and fusion are necessary.

(3) Points of defense. The attack traffic on the server side
is aggregated in DDoS attacks. Defense countermeasures
can be deployed at a single point. On the access side, the
attack traffic is spread over multiple access points and is
small in scale. At each point, defensive measures need to
be deployed and collaborate with each other. Therefore,
multi-point collaboration mechanisms are highly important
for access side defense architecture.

(4) Communication efficiency. When the defense point is
deployed on the server side, the attack traffic consumes a
large amount of communication resources in the forward-
ing path. The communication efficiency of the defense is
low. The access-side defense system blocks attack traffic at
the access point, avoiding the consumption of downstream
communication resources. In the access-side defense system,
attack information aggregation, defense strategy distribution,
and trust value sharing introduce numeric data exchange in
collaboration. However, the communication overhead is quite
low. Therefore, the communication efficiency is high.

(5) System latency. In DDoS defense systems, the re-
sponse latency is determined by three factors: the feature
extraction time, the time complexity of the algorithms, and
the scale of the data processing. To achieve a high detection
rate, server-side defenses usually adopt a high-complexity
detection method. A very large amount of traffic data must
be processed. The state-of-the-art machine learning-based
detection methods introduce a high time delay in flow-
level feature extraction. The system latency is inevitably
high. The data scale on a single defense point at the access
side is relatively small. By combining packet sampling and
lightweight detection methods, the system delay can be
reduced to a very low level. Therefore, real-time online
processing can be achieved.

(6) Privacy preservation. Privacy issues are caused mainly
by the utilization of application layer information and large-
scale data pooling. Therefore, it is difficult to protect privacy
in server-side defense. The access side defense architecture
can avoid these two problems. The only elements involved
in privacy are user identity and trust value. User identifiers
(such as SUCIs) are inherent information of Internet service
providers (ISPs), and their use is limited to the control plane
of the ISP network and is not uploaded to cloud centers
or other network elements. The trust value evaluation and
transmission process are carried out using blockchain-based
encrypted identity, which is only converted into user identity
on the control plane of the ISP network. Therefore, the
privacy of user trust values and identities can be ensured.
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TABLE 1. Comparison of access-side defense and server-side defense characteristics.

Defense mechanism Access-side defense Server-side defense

Computing support devices Edge servers, access points Border gateways, firewalls, cloud servers

Available information Network layer information, other sources Network & application layer information

Points of defense Single point, centralized Multiple points, distributed, collaborative

Communication efficiency Low High

System latency High Low after optimization

Privacy preservation Weak Strong
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IV. Key technologies for access-side defense
A. DISTRIBUTED COLLABORATION MECHANISM
The collaboration relationships in the proposed DDoS de-
fense structure can be divided into two modes: intradomain
collaboration between CPs and cross-domain collaboration
between LCs. In different defense scenarios, the collab-
oration mechanism of the DDoS defense architecture is
different. We introduce them separately below.

1) Collaboration in routine defense
In routine defense, the defense objective is to deter potential
attackers. We define the LC as the defender of a network
control domain in V2X. The formulation of a defensive strat-
egy requires fine-grained modeling and analysis of decision-
making elements, including the action space and utility
function of both players. This problem can be modeled using
game theory. A typical DDoS security game scenario in
V2X is illustrated in Fig. 7. The DDoS detection methods
are deployed at the CPs. The security function of the
LC has three modules: a game-based decision module, a
collaboration module with other LCs and a state monitoring
module for CPs.

• Game-based decision module. To make an optimal de-
fense decision, a multipoint collaborative security game

model can be formulated in the LC of each control
domain. By analyzing the victim’s characteristics and
the attacker’s equilibrium strategy, the defender can
derive a dominant strategy so that the attacker cannot
benefit from launching an attack as expected. A specific
defense action can be a countermeasure that directly
affects the detection rate of attack behaviors, such as
the packet inspection rate. For the detailed modeling
methods and theoretical analysis, please refer to our
earlier work [43]. On this basis, it is sufficient for
the CPs in each control domain to collaborate with
each other according to the derived dominant defense
strategy broadcasted by the LC.

• Reinforcement learning-based collaboration module.
Considering that the parameters of the DDoS security
game model may change over time, a single LC cannot
perceive such changes in a timely and accurate manner
due to its small sample size of strategic interactions.
This module is used to establish an information collab-
oration mechanism between LCs to adjust and optimize
the equilibrium defense strategy. LCs can share their
defense strategies and game results as training samples
with other LCs. The shared information should consist
of the state, action, reward, and strategy. Among them,
reward information is the most important and can
provide feedback from the environment (i.e., attackers)
for recipients to improve their strategies. This interdo-
main information sharing does not require high timeli-
ness and can be achieved through terrestrial backbone
networks or satellite networks in 6G. Then, classical
reinforcement learning methods such as the Q-learning
algorithm can be adopted to update the local game
model and defense strategy [44]. We will not discuss
the implementation details of the learning models here.

• Digital twin-based state monitoring module. This mod-
ule is designed for privacy-preserving purposes. Along
with the widespread use of open radio access network
(O-RAN) technology, heterogeneous access devices
may introduce a large number of vulnerabilities, putting
CPs at risk. A CP state monitoring mechanism must
be established. Digital twin technology has provided a
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solution to this problem [45]. By accurately mapping
the physical state of the access-side devices to the
digital space, the LC can monitor and diagnose all
the CPs in its control domain in real time to detect
abnormal devices and eliminate their security risks.
Therefore, this module can avoid CP-led attacks and
privacy issues.

In summary, collaboration in routine defense mainly in-
cludes two parts: strategic collaboration among the CPs in
the control domain and interdomain information collabo-
ration among LCs. The former establishes a local defense
surface based on a proactive strategy, and the latter expands
the local collaboration network-wide and realizes strategy
evolution. The integration of both can realize a long-term
proactive defense architecture.

