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Abstract
This paper demonstrates the application of smoothed bootstrap methods and Efron’s
methods for hypothesis testing on real-valued data, right-censored data and bivariate
data. The tests include quartile hypothesis tests, two sample medians and Pearson
and Kendall correlation tests. Simulation studies indicate that the smoothed bootstrap
methods outperformEfron’smethods inmost scenarios, particularly for small datasets.
The smoothed bootstrapmethods provide smaller discrepancies between the actual and
nominal error rates, which makes them more reliable for testing hypotheses.

Keywords Achieved significance level · Banks’ bootstrap · Bootstrap confidence
interval · Efron’s bootstrap · Smoothed bootstrap

1 Introduction

The bootstrap method, as introduced by Efron [13], is a nonparametric statistical
method proposed to specify the variability of sample estimates. The method has been
widely used in the literature for a variety of statistical problems [17] as it is easy
to apply and overall provides good results. When the distribution is unknown, the
bootstrap method could be of great practical use [10].

For univariate real-valued data, Efron [13] introduced the bootstrap method, which
is used in many real-world applications; see Efron and Tibshirani [17], Davison and
Hinkley [10] and Berrar [5] for more details. For an original data set of size n, boot-
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strap samples of size n are created by random sampling with replacement and then
computing the function of interest based on each bootstrap sample. The empirical
distribution of the results can be used as a proxy for the distribution of the function of
interest. In the case of finite support, Banks [4] presented a smoothed bootstrapmethod
by linear interpolation between consecutive observations. Banks’ bootstrap method
starts with ordering the n observations of the original sample, where it is assumed that
there are no ties, and taking the n + 1 intervals of the partition of the support created
by the n ordered observations. Each interval is assigned probability 1

n+1 . To generate
one Banks’ bootstrap sample, n intervals are resampled, and then one observation
is drawn uniformly from each chosen interval. With Banks’ bootstrap method, it is
allowed to sample from the whole support, and ties occur with probability 0 in the
bootstrap samples. This is contrary to Efron’s method, where the process is restricted
to resampling from the original data set [13]. In the case of underlying distributions
with infinite support, Coolen and BinHimd [8] generalised Banks’ bootstrap method
by assuming distribution tail(s) for the first and last interval.

Efron [14] presented the bootstrap method for right-censored data, which is widely
used in survival analysis; see Efron and Tibshirani [4, 16]. This bootstrap version is
very similar to the method presented for univariate real-valued data, where multiple
bootstrap samples of size n are created by resampling from the original sample, and
the function of interest is computed based on each bootstrap sample. The empirical
distribution of those resulting values can be used as a good proxy for the distribution
of the function of interest. Al Luhayb et al. [2] generalized Banks’ bootstrap method
based on the right-censoring A(n) assumption [9]. The generalised bootstrap method
produced better results; see Al Luhayb [1] and Al Luhayb et al. [2] for more details.

Efron and Tibshirani [16] introduced the bootstrap method for bivariate data, where
again, multiple bootstrap samples are generated by resampling from the original data
set, and the function of interest is computed based on each bootstrap sample. The
empirical distribution of the resulting values can be a good proxy for the distribution
of the function of interest. However, Efron’s bootstrap method often produces poor
results when working with small data sets. To address this issue, Al Luhayb et al. [3]
proposed three new smoothed bootstrap methods. These methods rely on applying
Nonparametric Predictive Inference on the marginals and modelling the dependence
using parametric and nonparametric copulas. The new bootstrap methods have been
shown to produce more accurate results. For further details, we refer the reader to Al
Luhayb [1] and Al Luhayb et al. [3].

Classical statistical methods are widely used for testing statistical hypotheses,
although their underlying assumptions are not always met, especially with complex
data sets. To avoid these issues, Efron’s bootstrap method has been used to test sta-
tistical hypotheses [16, 23, 24], which is easy to implement, and it provides good
approximation results. However, it may not be suitable for small data sets and may
include ties in the bootstrap samples. To overcome these limitations, various smoothed
bootstrap methods have been proposed by Banks [4], Al Luhayb et al. [2] and Al
Luhayb et al. [3] for real-valued data, right-censored data, and bivariate data, respec-
tively. This paper investigates the use of these bootstrapmethods for hypothesis testing
and compares their results with those of Efron’s methods.
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This paper is organised as follows: Sect. 2 provides an overview of several bootstrap
methods for real-valued univariate data, right-censored univariate data, and real-valued
bivariate data. To illustrate their application, an example with data from the literature
is presented in Sect. 3 using Efron’s and Banks’ bootstrap methods for hypothesis
testing. Section4 compares the smoothed bootstrap methods and Efron’s bootstrap
methods through simulations in various hypothesis tests, such as quartile hypothesis
tests, two-samplemedians, Pearson andKendall correlation tests. Firstly, the smoothed
bootstrap methods and Efron’s bootstrap methods for real-valued univariate data and
right-censored univariate data are used to compute the Type I error rates for quartile
tests. Secondly, the achieved significance level is used to compute the Type I error
rate for two-sample median tests. Lastly, for real-valued bivariate data, the smoothed
bootstrap methods and Efron’s bootstrap method are compared in computing the Type
I error rates for Pearson and Kendall correlation tests. The final section provides some
concluding remarks.

2 BootstrapMethods for Different Data Types

When it comes to real-world applications, using traditional statistical methods can be
challenging due to the mathematical assumptions involved. However, the use of boot-
strap methods can provide a computer-based way of conducting statistical inference
that doesn’t require complex formulas. This paper demonstrates the use of different
bootstrap methods for hypothesis testing. This section will provide an overview of
multiple bootstrap methods that can be applied to real-valued data, right-censored
data, and bivariate data.

2.1 BootstrapMethods for Real-Valued Univariate Data

In this section, we will discuss two bootstrap methods for data that include only real-
valued observations, namely Efron’s bootstrap method and Banks’ bootstrap method
[4, 13]. These methods are used to measure the variability of sample estimates for
a given function of interest θ(F), where F is a continuous distribution defined on
the interval [a, b]. Suppose we have n independent and identically distributed random
quantities X1, X2, . . . , Xn from the distribution F and the corresponding observations
are x1, x2, . . . , xn .

