
Decentralized Multi-Agent Coverage Path Planning with Greedy
Entropy Maximization

Kale Champagnie, Farshad Arvin, and Junyan Hu

Abstract—In this paper, we present GEM, a novel approach to
online coverage path planning in which a swarm of homogeneous
agents act to maximize the entropy of pheromone deposited
within their environment. We show that entropy maximization
(EM) coincides with many conventional goals in offline coverage
path planning, while also generalizing to online settings. We first
propose the concept of uniformity, which is a generalised metric
that allows offline and online CPP approaches to be viewed
through a unified lens. We then evaluate our approach by mea-
suring the rate at which entropy is maximized within a variety
of static and dynamic environments. Our experimental results
demonstrate that GEM achieves state-of-the-art performance
in online coverage, competitive with offline methods, despite
requiring no direct communication among agents.

Index Terms—Coverage path planning, multi-agent systems,
swarm intelligence, autonomous robots, artificial pheromone.

I. INTRODUCTION

Coverage Path Planning (CPP) refers to the task of directing
one or more mobile agents such that they collectively explore
an area of interest (AOI), while also avoiding obstacles [1].
Generally, CPP involves two interrelated processes — view-
point generation and path generation. Viewpoint generation
involves specifying a set of regions within the target area
(viewpoints), such that their union encompasses the whole
area. CPP has been applied to numerous fields, including
search and rescue operations [2]–[5], household robotics [6],
connected and autonomous vehicle platooning [7], agricultural
monitoring [6], exploration of hazardous environments (e.g.
due to unsafe levels of radiation) [8], robot and bee colony
interactions [9], aerial surveillance [10], and broader applica-
tions in mathematics related to efficient coverage of discrete
and continuous state-spaces.

Offline Coverage Path Planning is a traditional form of
coverage path planning which generates viewpoints and path
plans prior to executing those plans within the environment
[11], [12]. Offline CPP approaches have maintained persistent
interest in the literature due a number of valuable properties;
for instance, their ability to produce near-optimal solutions in
static environments [13]. A primary disadvantage of offline
approaches is their reliance on rather unrealistic assumptions
about the environment agents will be embedded in. However,
many scenarios where CPP could be applied, do not neces-
sarily fit this model. A related problem arising from offline
approaches is their reliance on complete a priori knowledge

This work was supported by EU H2020-FET-OPEN RoboRoyale project
[grant number 964492].

K. Champagnie is with the Department of Computer Science, University
College London, London, UK. (e-mail: kale.champagnie.20@ucl.ac.uk)

F. Arvin and J. Hu are with the Department of Computer Science, Durham
University, Durham, UK. (e-mail: {farshad.arvin, junyan.hu}@durham.ac.uk)

about the environment. However, many realistic scenarios may
involve environments which are only partially observable or in-
deed completely unmapped. Besides, many offline approaches
are also centralized, meaning agents receive plans from a
single coordination unit, which may have limited network
reachability [14]. To overcome these limitations, online CPP
methods have been developed in conjunction with conventional
approaches to address many of the issues outlined above
[15]. Their defining feature is the construction of plans at
execution time (either partially or entirely), often in a dynamic
fashion that adapts to unanticipated environmental changes
[16]. Some of the most successful approaches have utilized or
replicated concepts from biological systems such as stigmergic
communication (i.e. pheromonal signaling) and other decen-
tralized swarm-like mechanics to achieve real-time coverage
without an explicit planning algorithm [1]. However, there are
still significant areas for improvement within contemporary
approaches. For instance, whereas offline planning algorithms
have a clear objective (cover every viewpoint in an efficient
manner), there has been less consensus among researchers
about which objective goals online methods should strive for.

In this work, we focus on developing a novel CPP approach
that takes inspiration from the collective behaviour of ants
to explore arbitrary, highly dynamic environments in an ef-
ficient, distributed manner. Unlike many existing approaches,
our method is entirely decentralized and requires no direct
communication between agents, instead relying on indirect
pheromonal signalling. We additionally propose a generalised
framework for evaluating the performance of CPP solutions
based on the notion that successful coverage, in most cases
reduces to uniform exploration of the environment, such that
each viewpoint receives a similar number of visits from the
team of agents.