2) Collaboration in emergency defense
In an emergency defense, the defense objective is to block
attack traffic as soon as possible. We take a session as
the basic unit of attack detection. Each attack session can
be blocked immediately after being detected, instead of
inspecting every packet in the session. This setting can help
reduce costs and improve defense efficiency. To this end,
LCs need to derive their defense strategies to detect attack
sessions with the required detection rate. The collaboration
framework for emergency DDoS defense is shown in Fig.
8. The CPs are deployed with the detectors of attack traffic.
The LC still serves as the defender and decision maker for
a single control domain, but its functions are different from
those of routine defense.

The LC hosts three functional modules: the session infor-
mation collection module, the attack parameter estimation
module and the defense strategy optimization module. The
CPs implement attack session detection and periodically
report the newly collected attack session information to

the LC. The attack session information can be customized
by LC according to the input parameters of the detection
method, which usually include the session 5-tuple (i.e., the
allocated source IP address, the destination IP address, the
source/destination port and the layer 4 protocol), the session
ID, the identifier of the source UE (such as the Subscription
Concealed Identifier, a.k.a. SUCI in 5G), the transmitted
length (bits), the number of packets, etc.

The session information collection module runs contin-
uously in the system, whether in an emergency or not.
The collected information is aggregated and reported to
the attack parameter estimation module. Then, the attack
parameter estimation module estimates the key characteristic
parameters of the attack behavior according to the decision-
making requirements. The parameters that need to be esti-
mated may be the size of the attack session (total number
of packets/bits), the average duration, the packet arrival rate,
etc. At the beginning of an emergency defense, the defender
may not have knowledge of the characteristics of the attack
behavior, so this module is critical for optimizing the defense
strategy. In DDoS attacks, the attack behavior of bots is
usually similar under the unified instructions of the command
and control (C & C) server. This fact is reflected in the
similarity of attack session characteristics. Therefore, it is
feasible to rapidly estimate attack behavior parameters using
dense sampling over a large number of concurrent attack
sessions. Finally, the defense strategy optimization module
optimizes the defense strategy by integrating the information
obtained from various sources, including the estimated attack
parameters, the feedback from the victim and the trust
values from the trust management infrastructure deployed
in the satellite network. The updated defense strategy can be
redistributed to the CPs for execution. This process results
in the formation of a complete optimization loop from
observation and orientation to decision and action. Since the
estimation of attack parameters is usually inaccurate due to
the limitation of the number of observations in the beginning,
this closed-loop optimization process is very important for
improving decision-making efficiency.

Note that we have introduced a blockchain-based identity
and trust management infrastructure in the proposed archi-
tecture. The blockchain is deployed at satellites and is used
to record the historical malicious communication behaviors
of each UE. This infrastructure provides real-time trust
values of suspicious UEs to LCs based on a trust evaluation
algorithm. Considering that a trust management system must
be established based on the unique digital identity of each
UE, the infrastructure will also maintain a digital identity
system. Accordingly, each LC deploys a mapping list from
the subscriber identity to the digital identity of the accessed
UE to request the trust values of suspicious UE devices
from the blockchain for attack detection. Rapid movement
of vehicle bots may lead to changes in the access network
domain. Deploying a trust management system on a satellite
network can facilitate access to trust values anytime and
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anywhere while avoiding delay and privacy issues that may
be caused by cross-domain handovers.

Considering that the attack may be launched from multiple
control domains simultaneously, horizontal strategy collab-
oration is also required between LCs. This collaboration
is achieved through the sharing of defensive strategies.
Strategy sharing can enable LCs that have just switched
to an emergency defense state to quickly execute opti-
mized defense strategies rather than starting from scratch.
LC can also speed up its strategy optimization process by
directly adopting more convincing defensive policies based
on more observations of attack sessions. In summary, in
emergency defense, intradomain collaboration among CPs
can be achieved through attack information sharing, and col-
laboration among LCs is enabled by both trust information
sharing and defensive strategy sharing.

The frequency of defensive strategy sharing can be deter-
mined by the defender based on the actual security require-
ments. In fact, the communication costs associated with such
strategy interactions between LCs are low (which will be
evaluated in detail below), so a higher frequency of strategy
sharing means faster strategy optimization. However, if it is
less than the arrival interval of attack packets, the LC does
not collect enough new information, and strategy sharing
becomes meaningless. Therefore, in practical applications,
we recommend referring to the attack packet arrival interval
to determine the strategy information sharing frequency.

Aiming at the DDoS defense requirements in 6G V2X, the
architecture deploys detection algorithms based on access-
side control points and optimizes local defense strategies for
LCs to realize horizontal collaboration among CPs. The LCs
can switch their working states between routine defense and
emergency defense to meet defense objectives in different
scenarios. By means of information exchange among LCs,
global information sharing and wide-area security defense
are realized.

B. PROACTIVE DEFENSE DECISION-MAKING METHOD
Proactive defense decision-making in routine scenarios relies
on detailed characterization and cost–benefit analysis of the
behavioral models of both the attacker and the defender. The
traditional security game model (TSGM) cannot meet this
demand for the following three reasons [43]. First, DDoS
attack defense at the access side is accomplished by the
collaboration of multiple CPs, and the TSGM lacks accurate
characteristics of the multiagent collaboration effect. Second,
the players’ action space is high-dimensional and even
continuous, and the attacker’s action is constrained by the
geographical distribution of the bots. However, TSGMs lack
these considerations. Different from those of the TSGM,
the utility functions of the DDoS game are not simple
summations of the utilities on each CP but piecewise and
nonlinear functions with respect to the total volume of
traffic that reaches the target. Therefore, developing a new

multiagent collaborative DDoS game model is the basis of
for proactive defense decision-making.

To solve this problem, four main issues need to be
considered.