Efron’s bootstrap method [13] is a nonparametric method proposed to measure the
variability of sample estimates. It uses the empirical distribution function of the orig-
inal sample, where each observation has the same probability of being selected. To
create B resamples of size n, we randomly select observations with replacement from
the original sample. We then calculate the function of interest θ̂ for each bootstrap
sample to obtain θ̂1, θ̂2, . . . , θ̂B . The empirical distribution of these results approxi-
mates the sampling distribution of θ(F). Efron’s bootstrap method is commonly used
for hypothesis testing and has been shown to provide reliable results [17].

Banks’ bootstrap method [4] is a smoothed bootstrap method for real-valued uni-
variate data. The original data points are ordered as x(1), x(2), . . . , x(n), and the sample
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space [a, b] is divided into n + 1 intervals by the observations, where the end points
x(0) and x(n+1) are equal to a and b, respectively. Each interval (x(i), x(i+1)) for
i = 0, 1, 2, . . . , n is assigned a probability of 1

n+1 . To create a bootstrap sample,
we randomly select n intervals with replacement, and then sample one observation
uniformly from each selected interval. Based on the bootstrap sample, we calculate
the function of interest and repeat this process B times to obtain θ̂1, θ̂2, . . . , θ̂B . The
empirical distribution of these values approximates the sampling distribution of θ(F).
Banks’ bootstrap method is used for hypothesis testing in this paper and will be com-
pared to Efron’s bootstrap method in Sect. 4.

2.2 BootstrapMethods for Right-Censored Univariate Data

This section presents Efron’s bootstrap method [14] and the smoothed bootstrap
method for right-censored data [1, 2]. Let T1, T2, . . . , Tn be independent and
identically distributed event random variables from a distribution F supported
on R

+ and let C1,C2, . . . ,Cn be independent and identically distributed right-
censored random variables from a distribution G supported on R

+. Furthermore,
let (X1, D1), (X2, D2), . . . , (Xn, Dn) be the right-censored random variables, where
each pair can be derived by

Xi =
{
Ti if Ti ≤ Ci (uncensored)
Ci if Ti > Ci (censored)

(1)

Di =
{
1 if Xi = Ti (uncensored)
0 if Xi = Ci (censored)

(2)

where i = 1, 2, . . . , n. Let (x1, d1), (x2, d2), . . . , (xn, dn) be the observations of the
corresponding random quantities (X1, D1), (X2, D2), . . . , (Xn, Dn) and θ(F) is the
function of interest, where this function can be estimated by θ(F̂).

Efron [14] proposed a nonparametric bootstrapmethod for data with right-censored
observations. This method is similar to the one he proposed for real-valued data. In
this method, the empirical distribution function of the original sample is used, so
that each observation has an equal probability of 1

n , regardless of whether it is an
event or a censored observation. To apply this method, B bootstrap samples of size
n are generated by randomly selecting observations from the original dataset with
replacement. The functionof interest is then calculatedbasedon eachbootstrap sample.
This process results in values θ̂1, θ̂2, . . . , θ̂B , where the empirical distribution of these
values can be a good estimate for the sampling distribution of θ(F). This bootstrap
method is useful for testing the equality of average lifetimes over two populations
[25], and it has been shown to provide good results in multiple statistical inferences,
see Efron [15], Efron and Tibshirani [16, 17] for more details.

Another method for right-censored data is the smoothed bootstrap method, intro-
duced by Al Luhayb [1] and Al Luhayb et al. [2]. This method generalises Banks’
bootstrapmethod for right-censored data, and is based on the generalisation of the A(n)

assumption for data that contains right-censored observations, proposed byCoolen and
Yan [9]. To implement this method, the data support is divided into n + 1 intervals
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by the original data, and the right-censored A(n) assumption is used to assign specific
probabilities to these intervals. For each bootstrap sample, n intervals are resampled
with the assignment probabilities, and one observation is sampled from each interval.
Performing these steps B times creates B bootstrap samples. Then, the function of
interest is computed for each bootstrap sample, resulting in the values θ̂1, θ̂2, . . . , θ̂B .
The empirical distribution of these values is used to estimate the sampling distribution
of θ(F). In this paper, we use the smoothed bootstrap method for hypothesis testing
and compare its performance to Efron’s bootstrapmethod, with the comparison results
presented in Sect. 4.

2.3 BootstrapMethods for Bivariate Data

In this section, we will discuss Efron’s bootstrap method [16] and three smoothed
bootstrap methods for bivariate data [1, 3]. Let (Xi ,Yi ) ∈ R

2, for i = 1, 2, . . . , n
denote independent and identically distributed random variables with a distribution
of H . The observations corresponding to (Xi ,Yi ) are (xi , yi ). We are interested in
θ(H), which is estimated by θ(Ĥ). To implement the bootstrap, Efron and Tibshirani
[16] used the empirical distribution. The bootstrap method involves creating multiple
bootstrap samples, say B, of size n by resampling with equal probability from the
observed data. Based on each bootstrap sample, the function of interest is calculated,
resulting in B values. The empirical distribution of these B values is used as a proxy for
the distribution of the function of interest. This is the same approach as for univariate
data. Several references use this bootstrap method for hypothesis testing. For further
details, see e.g. Dolker et al. [11], MacKinnon [19] and Hesterberg [18].

