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Social representation theory is a branch of social psychology that aims to identify
the framework of concepts, ideas, opinions, beliefs, or feelings shared by the
individuals within a social group, regarding a social object. Two main problems
arise in this theory. The first concerns the identification of the content of the
representation, which is the set of cognitive elements shared by the group; the
second concerns its structure, which is theway these elements are organized and
related among themselves. It is desirable that the methods to address these
problems be simple, in regards to the feasibility of the data collection, and reliable,
in the sense that they should provide a clear picture of the content and the
structure of the representation. No single method proposed in the literature until
now fully satisfies these features at the same time. Here we propose the use of
HodgeRank, a global ranking method based on the Hodge combinatorial theory,
as a new tool to explore the structure of a social representation. In this proposal,
the input data is the same as those required for the hierarchical word associations,
which is the main method in the field of social representations. However, the
HodgeRank provides richer results when compared to the usual approach to
analysing this kind of data, based on the Vergés’ double-entry table. The main
outcome of the HodgeRank is a graph, analogous to an electric circuit, from
which some structural elements of the representation can already be identified.
Moreover, the HodgeRank technique identifies the sources of inconsistencies
between the global ranking and the aggregated answers within the social
group. We interpret such inconsistencies in terms of the stability of the
representation and use them to raise conjectures about the potential
dynamics of the representation. We illustrate the application of this method in
the study of a social representation of COVID-19 within a group of students and
also within a group of faculty members from higher education institutions
in Brazil.
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1 Introduction

The concept of social representation (SR) was introduced in social psychology by
Moskovici in 1961 in a study of the social perception about psychoanalysis and consists of a
framework of concepts, ideas, opinions, beliefs, or feelings shared by individuals in a given
group, regarding a social object [1, 2]. Moskovici claimed that the theory of social
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representations “hopes to elucidate the links which unite human
psychology with contemporary social and cultural questions” [3].
Since its introduction, the theory of SRs evolved both in its
conceptual aspects and in the development of methodological
tools to analyse data [4–6], and was applied to a broad range of
social problems, including popular ideas about health and illness, the
public understanding of science and new technologies, constructions
of identities and human rights (see [7] and references therein). More
recently, the theory has been applied in the study of media research
[8], to social representations of the landscape [9], of court
convictions on femicide [10], of environmental problems [11], of
perceptions of illness treatments [12, 13], of perceptions of future
[14], and several other social problems.

Two main problems in the context of the SRs theory consist in
identifying the content and the structure of a social representation.
The content of an SR can be understood as the set of cognitive
elements shared by the group and relative to the social object—as
said before, these elements can be opinions, knowledge, feelings, or
beliefs —, whereas the structure describes how these elements are
organised and how they interact with each other in the SR. The
structure emerges from the social cooperation among the group
members, which interact with each other, establishing some
relationships between the cognitive elements. For a deep
discussion about the structure of a SR see, for example, [5, 15,
16]. In the last decades, a great effort has been made in the
development of quantitative tools, besides the more usual
qualitative analysis, with the aim of investigating both the
content and the structure of a social representation. In this
regard, graphs of similarity, techniques of clustering, and
statistical analysis of frequency and evocation rank are often used
as methodological tools to study the content and structure of an SR
(see [17], for instance, for a recent critical review of the methods
used to study the structure of SRs).

One of the main conceptual tools in the study of the structure of
a social representation is the central core theory, proposed by Abric
in the 1970s [18]. According to this theory, the structure of an SR has
two main characteristics, each one featuring two antagonist
properties: the first one is to be “stable and moving, rigid and
flexible,” and the second one is to be “consensual, but marked by
strong individual differences” [15]. To cope with these two
characteristics, the central core theory describes the structure of
an SR employing a dual interacting system, formed by the central
system and the peripheral system. The central system is formed by
the cognitive elements that are highly stable, in the sense that they are
resistant to changes, and have the function of strengthening the
beliefs of the group, contributing to the continuity and consistency of
the representation; at the same time, these elements share a
significant consensus within the social group. On the other hand,
the peripheral system is formed by less consensual (less shared) and
less stable (less consistent) cognitive elements; this system is more
heterogeneous, and absorbs the inter-individual differences, having
a function of “protecting” the stability of the central system, by
absorbing the inconsistencies or changes coming from the
environment external to the social group. In this sense, it is said
that the peripheral system contributes to making the central system
stable [15, 16]. The interaction between these two systems
characterises the dynamics of the structure of the social
representation: some cognitive elements from one of these two

systems eventually may move to another along the time, and
these movements may cause a change in the social
representation. These changes reflect, for instance, the change in
the behaviour of the group members in order to adapt themselves to
a new situation, knowledge, or information [16].

Several methods were proposed in the literature to study the
content and the structure of a social representation. The main of
these methods is based on word associations tasks [6, 17, 19]. In this
method, people belonging to the social group under study are asked
to evoke the words or expressions that come into their minds after
the researcher presents them to an inducing word [19]. There are
two main variants of this method. In the first, people freely evoke
these words or expressions as they come into their mind. In the
second variant, also known as hierarchical evocations, the researcher
asks the respondents to rank the evoked words in order of
importance [17, 19]. After collected, the words or expressions are
typically put in a double-entry table, with four cells, organised
according to the frequency of evocation and the average order of
importance the respondents assigned to them [19, 20]. From such
organisation, a group of words emerges as the most salient ones,
which are those presenting a high frequency of evocation and a high
average importance, as measured by the average evocation rank [19].
This method can access the content of the social representation but
allows only to raise hypotheses about the centrality of the most
salient words or expressions: the most salient words or expressions
are said to be candidates to form the central core of the
representation, and must be submitted to posterior tests to
confirm or not the hypotheses of centrality [6, 17]. Another
limitation of the double-entry table is that the thresholds used to
delimit its four cells are somewhat ad hoc [17]. In this sense, it is said
that the hierarchical word association allows to explore the structure
of an SR since it only indicates a set of candidates to be after tested for
centrality [6, 17, 19].

Despite its limitations, the hierarchical word associations
method is very feasible, in the sense that it is based on a very
simple procedure of data collection: the responden ts should be
accessed just once to produce the individual set of a few ranked
words; as a typical procedure, respondents are asked to evoke just
five words. However, it would be desirable to combine the simplicity
of the hierarchical word association method with a tool to extract
information about the structure of the social representation that may
prove to be more powerful than the usual Vergés’ double entry table.
This is the main aim of the present work, in which we propose to
apply the HodgeRank technique as a richer exploratory method to
investigate the structure of a social representation. Here, we further
refine and deepen the ideas of a preliminary work, authored by some
of us, in which we first proposed to use the HodgeRank technique as
a new quantitative tool in social representations theory [21].

HodgeRank is a very general technique based on the Hodge
combinatorial theory, that allows building an optimal global ranking
from incomplete and imbalanced pairwise ranking data [22–24].
The typical scenario in which the HodgeRank technique is useful is
the following. Suppose that each individual within a group, which
will be called a voter, ranks a set of objects pairwise, i.e., to each pair
of objects considered by the voter, he or she compares one object
against the other. As it is typical in modern datasets, the pairwise
comparisons of each voter are highly incomplete, in the sense that
just a few numbers of pairs of objects are compared by a typical
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individual. Moreover, the pairwise comparisons in the group are
typically imbalanced, which means that some pairs are very often
compared by the voters, whereas other pairs are rarely considered by
the voters. For example, a customer may rate some films she/he
watched on Netflix, in such a way that a direct comparison can be
inferred between each pair of films she/he rated. But, of course, a
typical customer will not rate all the films in the platform, and, thus,
their pairwise comparison will be imbalanced. The notions of
“voters” and “objects” are very general, and can be adapted to
several contexts. For examples of application of HodgeRank in
different problems, see [23, 25, 26]. The features of
incompleteness and imbalance of pairwise comparisons fit very
well with the kind of data typically collected from hierarchical
word association tasks, where each member (a voter) of the
social group ranks a few number of words or expressions that he
or she associates with the inducing word. The ranking of these few
words can be reinterpreted as pairwise rankings, in which the first
ranked word is preferred over each of the other evoked words; the
second word is preferred over the third, the fourth, and so on.
Moreover, within a social group, there will be certain pairs of words
that will be compared by several voters, and other pairs that will be
compared by a relatively small number of voters. As we will discuss
later, this feature is intimately linked to the existence of a central and
a peripheral structure in the SR.

The HodgeRank technique starts from the individual pairwise
comparisons and builds, in the end, an optimal global ranking of all
the objects within the group; the optimal global ranking is that global
ranking which is “closer,” in a sense that will become clear later, to
the individual pairwise rankings. As we will show in this paper, when
we apply the HodgeRank technique to SRs, a structure emerges very
naturally, since the HodgeRank outcomes can be represented by a
graph with a structure analogous to that of an electrical circuit, in
which each word corresponds to an electrical node on which is
applied an electrical potential (the word’s global rank). Moreover, to
each pair of nodes (words) will correspond, in the electrical analogy,
an electric current, when the corresponding words have a direct
comparison between themselves.