II. UNIFORMITY DESIGN

The primary aim of coverage path planning is to efficiently
visit every viewpoint within a target area. In static environ-
ments, we may consider coverage to be complete once every
viewpoint has been visited at least once by an agent. We may
then measure the efficiency of the solution with respect to how
quickly it completes and in terms of other metrics such as the
overlap (redundancy) between generated paths. However, in
dynamic environments, it may not be sufficient to visit each
viewpoint only once. Additionally, online CPP methods should
be capable of adapting to environmental changes which create
opportunities to explore previously unreachable regions of the
AOI.

In this section, we introduce a generalized coverage path
planning metric and objective function, which allows us to
view both offline and online CPP approaches through the
same lens. The metric in question is referred to as uniformity,
which aims to capture the notion of spatially and temporally
balanced visitation to each viewpoint within the AOI. It
quantifies the extent to which agents effectively distributed
their shared resources into covering the AOI as rapidly as
possible and maintaining said coverage after perturbations
to the environment (e.g. the removal of obstacles, or indeed
agents themselves).

A. Uniformity

We refer to this metric as uniformity as it essentially
quantifies how evenly spread visits to viewpoints are over
the AOI. In this section, we provide a precise definition
of uniformity and show that maximizing uniformity implies
optimizing for the offline and online metrics. We first define
a measure for the uniformity of an environment at time t. We
then, use this definition to define the uniformity of a coverage
path plan, as the cumulative uniformity achieved throughout
the duration of the plan.

We define the state of an environment at time t as a 3-tuple
St = (Vt, Et, At) where:

• Vt is the set of viewpoints at time t.
• Et is the set of edges (i.e. accessible paths) between

viewpoints at time t.
• At ⊆ Vt is the subset of viewpoints occupied by agents

at time t.

To quantify the uniformity of such an environment, we
equip each viewpoint with a pheromone level which decays
over time. We may also call this the temperature or energy
of a viewpoint. Whenever an agent visits the viewpoint, the
pheromone level is replenished and increased by a constant
amount. Otherwise, the pheromone level is depleted and
reduced by a constant factor (i.e. exponential decay). The rate
at which pheromone decays is an important parameter which
essentially reflects how many frequently visits must be made
to a particular viewpoint.

Let v ∈ V be a viewpoint. Then its pheromone level at time
t is given by

Lt (v) = αLt−1 (v) + k1At
(v) , L0 (v) = 0 (1)

where:

• α is the decay rate coefficient — for instance α = 0.98
causes the pheromone to decay by 2% on every iteration.

• k is the amount of pheromone deposited by agents when
visiting the viewpoint, typically k = 1.

• 1Ai
(v) is an indicator function, returning one if v ∈ Ai

or zero otherwise.

Using this recurrence relation, we can obtain a pheromone
distribution for the environment at time t. This is a probability
distribution encoding the relative pheromone levels of each

viewpoint. We may compute it by simply normalizing over all
viewpoints in V :

pt(v) =
Lt(v)∑

u∈V Lt(u)

Now, we would like to quantify the uniformity of this dis-
tribution. A semantically reasonable choice is to compute the
Shannon entropy of a hypothetical random variable distributed
according to pt. That is,

H[pt] = H[X], X ∼ pt

According to information theory, H[X] may be interpreted as
minimum number of bits required to communicate a particular
outcome in X . However, for our purposes we needn’t make
use of this interpretation. Instead, we can simply see H[X]
as measuring how evenly spread pheromones are among the
set of viewpoints. If most of the pheromone is concentrated
in only a few viewpoints, then the entropy will be low. As
we will show, this occurs precisely when conventional CPP
objectives such as low overlap fail to be achieved.

Hence, the uniformity of the environment at time t, may be
concisely written as

U(St) = H[pt] = −
∑
v∈Vt

pt (v) log2 pt (v) . (2)

For completeness, we also define the uniformity of an entire
coverage path plan A, as the cumulative uniformity achieved
at each time step.

U(A) =
∑
t≤|A|

U(St). (3)

B. Generality

Throughout this section, we have claimed that uniformity
generalizes both offline and online coverage metrics. To sup-
port the variety of our claim, we now devise such a proof using
the formal definitions of uniformity and conventional CPP
metrics. We show that in each case, maximizing uniformity
entails optimizing for the metric in question.

1) Increasing Uniformity Eventually Implies Increasing
Coverage Completeness: We show that if U(St′)−U(St) > c
then CCt′ > CCt.

In other words, uniformity cannot be increased beyond a
certain amount without also increasing coverage completeness.