In their recent work, Al Luhayb [1] andAl Luhayb et al. [3] proposed three different
smoothed bootstrap methods for estimating the distribution of a function of interest.
The first smoothed bootstrap method, referred to by SBSP, is based on the semi-
parametric predictive method, which is proposed by Muhammad [20]. The second
smoothed bootstrap method, referred to by SBNP, is based on the nonparametric
predictive method introduced by Muhammad et al. [21]. These two methods divide
the sample space into (n + 1)2 squares (or blocks hereafter), each assigned with a
certain probability. The third method, referred to by SEB, is based on uniform kernels,
where each data point is surrounded by a block of size bX × bY , and the observation
is located at the centre of its corresponding block, with bX and bY being the chosen
bandwidths for the kernel. To create a bootstrap sample, n blocks are resampled with
the assignment probabilities, and one observation is sampled from each chosen block.
This process is repeated multiple times, typically B = 1000 times, and based on each
bootstrap sample, the function of interest is calculated. This results in B values, and
the empirical distribution of these values is used to estimate the distribution of the
function of interest.
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Table 1 Yearly maximum flow
rates (gallons per second) at a
gauging station in North
Carolina

5550 4380 2370 3220 8050 4560 2100

6840 5640 3500 1940 7060 7500 5370

13,100 4920 6500 4790 6050 4560 3210

6450 5870 2900 5490 3490 9030 3100

4600 3410 3690 6420 10,300 7240 9130

Table 2 The 90% confidence intervals for the median based on Efron’s bootstrap method and Banks’
bootstrap method

Efron’s method Banks’ method

90% confidence interval (4560, 6050) (4532, 6167)

3 Example

In this section, we will explore an example using data from the literature on the
maximum flow rates over a 100 year period at gauging stations on rivers in North
Carolina [6]. The data is presented in Table1, and it shows the maximum flow rates in
gallons per second. Our goal is to investigate whether the median of the data is equal
to 5400 gallons per second using a 90% confidence interval, using Efron’s bootstrap
method and Banks’ bootstrap method.

To conduct the test, we first generate 1000 bootstrap data sets from the original
data using each of the two bootstrap methods, resulting in 1000 bootstrap samples for
each method. Then, we calculate the median for each bootstrap sample, and from the
resulting values, we can define the 90% bootstrap confidence interval for the median
by taking the 50th and 950th ordered values.

If the value 5400 is included in the confidence interval, we fail to reject the null
hypothesis. Otherwise, we reject the null hypothesis. Table2 presents the 90% confi-
dence intervals for the median based on both Efron’s and Banks’ bootstrap methods.
As the value 5400 falls within both confidence intervals, therefore we fail to reject the
null hypothesis.

4 Comparison of the BootstrapMethods

Hypothesis tests based on the bootstrap method are a type of computer-based statis-
tical technique. Thanks to recent advancements in computational power, these tests
have become practical for real-world applications. The basic idea behind the bootstrap
method is simple to understand and doesn’t rely on complex mathematical assump-
tions. In this section, we will conduct various tests for different types of data using the
bootstrap method explained in Sect. 2.
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4.1 Hypothesis Tests for Quartiles

In this section, we calculate the Type I error rates of quartile hypothesis tests based
on bootstrap methods presented in Sect. 2.2. These methods are used when the data
contains right-censored observations. To determine how well the bootstrap meth-
ods perform, we simulate datasets that include right-censored observations from two
different scenarios. For the first scenario, we use the Beta distribution with param-
eters α = 1.2 and β = 3.2, where α and β are the shape parameters, and the
Uniform distribution with parameters a = 0 and b = 1.82 for event time obser-
vations and right-censored observations, respectively. The second scenario is defined
as T ∼ Log-Normal(μ = 0, σ = 1) and C ∼ Weibull(α = 3, β = 3.7), where α is
the shape parameter and β is the scale parameter (see Appendix). In both scenarios,
the censoring proportion p in the generated datasets is 15%, and this is determined by
setting the two parameters of the uniform distribution. For more information on how
to fix the censoring proportion, we refer the reader to Wan [26] and Al Luhayb [1].

To compare Efron’s bootstrap method with the smoothed bootstrap method, we
generate N = 1000 datasets from each scenario. For each dataset, we apply each
method B = 1000 times, resulting in 1000 bootstrap samples based on each method.
We then compute the quartile of interest at each bootstrap sample and use the resulting
values to define the 100(1 − 2α)% bootstrap confidence interval for the quartile. We
count one if the value of the quartile specified in the null hypothesis is not included
in the confidence interval; otherwise, we count zero. We repeat this procedure for all
N = 1000 generated datasets, then count the number of times the null hypothesis was
rejected over the 1000 trials. This ratio will be the Type I error rate of the quartile’s
hypothesis test with significance level 2α.

It’s important to note that Efron’s bootstrap samples often include some censored
observations, so we use the Kaplan–Meier (KM) estimator to find their corresponding
quartiles. Suppose we are interested in the median; we should find a time t such that
Ŝ(t) = 0.50 in each bootstrap sample. Unfortunately, in some samples, we cannot
find that time t because there is no time such that Ŝ−1(0.50) = t . In this case, we
have considered three options or solutions. The first option is to neglect all not appli-
cable medians, so the 100(1 − 2α)% bootstrap confidence interval for the median
is based on fewer than 1000 bootstrap samples. This option is referred to as E(1).
The second option is to assume the median to be the maximum event time of that
bootstrap sample. This is Efron’s suggestion, which is used for each bootstrap sample
whose median is not found by the KM estimator [12]. This option is referred to as
E(2). Finally, we fit an Exponential distribution to the interval with a rate parameter
of λ̂∗ = − ln(Ŝ(tmax ))/tmax , where tmax is the maximum event time of the bootstrap
sample and Ŝ(.) is the KM estimator. This allows us to find the corresponding median,
Xmed , with Xmed = − ln(0.50)/λ̂∗. This suggestion is presented in Brown et al. [7],
and we refer to it as E(3). In the last two cases, we can ensure that the confidence
interval is based on 1000 bootstrap samples’ medians.

In the tables, the NA represents the number of Efron’s bootstrap samples where
quartiles cannot be found, while ABS represents the number of caseswhere a bootstrap
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sample containing only right-censored observations is replaced by another sample that
includes at least one event time. These two numbers are out of 1,000,000.