Besides providing a global ranking and a static description of the
structure of the SR, the HodgeRank technique also allows us to
identify the sources of inconsistencies in the global ranking. We shall
interpret such inconsistencies as instabilities of the global ranking
and, therefore, as potential drivers for the dynamical changes in the
structure of the SR along the time. The identification of these
dynamic drivers may be useful when the SR is considered from
the point of view of a dual interacting system [16, 17].

This paper is organised as follows. In Section 2.1 we present the
classical method of construction of the Vergés’ double entry table
from data collected by a hierarchical word association task, with the
inducing word “COVID-19,” applied to two social groups, one of
them formed by faculty members and the other formed by students,
both of them from higher education institutions in Brazil. After
building the double entry table, we will discuss some of the
limitations of this method, especially regarding the exploration of
the SR structure and dynamics. In Section 2.2 we briefly present the
main ideas of the HodgeRank technique, with emphasis on
obtaining the optimal global ranking, the identification of the
graph structure and its analogy with an electrical circuit, and the
identification of the sources of inconsistencies in the global ranking.

In Section 3.1 we apply the HodgeRank technique on the same data
used to build the double entry table of Section 2.1, and discuss the
kind of new information we obtain from this methodology. In
particular, we emphasise the possibility of identifying the sources
of the ranking inconsistencies directly on the graph, and the
possibility of guessing the drivers for changes in the SR structure
over time. Finally, in Section 4 we present our conclusions.

2 Methods

2.1 Two social representations of COVID-19
among students and faculty members of
Brazilian higher education institutions

Before presenting the HodgeRank technique, we will first
present the classical construction of a Vergés’ double-entry table
with data collected according to the hierarchical word association
method, with the aim of identifying the social representation of
COVID-19 within two social groups belonging to higher education
institutions (HEIs) in Brazil, including universities, colleges and
federal institutes. One of these groups was formed by students (from
undergraduate and graduate courses) and the other was formed by
faculty members.

The data were collected by the authors by sending electronic
questionnaires (Google Forms) to students and faculty members of
HEIs over all the Brazilian territory, during the period from
November 2020 to May 2021, when the classes were given
remotely as one of the local government’s measures to prevent
the dissemination of SARS-CoV-2. Among other questions, which
are not being considered in the present work, each individual was
asked to answer the following: “cite the five first words that come to
your mind, ranked in order of importance, that best represent the
term COVID-19.” A total of 729 students and 424 faculty members
voluntarily replied to the questionnaires. In the group of students,
20% came from private, 26% from municipal, 31% from state and
23% from federal HEIs. In the group of faculty members, 11% were
from private, 6% from municipal, 36% from state and 47% from
federal HEIs. The respondents came from all the Brazilian Regions,
even if the proportions of respondents in the sample did not
represent accurately the proportions of the students of faculty
members in their respective regions. Only four States of the
Northern Region were absent in the sample, with no respondent
(Acre, Amazonas, Rondonia, Roraima and Tocantins).

After the data collection, we assigned the scores 1 to 5 to each
word evoked by an individual, with 1 being assigned to the most
important and 5 to the less important one. As a second step, for each
social group, we have made a catalogue with all the cited words and
merged them under a single representative word, or category, those
words having very close meanings. Here, in order to minimize the
subjectivity in this procedure, two of the authors independently did
the merging procedure; after that, they analysed and discussed
together the divergences in their results until a consensus was
obtained. Although such a categorisation procedure is somewhat
standard in the SR literature, it is one of the weaknesses of the
method of word associations, since it is not immune to subjective
biases in grouping the words based on their “semantic proximity.”
For a critic discussion about the limitations and weakness of the
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categorisation procedure in word associations tasks, see [6, 17]. In
this work we will not focus at this stage of the data preparation, and
will apply the HodgeRank on the data already categorised. However,
it would be interesting to explore, in future works, the possibility to
perform this categorisation with the aid of more objective methods,
such as grouping the words by using the distances between them, as
measured, for insance, in the WordNet database [27], or by using
word embeddings techniques such as Word2vec [28].

After the categorization procedure, the resulting set of words
for each social group was organised in a double-entry table, with
four cells [17, 20]. In this table, the two upper cells contain the

words (categories) that were cited (or evoked) most frequently.
The frequency associated with a word (category) is the proportion
of individuals in the group that evoked that word. The two left cells
contain the words best ranked, on average. The average evocation
rank (AER) of a word is simply the average of the scores that word
received within the social group. To delimit the four cells we used,
as usual in the literature of SR, a threshold of 15% to separate the
upper from the lower cells, and a threshold of 3 in the AER to
separate the left from the right cells. Our results are shown in
Tables 1, 2, where we did not include words whose frequencies
were equal to or below the first tercentile of the frequencies; words

TABLE 1 Vergés’ double-entry table for the SR of COVID-19 in a group of students from higher education institutions in Brazil.

AER < 3 AER ≥3

OF AER OF AER

OF ≥ 15% Isolation 35.39 2.8

Death 32.64 2.4

Fear 30.31 2.2 Anxiety 20.02 3.0

Care 28.25 2.8 Vaccine 18.51 3.3

Disease 23.04 2.4 Angst 17.14 3.2

Uncertainty 20.98 2.5

Pandemic 20.57 1.9

Instability 16.59 2.8

OF < 15% Absence 14.54 3.1

Misgovernment 13.16 3.2

Compassion 12.62 3.4

Hope 9.46 3.5

Changes 8.23 3.4

Inequalities 7.81 3.2

Awareness 7.54 3.0

Health 14.95 2.5 Disrespect 7.27 3.0

Challenge 6.03 3.5

Danger 4.52 2.5 Impacts 5.76 3.1

Tiredness 4.11 2.9 Reinventing 5.21 3.8

Tragedy 2.46 2.9 Resumption 4.52 4.1

Difficulties with RL 4.38 3.6

Disinformation 3.84 3.5

Discipline 3.56 3.7

Science 3.42 3.2

Overload 3.15 4.0

Impotence 3.15 3.3

Denialism 3.01 3.7

Lack of Infrastructure 2.88 3.6

The upper cells contain words (categories) evoked with an overall frequency (OF) ≥ 15% (second column in each cell); the left cells contain words having an average evocation rank (AER) < 3

(the last column in each cell).
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below this threshold were considered poorly representative within
the social group.1

The double-entry Tables 1, 2 identify the most salient
elements of the representation, which are the words most
frequently cited and with a lower average (higher importance)
evocation rank. These are the words located at the upper left cell,
and they constitute themselves as the “candidates for the central

core” [16, 17]. Additional tests are needed to identify which of
these candidates actually belong to the central core; the double-
entry table allows one only to raise a conjecture about the
potential candidates to the central core and does not provide
us with much more information about the structure of the social
representation. An evident limitation to interpreting the results
organised in a double-entry table is the somewhat ad hoc
specification of the threshold values for the frequency and the
AER, which were used to determine the boundaries of the four
cells. On the other hand, a clear advantage of the method of
hierarchical associations is that it is very simple in what regards
the data collection: only a single access to the population is
needed and, in this respect, we can say that it is very feasible in
what regards the field research [17].

TABLE 2 Same as Table 1 for the group of faculty members.

AER <3 AER ≥ 3

OF AER OF AER

OF ≥ 15% Isolation 34.43 2.7

Death 33.72 2.4

Fear 31.36 1.9

Disease 23.58 2.1 Anxiety 23.58 3.2

Care 22.16 2.6 Misgovernment 19.1 3.5

Instability 19.81 2.6 Angst 17.68 3.4

Health 19.33 2.3

Pandemic 17.92 1.9

Uncertainty 16.74 2.8

OF < 15% Vaccine 13.2 3.6

Inequalities 13.2 3.3

Absence 12.02 3.6

Changes 10.14 3.1

Disrespect 8.96 3.3

Compassion 8.96 3.3

Hope 7.54 3.4

Difficulties with RL 6.83 3.7

Danger 5.18 2.0 Tiredness 6.6 3.3

Reinventing 5.89 3.3

Impacts 5.66 3.4

Overload 5.18 3.4

Challenge 4.95 3.4

Denialism 4.48 3.9

Disinformation 4.48 2.9

Science 4.24 3.3

Indignation 4 3.7

Hopelessness 4 3.5

1 In our study, the first tercentile corresponds to a frequency of 2.19% (3.53%)

for the group of students (faculty). We dropped out 33.96% (34.04%) of the

words cited by the students’ (faculty) social group. We will use these same

cuts in our reanalysis of the data with the HodgeRank method.
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In the next sections, we propose the use of the HodgeRank
technique as a tool to deepen further the exploration of the data
collected in the hierarchical word association method. Even if the
HodgeRank is still an exploratory tool, we will show that it does
provide more complex information than Vergés’ double-entry table,
especially in what concerns the exploration of the structure of the
social representation. The HodgeRank outcomes will be represented
by a graph, analogous to the graph of an electrical circuit which,
besides providing a global ranking of the words within each group,
reveals a structure among the words; this structure is associated with
the relative importance between the words in each pair, as well as a
measure of the consensus of the pairwise comparisons. Another
useful outcome of the HodgeRank technique is the identification of
the inconsistencies of the actual answers within the group concerning
the global ranking; by properly interpreting such inconsistencies we
may guess which are the potential drivers for the dynamics in the SR
structure, i.e., which are the cognitive elements more likely to move
between the central and the peripheral systems along the time.