(1) Model selection. Game theory was developed nearly a
century ago, and researchers have developed a wide variety
of models based on the diverse needs of solving practical
problems. Determining which model is best for modeling this
decision problem requires careful consideration. Considering
that the defender has limited security resources that preclude
full security coverage of important potential targets at all
times, optimizing the allocation of limited security resources
to maximize defensive utility is the ultimate goal of the
defender. Usually, the defender develops a defensive strategy
first, after which the attacker responds to it. This is in line
with the framework of Stackelberg games [46]. Therefore,
we believe that the Stackelberg game model is one of the
best choices in this scenario. First, this model can give the
defender (leader) the initiative of equilibrium selection so
that the dominant strategy for the defender can be selected
to achieve the goal of deterring the attacker. Second, the
equilibrium utility of the Stackelberg game is not inferior to
the Nash equilibrium and is even better in some cases [47].
Third, the solution to this model has been well studied, which
can guarantee that the established model can be solved,
especially when the action space and utility functions are
complex.

(2) Model formulation. After the model is selected, it
is necessary to formulate the problem in combination with
the actual defense scenario. The parameters that need to
be formalized include the action space, strategy, and utility
functions. The formulation of utility functions is the most
difficult. We need to model the effect of defense measures
at each CP and model the arrival behaviors of both normal
traffic and attack traffic at the victim. The effect of defensive
measures varies according to the detection method, and a
simpler approach is probabilistic modeling. Assuming that
the detection rate of attack traffic is stable or follows a
certain distribution, the packet pass rate of attack traffic
can be analyzed and modeled. The packet pass rate of the
attack traffic is the proportion of packets that successfully
reach the victim in the total number of attack packets.
There are many modeling methods for the continuous-time
packet arrival process. The most commonly used model is
the Poisson process [48]. Note that the traffic arriving at
the target includes both normal traffic and attack traffic. The
packet arrival process characteristics of the two are different
and cannot be modeled by the same model. On this basis,
the equilibrium strategy solving problem can be transformed
into a conventional optimization problem.

(3) Model solution. The solution of strong Stackelberg
equilibria has been shown to be NP-hard [49]. There are
many sophisticated polynomial time solution methods for the
TSGM, but most of them employ the Harsanyi transforma-
tion in discrete action spaces, consequently, these methods
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FIGURE 9. An example of the utility functions for attackers and
defenders. For the setting of relevant parameters, please refer to Section
V-C and reference [43].

cannot be applied to DDoS game scenarios. In recent years,
several researchers have attempted to use new technical
tools, such as neural networks, to solve the leader’s strategy
of Stackelberg games in a continuous action space [50].
However, when training a neural network, a large number
of training samples need to be collected in advance, and the
convergence of the equilibrium strategy is relatively slow,
consequently, the trained network cannot quickly adapt to
dynamic changes in the security situation. In fact, the solu-
tion of DDoS game equilibrium is expected to be achieved
by a heuristic algorithm. Since the investment of both attack
and defense resources obeys the law of diminishing marginal
utility, the utility functions are convex in the nonlinear part
with respect to the component of the action profile on each
CP. Based on this observation, a heuristic algorithm can
be designed to quickly solve this equilibrium [43]. The
equilibrium we expect is the threshold of defense resource
investment that the attacker gives up because the attack is
unprofitable. If the defender detects DDoS traffic regardless
of the cost, the attack traffic will be detected and blocked
with probability 1, and the attacker will certainly suffer
losses. Therefore, the equilibrium we expect must exist in
theory. Fig. 9 shows an example of the utility functions
at a control point. The left panel shows the change in the
attack utility (under the optimal strategy), and the right panel
shows the defense utility. As shown in the figure, around
PSR = 0.69, the payoff of the attacker launching the
optimal attack reaches 0, where the attacker has better to
give up the attack. At the same point, the defender achieves
a gain in efficiency because the attacker gives up. This point
is the ideal equilibrium that we pursue.

(4) Model generalization. When constructing the Stackel-
berg game model, we assumed a specific attack and defense
scenario. That is, the attacker has a specific target and
resource distribution, and the victim has a certain ability to
mitigate redundant traffic. However, in practical applications,
the resource endowments of each potential participant are
not the same. The defender must consider the unspecified
ability of the attacker and the victim. This requires the
generalization of the model to remove or relax some specific
assumptions. After generalization, the model may become
simpler and may enable an analytical solution. Executing
the equilibrium strategy of the generalized model may cause

the defender to lose some defense utilities in some specific
scenarios, but it can cope with a wider range of game settings
and ensure that the defense utility is always maintained at
a high level. Therefore, model generalization is a critical
step from mathematical conclusions to practical strategies in
DDoS defense.

C. MULTIDOMAIN COLLABORATIVE DDOS DETECTION
FRAMEWORK
To achieve efficient defense against DDoS attacks in V2X,
we should seriously consider cost–benefit issues. Theoret-
ically, the existing malicious traffic detection algorithms
based on edge AI can detect the vast majority of current
DDoS attacks with extremely high accuracy and sufficient
resources. We need to consider the computational, storage
and time costs of these methods. The computational cost
determines the deployability of the defense architecture,
which involves two main aspects: the computational com-
plexity of the detection algorithms and the scale of the data
processing. The time cost, namely, the delay, directly affects
the availability of V2X services, especially delay-sensitive
services. Corresponding to the calculation cost, the delay
also comes from two aspects, i.e., the calculation delay of the
detection algorithm and the processing delay of the streaming
data. Due to the development of storage technology, the
storage cost usually does not impose significant restrictions
on the performance of detection algorithms. Therefore, we
design a real-time detection framework that considers the
optimizations of both computational complexity and the data
processing scale.

To ensure real-time performance, we make efforts from
the following two aspects. One is to design a lightweight
attack traffic detection algorithm, and the other is to reduce
the workload of packet processing. The anomaly detec-
tion methods based on machine learning are state-of-the-art
DDoS detection algorithms. With respect to 6G V2X, the
development of edge intelligence is expected to deploy FL
models as infrastructure at CPs to perform attack detection
tasks [48]. However, real-time detection based on FL still
faces the following challenges. First, flow-level features
cannot be used due to the feature extraction delay, which
limits the detection accuracy of the model. A round of DDoS
attacks usually persists for one flow. The flow-level features
cannot be extracted until the flow is complete, making the
detection meaningless. Therefore, more fine-grained features,
such as features based on packets, flowcells [51], or time
windows, must be used. However, the semantic information
about the behavior that fine-grained features can reflect is
much less than that of flows, and the accuracy of attack
traffic detection based on such features may also be limited.