We consider three different strategies for the smoothed bootstrap method when
sampling observations from the n+1 intervals partitioning the sample space. The first
strategy is to sample uniformly from all intervals, denoted by SB. The second strategy
is to assume an exponential tail for each interval and sample from the tails to create
the bootstrap samples, denoted by SBexp. The third strategy is to sample uniformly
from all intervals except the last intervals, for which we sample from the exponential
tails. We refer to this strategy as SBLexp. By investigating how the sampling strategies
affect the results, we can gain insight into the impact of different sampling methods
on the smoothed bootstrap method.

Tables3 and 4 show the results of the Type I error rates for the quartiles’ hypothesis
tests with significance levels 0.10 and 0.05 for simulated data sets in the first scenario.
When the sample size is 10, the smoothed bootstrap with its three assumptions, SB,
SBexp and SBLexp, provides lower discrepancies between actual and nominal error
rates for all quartiles’ tests compared to Efron’s bootstrap with its three assumptions,
E(1), E(2) and E(3). The superiority of the smoothed bootstrap methods is due not
only to the event observations obtained for the smoothed bootstrap samples, but also
to the fact that the KM estimator used in Efron’s bootstrap samples is often not able
to find the quartiles, particularly the second and third ones. In 1,000,000 bootstrap
samples, we cannot find the first, second and third quartiles in 228, 3736 and 32,821
bootstrap samples, respectively. As the sample size increases to 50, 100 and 500, both
methods provide good results, but Efron’s method is better, and the number of NA
and ABS decreases toward zero. These decreases lead to equal results when E(1), E(2)
and E(3) are used. Also, at these large sample sizes, SB, SBexp and SBLexp provide
approximately equal outcomes.

In the second scenario, we should note that the data space is (0,∞), which is
different from the first scenario where the support is (0, 1), so the last intervals for the
smoothed method are not bounded. In this case, we can only use smoothed bootstrap
assumptions SBexp and SBLexp, not SB. Tables5 and 6 present the results of Type
I error rates for the quartiles’ hypothesis tests with significance levels of 0.10 and
0.05, respectively. The SBexp and SBLexp methods again outperform Efron’s method
in defining the Type I error rates when the sample size is small. As the sample size
gets large, both methods perform well, as observed in Tables3 and 4.

In a special case where data includes only failures, with no censored observations,
we will use Banks’ bootstrap method and Efron’s bootstrap method, which are pre-
sented in Sect. 2.1, to compute the Type I error rates for the quartiles’ hypothesis tests.
In the simulations, we use Beta(α = 1.2, β = 3.2) to create data sets and repeat the
same comparison procedure as in the previous simulations. Tables7 and 8 present the
Type I error rates for the quartiles’ hypothesis tests based on Banks’ and Efron’s meth-
ods with significance levels of 0.10 and 0.05, respectively. Banks’ bootstrap method
performs better, particularly when n = 10 and 2α = 0.05. As the sample size gets
large, both methods perform well.
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Table 7 Type I error rates with
significance level 2α = 0.10,
Beta(α = 1.2, β = 3.2) and
p = 0

H0 : Q1 = 0.117 Q2 = 0.236 Q3 = 0.396
n Banks Efron Banks Efron Banks Efron

10 0.102 0.099 0.080 0.136 0.081 0.096

50 0.089 0.113 0.099 0.112 0.099 0.111

100 0.099 0.103 0.113 0.109 0.095 0.103

500 0.097 0.103 0.101 0.102 0.087 0.091

Table 8 Type I error rates with
significance level 2α = 0.05,
Beta(α = 1.2, β = 3.2) and
p = 0

H0 : Q1 = 0.117 Q2 = 0.236 Q3 = 0.396
n Banks Efron Banks Efron Banks Efron

10 0.052 0.089 0.046 0.064 0.014 0.086

50 0.046 0.059 0.058 0.060 0.055 0.069

100 0.043 0.042 0.054 0.060 0.054 0.058

500 0.052 0.058 0.057 0.056 0.040 0.042

4.2 The Two-Sample Problem

When conducting a hypothesis test H0 : θ1 = θ2 against H1 : θ1 �= θ2, where θ1 and
θ2 represent the function of interest in the first and second populations respectively,
the achieved significance level (ASL) is used to draw a conclusion. ASL is defined
as the probability of observing at least the same value as θ̂ = θ̂1 − θ̂2, when the null
hypothesis is true,

ASL = ProbH0{θ̂∗ ≥ θ̂} (3)

The smaller the value of ASL , the stronger the evidence against H0. The value θ̂

is fixed at its observed value, and the quantity θ̂∗ has the null hypothesis distribution,
which is the distribution of θ̂ if H0 is true [17].

Efron and Tibshirani [17] used the achieved significance level to test whether
the two populations have equal mean or not. Suppose we have two samples z =
{z1, z2, . . . , zn} and y = {y1, y2, . . . , ym} from possibly different probability distri-
butions, and we wish to test the null hypothesis H0 : θ1 = θ2. Efron’s bootstrap
method is used to approximate the ASL value, then H0 is rejected when ÂSL < 2α.
The algorithm to test the null hypothesis based on the bootstrap methods is as follows

(i) Combine z and y samples together, so we get a sample x of size n + m. Thus,
x = {z1, z2, . . . , zn, y1, y2, . . . , ym}

(ii) Draw B bootstrap samples of size n+mwith replacement from x, and call the first
n observations z∗b and the remaining m observations y∗b for b = 1, 2, . . . , B.

(iii) For each bootstrap sample, we compute the means of z∗b and y∗b, then find
A∗b = z∗b − y∗b, b = 1, 2, . . . , B.
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Table 9 Type I error rates with
significance level 2α = 0.10,
and all samples created by
T ∼ Log-Normal(μ = 0, σ =
1),C ∼ Weibull(α = 3, β =
3.7),where p = 0.15

n SBexp SBLexp E(2) E(3)

10 0.078 0.075 0.091 0.089

50 0.079 0.079 0.090 0.090

100 0.100 0.101 0.107 0.107

500 0.105 0.101 0.104 0.104

(iv) The achieved significance level ASL can be approximated by

ÂSL =
∑B

b=1{A∗b ≥ Aobs}
B

(4)

where Aobs = z − y, and z and y are the sample means of the two original
samples.