2.2 Some basic concepts on the
combinatorial Hodge theory and the
HodgeRank technique

In this section, we will present the basic concepts behind the

HodgeRank technique. Even if this presentation is somewhat

technical in what regards to the mathematical aspects of the

method, the application of it to a data set is very simple. In the

Appendix, we present a pseudocode to illustrate the main steps to

identify the inconsistencies. The electric analogous of the graph

structure can be built straightforwardly by using the global ranking

and the adjacency matrix. A complete code written in the Wolfram

Language© will be freely available under request to the authors.

2.2.1 Elements of the combinatorial Hodge theory
We start by recalling some basic concepts on graphs. A finite

(undirected) graph G is defined as a pair of two sets, G = (V, E),

where V is the set of vertices and E ⊆ V
2

( ) is the set of edges. Here

the symbol
V
2

( ) denotes the family of all the binary subsets of V. In

the applications, V is the set of the objects we wish to rank. In this
work, V is the set of all words or expressions (after categorization)
evoked by the members of the social group. The elements of the set E
will be all the pairs of words (categories) that were evoked by at least
one individual. Here we will sometimes use the notation G(V, E) to
recall the sets V and E that define the graph G. If n is the number of
elements (vertices) in V, we will label them by integer numbers,
i.e., V = {1, 2, . . ., n}. If i, j ∈ V and {i, j} ∈ E, then we say that the
vertices i and j are linked by an edge; otherwise, this pair of vertices
are said to be not linked, or that the corresponding edge is absent in
the graph. A useful way to visualize a graph is by representing its
vertices by points and its edges by line segments linking the
corresponding vertices. In our application to a social
representation, the vertices are the words and the edges represent
that at least one individual “compared” the two corresponding
words. The adjacency matrix a = [aij] (i, j ∈ V) associated to a
graph G(V, E) is a square matrix whose elements are aij = 1 if {i, j} ∈

E, and zero otherwise. It is also possible to attribute weights
ω: V × V → R+ to all the pairs of vertices of a graph, such that
ωij =ωji > 0, if {i, j} ∈ E, and zero otherwise. Thus, aij = 1 ifωij ≠ 0, and
aij = 0 otherwise. Furthermore, in addition to the sets V and E, we
can define another one, called the set of triangles (or 3-cycles) of
G(V, E), denoted by T(G), such that {i, j, k} ∈ T(G) if {i, j}, {j, k}, {k,
i} ∈ E.

Given a finite graph G, we can define suitable functions on the sets
V,V2, andV3. For instance, let r: V → R be any function that associates
a real number to each vertex. Moreover, we call an alternating function
on the edges any functionX: V × V → R, that satisfiesXij = −Xji for all
{i, j} ∈ E andXij = 0 if {i, j}∉E. We also can define an alternating function
on the triangles as a function Φ: V × V × V → R such that Φijk =
Φjki = Φkij = −Φjik = −Φikj = −Φkji for all {i, j, k} ∈ T(G), and Φijk = 0
otherwise. We use the sub-index notation for the values of these
functions, like ri, Xij, and Φijk, instead of the usual function notation
(like r(i), X(i, j), Φ(i, j, k)), since the indices are discrete. Once such
functions can be represented, respectively, by column, square, and cubic
hypermatrices, we can associate to a graph G(V, E) the following vector
spaces [22]

C0 � r| r: V → R{ }

C1 � X|X: V × V → R is an alternating function onE{ }
C2 � Φ|Φ: V × V × V → R is an alternating function onT G( ){ }.

(1)

The space C0 is called the space of potential functions, C1 is the
space of edge flows, and C2 is the space of triangle flows. In the
topological jargon, the elements of the vector spaces C0, C1, and C2

are called 0-, 1-, 2-cochains, respectively.
For the ranking procedure, we need to equip the vector spaces

described above (Eq. 1) with suitable inner products. There are
different ways to define consistent inner products in a vector space;
here we use the most common choices [23]:

〈r, s〉0 � ∑n
i�1

risi, for r, s ∈ C0,

〈X,Y〉1 � ∑
i<j

wijXijYij, for X,Y ∈ C1, (2)

and

〈Φ,Θ〉2 � ∑
i<j<k

ΦijkΘijk, for Φ,Θ ∈ C2. (3)

FIGURE 1
Cochains and operators scheme.
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The inner products in C0 and C2 are just the familiar Euclidean
inner products. The reason for choosing a weighted inner product in
C1 will be justified later when we discuss the optimization procedure
which will lead to the global ranking of the objects in V.

Based on such inner products we also define the following
special linear operators acting between these spaces (called
coboundary operators):

grad: C0 → C1, with grad r( )ij � aij rj − ri( ); (4)

div: C1 → C0, with divX( )i � ∑n
j�1

wijXij; (5)

curl: C1 → C2, with curlX( )ijk � tijk Xij +Xjk +Xki( ). (6)

In the above expressions i, j, k ∈ V, aij are the elements of the
adjacency matrix and tijk = aijajkaki, i.e., tijk = 1 if {i, j, k} ∈ T(G), and
tijk = 0 otherwise. The above special operators are the
(combinatorial) gradient, divergent, and curl operators, and are
discrete analogues of the gradient, divergent, and curl operators
appearing in vector calculus.

With the inner products defined before we can find the adjoints
of these operators, which are defined in the usual way, i.e., if wemake
k = 0, 1, then if δk: C

k → Ck+1 and 〈δkfk, gk+1〉k+1 � 〈fk, δk*gk+1〉k,
for all fk ∈ Ck and all gk+1 ∈ Ck+1, then δk*: Ck+1 → Ck is the adjoint of
δk. Therefore, we have that div = −grad*, as it happens in vector
calculus [22]. Also, it is natural to define the Laplacian operator, Δ0:
C0→ C0, as Δ0 = −div grad and theHelmholtz operator, Δ1: C

1→ C1,
as Δ1 = −grad div + curl* curl. So we have that Δ0 = grad* grad and
Δ1 = grad grad* + curl* curl. In summary, we can go from a certain
cochain to another cochain using operators like the scheme
presented in Figure 1. Since we represent a function r as a vector
of n entries, where n is the number of vertices in V, X can be
represented as a n × n matrix and Φ as a n × n × n hypermatrix.
Thus, in matrix notation, div X is also a vector of n entries, while Δ0

is an n × n matrix and so on.By using the above operators the space
of edge flows C1 can be decomposed as an orthogonal sum

C1 � im grad( ) ⊕ ker Δ1( ) ⊕ im curl*( ), (7)
where the symbol im stands for the image of an operator, and ker
stands for its kernel. The above decomposition is called Helmholtz
decomposition for graphs [23]. It means that for any edge flowX ∈ C1,
there exist ~s ∈ C0,Φ ∈ C2 and h ∈ C1, with Δ1 h = 0, such that X can
be decomposed in a unique way as

X � grad ~s + h + curl*Φ. (8)
This decomposition will be crucial in interpreting the results of the
global rankings we will obtain, as well as the nature of its
inconsistencies.

2.2.2 The HodgeRank technique
As we mentioned earlier, the data collected in the hierarchical

word association tasks are typically incomplete and imbalanced.
There is also an implicit graph structure arising from
(incomplete) pairwise comparisons. Below we explain in more
detail such terms and introduce some notations.

Let us label the individuals (“voters”) within a social group by
the index α. The quantity rαi is the order (or the “rank,” or the
“score”) the voter α assigned to the word i. In our data, the scores

that a given individual assigns for the set of few evoked words will be
all different, and assume integer values from 1 to 5, since each
individual is asked to rank just five words, in order of importance.
With the set of scores of the voter α in hand, we associate a measure
Yα
ij for the relative importance this voter assigns to the pair of words i

and j. Such measurement can be defined in different ways. Here we
use the score differences, which is the most usual choice:
Yα
ij � rαj − rαi , if the individual α evokes both the words i and j,

and zero otherwise. Obviously, Yα
ij � −Yα

ji. Other possible choices
would be choosing the binary comparison or the logarithm of score
ratios, defined, respectively, as Yα

ij � sign(rαj − rαi ) or Yα
ij � log rαj −

log rαi if α compares i and j, and zero otherwise [23]. Anyway, if
rαi < rαj , then the individual assigned a higher importance to i than to
j and Yα

ij will be positive. In our application, the quantity Yα
ij thus

measures the intensity of the differences of importance the
individual α assigns to the words i and j. To cope with the usage
in the literature, we will refer to Yα

ij as the pairwise comparison
between the words i and jmade by the individual α. In Section 3.1 we
show that different choices for the specific form of Yα

ij will lead
essentially to the same results for the global ranking and the measure
of the inconsistencies. Therefore, the specific choice for Yα

ij is not a
matter of concern.