To compensate for the information loss caused by the
above limitations, additional sources of information must be
used, and lightweight detection methods should be developed
to ensure the accuracy of DDoS detection at the access side.
We propose a multidomain collaborative DDoS detection
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framework to integrate multidomain information [52]. In
fact, the sources of information at the access side are not
fully utilized. We divide the information sources available at
the access side into the control domain, operation domain
and application domain, as shown in Fig. 10 [52].

The control domain mainly refers to the control plane
of the ISP network. Due to their proximity to UEs, the
access and movement behavior of UEs can be recorded in
the control domain. The LCs can also make full use of the
signaling of the ISP network to implement operations such
as source address verification.

The operation domain refers to the data plane of the
ISP network. Because it directly performs packet forwarding
operations, it can extract and record the packet-level features
of the session for further detection and can also use other
information collection methods, such as packet counters, to
estimate the parameters of the attack sessions.

The application domain refers to the data network in which
the victims reside. Victims can decrypt attack traffic to obtain
more application-layer information about the attack. This
information can be fed back to the LCs, helping to improve
the detection accuracy. In addition, victims may have some
preferences or priorities for DDoS defense, which can also
be used as guidelines for access-side defense.

The fusion of multidomain information requires the syn-
thesis of various methods. We recommend considering the
following lightweight methods.

(1) Signature-based detection methods use packet-level
features only. Although the signature-based algorithm is
traditional, it is very efficient at detecting certain known
attacks [53]. Many known attack types have anomalies at
the packet level. For example, source address spoofing,
empty packets, oversized packets, and specific vulnerable
port numbers. Through deep packet inspection (DPI), a large
number of features at the packet level can be extracted to
effectively detect such DDoS attacks. The most harmful re-
flective DDoS attacks have source address spoofing features,
and this method can be used for fast filtering.

(2) Trust-based detection methods. Trust management was
first introduced as a kind of malicious behavior detection
method in peer-to-peer (P2P) networks. This method requires
that the behavior pattern of the object be simple enough to
carry out trust evaluation. In recent years, it has been widely
used in the IoT, and V2X scenarios are also applicable [54].
The main advantage of using the trust value as an attack
traffic detection metric is that it is lightweight. Since trust is
a relatively stable trait, it can be computed offline on a back-
end server and requested on demand during application. The
trust value cannot be used as the only evaluation criterion,
and the evaluation results of the current behavior should also
be considered.

(3) Blacklist/whitelist-based packet filtering. The black-
list/whitelist technology seems slightly outdated, but it is
very practical and efficient to implement. The configuration
is simple and flexible. In particular, this approach can support
the diversified defense preferences of victims and simplify
the calculation process of trust management methods. In
recent years, this technology has also been developed and
is worthy of being advocated because of limited computing
resources at the access side [55], [56].

The three methods presented above are all of linear com-
plexity and can support online detection and collaboration. In
practice, to maximize the defense utility, we need to integrate
the workflows of various methods into a unified detection
framework to ensure the detection efficiency of DDoS attack
traffic.

D. SELF-OPTIMIZING PACKET SAMPLING STRATEGY
Packet feature extraction based on DPI is an important
information source for online DDoS detection. The packet
processing workload of the DDoS defense architecture is an
important factor affecting the overall delay of the architecture
and directly determines the defense cost. Due to the limited
computing power and large traffic scale at the access side,
the cost of detecting all inbound packets is too high, and
the resulting delay is often intolerable. Therefore, packet
sampling becomes a key way to reduce the cost of data
processing in the DDoS defense architecture.

There are many packet sampling strategies that can be
roughly divided into two categories: probability-based and
time-based. For the former, the packet sampling rate (PSR)
is a very important index. For the latter, the sampling interval
is more important. The specific sampling strategy selection
depends on the type of DDoS attacks to be detected. Con-
sidering the decreasing trend of DDoS attack duration, some
attack sessions may be missed by time-based sampling, and
the probabilistic sampling strategy can ensure a sufficiently
high detection rate of attack sessions. Therefore, determining
the optimal PSR has become the primary issue in optimizing
the defense costs.

The optimal PSR is related to the size of the attack
session, that is, the number of packets transmitted during
the session’s lifetime. In the emergency defense scenario,
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the defender cannot determine the attack session length at
the very beginning. When an attack session is detected, the
defender immediately blocks the session to reduce damage,
so the session size cannot be directly observed. To solve this
problem, we need to realize accurate estimation of the attack
session size during the packet sampling detection process.
This can be done by setting a packet counter for each session
on the CP, marking which packet of the session is being
forwarded. When the attack session is sampled, the current
value of its packet counter is recorded. Because in most
cases, DDoS attack sessions are usually the same size and
predetermined by the attack instructions 1, and the arrival
time to the CP is independent due to route differences,
the counter’s reading of detected attack sessions can be
approximated as random samplings from multiple discrete
uniformly distributed populations. We need to estimate the
bounds of the discrete uniform distribution based on the
results of multiple independent and identically distributed
random samples. This statistical problem can be solved using
standard statistical methods. We have discussed this in detail
in our recent work [52]. The minimum-variance unbiased
estimator (MVUE) of the session size (denoted by L̂) based
on the observations from packet counters of attack sessions
can be formulated as

L̂ = X(t) +

 1(
1 + 1

X(t)−1

)t
− 1

 , (1)

where t is the number of sampled sessions, X(t) is the max-
imum order statistic of the readings from packet counters,
and [·] is the round operator to ensure that the output result
is an integer.

Since the second term in (1) is mostly 0 when t is large, we
usually use the asymptotically unbiased estimator L̂ ≈ X(t)
for simplicity. Let us analyze the confidence interval for this
estimator. The distribution function of X(t) is

F (X(t) = k) =
(k − 1)t

Lt
(2)

where L is the true value of the attack session size, and 1 ≤
k ≤ L is an arbitrary integer. We assume that the required
confidence level is 1− α, then the upper and lower bounds
of a symmetric confidence interval can be formulated as

CIu =

[
X(t)− 1

t
√
α/2

]
+ 1, (3)

and

CIl =

[
X(t)− 1
t
√

1− α/2)

]
, (4)

where CIu is the upper bound and CIl is the lower bound.