We will employ the proposed strategy in this section to examine whether the two
samples have the same median (Q1

2 = Q2
2) or not. To conduct these tests, we will use

the bootstrap methods presented in Sect. 2.2 and make comparisons through simula-
tions. Specifically, we will calculate the Type I error rate for the following hypothesis
test:

H0 : Q1
2 = Q2

2 versus H1 : Q1
2 �= Q2

2 (5)

In order to compare different bootstrap methods through simulation, we first gener-
ate two datasets of size n using the second scenario proposed in Sect. 4.1. We compute
the medians of these datasets, Q̂1

2 and Q̂2
2, and calculate Aobs = Q̂1

2 − Q̂2
2. Next,

we combine the two datasets so that they form a new dataset of size 2n. Then, for
each bootstrap method, we draw 1000 samples of size 2n, and call the first n obser-
vations z∗b and the remaining n observations y∗b for b = 1, 2, . . . , B. We compute
A∗b = Q̂2(z∗b) − Q̂2(y∗b) for each bootstrap sample, resulting in 1000 A∗ values.
Finally, we calculate the ASL value and reject H0 if ÂSL < 2α. We repeat this pro-
cess B = 1000 times and count the number of times we reject the null hypothesis.
We take the ratio of rejected hypotheses out of 1000 trials and consider the method
with the ratio closest to 2α as the best method. The final results of the simulations are
presented in Tables9 and 10 for two different significance levels.

As the sample space of the underlying distribution is [0,∞), we only consider SBexp
and SBLexp for the smoothed bootstrap method. For Efron’s method, we consider E(2)
and E(3) as they are guaranteed to find the median of each set in each bootstrap sample.
Tables9 and 10 present the Type I error rates of the hypothesis test in Equation (5)
with significance levels of 0.10 and 0.05, respectively. The SBexp and SBLexp methods
generally provide lower actual Type I error rates compared to E(2) and E(3) at different
sample sizes. However, E(2) and E(3) provide smaller discrepancies between the actual
and nominal Type I error levels, especially when the sample size is small. When
n = 500, all methods provide almost identical results.
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Table 10 Type I error rates with
significance level 2α = 0.05,
and all samples created by
T ∼ Log-Normal(μ = 0, σ =
1),C ∼ Weibull(α = 3, β =
3.7),where p = 0.15

n SBexp SBLexp E(2) E(3)

10 0.025 0.025 0.031 0.031

50 0.039 0.041 0.039 0.039

100 0.047 0.046 0.049 0.049

500 0.043 0.042 0.043 0.043

Table 11 Type I error rates with
significance level 2α = 0.10, the
first samples from
T ∼ Log-Normal(μ = 0, σ =
1),C ∼ Weibull(α = 3, β =
3.7),where p = 0.15 and the
second samples from
T ∼ Weibull(α = 1, β =
1.443),C ∼ Exponential(λ =
0.12),where p = 0.15

n SBexp SBLexp E(2) E(3)

10 0.082 0.079 0.083 0.083

50 0.103 0.105 0.095 0.095

100 0.101 0.097 0.093 0.093

500 0.089 0.092 0.084 0.084

Table 12 Type I error rates with
significance level 2α = 0.05, the
first samples from
T ∼ Log-Normal(μ = 0, σ =
1),C ∼ Weibull(α = 3, β =
3.7),where p = 0.15 and the
second samples from
T ∼ Weibull(α = 1, β =
1.443),C ∼ Exponential(λ =
0.12),where p = 0.15

n SBexp SBLexp E(2) E(3)

10 0.030 0.027 0.038 0.038

50 0.046 0.047 0.046 0.046

100 0.041 0.043 0.034 0.034

500 0.045 0.047 0.043 0.043

In previous simulations, we created both samples in each run from a single scenario,
but now we want to create samples from two different scenarios. In each run, the first
sample is created from T ∼ Log-Normal(μ = 0, σ = 1) and C ∼ Weibull(α =
3, β = 3.7), while the second sample is created from T ∼ Weibull(α = 1, β = 1.443)
and C ∼ Exponential(λ = 0.12), where p = 0.15 in both scenarios (see Appendix).
We aim to investigate how the bootstrap methods perform when the two samples have
different distributions but the same median (which is equal to 1). Tables11 and 12
show the Type I error rates with significance levels of 0.10 and 0.05, respectively. All
methods performwell at different sample sizes, and the results are close to the nominal
size 2α, particularly when the sample size is large.

4.3 Pearson Correlation Test

In Sect. 2.3, we present smoothed bootstrap methods and compare them to Efron’s
method.We compute the Type I error rate to determine the superiority of each method,
where a method is considered superior if its corresponding Type I error rate is closer
to the significance level of 2α. In this section, we simulate data sets from two different
distributions to compare the methods. For the first scenario, we generate data sets from
Gumbel copula, where the marginals X and Y both follow the standard uniform distri-
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bution. The second scenario is Clayton copula where X follows the normal distribution
withmean 1 and standard deviation 1, and Y follows the normal distributionwithmean
5 and standard deviation 3. For both scenarios, we consider three dependence levels of
ρ and three sample sizes with two significance levels. We also include the dependence
parameters of copulas and their concordance measure Kendall’s τ . The cumulative
distribution functions of Gumbel copula and Clayton copula are, respectively, given
by [22]

Cg(u, v|θg) = exp
(
− [

(− ln(u))θg + (− ln(v))θg
]1/θg) (6)

Cc(u, v|θc) = max
[(
u−θc + v−θc − 1

)−1/θc
, 0

]
(7)

where all marginals are uniformly distributed on [0,1].
To compute the Type I error rate for the null hypothesis of ρ = ρ	 based on a

bootstrap method, we create N = 1000 data sets with sample size n and dependence
level ρ = ρ	 from one of the scenarios presented above. For each generated data set,
we apply each bootstrap method B = 1000 times and compute the Pearson correlation
of each bootstrap sample. We order the 1000 Pearson correlation bootstrapped values
from lowest to highest and obtain the 100(1− 2α)% bootstrap confidence interval. If
the null hypothesis value is not included in the confidence interval, we reject H0 and
count 1; otherwise, we do not reject H0 and count 0. The number of times that the null
hypothesis was rejected over the 1000 trials will be the Type I error rate.