In general, each individual makes a highly incomplete number of
pairwise comparisons. This is especially true in our application,
where the researcher asks each individual to rank only five words, in
order of importance. In this case, we interpret each individual
answer as giving all the possible pairwise comparisons between
all the pairs taken from those five words, which is just a small subset
of the complete set of words (or categories) evoked by the set of all
the members of the social group.2 In order to deal with the
incompleteness of individual pairwise comparisons, and to obtain
a single graph of pairwise comparisons that represents the whole social
group, we will aggregate all the individual pairwise comparisons. The
resulting graph generally will not be a complete graph but will be
much less sparse than the corresponding individual graphs of
pairwise comparisons. There are also diverse possible choices to
do this aggregation. Here we will use the most natural choice, which
corresponds to associating each pair of words (in the full set of
words) with the average pairwise comparison:3

Yij � 1
ωij

∑
α

Yα
ij, (9)

if ωij > 0, where ωij is the number of individuals that compared
the objects i and j. If no individual compared these two objects, then
ωij = 0 and, in this case, we define Yij = 0.

To the above form of aggregation of individual pairwise
comparisons, we associate a weighted graph G(V, E), called the
pairwise comparison graph, where V is the set of all the words

2 The full set of words/categories is identified only a posteriori, after the

categorisation procedure, described in Section 2.1.

3 The above choice of aggregating the individual pairwise comparisons by

the average over the individuals is suitable to compare pairwise

comparison graphs of different groups when the set of objects ranked

are the same (same V).

Frontiers in Physics frontiersin.org07

Oliveira et al. 10.3389/fphy.2024.1333727

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1333727


(categories) evoked by the subjects within the social group, and E �
{i, j}|i, j ∈ V{ and ωij > 0}. The matrix ω = [ωij = ωji], i, j ∈ V, is the
matrix of edge weights. The adjacency matrix of this graph is a =
[aij], i, j ∈ V, where aij = 1 if ωij ≠ 0, and aij = 0 otherwise. From now
on we will assume that the graph G(V, E) is connected. If G(V, E)
were not connected, we should conclude that the social group was
not well characterised, since, for instance, there would be at least two
subgroups of individuals with no shared idea, concept, feeling, or
belief; such subgroups should not be considered as subsets of a well
characterised social group.

As mentioned above, the graph G(V, E) generally is not a
complete graph. The remaining incompleteness of the aggregated
pairwise comparisons is still manifest in the edge sparsity: several
pairs of words will still not be compared in the aggregated graph,
because these pairs were not compared by any individual in the
social group. On the other hand, the imbalance of the data will
correspond, in the graph structure, to a nonuniform distribution for
the vertices’ strengths. The strength di of the vertex (word) i is the
sum of the weights of the edges incident on it, i.e., di � ∑n

j�1ωij,
where n is the number of words/categories in the vertex set V. In our
application, di is just the total number of pairwise comparisons in
which the word i appears. In fact, some words will appear in the
pairwise comparisons within the group much more frequently than
others and, therefore, will have a strength much greater than others.
None of these features (incompleteness and imbalance) is a problem
for the HodgeRank method. In fact, we will show that the method
provides a suitable way to deal with both of these features of the data.

Now, it is straightforward to see that the matrix
Y � [Yij] � −[Yji], i, j ∈ V, introduced in Eq. 9, indeed defines an
edge flow, and thus Y ∈ C1, according to Eq. 1. However, this edge
flow Y will almost certainly be inconsistent, and will not be
associated with a global ranking. The reason is that, as known in
many theoretical and empirical social studies, the data is probably
plagued with triangle or cyclic inconsistencies. For instance, if, in the
aggregate pairwise comparison graph, we have a word i that is
preferred against a word j (Yij > 0) and that word j is preferred
against the word k (Yjk > 0), but, by its turn, the word k is preferred
against the first word i (Yki > 0), then we say that the aggregate
pairwise comparisons regarding the words in the triangle {i, j, k} are
inconsistent; in this case, we have that Yij + Yjk + Yki ≠ 0, with {i, j, k}
∈ T(G). On the other hand, if Yij + Yjk + Yki = 0 for {i, j, k} ∈ T(G),
then we say that the pairwise comparisons in the triangle {i, j, k} ∈
T(G) is consistent. Later we will define precisely what we mean by
triangle and cyclic inconsistencies and will see that by using the
Helmholtz orthogonal decomposition Eq. 8 it is possible to extract a
component of Y, called the gradient flow, that is free of such
inconsistencies, and thus this component will correspond to a
consistent ranking.

In the idealistic situation in which there is no inconsistency in
the set of observed pairwise comparisons Yij, one may seek for a
“potential” function s: V ↦ R (which will define a “global ranking”)
such that

Yij � aij sj − si( ) � grad s( )ij, (10)

where aij are the elements of the adjacency matrix of the aggregate
pairwise comparison graph G(V, E). Observe that solving the above
equation to find such a potential is analogous to seeking the electric

potential in each node of an electric circuit when we know the
electric currents flowing between each pair of nodes. In such
analogy, the electric nodes i and j are linked by an electric
conductor having an electric admittance (the inverse of the
electric resistance) equal to aij, which here can assume only two
possible values, 1 or 0; if aij = 0 the two nodes are isolated from each
other (i.e., the resistance between the two nodes is infinite). Here we
are assuming the convention that the electric current Yij flows from
node i to node j if the electric potentials satisfy si < sj.

In the more realistic situation, and due to the personal
character of the answers given to the researcher,
inconsistencies in the set of edge flows Yij will always be
expected, and a solution si, as above, may not exist for a
pairwise comparison graph G(V, E). Nevertheless, one can
seek for the “best” solution ~s (that will correspond to the
global ranking we are searching for) such that Yg ≡ grad ~s is
as close as possible to the empirically observed Y. More precisely,
the set of weights wij yields an inner product in the space of edge
flows C1 and one seeks the orthogonal projection of the edge flow
Y into the subspace of C1 containing all the gradient flows,
i.e., into im(grad) � X ∈ C1|X � grad s, for some s ∈ C0{ }.
Therefore, the problem reduces to the classical least squares
problem, in which we seek for Yg ∈ im(grad) such that the
squared norm of the difference Yg − Y, i.e.,

Yg − Y
∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣21 ≡ 〈Yg − Y,Yg − Y〉1 � ∑

i<j
ωij Yg( )

ij
− Yij[ ]2 (11)

is a minimum. Above, ‖ · ‖21 is the squared norm in the space C1.4

With our definition of the inner product in Eq. 2, the least squares
method takes naturally into account the different edges according to
their weights, with a greater relevance attributed to the heaviest edges.
In our application here, this means that pairs of words that were
compared by a greater number of individuals have a greater
influence in determining the optimal global ranking.

Now we describe our algorithm to obtain the three components
in the Helmholtz decomposition (Eq. 8) (the corresponding
pseudocode is given in the Appendix). The first step consists of
fixing an ordering for the vertices, edges, and triangles in the graph.
One also needs to choose orientations for edges and triangles in the
graph (technically, we need to construct an oriented 2-complex).
However, the final results of our calculations do not depend on our
choices for such orientations.

The chosen orderings for vertices, edges, and triangles allow
us to construct matrix representations for the curl and grad
operators and to represent Y by a column matrix (vector), instead
of a square matrix. Then we can write the Helmholtz
decomposition as

Y � Yg + Yh + Yc, (12)

where Y is the (generally inconsistent) empirically observed
pairwise ranking, Yg ∈ im(grad), Yc ∈ im(curl*), and
Yh ∈ ker(Δ1). In our algorithm, Y, Yg, Yh, and Yc will all be
represented by column matrices (vectors), not square matrices.

4 We use the norm induced by the inner product.
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The matrix representation of the operator curl has a number of
rows equal to the number of triangles in the graph and a number
of columns equal to the number of edges in the graph. The
corresponding matrix representation of the adjoint of the curl
operator, curl*, is given by a simple matrix formula using the
inner product in the space of edge flows C1 (see the pseudocode in
the Appendix). Then we use the normal equations of the classical
least squares problem to obtain Yc, that is the projection of Y into
the subspace im(curl*). If Z denotes the projection of Y into the
subspace ker(curl), then Z = Y − Yc. The following step is to find a
matrix representation for the grad operator. This matrix has a
number of rows equal to the number of edges in the graph and a
number of columns equal to the number of vertices in the graph.
Using again the appropriate normal equations we can calculate
the projection Yg of Z into the subspace im(grad). The solution ~s
of the normal equations obtained is a potential and it gives us a
global ranking, as we explained above. The set of potentials ~si, i =
1, . . ., n is the “best” global ranking we seek, given the generally
inconsistent pairwise comparisons Y. The potential ~si is also
called score of the vertex (word) i in the global ranking. Finally,
the last component of Y, Yh, is given by Yh = Z − Yg.

Note that in the above algorithm, when we calculate Yg, we find a
solution ~s to the linear system Yg = grad s. This linear system has
infinite solutions and any particular solution ~s provides us with the
ranking we are searching for: since two solutions differ by a constant,
the order of the ranked vertices, as well as the score differences, is the
same, for any solution ~s. In the electric circuit analogy, the situation
is the same: if we add the same arbitrary value to all the node
potentials, all the currents in the electric circuit will depend only on
the potential differences between the nodes and, therefore, will
not change.