1If a sophisticated attacker changes the attack mode such that the size
of attack sessions follows a certain distribution, we need to estimate the
distribution function. See [57], [58] for more details.
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FIGURE 11. Loop of packet sampling strategy optimization.

Based on the estimation of the attack session size L, the
optimal PSR can be formulated as [52]

p0 = 1− (1− α)1/L̂, (5)

where α is the expected detection rate of attack sessions.
Based on the estimation of the attack session size, the

optimal PSR can be derived to optimize the defense cost.
However, estimations can be biased which may affect the
cost minimization. To solve this problem, the estimated
session size can be further optimized using re-estimation
based on the new observations after each round of sampling,
and ultimately converges to the optimal value. Since attack
sessions are immediately blocked after being sampled, the
newly collected samples and historical samples are also
independent of each other, so the convergence process of
this PSR can be guaranteed by the law of large numbers.
This method forms a self-optimizing procedure for the packet
sampling strategy, as shown in Fig. 11.

To start the optimization loop, the initial sampling rate
can be initialized as the proactive defense sampling strategy
in the routine defense scenario. Since the self-optimization
procedure usually converges quickly, the defender has the
flexibility to choose an appropriate initial sampling rate,
such as 5%, based on the amount of remaining computing
resources. In applications, to detect attack sessions as early
as possible, we recommend that the initial sampling rate
be appropriately increased as long as the resources are
affordable. To stop the loop after PSR convergence, it is
necessary to detect the change in the PSR in each strategy
update. If the improvement is negligible in several successive
updates, the strategy optimization process can be terminated.

This section provides examples of a quick start and opti-
mized defense strategy in an emergency defense scenario. In
a real defense scenario, the optimized target quantity may not
be the PSR. However, the methodology of rapidly estimating
attack parameters by observing a large number of attack
sessions is still applicable and is an important example of
time-for-space engineering thinking.

V. Performance Evaluation
To verify the performance of the proposed access-side DDoS
defense architecture, we present a set of simulation results.
We verify the performance of our proposed architecture
in three aspects, namely, computational cost, communica-
tion efficiency, and detection performance. The software
simulation platform used in this study is Matlab 2016a.
The performance parameters of the hardware platform are:
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Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz, 16.0 GB
of RAM and Windows 10 64 bit operating system.

The network topology employed in the simulations is
shown in Fig. 12. We set 2 local controllers in the network,
which are denoted as LC1 and LC2. In LC1, there are 4 CPs,
namely CP1, CP2, CP3 and CP4. In LC2, CP5 and CP6 are
deployed. There are communication links between CPs in the
same local control domain (not marked in the figure), and
LC1 and LC2 collaborate through inter-domain links. The
software simulation platform used in this study is Matlab
2016a. The performance parameters of the hardware platform
are: Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz, 16.0
GB RAM and Windows 10 (64 bits) Operating system.

We set a set of concurrent DDoS attack sessions passing
through the control points, including 1000 continuous normal
sessions and 10 attack sessions when the simulation began.
To simulate the actual attack scenario, we assume that the
packet counters of the 10 attack sessions are set randomly
at the beginning when the defense process is activated.
Assuming that the vehicular bots are sending attack packets
at an average rate of 10 packets per second (pps) and the
total session size is set to 50 packets by the attacker, thus
the total duration of an attack session is 5 seconds. During
the first 3 seconds of the simulation, a new batch of attack
sessions is launched every 0.1 seconds. The number of new
attack sessions in each batch is determined according to
a Poisson process with a parameter of 5. Thus, all attack
sessions ended in 8 seconds. We assume that our defensive
goal is to detect the attack with a 99% probability before the
session ends. The initial PSR at each CP was set to 0.05.
The defense strategy we use in this simulation is detailed
in Sections III and IV for emergency defense scenarios. We
estimate the attack session size and determine the optimal
PSR based on the packet inspection results in previous
sampling periods. We take the average number of packets
that need to be inspected to detect an attack session as the
metric for evaluation. This metric well reflects the balance
of defensive costs and benefits.

A. COMPUTATIONAL COST
To evaluate the computational cost of the proposed architec-
ture, we first analyze its computational complexity, and then

distinguish two types of scenarios including intra-domain
collaboration and inter-domain collaboration to measure the
computational cost of emergency DDoS traffic detection by
simulations.

1) Computational cost analysis
In an emergency defense scenario, the computational cost
of the access-side defense architecture mainly comes from
the DPI and defense strategy calculations. Since the strategy
calculation mostly uses information from IP headers, which
can be extracted in conjunction with packet parsing by the
associated network element during the packet forwarding
process, the defense architecture does not need to introduce
additional computational overhead.

The DPI to a single packet can be completed in constant
time, so the complexity of DPI is O(pN), where p is the
PSR and N is the total number of packets forwarded in
each sampling period. The time complexity of the attack
session size estimation and sampling strategy calculation
is O(1) according to (1) and (5). Since trust values of
UEs can be calculated offline on remote cloud centers, the
calculation of packet filtering strategies based on trust values
and blacklists involves only a retrieval process in a given
list, and its time complexity is sub-linear. If a machine
learning-based approach is used to make packet filtering
decisions, the complexity of policy generation is determined
by the learning algorithm itself, which has nothing to do
with the architecture proposed in this paper. Therefore,
the computational cost of our proposed access-side defense
architecture is linear in complexity.

In a routine defense scenario, calculating the defensive
strategy requires solving the game equilibrium, but the
strategy can be calculated offline in advance and does not
need to be adjusted in the short term, so its complexity is
not considered here to evaluate the computational cost of the
security architecture [43].

2) Intra-domain collaboration
Next, we evaluate the computational cost of using DPI to
detect malicious traffic at the access side. Since the cost
of implementing DPI for a single packet is constant, we
evaluate the computational cost of detection by the total
number of packets inspected, and reveal the important role
of collaboration in optimizing inspection costs from both
intra-domain and inter-domain perspectives.