Suppose that at time t, we have |Ct| = k. Then only k
viewpoints have ever been visited. A viewpoint u which has
never been visited has no pheromone since L0(u) = 0 and
there exists no time t′ ≤ t such that 1At′ (v) = 1.

Then, all pheromones must be entirely concentrated on the
k visited viewpoints. The minimal uniformity occurs when all
pheromone is concentrated on a single viewpoint u, such that

pt(v) =

{
1 if v = u

0 otherwise
. (4)

Then entropy of this distribution is exactly zero and there
is no uncertainty about where the pheromone is located.

Now suppose that at time t′ > t, we again have |Ct′ | ≤ k.
The maximal uniformity occurs when pt(v) = 1/k for all
v ∈ Vt. In this case the entropy is exactly log2 k. Hence, the
maximum increase in uniformity between t and t′ is

maxU(St′)−minU(St) = log2 k − 0 = log2 k. (5)

Hence, if U(St′)−U(St) > log2 k, the assumption that |Ct′ | ≤
k is false, and |Ct′ | > |Ct|. Therefore, U(St′) − U(St) > c
implies CCt′ > CCt where c = log2 CCt.

2) Maximizing Uniformity Implies Maximizing Online Cov-
erage Completeness: We show that if uniformity is maximal,
online coverage completeness must be maximal.

Let l be the lifespan such that if Ct(v) ⇐⇒ VPt(v) < l.
We can always choose a decay rate coefficient α such that
pt(v) = 0 if and only if VPt(v) ≥ l. In other words, we can
choose a decay rate which assigns probabilities greater than
0 to viewpoints only if they were visited within the lifespan.
Essentially we are encoding l in α.

Maximum uniformity is achieved when pt(v) = 1/|Vt|
for all v ∈ Vt. Then for all v we have that pt(v) > 0
which implies VPt(v) < l =⇒ Ct(v). Hence, when
uniformity is maximized under α, every viewpoint is covered
under the lifespan l, thus online coverage completeness is also
maximized.

C. Derivative Metrics

Now that we have justified the notion of uniformity on
intuitive and formal grounds, we introduce several derivative
metrics which may expressed in terms of uniformity.

1) Perplexity (PPL): Uniformity is measured logarithmi-
cally in bits (or nats if we choose to use the natural logarithm).
However, it is more natural for us to work with linear scales
when comparing and evaluating coverage algorithms. The
most straightforward method for linearising entropy is to work
with perplexity, which simply inverts the logarithm

PPL(St) = 2U(St). (6)

Throughout the remainder of this paper, we will generally
work with PPL rather than U directly when presenting results.

2) Relative Perplexity (RPPL): A further transformation we
may apply to U , is to compute perplexity, relative to the max-
imum possible perplexity achievable within an environment.
Maximum perplexity is achieved when pt(v) = 1/|Vt| for all
v ∈ Vt and has a value of 2|Vt|. Hence, relative perplexity
(RP) is given by

RPPL(St) =
2U(St)

2|Vt|
= 2U(St)−|Vt|. (7)

When RPPL = 1, we have ideal coverage. Values less than
50% are generally considered unsatisfactory. Note that the
RPPL achieved by an algorithm is dependant on the decay
rate coefficient α. Higher values of α (lower decay rate) make
achieving high RPPL easier, whereas lower values represent
resource-intensive coverage problems where each viewpoint
requires more frequent attention.

III. GREEDY ENTROPY MAXIMIZATION DESIGN FOR
MULTI-AGENT COVERAGE

In this section, we present a concrete uniformity-based
coverage path planning algorithm which takes inspiration from
the collective behavior of ants. Our approach is referred to
as GEM (Greedy Entropy Maximization) and aims to max-
imize uniformity (entropy) using a swarm of homogeneous
agents that make decisions greedily (i.e. only using local
information). GEM makes almost no a priori assumptions
about the environment (apart from the assumption that it’s
discrete). GEM can also work with an arbitrary number of
agents and yields a time complexity which is invariant to
map size. In addition, agents require no direct communication
as the algorithm instead relies on implicit/indirect stigmergic
communication via pheromones.