It is important to highlight that we have implemented the
HodgeRank algorithm without the necessity of calculating the
pseudo-inverse of Moore-Penrose. In fact, although the pseudo-
inverse can be used to provide elegant solutions for the least-square
problems in the HodgeRank algorithm [22, 23], its use turns our
program significantly slower. Actually, according to [29], the
computation of the pseudo-inverse dominates the computational
complexity in small datasets, which is O(n1n20 + n2n21), where n0, n1,
n2 are, respectively, the cardinality of the vertices, edges, and
triangles sets.5 However, up to our knowledge, there are no
similar studies about the computational complexity of the
HodgeRank algorithm when the input is a large dataset, neither a
study of the computational complexity of the HodgeRank algorithm
when the pseudo-inverse is not used as we have done. All such

questions deserve a thorough analysis and we intend to do it in a
future work.

In order to evaluate the reliability of the global ranking of the
vertices of G(V, E), given by the potential ~s, some other definitions
are needed. An edge flow X ∈ C1 is called consistent on the triangle {i,
j, k} ∈ T(G) if (curl X)ijk = 0, for all permutations of the vertices of
that triangle. X ∈ C1 will be called locally consistent if it is consistent
on every triangle in T(G), i.e., X is locally consistent if curl X = 0. An
edge flow X is called cyclic consistent if Xi1 i2 +Xi2 i3 +/ +Xim−1im +
Ximi1 � 0 for any cycle i1i2/im−1imi1 on the graph G(V, E), with 3 <
m ≤ n, where n is the number of vertices in V.6 Finally, an edge flow
X ∈ C1 is called globally consistent if exist some s ∈ C0 such that X =
grad s. In the last case, the edge flow X is said to be a gradient flow. It
is worth mentioning that, if the graphG(V, E) were complete, then all
the cyclic inconsistencies could be written in terms of sums of
triangular inconsistencies; in such case, global consistency and
local consistency are equivalent. In the general case, the graph
G(V, E) is not complete, and this equivalence is broken.

The above definitions of inconsistencies allow us to reinterpret
the terms in the Helmholtz decomposition (Eq. 12) in the following
way [23]: Y is the empirically observed pairwise ranking, which is
generally inconsistent; Yg � grad ~s is the consistent component of Y
and any solution ~s such that Yg � grad ~s produces the same global
ranking; Yc is the component of Y that contains all the triangle
inconsistencies, and Yh ∈ ker(Δ1) is the component of Y that
contains all the cyclic inconsistencies of Y (for cycles involving
more than three edges).

We can now take the squared norm of both sides of Eq. 12 and,
taking into account the orthogonality of the Helmholtz
decomposition, we obtain, after dividing the result by ‖Y‖21

1 � ‖Yg‖21
‖Y‖21

+ ‖Yh‖21
‖Y‖21

+ ‖Yc‖21
‖Y‖21

� Pg + Ph + Pc, (13)

where Pg � ‖Yg‖21
‖Y‖21 is the global consistency of the ranking, and

represents the overall quality of the global ranking. It measures
the relative “size” (measured by the squared norm) of the consistent
component Yg when compared to the “size” of the empirically
observed Y. Similarly, Pc � ‖Yc‖21

‖Y‖21 and Ph = 1 − Pg − Pc measure
the relative “sizes” of the inconsistent components Yc and Yh. The
term Pc measures the local inconsistency of the ranking, that arises
from the presence of triangular inconsistencies, whereas the term Ph
measures the cyclic inconsistencies, that originates from the
inconsistencies in cycles of length greater than 3, as mentioned
before. We recall that, if the graph G(V, E) were complete, then all
the inconsistencies would be local (triangular inconsistencies) and
Yh = 0 in that case; however, as mentioned above, this is not
generally the case.

It is worth emphasizing that the inconsistencies of the ranking are
not due to limitations in the method, but, instead, they are caused by
the inconsistencies in the answers of the aggregated voters. In our
application, the inconsistencies arise from the fact that individuals
within a social group may assign relative importance to a set of

5 In our application to social representations, the HodgeRank algorithm

takes as input a matrix with lines and columns representing, respectively,

the voters and the cited words. In the examples studied, such a matrix has

the dimensions 729 × 53 and 424 × 47 for, respectively, the students’ and

faculty members’ group. The HodgeRank procedure took around 30s (10s)

for the computations of the students’ (faculty members’) dataset (this

computation time is shown in the third output of our code). It is worth

noting that our algorithm was implemented in the Wolfram Mathematica

Language and executed on a laptop equipped with a Intel
®
Core™ i5-

10500H processor and with 16 GB memory.

6 A cycle in a graph is a closed, nonself crossing path formed by a sequence

of vertices of the graph, such that there is an edge between any two

successive vertices in this sequence.
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words in very different ways. If all the individuals within the group
assign the same relative importance to their ideas, concepts, feeling
or opinions, then they would rank all the words in the same way; in
this case, the aggregated pairwise comparisons Y would not show
inconsistencies, and would generate a perfectly consistent global
ranking (i.e., Pg = 1, Ph = Pc = 0). Since this idealistic situation hardly
occurs in real social groups, in which people may agree in several
aspects, but disagree in others, the global ranking always will show
inconsistencies. This general feature of the social group is on the
basis of the central core theory of SRs, as we mentioned in the
Introduction, where the peripheral system accommodates the
inconsistencies of the group. In Section 3.2 we will discuss how
to use the analysis of these inconsistencies to explore the dynamics of
the structure of a social representation.

Despite its technical details, the application of HodgeRank to
hierarchical word association data is simple. We now summarize the
procedure. Given an empirical edge flow Y (an aggregation of the
individual pairwise comparisons of words, in our case), we can
determine the component Yg of Y that provides us with a global
ranking. After that, we can measure the inconsistencies of the
obtained global ranking by computing Pc and Ph, which are
associated respectively with the local and the cyclic
inconsistencies. The HR graph of the aggregated pairwise
comparisons is analogous to the graph of an electric circuit and
provides a picture allowing us to visualize the relative comparisons
between pairs of words. Moreover, we can also visualize the location
of the inconsistencies in the graph. Such inconsistencies will help us
to better characterise the central and the peripheral systems of the
social representation, as well as to raise conjectures about the
potential dynamics of the social representation.

3 Results

3.1 The social representations of COVID-19
revisited: exploring their structures
with HodgeRank

In this section, we use the HodgeRank technique to reanalyse
the hierarchical word association data concerning the inducing

word “COVID-19,” within the two social groups described in
Section 2.1. We start by recalling the basic quantities we should
calculate from the data to serve as inputs to the HR algorithm
described in the Appendix. After the categorization procedure
within each of the two groups (students or faculty), we assign to
each pair {i, j} of words, and for each individual α the quantity
Yα
ij � rαj − rαi , if the individual α evoked the pair of words i and j,

and Yα
ij � 0 otherwise. We recall that rαi is the score the individual α

assigned to the word i, and that this score is a number from 1 to 5,
according to the order the word i appears in the hierarchical
evocations of the individual α. Then, we construct the edge flow
Yij � 1

ωij
∑αY

α
ij by averaging the quantities Yα

ij over all the group
members, where ωij is the number of individuals that evoked the
pair of words labelled by i and j. These quantities are all we need to
use as the inputs in the HodgeRank technique, as we discussed in
the previous section. Figure 2 illustrates the typical imbalance of the
data, as mentioned in the last Section; in that figure we can observe
that the distribution of the vertices’ strengths di, i = 1, . . ., n, is
highly nonuniform, for both the social groups investigated.

The first outcome of the HodgeRank is the global ranking ~s, that
associates a global score ~si to the word i, where i ranges from 1 to n,
where n is the number of words of the specific social group. Tables 3, 4
show the global rankings for the two groups investigated (students and
faculty). In those tables, we also show, for the sake of comparison, the
rankings obtained if we had used the individual binary comparison, or
the individual logarithm of the score ratios, introduced at the beginning
of Section 2.2.2, instead of the usual individual score differences
Yα
ij � rαj − rαi . All three choices give essentially the same results, with

just some slight changes in the ordering among words very closely
ranked (and not at the top of the rankings).Wewill consider, for the rest
of our analysis, only the global ranking obtained by using the individual
score differences.