First, we investigate the collaboration effect on defense
efficiency using intra-domain collaboration. We take LC1 as
an example. In the simulations, CP1, CP2 and CP3 work
independently to detect and optimize the defense strategy,
while CP4 (which we denote as Co-CP) executes the col-
laborative defense strategy derived from their public LCs.
We calculate the average detection cost (i.e., the number of
inspected packets) of one attack session in the simulations.
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FIGURE 13. Average detection costs of attack sessions in intra-domain
collaboration.

The results obtained by averaging 100 random simulations
are shown in Fig. 13. The red curve illustrates the average
detection cost of CP4 implementing the collaboration strat-
egy and the blue curve refers to the average detection cost
of other standalone CPs. The costs of attack detection first
decrease and then increase.

In the first 3 s, because new attack sessions continue to
arrive, the proportion of total attack sessions in the traffic
continues to increase so that the cost of detecting attack
sessions continues to decrease. After 3 s, as the attack
sessions are gradually detected and blocked, the number of
attack sessions remaining in the traffic continues to decline
without new arrivals, and the detection cost of a single
session increases. From a numeric perspective, the average
detection cost in the first 1 s in collaborative mode (CP4) is
comparable to that in standalone mode (CP1-CP3), or even
slightly greater, because the PSR at CP4 has converged and
is significantly lower. The rapid optimization convergence of
the defense strategy makes the cost advantage increasingly
significant, while the standalone mode leads to a higher de-
tection cost due to oversampling before the defense strategy
converges. This result verifies the importance of intra-domain
collaboration in reducing defense costs.

3) Inter-domain collaboration
To verify the effect of inter-domain strategy collaboration
on the computational cost, we designed another set of
simulations. This time we focused on LC2. The background
traffic settings are the same as those of the CPs in LC1.
Due to the mobility of vehicle bots, we assume that at t=2 s,
60 active bots move from LC1 to LC2 while continuing to
send attack traffic. Among them, 30 bots access CP5, and the
other 30 bots access CP6. The 6G handover system transfers
the corresponding session information to the new CPs. For
CP5, we set its initial defense strategy as the optimal value
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FIGURE 14. Average detection costs of attack sessions in inter-domain
collaboration.

of LC1 at time t=2 s through the inter-domain collaboration
mechanism and then carry out its own strategy optimization
loop. CP6 does not adopt an inter-domain collaborative
optimization strategy but directly starts from scratch. We
also examine the average session detection cost of CPs in
both scenarios. Fig. 14 shows the average results of 100
simulations.

The defense cost of CP5 is slightly greater than that of
CP6 in the initial stage because the PSR at CP5 converges
more quickly due to inter-domain collaboration, making its
detection rate slightly lower than that of CP6 in the first
2.5 s. From t = 2.5 s on, inter-domain collaboration has a
significant cost advantage. CP5 has a lower average detection
cost for sessions due to the use of a more optimized defense
strategy. The cost advantage even increases further as the
number of attack sessions decreases. These results show that
inter-domain collaboration can better cope with bot mobility
in V2X during emergency defense against attack events and
prevent newly involved CPs from learning defense strategies
from scratch, thus further improving defense efficiency.

B. COMMUNICATION EFFICIENCY
To demonstrate the bandwidth efficiency of the new archi-
tecture, we designed two sets of simulations. The first set
evaluates the bandwidth resource consumption introduced by
the defense architecture, which reflects the communication
cost of defense. The second set evaluates the total network
bandwidth consumption caused by attack traffic propagation
after the defense architecture is deployed, which reflects the
benefits of access-side defense.

We take LC1 as an example. We assume that IPv6 is used
as the network layer protocol in collaboration. The length of
the attack session information description is 248 bits each
[52], including 232 bits for basic information and 16 bits for
the packet counter. We take the PSR as the defense strategy,
and the message length is set to 8 bits. The trust value is
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set to 8 bits per UE. The blacklist provided by the victim
consists of 1000 IPv6 addresses with 128 bits each, which
are first sent to the LC and then distributed by the LC to the
CPs. The attack packet length was 1 kb. Other parameters
of our simulation are set as described above.

1) Bandwidth cost
The bandwidth consumption of the proposed architecture
comes from two aspects: one is session information col-
lection, that is, the CPs send description information of
attack sessions to LC1, and each attack session has a triplet
[52]; The second is defense strategy distribution, that is,
LC1 sends defense strategy related information to the CPs,
including the optimal PSR, blacklist, and trust value of the
accessed vehicles.

We use the online ML-based architecture for comparison.
One representative example of such methods is [39]. In line
with our ideas in this paper, LEDEM proposed in [39] takes
the switches as the control points in SDN and the LC as the
defense strategy engine. The switches periodically send the
captured network traffic data to the LC. The LC performs
online machine learning methods, generates defense strate-
gies, and then sends them back to the corresponding switches
in terms of flow entries to perform traffic control actions.
This architecture is similar to ours, except that our CPs
are deployed at the access side, while the CPs in LEDEM
are spread across the network. As we will show below,
the bandwidth overhead of these two architectures is quite
different.

For ease of comparison, we consider the 4 CPs of LC1 as
switches in LEDEM and let LEDEM take the same packet
sampling strategy as our architecture in data capture. The
packet length of session description information is set to
be 568 bits, including 248 bits of session information and
40bytes (320 bits) of IPv6 packet header. In LEDEM, the
length of flow entries distributed by LC is set to 98 bytes
according to Openflow v1.3 or newer, including the Match
Field 32bits, Priority 4bytes, Counters 8 bytes, Timeout
8 bytes, Instruction 2 bytes, Cookies 8 bytes and IPv6
header 40 bytes. Other parameter settings and the attack
traffic generation method remains the same as above, except
that the number of benign sessions increases from 1000 to
10000, increments by 1000. We collected the total bandwidth
consumption of the two architectures in the data/feature
collection and defense strategy distribution processes in 100
random simulations, and the average results are shown in
Fig. 15.