A. Problem Formulation

The primary goal of GEM is to maximize the uniformity
of the environment U(St), and more generally the cumulative
uniformity obtained over the entire course of a run, denoted
U(A). Let {(S0, R0), . . . , (St, Rt), . . . } be a Markov-decision
process where St = (Vt, Et, At) is the state of the environment
at time t and Rt is the immediate reward obtained from
transitioning into state St from St−1. The agent (which
in our case refers to the entire swarm of mobile agents),
emits a corresponding sequence of actions {a0, . . . , at, . . . }
which cause the environment to emit a new state and reward
according to the conditional distribution p (Rt+1, St+1|St, at).

1) Actions: The swarm emits a sequence of actions
{a0, . . . , at, . . . } describing the movements of each agent at
every time step. For simplicity, we can let at = At, such
that each action just lists the viewpoints each agent should
occupy. Some actions are invalid in particular states; namely
actions which would cause multiple agents to occupy the same
viewpoint at the same time, or actions which place agents in
viewpoints occupied by obstacles. For the sake of generality,
we avoid defining precisely how obstacles are represented, but
define an inaccessible viewpoint as one which has no inbound
edges. We say v ∈ Vt is inaccessible if

(∀u ∈ Vt)((u, v) ̸∈ Et). (8)

In contrast, an accessible viewpoint is one with at least one
inbound edge:

(∃u ∈ Vt)((u, v) ∈ Et). (9)

In GEM, agents may only move between adjacent viewpoint
such that

(∀v ∈ At)(∃u ∈ Ot−1)((u, v) ∈ Et−1), (10)

i.e., every viewpoint in At must be reachable from a viewpoint
in At−1 (the prior locations of each agent), along an edge in
Et−1.

2) States: The state of the environment is essentially a
graph with vertices representing viewpoints and edges repre-
senting accessibility between those viewpoints. For instance,
in grid-based CPP, each grid cell may be assigned a particular
viewpoint, with edges between call geometrically adjacent
cells and itself (reflexivity).

We generally assume that Vt remains fixed such that
∀t(Vt = V0). In most environment models, there is no
need to change Vt as all environmental perturbations can
be represented through alterations to the set of edges Et.
For instance, again considering grid-based CPP, walls may
be represented simply by the lack of an edge between two
adjacent cells.

3) Rewards: Rewards are signals transmitted to an agent in
addition to states, which signal whether a previous action was
positive or negative. In the case of GEM, a natural choice for
this reward signal is just the uniformity of the current state,
i.e.,

Rt = U(St) (11)

We could also use the change in uniformity between con-
secutive states; in RL solutions, this may be preferable as
it provides a bounded reward signal with negative rewards
helping to negatively reinforce actions that reduce coverage.
However, for GEM, which is not based on RL, we can
uniformity directly.

Then cumulative reward received by the agent is simply
given by

R =
∑
t<tmax

Rt (12)

The agent’s goal is then to select a set of actions A such that

R = max
A∈A

R (13)

where A is the set of all possible action sequences the agent
could take.

This completes our decision-theoretic formulation of online
CPP. We now discuss how GEM provides an effective solution.

B. Greedy Entropy Maximization Algorithm

GEM is a completely decentralized online CPP algorithm
in which a swarm of homogeneous agents act to maximize
the entropy of pheromone deposited within the environment.
Each agent is assumed to have minimal sensing such that it can
only detect the state of viewpoints immediately adjacent to the
viewpoint it’s currently stationed on. Moreover, we make no
assumptions about whether agents have memory nor whether
they are capable of communicating with each other remotely.

In GEM, each agent within the swarm must have access
to the pheromone level Lt(v) deposited on every viewpoint
adjacent to its own position. A decision heuristic function
h(·) is then applied to determine which adjacent viewpoint
the agent should move to. Formally,

Ai
t = argminv∈adj(Ai

t−1)
h(Lt(v)) (14)

where adj(Ai
t−1) is the set of viewpoints adjacent to Ai

t−1.

Fig. 1. Actions taken by a GEM agent following the least pheromone heuristic
with pheromone levels depicted by colour intensity.

The simplest heuristic, and the one we use our implemen-
tation is just the identity function h(x) = x. In this case,
each agent simply moves to whichever viewpoint has the least
pheromone deposited on it via

Ai
t = argminv∈adj(Ai

t−1)
Lt(v). (15)

Figure 1 shows a hypothetical scenario in a grid-based CPP
problem with an agent stationed at the centre cell. The inten-
sity of each cell indicates the relative amount of pheromone
deposited on it. Under the identity heuristic, the agent chooses
to move to the adjacent cell with least pheromone, indicated
by the arrow. An obstacle is shown on the left in grey.