Table13 presents the Type I error rates based on the bootstrap methods, where the
significance level is 0.10. For a small sample size of n = 10, the SBSP and SBNP
methods provide error rates closer to the nominal rate of 0.10 compared to Efron’s and
the smoothed Efron’s methods. However, the SBNP method is the best when ρ = 0.4
and 0.8. When n increases to 50 and 100, all methods decrease the discrepancies
between the actual and nominal error rates, but the SBNP method is the superior one
in most cases.

With a significance level of 0.05, the actual Type I error rates based on the bootstrap
methods are listed in Table14. The SBSP and SBNP methods again provide lower
discrepancies between the nominal and actual Type I error rates compared to Efron’s
and the smoothed Efron’s methods, especially when n = 10. When the sample size
increases to 50 and 100, all methods perform better, but the SBNP method is the best
one in most settings.

In the second scenario, we simulate N = 1000 data sets with dependence level
ρ = ρ	, and we compute Type I error rates using the bootstrap methods as shown in
Tables 15 and 16. For n = 10, the SBSP method provides the closest results to the
nominal error rates at most levels of ρ. As n increases to 50 and 100, its performance
worsens for H0 : ρ = 0.8 because the underlying distribution is not symmetric.
At these large sample sizes, the SBNP, Efron and SEB methods perform better than
the SBSP method, particularly the SBNP method. The SBNP method provides the
lowest discrepancies between the nominal and actual error rates in most cases, in both
significance levels of 0.10 and 0.05; however, when n = 10 and ρ = 0, 0.4, the SBNP
method provides very small error rates.

123



Journal of Statistical Theory and Practice (2024) 18 :16 Page 17 of 28 16

Ta
bl
e
13

Ty
pe

I
er
ro
r
ra
te
s
w
ith

si
gn
ifi
ca
nc
e
le
ve
l0

.1
0,

G
um

be
lc
op

ul
a,

X
∼

U
ni
f(
0,

1)
an
d
Y

∼
U
ni
f(
0,

1)

n
=

10
50

10
0

τ
θ

H
0

:
SB

SP
SB

N
P

E
fr
on

SE
B

SB
SP

SB
N
P

E
fr
on

SE
B

SB
SP

SB
N
P

E
fr
on

SE
B

0
1

ρ
=

0
0.
11

4
0.
12

0
0.
13

9
0.
14

2
0.
10

5
0.
11

3
0.
10

6
0.
10

5
0.
10

6
0.
10

2
0.
10

7
0.
10

6

0.
27

5
1.
37

93
ρ

=
0.
4

0.
13

7
0.
12

9
0.
14

7
0.
14

9
0.
13

6
0.
12

2
0.
12

8
0.
12

7
0.
12

9
0.
10

5
0.
10

9
0.
10

6

0.
61

0
2.
56

41
ρ

=
0.
8

0.
13

3
0.
07

5
0.
18

9
0.
18

4
0.
12

9
0.
12

3
0.
12

1
0.
12

6
0.
12

6
0.
10

3
0.
11

1
0.
10

7

123



16 Page 18 of 28 Journal of Statistical Theory and Practice (2024) 18 :16

Ta
bl
e
14

Ty
pe

I
er
ro
r
ra
te
s
w
ith

si
gn
ifi
ca
nc
e
le
ve
l0

.0
5,
G
um

be
lc
op

ul
a,

X
∼

U
ni
f(
0,

1)
an
d
Y

∼
U
ni
f(
0,

1)

n
=

10
50

10
0

τ
θ

H
0

:
SB

SP
SB

N
P

E
fr
on

SE
B

SB
SP

SB
N
P

E
fr
on

SE
B

SB
SP

SB
N
P

E
fr
on

SE
B

0
1

ρ
=

0
0.
06

4
0.
07

2
0.
08

5
0.
08

1
0.
04

6
0.
05

1
0.
05

3
0.
05

8
0.
05

6
0.
05

2
0.
05

5
0.
05

7

0.
27

5
1.
37

93
ρ

=
0.
4

0.
07

5
0.
07

0
0.
10

0
0.
09

8
0.
06

7
0.
07

9
0.
08

0
0.
07

5
0.
06

6
0.
06

1
0.
06

1
0.
05

8

0.
61

0
2.
56

41
ρ

=
0.
8

0.
07

9
0.
03

4
0.
13

1
0.
12

7
0.
07

4
0.
07

0
0.
07

8
0.
07

6
0.
08

0
0.
06

6
0.
07

1
0.
07

1

123



Journal of Statistical Theory and Practice (2024) 18 :16 Page 19 of 28 16

Ta
bl
e
15

Ty
pe

I
er
ro
r
ra
te
s
w
ith

si
gn
ifi
ca
nc
e
le
ve
l0

.1
0,

C
la
yt
on

co
pu

la
,
X

∼
N
or
m
al

(μ
=

1,
σ

=
1)

an
d
Y

∼
N
or
m
al

(μ
=

5,
σ

=
3)