In general, the bandwidth overhead of by our proposed
architecture is much lower than that of online ML-based
approaches. As the scale of background traffic increases, the
bandwidth resources consumed by online ML generally in-
crease linearly, because the detector forwards all the sampled
packets to LC1 for further detection. In our architecture, the
function of malicious traffic detection is moved forward to
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FIGURE 15. The bandwidth consumption under our defense architecture
and online ML-based architecture.

CPs, and CPs only need to transmit the detected malicious
session information to LC1 for defense strategy optimization.
Therefore, the communication overhead for data forward-
ing in our architecture is related only to the number of
malicious sessions, not the size of the background traffic.
This observation is important because the vast majority of
sessions are benign in real network traffic, while forwarding
packets of benign sessions is an unnecessary consumption of
bandwidth resources. Our architecture avoids this expense,
which greatly saves bandwidth resources. It should be noted
that the curves in Fig. 15 show slight fluctuations due to
randomness and changes in the number of defense strategies
from LC1 to CPs. Due to the magnitude difference in the
values between the two sets of results, such fluctuations
are subtle in the figure. In summary, compared with online
ML, our architecture not only saves significant bandwidth
resources, but is also robust to the background traffic scale.

2) Bandwidth benefits
In this set of simulations, we count the total bandwidth
consumed by the attack traffic under the proposed archi-
tecture and the traditional server-side defense architecture in
LC1. We increase the number of route hops between the
bot and the victim from 2 to 10 to adapt to different attack
paths. In the access-side defense, the bandwidth consumption
comes from three parts: collaborative information exchange,
strategies provided by the LC, and missed attack packets. In
the server-side defense, the bandwidth cost is caused by the
attack traffic propagation. The average results of 100 random
simulations are shown in Fig. 16.

In both defense architectures, the total bandwidth con-
sumed by the attack increases linearly with the average hop
count. The bandwidth consumption under server-side defense
increases rapidly with the number of routing hops of attack
traffic. In contrast, the bandwidth consumption increases
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FIGURE 16. The bandwidth consumption of attack traffic after deploying
access-side defense and server-side defense.

very slowly under the access-side defense architecture. The
reason is that the communication overhead caused by black-
list transmission and missed attack packet propagation is
positively linear with respect to the hop count. In general, the
total bandwidth consumption under the access-side defense
architecture is much lower than that under the server-side
defense architecture, because our architecture blocks the vast
majority of attack traffic at the network entrance, while the
introduced cost is very low. These results further verify the
great advantages of the access-side defense architecture.

C. DEFENSIVE PERFORMANCE
We first examine the convergence of the optimal defensive
strategy, and then distinguish between routine defense and
emergency defense scenarios to evaluate the performance of
the proposed access-side defense architecture.

We follow the previous defense scenario settings and
consider three attack session sizes, namely L = 20, L = 30
and L = 50. We use Eq. (1) to estimate the session size
and examine the convergence of the PSR with the sampling
process. The initial PSR is set to 0.05. The average results
of 100 random simulations are shown in Fig. 17.

It can be seen from the results that although the initial
value of PSR is small, the convergence speed is fast. For all
three typical session sizes, the PSR generally converges to its
optimal value within about 5 sampling periods. This is due to
the large number of DDoS attack sessions, even if the PSR is
low, a significant number of attack sessions can be sampled
in each sampling period, which provides new information for
session size estimation and can quickly optimize the PSR.
These results show that our proposed optimization loop for
defense strategies has high efficiency. Detailed discussions
can also be found in our recent work in [52].
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FIGURE 17. The convergence of PSR in the defense strategy optimization.

1) Routine defense
In the routine defense scenario, the goal of defense is to deter
the attacker with the maximum defense utility. Our proposed
architecture adopts a security game model to derive the
optimal defense strategy at the equilibria, and then executes
the strategy statically. Therefore, the defense utility is the
most important metric of defensive performance.

To verify the superiority of access-side defense, we com-
pared it to centralized defense deployed at the server side.
For details on the game model adopted by the access side
defense architecture, please refer to our previous work [43].
For server-side defense, we adopt the traditional Stackelberg
security game (SSG) model, as described in [46]. This
model deploys CPs around the victim server, and the defense
strategy is also random sampling and packet inspection. The
difference with our model is the lack of collaboration among
multiple CPs. We denote our new model “D-SSG” and the
server-side model “C-SSG”. We consider LC1 and set the
background traffic load on the four CPs as n1 = 1×108 pps,
n2 = 6×107 pps, n3 = 4.8×107 pps and n4 = 3×107 pps.
Moreover, we set the number of attack sessions forwarded
by these CPs as A1 = 4, 000, A2 = 3, 000, A3 = 5, 000
and A4 = 2, 000. We take the distributed reflection denial
of service (DRDoS) attack as an example and increase the
reflection factor from 1 to 10. The length of the attack
packets is set to 1 kb. The other model parameters are set
the same as [43]. After implementing 100 random attack
simulations, we compared the average defensive utilities as
shown in Fig. 18.

The results show that the defensive utilities of both models
decrease as the reflection factor increases. The overall utility
of the D-SSG model is significantly better than that of
the C-SSG. This is because the D-SSG model can flexibly
adjust the defense strategy at each CP at the access side
according to the scale of attack traffic and background traffic,
to maximize the overall defense utility. However, C-SSG
does not have this flexibility. In other words, D-SSG has
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FIGURE 18. Average defense utilities under centralized and distributed
security game models.

a higher dimension of defensive action space that enables
a more flexible strategy configuration. This advantage is
due to the access-side deployment of CPs. Moreover, with
increasing of the reflection factor, the advantage of D-SSG
gradually decreases. This is because the damage caused by a
single attack packet after breaking through the defense line
increases dramatically, making the attack packet pass rate
dominate the defense utility, thus weakening the importance
of defense strategy optimization.