Once an agent moves to a new viewpoint, it deposits
fresh pheromone to it, which increases the pheromone level.
Pheromone levels decay over time according to

Lt (v) = αLt−1 (v) + k1At
(v) , , L0 (v) = 0 (16)

where α is the decay rate coefficient and k is the amount of
new pheromone deposited.

Intuitively, we might expect this heuristic to perform mod-
erately since it actively peruses viewpoints that haven’t been
visited recently. However, quite surprisingly, we find it per-
forms exceptionally competing with offline CPP algorithms
such as DARP.

The GEM algorithm is very simple and as such requires
very little code to implement. We provide pseudo-code for the
algorithm below.

Algorithm 1 GEM
1: for t ∈ {0, . . . , tmax} do
2: for Ai

t ∈ At do
3: Ai

t+1 = argminv∈adj(Ai
t−1)

Lt(v)

4: end for
5: for v ∈ Vt do
6: Lt+1(v) = αLt(v) + k1At

(v)
7: end for
8: end for

At every time-step, each agent moves to whichever view-
point has the least pheromone deposited on it. Every view-
point’s pheromone level is then updated according to expo-
nential decay and whether an agent is current stationed on
it.

C. Complexity Analysis

A primary advantage of GEM over several existing meth-
ods is that it’s computational complexity is scales linearly
or constantly with respect to important parameters such as
the number of agents, or number of viewpoints within the
environment.

As discussed, agents are entirely independent of each other
and do not rely on each other to make decisions. As such, we
first consider the time and space complexity of GEM, when
running as a concurrent algorithm, i.e. where agents run in
parallel. In this case, at every time step, each agent simply
needs to observe the pheromone present on every viewpoint
adjacent to its own. This operation is O(n) in the number
of adjacent viewpoints. In many cases, such as in grid-based
CPP problems, this factor is constant, so the operation takes
O(1) time. Identifying the viewpoint with least pheromone is
consequently also O(n) or O(1).

Similarly, pheromone updates can be performed in a con-
current fashion as Lt(v) depends only on Lt−1(v). In set-
tings, where pheromones have a physical implementation,
this operation make take O(1) time. In other environments,
such as simulations, the operation nonetheless be performed
efficiently using various concurrency techniques, such as GPU
programming.

Overall, in physical environments, the algorithm can have
complexities as low O(1) in both the number of agents,
and the number of viewpoints. In simulated environments,
the algorithm’s time complexity is O(n) in the number of
agents and O(n) in the number of viewpoints. However,
using concurrency techniques, the concrete time required to
update pheromone levels for each viewpoint may be reduced
considerably.

IV. EXPERIMENTS

A. Experimental Setup

Our experiments aim to ascertain how well GEM performs
under a range of environmental conditions, including static
and dynamic environments. In our case, we use a variant
of DARP known as Replannable DARP (R-DARP) [13].
R-DARP essentially recomputes the DARP-optimal solution
whenever the environment changes. R-DARP achieves very
strong performance in dynamic environments, but is often in-
feasible to implement in practice because it requires complete
knowledge of the environment state at all times. If GEM can
compete with or surpass R-DARP, then we may deem GEM
as highly effective.

In our experiments, we simulate random obstacle envi-
ronments, i.e., static and dynamic environments where each
viewpoint is occupied with probability p. In dynamic cases, the
environment is re-generated every so often (e.g. every 10 time-
steps). In static cases, it’s generated only once. This category
of environment allows us to gauge how well GEM performs
in arbitrary AOIs.

(a) (b)

Fig. 2. (a) R-DARP pheromone distribution after 3000 iterations. RPPL =
331/360 = 91% and (b) GEM pheromone distribution after 3000 iterations.
RPPL = 358/360 = 99%

(a) (b)

(c) (d)

Fig. 3. (a) R-DARP PPL over time; max = 331, µ = 306; (b) GEM PPL
over time; max = 358, µ = 343; (c) Random Walker PPL over time;
max = 180, µ = 99; (d) Optimal PPL over time; max = 360, µ = 360.