n
=

10
50

10
0

τ
θ

H
0

:
SB

SP
SB

N
P

E
fr
on

SE
B

SB
SP

SB
N
P

E
fr
on

SE
B

SB
SP

SB
N
P

E
fr
on

SE
B

0
0

ρ
=

0
0.
11

9
0.
02

6
0.
14

4
0.
14

7
0.
11

9
0.
09

7
0.
11

7
0.
11

5
0.
11

6
0.
09

7
0.
10

2
0.
10

2

0.
25

9
0.
69

90
ρ

=
0.
4

0.
14

2
0.
03

9
0.
16

7
0.
16

5
0.
15

0
0.
10

2
0.
12

2
0.
12

5
0.
13

5
0.
11

4
0.
11

6
0.
11

9

0.
63

0
3.
40

54
ρ

=
0.
8

0.
14

4
0.
17

5
0.
18

9
0.
19

6
0.
21

8
0.
11

0
0.
14

1
0.
13

2
0.
27

7
0.
10

4
0.
11

1
0.
11

8

123



16 Page 20 of 28 Journal of Statistical Theory and Practice (2024) 18 :16

Ta
bl
e
16

Ty
pe

I
er
ro
r
ra
te
s
w
ith

si
gn
ifi
ca
nc
e
le
ve
l0

.0
5,
C
la
yt
on

co
pu

la
,
X

∼
N
or
m
al

(μ
=

1,
σ

=
1)

an
d
Y

∼
N
or
m
al

(μ
=

5,
σ

=
3)

n
=

10
50

10
0

τ
θ

H
0

:
SB

SP
SB

N
P

E
fr
on

SE
B

SB
SP

SB
N
P

E
fr
on

SE
B

SB
SP

SB
N
P

E
fr
on

SE
B

0
0

ρ
=

0
0.
06

5
0.
00

9
0.
08

6
0.
08

6
0.
05

3
0.
04

8
0.
06

0
0.
06

4
0.
06

3
0.
05

6
0.
05

4
0.
05

8

0.
25

9
0.
69

90
ρ

=
0.
4

0.
08

8
0.
01

2
0.
10

8
0.
10

5
0.
07

6
0.
04

8
0.
06

6
0.
06

8
0.
08

3
0.
06

6
0.
06

3
0.
07

0

0.
63

0
3.
40

54
ρ

=
0.
8

0.
08

0
0.
03

9
0.
13

0
0.
13

2
0.
14

7
0.
05

1
0.
07

9
0.
07

9
0.
20

0
0.
05

4
0.
06

2
0.
06

3

123



Journal of Statistical Theory and Practice (2024) 18 :16 Page 21 of 28 16

4.4 Kendall Correlation Test

In Sect. 4.3, we computed the Type I error rate for the Pearson correlation test using
different sample sizes and dependence levels. In this section, we aim to repeat the same
comparisons, but this time, we will use the Kendall correlation test instead. We will
use the same scenarios, generating datasets with n = 10, 50 and 100, and dependence
levels of τ = 0, 0.4 and 0.8, with significance levels of 0.10 and 0.05.

To generate data sets and apply the bootstrap methods, we will use the Gumbel
copula, where both marginals follow Uniform(0,1). From Tables 17 and 18, we can
see that the SBSP method performs well when τ = 0 across all different sample sizes.
However, it performs poorly as the sample size increases for τ = 0.4 and 0.8. This
is in contrast to the results based on SBNP, Efron’s, and smoothed Efron’s methods.
These methods provide lower error rates than the nominal levels when the sample size
is small at all different dependence levels. As n increases to 50 and 100, the error rates
become closer to the nominal level 2α.

Tables 19 and 20 present the Type I error rates for the Kendal correlation test at
different dependence levels with significance levels of 0.10 and 0.05, respectively.
When τ = 0 and n = 10, the error rate based on the SBNP method is significantly
lower than the nominal level 2α, while the results of other methods are close to the
nominal levels. As the sample size increases to 50 and 100, all methods provide good
results. If there is a strong relation between the variables, it is recommended to use
either Efron’s bootstrap method or the SEB method. These methods are both able to
produce good results because they have much less effect than the SBSP and SBNP
methods on the observation’s rank, which is the basis for computing the Kendall
correlation.

5 Concluding Remarks

In this paper, we explored how the proposed smoothed bootstrap methods can be used
to compute Type I error rates for different hypothesis tests and compare their results to
Efron’s bootstrap methods through simulations. The smoothed bootstrap methods are
applied to real-valued data, right-censored data and bivariate data. For real-valued data
and right-censored data, we test the null hypothesis that quartiles are equal to those
of the underlying distributions. We also test whether two sample medians are equal,
regardless of whether the two samples are from the same underlying distribution or
not. For bivariate data, we compute the Type I error rates for Pearson and Kendall
correlation tests.

We found that the smoothed bootstrap methods perform better when the sample
size is small for real-valued and right-censored data, providing lower discrepancies
between actual and nominal error rates. As the sample size gets larger, all bootstrap
methods provide good results, but Efron’s methods mostly perform better for the third
quartile. For the two-sample median test, we use the achieved significance level to test
whether the two samples have equal medians or not. All bootstrap methods performed
well, and the Type I error rates are close to the nominal levels.
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For the Pearson correlation test, the SBSP and SBNP methods lead to lower dis-
crepancies between actual and nominal Type I error rates compared to Efron’s and
smoothed Efron’s methods when the sample size is small. For large sample sizes, all
methods provide good results. However, the SBNP method performs better in most
dependence levels. In situations where the data distribution is asymmetric, the SBSP
method does not perform well, particularly when τ is not close to zero, which results
from the Normal copula assumption.

For the Kendall correlation test, it is recommended to use either Efron’s bootstrap
method or the SEBmethod, particularly when the underlying distribution is asymmet-
ric and has a strong Kendall correlation. Their influences on the observations rank are
much less than those of the SBSP and SBNPmethods.When τ = 0 and the sample size
is small, all bootstrap methods perform well, and as n gets large, their performances
improve and the Type I error rates become closer to the nominal level 2α.

In conclusion, we used the bootstrap methods for real-valued data, right-censored
data and bivariate data to compute Type I error rates for different hypothesis tests.
Future research could focus on applying these bootstrap methods to compute power
or Type II error rates for some hypothesis tests.

Acknowledgements AsamhAlLuhaybwas aPhDstudent atDurhamUniversity, supported by a scholarship
from the Deanship of Scientific Research at Qassim University. During his studies, he worked under the
supervision of Prof. Frank Coolen and Dr. Tahani Coolen-Maturi.