The global scores within each social group define the gradient flow
Yg, whose matrix elements (Yg)ij � aij(~sj − ~si) give the (global)
relative importance between the pair of words i and j in the
group. Recall that aij = 1 if there was at least one individual in the
group that evoked the pair of words i and j, and it is zero otherwise.
From the set of words V and the adjacency matrix a = [aij], i, j ∈ V, we
construct the gradient pairwise comparisons graph G(V, E) by assigning
the gradient flow (Yg)ij to each edge {i, j} ∈ E. The graph G(V, E), with

FIGURE 2
Histogram for the distribution of the vertices’ strengths di � ∑n

j�1ωij. The non uniformity of this distribution, for both the groups investigated, reveals
that the data are highly imbalanced.
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TABLE 3 Global ranking generated by the inducing word “COVID-19” for a group of students from Brazilian high education institutions.

score differences binary comparisons log of score ratios

Rank ~s Word ~s Word ~s Word

1 −1.606 Pandemic −0.629 Pandemic −0.699 Pandemic

2 −1.184 Fear −0.478 Fear −0.513 Fear

3 −1.143 Disease −0.440 Disease −0.481 Disease

4 −1.053 Death −0.409 Death −0.439 Death

5 −0.920 Uncertainty −0.356 Uncertainty −0.354 Uncertainty

6 −0.800 Danger −0.321 Danger −0.333 Danger

7 −0.630 Health −0.252 Health −0.270 Health

8 −0.606 Instability −0.225 Instability −0.230 Instability

9 −0.520 Isolation −0.190 Isolation −0.179 Isolation

10 −0.360 Tiredness −0.131 Tragedy −0.156 Tiredness

11 −0.334 Tragedy −0.112 Tiredness −0.096 Tragedy

12 −0.266 Anxiety −0.101 Anxiety −0.086 Care

13 −0.236 Care −0.056 Care −0.076 Anxiety

14 −0.109 Disrespect −0.039 Disrespect −0.002 Impacts

15 −0.102 Impacts −0.029 Impacts −0.000 Disrespect

16 −0.047 Angst −0.006 Angst 0.000 Vaccine

17 0.000 Vaccine 0.000 Vaccine 0.010 Angst

18 0.001 Impotence 0.036 Impotence 0.020 Science

19 0.024 Misgovernment 0.036 Misgovernment 0.024 Absence

20 0.034 Absence 0.048 Absence 0.029 Inequalities

21 0.056 Science 0.051 Science 0.034 Impotence

22 0.061 Inequalities 0.051 Inequalities 0.037 Misgovernment

23 0.119 Awareness 0.086 Awareness 0.062 Awareness

24 0.301 Disinformation 0.132 Disinformation 0.137 Disinformation

25 0.321 Lack of Infra 0.153 Lack of Infra 0.143 Lack of Infra

26 0.456 Changes 0.187 Changes 0.156 Changes

27 0.697 Discipline 0.282 Discipline 0.274 Compassion

28 0.701 Compassion 0.323 Compassion 0.280 Challenge

29 0.738 Challenge 0.326 Challenge 0.313 Hope

30 0.788 Diffic. with RL 0.346 Diffic. with RL 0.325 Denialism

31 0.920 Denialism 0.373 Denialism 0.326 Discipline

32 0.949 Hope 0.399 Hope 0.355 Diffic. with RL

33 1.093 Reinventing 0.448 Reinventing 0.464 Reinventing

34 1.329 Overload 0.541 Resumption 0.482 Resumption

35 1.363 Resumption 0.567 Overload 0.522 Overload

We discarded words (categories) with frequencies below the first tercentile of frequencies. The Table shows the global rankings for three choices of Yα
ij : the score differences Y

α
ij � rαj − rαi , the

binary comparison Yα
ij � sign(rαj − rαi ) and the log of score ratios Yα

ij � log
rαj
rαi
� log rαj − log rαi . Note that “Lack of Infra.” and “Diffic. with RL” are the short for “Lack of Infrastructure” and

“Difficulties with Remote Learning,” respectively.
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the gradient flow Yg, is analogous to an electric circuit with nodes
labelled by i = 1, . . ., n, with admittances aij between nodes i and j, and
with an electric current (Yg)ij flowing from node i to the node j. This
analogy holds since the currents in an electric circuit must satisfy
(Yg)ij � aij(~sj − ~si), where ~si is the electric potential of the node i; this
is precisely the main result from the HodgeRank technique [see (9)].
Figures 3, 4 show the pairwise comparison graphs for the two social

groups (students and faculty). In these figures, both graphs are drawn in
such a way that the position of the word i in the left-right direction
indicates its global score ~si (giving its ordering in the global ranking),
whereas its position in the up-down direction indicates its frequency of
evocation. The edges are coloured according to their weights. The
gradient edge flows (Yg)ij are not shown, but are straightforwardly
inferred from these figures, since they are proportional to the horizontal

TABLE 4 Global ranking generated by the inducing word “COVID-19” for a group of faculty members from Brazilian higher education institutions.

score differences binary comparisons log of score ratios

Rank ~s Word ~s Word ~s Word

1 −2.182 Danger −0.927 Danger −0.929 Pandemic

2 −2.165 Pandemic −0.880 Pandemic −0.925 Danger

3 −1.866 Disease −0.766 Disease −0.788 Fear

4 −1.805 Fear −0.745 Fear −0.780 Disease

5 −1.477 Death −0.603 Death −0.620 Death

6 −1.308 Health −0.556 Health −0.564 Health

7 −1.184 Instability −0.494 Instability −0.448 Instability

8 −1.116 Care −0.446 Isolation −0.435 Care

9 −1.048 Isolation −0.434 Care −0.407 Isolation

10 −0.823 Uncertainty −0.341 Uncertainty −0.344 Uncertainty

11 −0.636 Disinformation −0.240 Disinformation −0.172 Changes

12 −0.323 Changes −0.149 Science −0.171 Hopelessness

13 −0.284 Science −0.130 Changes −0.153 Impacts

14 −0.281 Inequalities −0.115 Hopelessness −0.142 Disinformation

15 −0.252 Hopelessness −0.099 Inequalities −0.116 Disrespect

16 −0.207 Disrespect −0.087 Anxiety −0.100 Hope

17 −0.193 Anxiety −0.085 Impacts −0.084 Science

18 −0.193 Tiredness −0.077 Tiredness −0.082 Anxiety

19 −0.173 Impacts −0.069 Reinventing −0.074 Tiredness

20 −0.153 Reinventing −0.067 Hope −0.065 Reinventing

21 −0.138 Hope −0.060 Disrespect −0.057 Challenge

22 −0.122 Angst −0.044 Challenge −0.047 Inequalities

23 −0.083 Challenge −0.043 Angst −0.019 Angst

24 −0.055 Overload −0.040 Overload −0.010 Overload

25 0.000 Vaccine 0.000 Vaccine 0.000 Vaccine

26 0.020 Misgovernment 0.017 Misgovernment 0.020 Misgovernment

27 0.111 Compassion 0.073 Compassion 0.059 Compassion

28 0.213 Absence 0.090 Absence 0.086 Absence

29 0.314 Diffic. with RL 0.109 Indignation 0.115 Indignation

30 0.321 Indignation 0.131 Diffic. with RL 0.130 Diffic. with RL

31 0.486 Denialism 0.187 Denialism 0.146 Denialism

We discarded words (categories) with frequencies below the first tercentile of frequencies. The three rankings shown in the Table correspond to the three choices forYα
ij , described in the caption

of Table 3.
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distances between the corresponding nodes, and are always directed
from the left to the right. Going from the left to the right the relative
importance of the words decreases, and from the top to the bottom the
frequencies decrease. In both graphs, the nodes (words) were labelled by
numbers, according to their ordering in the resulting global ranking. In
both these graphs we have indicated by dashed lines themedian values
for the score (vertical line) and the frequency (horizontal line). These
dashed lines delimit four regions, which will be compared to the four
cells in the double entry Table 1 in the next section. At this point, it is
worth mentioning that the graph structure behind these four regions
provides more information about the structure of the SRs than does the
Vergés’ double-entry table.

The other useful information provided by the HodgeRank
concerns the ranking inconsistencies. Again, we recall that the
ranking inconsistencies are not related to a weakness of the
method. Instead, they are caused by inconsistent triangular or
other cyclic rankings in the actual answers of the individuals
within the social group. In general, the inconsistencies are related
to instabilities in the structure of the SR, since they correspond to
pairwise comparisons that were not “caught” by the optimal gradient
flow. In Table 5 we show the inconsistencies computed according to
Eq. 13. In this table, the value of Pg is related to the global consistency,
i.e., the fraction of the normof the observed flowY that corresponds to

the gradient flow Yg. The higher the value of Pg, the greater the
consistency of the global ranking achieved. On the other hand, the
value of Pc is related to the local inconsistency, i.e., the fraction of the
norm of the observed Y that corresponds to triangular inconsistencies.
The other term, Ph, giving the cyclic (cycles of lengths > 3), is
straightforwardly given by 1 − Pg − Pc and is not shown in
Table 5. We can observe that in both the groups the cyclic
inconsistencies are negligible (i.e., Ph ≈ 0); therefore, the triangular
inconsistencies are dominant, i.e., the local inconsistencies are
responsible for essentially all the inconsistencies observed in the
global rankings of the two groups. The reason behind the
predominance of the local inconsistencies over the cyclic ones is
the fact that the graphs G(V, E) for both groups show a very low
sparsity, i.e., there are just a few numbers of edges missing, and,
therefore, those graphs are “almost complete.”7

To help the visualization of the global rankings, in Figures 5, 6
we show matrix plots for three edge flows: the empirically observed
pairwise comparisons Y, the gradient flow Yg, determined by the

FIGURE 3
(Color online) Pairwise comparison graph for the social representation of “COVID-19” within a group of students from Brazilian higher education
institutions, with a global ranking given in Table 3. The words are labelled by numbers giving their ordering in the global ranking. The scores ~si increase in a
scale from left to right, and the corresponding relative importance of the words decreases from the left to the right (the lower the score, the higher the
relative importance). In this figure, (Yg)ij is proportional to the horizontal distance between the words i and j, if the two words are linked (and is
positive if ~si < ~sj , negative if ~si > ~sj , and zero if ~si � ~sj or if the two words are not linked). The edges are drawn with thickness proportional to their weights,
whose values are indicated by the colour scale at right. The position of each word in the top-bottom direction gives its frequency: the higher its position,
the higher its frequency. The vertical dashed line indicates the median score (≈ 0.001) and the horizontal dashed line indicates the median frequency
(≈ 7.81%). The words located at the upper left “quadrant” are the “most salient ones,” and are the first candidates to form the central core of the SR.