2) Emergency defense
In the emergency defense scenario, the goal of defense is
to reduce the communication and computational costs while
ensuring the expected detection rate of attack sessions. In
previous simulations, we have demonstrated that optimizing
defense strategies through collaboration can reduce defense
costs. Now we examine whether this detection cost reduction
comes at the expense of detection performance. Note that we
set a target detection rate of 99% and developed a defense
strategy accordingly. The simulation settings are the same
as those in Section A. The average results of 100 random
simulations are shown in Fig. 19.

The detection rate curves of CP1, CP2 and CP3 almost
overlap with each other after eliminating the influence of
random errors using the average. With an attack session
size of L = 50, the converged optimal packet sampling
strategy of the defender is PSR = 0.088, i.e., 8.8%, which
is sufficiently low compared to full sampling. At CP4, since
the PSR converges more quickly due to collaboration for
the same reasons as in Fig. 14, the accumulated detection
rate is slightly lower than those of the other CPs in the
first 3 s. The four curves all jump around t = 3 s because
there are new arrivals of attack sessions every 0.1 s in the
first 3 s, so that the total number of attack sessions reaches
the peak at t = 3 s. Subsequently, no new attack sessions
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FIGURE 19. Accumulate detection rates of attack sessions on CPs.

arrive, and the curve tends to be flat. The detection rates of
attack sessions at the four CPs ultimately reached 98.5% or
more, which is slightly lower than 99%. This is because
the target detection rate is set for full sessions, while at
the beginning of the simulations we set 10 initial sessions
in progress whose actual sizes are less than 50 packets. In
general, the accumulative detection rate at CP4 reached or
even exceeded the average level of the other three CPs. These
results indicate that collaboration does not lead to a loss in
detection performance while reducing costs.

In summary, a series of simulation results show that the
proposed architecture can greatly reduce the defense cost
while ensuring the detection rate. In particular, the defense
cost can be further optimized through intra-domain and
inter-domain collaboration. Moreover, due to the location
advantage of access-side defense, the network bandwidth
efficiency of access-side defense is significantly better than
that of traditional server-side defense.

VI. Open Issues
In this article, a high-level architecture, collaboration mech-
anism and key technologies of an access-side DDoS defense
architecture are proposed. There are still some open issues
to be studied in the implementation of access-side DDoS
defense. Some of them are listed below.

• Security of edge AI. With improvements in the intel-
ligence of in-vehicle systems, many AI models have
been integrated, and new technologies such as few-shot
learning and transfer learning will be further applied. To
speed up the training process, the required training sam-
ples are greatly reduced, while the quality requirements
of the training data increase. The access-side defense
architecture focuses on network layer security, and
the semantic information of packets in the application
layer is not inspected. Therefore, the current access-
side defense architecture cannot distinguish abnormal
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training data samples from normal ones. Therefore,it
cannot defend against attacks such as data pollution
and poisoning that specifically target AI models, as well
as against backdoor attacks [59]. How to integrate the
defense capabilities of application-layer AI models un-
der the premise of privacy preservation is another issue
that needs to be discussed. Fortunately, the application
of adversarial machine learning and federated learning
techniques in edge computing scenarios has achieved
many remarkable results [41], and it is expected to
become a key way to solve these problems in the future.

• In-vehicle DDoS attacks. With the increase in the com-
puting power of vehicles, the demand for long-distance
communication will gradually weaken. Autonomous
driving can be achieved through local environmental
awareness, small-scale collaboration and satellite nav-
igation systems. DDoS attacks on sensors, operating
systems and control systems in vehicles could become
the main threats to road safety [60]. On the other hand,
the number of on-board terminals and sensors is likely
to increase further, making it possible for attackers to
launch DDoS attacks using intra-vehicle devices only.
Therefore, the battlefield of DDoS attacks may move
from the data network to vehicles or even vehicle
components. How to defend against such attacks in ve-
hicles and maintain collaboration performance without
overloading signaling channels is an open problem. In
such cases, it may be necessary to deploy a simpler
local controller into the vehicle, which is responsible
for overall vehicle safety management. Vehicle-vehicle
collaboration can be achieved through edge nodes to
share attack information and defensive strategies.

• Interoperability and inter-domain access. As applica-
tions based on vehicle intelligence flourish, platoons
of connected vehicles can communicate with each
other through a dedicated short range communica-
tion (DSRC) network, and realize cooperative adaptive
cruise control (CACC) and other intelligent applications
[61]. In these scenarios, frequent interoperability among
intelligent vehicles increases the risk of DDoS attacks
within platoons, bypassing the access network’s defense
structure. Hence, complementary security mechanisms
are necessary. Strengthening mutual certification and
establishing a trust management system between ve-
hicles is a common approach [23]. In large-scale 6G
networks with distributed control architectures, con-
trollers may not promptly perceive and receive attack
information, especially in cross-control domain access.
This delay in emergency defense reactions can be
exploited by attackers for short-term, high-frequency
attacks. Strengthening network layer access manage-
ment and adopting a zero-trust architecture for wide
area networks are viable solutions [33]. In addition,
Additionally, blockchain-based cross-domain informa-

tion sharing services will play a vital role in facilitating
inter-domain collaboration.

VII. Conclusion
The rapid advancement of 6G communication technology
will expand traditional V2X communication scenarios and
introduce more sensors and new terminals. While these
additions broaden the V2X network scale, they also increase
the potential for severe DDoS attacks. Consequently, DDoS
attacks will emerge as a major threat to V2X security in the
6G era. To effectively counter DDoS attacks in 6G V2X,
we have proposed an access-side DDoS defense architecture
based on a thorough analysis of defense requirements and
challenges. By deploying multiple control points at the net-
work edge and establishing distributed collaboration among
them, our architecture establishes a seamless defense surface
to block attack traffic from infiltrating V2X. To enhance
defense efficiency, we have addressed key technical issues
such as proactive defense decision-making, multi-domain
collaborative detection methods, and self-optimized packet
sampling strategies, proposing several potential solutions.
We have validated the advantages of our architecture in terms
of computational cost, communication efficiency and defen-
sive performance, demonstrating its superiority compared to
traditional solutions. We have also discussed open issues for
future application of our proposed architecture.
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