Declarations

Conflicts of interest The author states that there is no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

The probability density functions for the distributions used in each scenario to generate
right-censored data.
Scenario 1:
Beta distribution for event times:
f (t) = tα−1(1−t)β−1

β(α,β)
; t ∈ [0, 1] where α = 1.2 and β = 3.2.

Uniform distribution for censored times:
g(c) = 1

b−a ; c ∈ [a, b] where a = 0 and b = 1.82.
Scenario 2:
Log-Normal distribution for event times:
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f (t) = 1

t
√
2π

exp(− (ln(t))2

2 ); t ∈ (0,∞).

Weibull distribution for censored times:
g(c) = α

β
( c
β
)α−1 exp(−( c

β
)α); c ∈ [0,∞) where α = 3 and β = 3.7.

Scenario 3:
Weibull distribution for event times:
f (t) = α

β
( t
β
)α−1 exp(−( t

β
)α); t ∈ [0,∞) where α = 1 and β = 1.443.

Exponential distribution for censored times:
g(c) = λ exp(−λc); c ∈ [0,∞) where λ = 0.12.

References

1. Al Luhayb ASM (2021) Smoothed bootstrap methods for right-censored data and bivariate data. PhD
thesis, Durham University. http://etheses.dur.ac.uk/14096

2. Al Luhayb ASM, Coolen FPA, Coolen-Maturi T (2023) Smoothed bootstrap for right-censored data.
Commun Stat Theory Methods. https://doi.org/10.1080/03610926.2023.2171708

3. Al Luhayb ASM, Coolen-Maturi T, Coolen FPA (2023) Smoothed bootstrap methods for bivariate
data. J Stat Theory Pract 17(3):1–37. https://doi.org/10.1007/s42519-023-00334-7

4. Banks DL (1988) Histospline smoothing the Bayesian bootstrap. Biometrika 75:673–684
5. Berrar D (2019) Introduction to the non-parametric bootstrap. In: Encyclopedia of bioinformatics and

computational biology. Academic Press, Oxford, pp 766–773
6. Boos DD (2003) Introduction to the bootstrap world. Stat Sci 18(2):168–174
7. Brown BW, Hollander M, Korwar RM (1974) Nonparametric tests of independence for censored data

with applications to heart transplant studies. In: Proschan F, Serfling RJ (eds) Reliability and biometry.
SIAM, Philadelphia, pp 327–354

8. Coolen FPA, BinHimd S (2020) Nonparametric predictive inference bootstrap with application to
reproducibility of the two-sample Kolmogorov–Smirnov test. J Stat Theory Pract 14:1–13

9. Coolen FPA, Yan KJ (2004) Nonparametric predictive inference with right-censored data. J Stat Plan
Inference 126:25–54

10. DavisonAC,HinkleyDV (1997) Bootstrapmethods and their application. CambridgeUniversity Press,
Cambridge

11. Dolker M, Halperin S, Divgi DR (1982) Problems with bootstrapping Pearson correlations in very
small bivariate samples. Psychometrika 47(4):529–530

12. Efron B (1967) The two-sample problem with censored data. In: Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability, vol 4. University of California Press, Berkeley,
pp 831–853

13. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26
14. Efron B (1981) Censored data and the bootstrap. J Am Stat Assoc 76:312–319
15. Efron B (1982) The jackknife, the bootstrap, and other resampling plans, vol 38. Society for Industrial

and Applied Mathematics, Philadelphia
16. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other

measures of statistical accuracy. Stat Sci 1:54–77
17. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, London
18. Hesterberg T (2011) Bootstrap. Wiley Interdiscip Rev Comput Stat 3(6):497–526
19. MacKinnon JG (2009) Bootstrap hypothesis testing. In: Handbook of computational econometrics, pp

183–213
20. Muhammad N (2016) Predictive inference with copulas for bivariate data. PhD thesis, Durham Uni-

versity, UK
21. Muhammad N, Coolen FPA, Coolen-Maturi T (2016) Predictive inference for bivariate data with

nonparametric copula. Am Inst Phys AIP Conf Proc 1750(1):0600041–0600048. https://doi.org/10.
1063/1.4954609

22. Muhammad N, Coolen-Maturi T, Coolen FPA (2018) Nonparametric predictive inference with para-
metric copulas for combining bivariate diagnostic tests. Stat Optim Inf Comput 6(3):398–408

123

http://etheses.dur.ac.uk/14096
https://doi.org/10.1080/03610926.2023.2171708
https://doi.org/10.1007/s42519-023-00334-7
https://doi.org/10.1063/1.4954609
https://doi.org/10.1063/1.4954609


16 Page 28 of 28 Journal of Statistical Theory and Practice (2024) 18 :16

23. Rasmussen JL (1987) Estimating correlation coefficients: bootstrap and parametric approaches. Psy-
chol Bull 101(1):136–139

24. StrubeMJ (1988) Bootstrap type I error rates for the correlation coefficient: an examination of alternate
procedures. Psychol Bull 104(2):290–292

25. Vaman H, Tattar P (2022) Survival analysis. Chemical Rubber Company Press, Boca Raton
26. WanF (2017) Simulating survival datawith predefined censoring rates for proportional hazardsmodels.

Stat Med 36:721–880

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Smoothed Bootstrap Methods for Hypothesis Testing
	Abstract
	1 Introduction
	2 Bootstrap Methods for Different Data Types
	2.1 Bootstrap Methods for Real-Valued Univariate Data
	2.2 Bootstrap Methods for Right-Censored Univariate Data
	2.3 Bootstrap Methods for Bivariate Data

	3 Example
	4 Comparison of the Bootstrap Methods
	4.1 Hypothesis Tests for Quartiles
	4.2 The Two-Sample Problem
	4.3 Pearson Correlation Test
	4.4 Kendall Correlation Test

	5 Concluding Remarks
	Acknowledgements
	Appendix
	References