7 Recall that in a complete graph the cyclic inconsistencies vanish, with all

the inconsistencies arising from the local (triangular) ones.
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global ranking ~s, and the difference between these two flows, R* = Y −
Yg. The difference R* allows one to identify the main sources of the
inconsistencies in the global ranking, which are the pairs of observed
comparisons that do not fit well to the resulting global ranking. Such
edges are identified in the matrix plots of R* as being the darkest
cells. In particular, for i < j a difference Rij* < 0 (coloured in a bluish
scale in those plots) means that the empirically measured
importance of the word i over the word j (Yij) is less intense than
that given by the global ranking ((Yg)ij). Similarly, for i < j a

difference Rij* > 0 (cells colored in a reddish scale) means that the
empirically measured importance of the word i over the word j (Yij)
ismore intense than that given by the global ranking ((Yg)ij). In the
next section, we will interpret the inconsistencies in terms of the
instabilities in the SR structure.

We present also another useful way to visualize the
instabilities in the structure of the SR: we will identify, in the
gradient pairwise comparison graph (Figures 3, 4), the edges
showing the greatest differences between the empirical and the

FIGURE 4
(Color online) Pairwise comparison graph analogous to that shown in Figure 3, with the same features described there, but now for the group of
faculty members from Brazilian higher education institutions. The vertical dashed line indicates the median score (≈ − 0.207) and the horizontal dashed
line indicates the median frequency (≈ 10.14%).

TABLE 5 Reliability of the rankings.

Yα
ij Global consistency (Pg) Local inconsistency (Pc)

Students

score differences 0.71 0.29

binary comparisons 0.66 0.34

log of score ratios 0.73 0.27

Faculty

score differences 0.70 0.30

binary comparisons 0.65 0.35

log of score ratios 0.73 0.27

The global consistency (Pg) and the local inconsistency (Pc) are given in Eq. 13. This table shows that the results of the global consistency (and of the inconsistencies) are essentially the same,

regardless of the choice we make for the specific formula to compute the individual pairwise comparisonsYα
ij (score differences, binary comparisons or log of score ratios). In the table there is no

column to the value of the cyclic inconsistencies Ph, since it is straightforwardly obtained from Eq. 13 as Ph =1− Pg − Pc. In this table we observe that essentially all the inconsistency is of local

origin (within the numerical precision shown); this is due to the fact that both the graphs present low sparsity.
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gradient flows. These edges are those showing the greatest
absolute values for R* = Y − Yg and are identified in Figures 7,
8, for the two social groups studied. If, for a given pair i < j, the
flow difference is positive (reddish scale in those figures), the
relative importance (Yg)ij of the pair in the global ranking is
underestimated in comparison to the empirical values Yij. If, on

the other hand, for i < j, that difference is negative (bluish scale),
then the global ranking overestimate the relative importance of
the corresponding pair of words in comparison to the empirical
value. These situations have the potential to induce alterations in
the SR structure over time, especially if both words in the pair
have a high frequency, as we will discuss in the next section.

FIGURE 5
(Color online)Matrix plots representing (A) the edge flows Y (observed), (B) Yg (defined from the global ranking), and (C) the difference between these
two flows,R*= Y − Yg, for the group of students. Thewords in the rows and columns are ordered according to their positions in the global ranking, as in the
graph of Figure 3. In these plots, the blank cells correspond to the edges that are missing in the graph and, thus, illustrate the incompleteness of the
pairwise comparison data. The colour scale indicates the values of the edge flows: Yij >0 if i < j, and vice versa, where i labels the rows and j the
columns in these (skew-symmetric) matrices.
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3.2 Discussion of the results

We start by discussing the structure of the global rankings in the
two groups, with the aid of the graphs in Figures 3, 4. From the
students’ graph (Figure 3) we can observe a “most salient” group of
words in the top left region of the graph. These are the words best
ranked and with the highest frequencies and are the first natural
candidates to form the central core of the social representation. We

have drawn the two dashed lines indicating the median values of the
scores and the frequency, just to delimit 4 regions of reference. By
using these reference thresholds, we may consider these first
candidates to the central core as being the words ranked in the
positions 1,2,3,4,5,7,8,9,12,13,16 and 17, which are shown in Table 6.

However, one criterion to be part of the central core is that the
set of elements in the central core be stable [16]. In the context of the
HodgeRank, we will associate the stability of a word to its frequency

FIGURE 6
(Color online)Matrix plots representing (A) the edge flows Y (observed), (B) Yg (defined from the global ranking), and (C) the difference between these
two flows, R*= Y − Yg, for the group of the faculty members. These matrix plots are built and interpreted in the same way as described in the caption
of Figure 5.
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and the consistency of their connections to the other words. More
precisely, we will say that a word i is stable if it is a high-frequency
word whose empirical edge flows Yij linking it to other high-frequency
words j are close to the corresponding gradient flows (Yg)ij. We will
not set rigid boundaries for the notions of “high frequency” or
“closedness” to the gradient flows, since we are using the HodgeRank
as an exploratory tool to identify the “best” candidates to the central
core. These candidates should be ultimately submitted to hypotheses
tests to assess their centrality [17, 6]; such further tests are out of the
scope of the present work. We claim that we can already get relevant
information about the structure and the dynamics of the SR by
simply analysing the outcomes of HodgeRank, even if such
information is still exploratory. Below we discuss the use of the
stability criterion just stated to further refine the set of candidates to
the central core presented in Table 6.

Observing the graph of the differences R* = Y − Yg in Figure 7 we
see that, among the first candidates to the central core, some few
pairs present significative inconsistencies between high-frequency
words. The first significative inconsistency appears in the pair 7–16
(“Health”—“Angst”). The reddish colour of that connection means
that the global ranking subestimates the empirical one; that
inconsistency tends to take the words in the pair far away from
each other. If such tendency were consolidated in future
observations of the group, the word 16 (“Angst”) could move

outwards the central core; whereas the word “Health” would
move inwards the central core region, thus consolidating its
position as a central element; for this reason, we may discard the
word 16 (“Angst”) as a good candidate to the central core, and may
retain “Health” as a good candidate. The other words in Table 6 do
not participate in largely unstable connections, since the remaining
large inconsistencies in which these words participate involve only
low-frequency words. Thus, we may consider all the words in this
table, except the underlined word (“Angst”) as forming the set of the
“best” candidates to the central core.

The above reasoning based on the stability criterion was used to
refine the set of the “first” to the set of the “best” candidates to the
central core. We also may use the instabilities of words (not
necessarily belonging to the candidates to the central core) to
explore some conjectures about the dynamics of the SR structure.
The dynamics refers to potential moves of elements within the dual
system (i.e., moves from the central to the peripheral system, and
vice versa). From Figure 7, the largest inconsistency in the subsector
of the peripheral system formed by high frequency and poorly
ranked words (the upper right region of the graph) is observed
in the pair 19–32 (“Misgovernment”—“Hope”). The bluish colour in
that link means that the global ranking overestimates the pairwise
comparison between these two words; therefore, the actual
comparison is less intense. If such behaviour were to be

FIGURE 7
(Color online) The graph of Figure 3, concerning the group of students, in which we show only the edges with major differences between the
observed (Y) and the gradient edge flow (Yg). These edges are themajor sources of inconsistencies in the global ranking. In this figure, we have shown only
the edges with an edge flow difference |R*| � |Y − Yg|>2.
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consolidated in future observations, it would tend to approximate
these two words in the ranking.8 In such a case, the word 19
(“Misgovernment”) would tend to move inwards the peripheral
system, thus potentially not being a source for changes in the SR
structure. The other large inconsistencies shown in Figure 7 involve

at least one low-frequency word and is not very likely that they may
cause changes in the SR structure. Such a statement can be verified
by observing the matrix plot in Figure 5, which shows all the sources
of inconsistencies, together with the global ranking graph in
Figure 3, from which we can read the words’ frequencies.
Concluding our exploratory analysis with HodgeRank regarding
the group of students, we may conjecture that the dual system with
the “best” candidates to the central core shown in Table 6 (with
“Angst” excluded), and the remaining ones forming the peripheral
system, form a structure which is robust against changes in the near
future. Comparing the best candidates shown in Table 6 with the
upper left cell in the double entry Table 1 of Section 2.1, we observe

FIGURE 8
(Color online) The graph of Figure 4, concerning the group of faculty members, built in the same way as the graph in Figure 7, with the same cut-off
in R*.

TABLE 6 First candidates to the central core of the social representation of “COVID-19” in a group of students from Brazilian higher education institutions.
This set will be refined by using a stability criterion, and the underlined word (“Angst”) will be removed; the remaining words will form the set of “best”
candidates.

Pandemic Fear Disease Death Uncertainty Health

Instability Isolation Anxiety Care Angst Vaccine

TABLE 7 First candidates to the central core of the social representation of “COVID-19” in a group of faculty members from Brazilian higher education
institutions. This set will coincide with the set of “best” candidates since no word in this set shows large instability.

Pandemic Disease Fear Death Health

Instability Care Isolation Uncertainty Inequalities

8 An intuitive way to interpret the colours in the inconsistent links shown in

Figures 7, 8 is in the following way. The reddish colours tend to put the

words in the pair far away from each other in the ranking, whereas the

bluish colours tend to approximate the two words.

Frontiers in Physics frontiersin.org18

Oliveira et al. 10.3389/fphy.2024.1333727

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1333727


that the criteria we used together with the HodgeRank to identify the
best candidates include all those candidates to the central core
present in Table 1, and adds other three candidates (“Vaccine,”
“Health,” and “Anxiety”).

Now we will proceed by discussing the HodgeRank results for the
group of facultymembers. Similarly to what we have done for the group
of students, we will identify the set of first candidates to the central core,
by observing the words in the upper left region in the graph of Figure 4.
These words are given in Table 7. It is worth noticing that the best-
ranked word (“Danger”) is not included in this set, since it has a very
low frequency and, thus, does not share a high consensus within the
group. No word in this table is significantly unstable, according to the
stability criterion we stated above; thus, all the words in Table 7 belong
to the set of “best” candidates to the central core.

In regards to the dynamics of this SR representation, we observe
in Figure 8 that there are no large inconsistencies involving pairs of
high-frequency words. The main inconsistencies shown in that
figure always involve at least one low-frequency word. Therefore,
the high-frequency words are highly stable. The matrix plot in
Figure 6, analysed together with the graph in Figure 4, corroborates
such a statement. From this feature, we may conjecture that the
faculty’s SR structure identified by HodgeRank for the faculty
members group, in which the words in Table 7 are the best
candidates to the central core, and the remaining ones form the
peripheral system, is very robust against changes in the near future.
Comparing with the results from Table 2, in Section 2.1, we observe
that the candidates for the central core essentially coincide: in the set
identified by the HodgeRank an additional word (“Inequalities”) was
included (but it is the less salient among all the best candidates).

In the two social groups studied here, we can observe that the
inconsistencies tend to be more significant in the peripheral
system, as claimed by the central core theory [15, 16]. The
upper-left regions of the matrix plots shown in Figures 5, 6
show little differences between the flows in the ranked solution
and those empirically observed; the exceptions regard in general
inconsistent flows linking a high-frequency word to a low
frequency one. When an inconsistency is observed in a link
between two high-frequency words, as in the case of the
pair“Health”—“Angst” in the students’ group, this was
interpreted as a source of instability. The instability was
interpreted as a negative feature for a word to be considered
as a good candidate for the central system, as well as a possible
source driving the dynamics of the SR, i.e., the potential moves of
elements within the dual system.

4 Conclusion

In this work, we presented the basics of the HodgeRank
technique and proposed its use to explore the structure of social
representations. By using as input the same kind of data collected for
the classical methodology of hierarchical word associations, the
HodgeRank technique proved to be a powerful method to extract
exploratory information about the structure of the social
representation. In this context, it is more effective than the usual
Vergés’ double entry table, in the sense that, besides identifying a set
of best candidates to form the central core of the representation, the
outcomes of the HR technique also reveal a graph structure among

the elements (words, or categories) of the representation. Such a
structure is analogous to an electric circuit, in which each word is
associated with a score (the “electric potential”), and between two
linked words there is a flow (the “electric current”) determined by
the score differences between these words. The analogous “electric
circuit” is associated with an optimal global ranking of the words (or
categories), which extends to the whole group the relative
importance that the group of individuals assigns to a pair of
words. This graph is also a weighted graph, and its structure is
richer than (and includes) that revealed by similarity graphs.

The global ranking, being a solution for an optimisation
problem, does not fit exactly all the observed pairwise
comparisons in the group. Such differences give rise to
inconsistencies in the ranking, which can be of two different
kinds: local and cyclic. In the two groups studied, the pairwise
comparison graphs presented low sparsities, and, therefore, the
inconsistencies were essentially local, i.e., all the inconsistencies
were essentially reduced to triangular ones. On the other hand, if
we had observed a disconnected pairwise comparison graph, or a
high global inconsistency in the ranking within a given group
this would suggest a lack of consensus within the group and
would raise questions about the methodology of the group
delimitation. In the two groups studied here, we obtained
highly connected graphs, and the global inconsistencies were
not high (about 30%).

From the graph representing the optimal gradient flow
(associated with the global ranking solution, analogous to an
electric circuit) we identified a set of first candidates to the
central core as those words being the best ranked and most
consensual within the group. After, we refined this set by
requiring that the best candidates to the central core should also
be stable, in the sense that they should be high-frequency words
having highly consistent links to other high-frequency words.
Besides serving to characterise the best candidates for the central
core, the analysis of stability also served to explore the potential
dynamics of the SR: unstable linkings tending to cause moves to and
from the two systems (central and peripheral system) were
considered as possible sources for changes in the SR structure
along the time. Inconsistencies in the peripheral system appear as
inconsistencies between the empirical data and the global ranking,
and these may be drivers of potential changes in the SR. Figures 7, 8
are “photographies” of the two systems (central core and peripheral
system) that identifies the more likely potential drivers of future
changes in the SR; these changes may remain in the periphery or
they cause elements of the periphery to move to the central core [16],
or vice versa.

We illustrated the application of the HodgeRank technique to
explore the structure and the potential dynamics of the social
representations of the inducing term “COVID-19” within two
social groups from high education institutions in Brazil, namely,
a group formed by students (including undergraduate and graduate
students), and the other formed by faculty members. For the two
groups, our results concerning the identification of the best
candidates for the central core essentially corroborated the results
obtained from the Vergés double-entry table in Section 2.1. Besides
corroborating those results, the HodgeRank also revealed a structure
between the words, and with a criterion of stability based on the
frequency of evocation and the ranking inconsistencies, we were able
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to better characterise the candidates to the central core, as well as to
raise conjectures about the possible dynamics of the structure within
the two groups. In both groups, we observed a high robustness
against changes in the SR structure in a brief period of time. The
observed robustness against such changes was more evident in the
group of faculty members.

We finalize by stressing some of the main advantages of using
the HodgeRank when exploring the structure of a social
representation. Despite the mathematical technicalities behind the
method, it i) is simple to apply, with a single data collection, and by
running a simple algorithm, ii) reveals a structure among the
elements of the representation, in the form of a weighted graph
that is analogous to an electric circuit, iii) provides means to
characterise the stability of the elements of the representation,
and iv) allows one to raise conjectures about the dynamics of the
social representation. Due to all these features, we claim that
HodgeRank is a quantitative tool that can be used to make
powerful exploratory investigations in the research field of social
representations.
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Appendix A: An algorithm to implement
the HodgeRank technique

In Table 8 we present a pseudocode with the steps described in
Section 2.2, needed to run the HodgeRank technique in order to

obtain an optimal global ranking and the ranking inconsistencies.
The input data are the individual hierarchical word associations,
after the categorisation procedure. The graphs and the matrix plots
shown in the main text were built with the aid of the Wolfram
Language© resources.

TABLE 8 Pseudocode based on the method described before.

Algorithm pseudocode to run the HodgeRank technique. The symbol ← means that we attribute the formula on the right to the defined variable on the left

Initialization: table whose lines represent all the individuals α and the columns all the words i. Each element of this matrix gives the correspondent score rαi (if the individual
α does not cite the word i, rαi � 0)

1: Read the input matrix

Define

2: The mean Yα
ij (that can be score differences, binary comparisons, or the log of score ratios)

3: The weight matrix W

Compute

4: Yij as given in Eq. 9

5: Fix an ordering for the vertices, edges, and triangles in the graph

6: Choose orientations for edges and triangles in the graph

7: Find the matrix representation for curl, which we denote by the same symbol

8: Find vector representations for Y and W, which we denote by the same letters

9: Let M be the diagonal matrix with the diagonal entries given by the vector W

10: curl* ← M−1curlT

11: Find a solution x0 of the normal equations curl*
T

M curl*x � curl*MY

12: Yc ←curl* x0

13: Z ← Y − Yc

14: Find the matrix representation for grad, which we denote by the same symbol

15: Find a solution ~s of the normal equations gradT M grad s = grad M Z. The potential ~s provides us with a ranking

16: Yg ← grad ~s

17: Yh ← Z − Yg

18: Pg ← ‖Yg‖21
‖Y‖21

19: Ph ← ‖Yh‖21
‖Y‖21

20: Pc ← 1 − Pg − Ph

The symbol ← means that we attribute the formula on the right to the defined variable on the left.
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