B. Experimental Results

1) Qualitative Analysis: Random obstacle environments
are the simplest form of environment commonly used by
authors to evaluate CPP algorithms. In such environments, the
accessibility of each viewpoint has a Bernoulli distribution,
typically uniform across the whole AOI. The probability
p that a viewpoint is occupied may be referred to as the
obstacle density of the environment. In our experiments, we
investigate how well GEM performs in environments with
densities between 0.1 and 0.9. Note that when measuring
relative perplexity (RPPL), the presence of more obstacles is
automatically taken into account. RPPL is measured in terms
of accessible viewpoints only.

A 20x20 random obstacle environment with p = 0.98 is
shown below Fig. 2(a) and 2(b) after 3000 iterations of R-
DARP and GEM respectively. While each algorithm produces
significantly different paths, we find that they both achieve
strong RPPL scores of 91% and 99% respectively. R-DARP
produces pheromone trails which are highly uniform between
contiguous viewpoints. This can be attributed to the fact that
each viewpoint is only ever visited by a single agent (in
static environments). However, this property also leads to some
degree of self-overlap, which results in non-ideal uniformity.
In contrast, GEM produces pheromone which is less uniform
between contiguous viewpoints, but more evenly distributed
overall, leading to a superior performance. The qualitative
difference between these two distributions can be examined

TABLE I
n VS. µ WITH k = 1000, p = 0.01, A = 202 , β = 0.01

n = 1 n = 5 n = 10
GEM 0.45 0.85 0.93

R-DARP 0.41 0.73 0.88
RandomWalker 0.16 0.47 0.55

TABLE II
p VS. µ WITH k = 1000, n = 5, A = 202 , β = 0.01

p = 0.0 p = 0.25 p = 0.5
GEM 0.94 0.72 0.20

R-DARP 0.88 0.74 0.14
RandomWalker 0.16 0.47 0.07

further by plotting the PPL score achieved for each iteration
between t = 0 and t = 3000, illustrated in Fig. 3(a) and Fig.
3(b), respectively. For comparison, we also render the same
plots for a random walker and the theoretically optimal CPP
algorithm, as shown in Fig. 3(c) and Fig. 3(d).

2) Quantitative Analysis: In this analysis, we are primarily
interested in how uniformity-based metrics (i.e., PPL and
RPPL) vary with respect to CPP parameters including:

• n — the number of agents used to conduct CPP
• p — the obstacle density of the environment
• β — the pheromone decay rate
• A — the number of viewpoints in the AOI (i.e. its area)

For a particular assignment of these parameters, we measure
the following response variables:

• m = maxR — the maximum RPPL achieved within k
iterations.

• µ = E[R] — the mean RPPL achieved within k iterations.
• σ =

√
V[R] — the standard deviation of RPPL achieved

within k iterations.

We randomly generate 1000 CPP problems on a 20x20 AOI
with a fixed obstacle density p = 0.1 and constant decay rate
of β = 0.01. We vary the number of agents and observe how
this affects the expected RPPL achieved within k = 1000
iterations, for GEM, R-DARP and RandomWalker. The results
are shown in Table I.

To investigate the relationship of obstacle density and µ, we
generate 1000 random CPP problems on a 20x20 AOI with a
fixed number of agents n = 5 and a decay rate of β = 0.01.
We vary the obstacle density between 0% and 50% and the
results are illustrated in Table II.

As it can bee seen from all these results, GEM consistently
performs effectively in arbitrary environments, often able to
achieve a mean RPPL of above 90% when given a suitable
number of agents for the target decay rate. We find that
GEM performs competitively with R-DARP in terms of how
many agents are required to reach a certain level of coverage.
It generally surpasses R-DARP in terms of the stability of
coverage throughout the duration of a run, leading to higher
mean RPPL.

V. CONCLUSIONS

In this work, we proposed a decentralized coverage path
planning strategy based on GEM. Furthermore, our experi-
ments demonstrated the effectiveness of using stigmergy-based
approaches for coverage path planning, and the potential of
GEM as a practical solution for real-world applications. For
future works, fault-tolerant control techniques [17] will be
integrated with the proposed method to further improve the
coverage performance.

REFERENCES

[1] E. Galceran and M. Carreras, “A survey on coverage path planning for
robotics,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1258–
1276, 2013.

[2] F. Rekabi-Bana, J. Hu, T. Krajnı́k, and F. Arvin, “Unified robust path
planning and optimal trajectory generation for efficient 3D area coverage
of quadrotor UAVs,” IEEE Transactions on Intelligent Transportation
Systems, 2023.

[3] A. Nedjati, A. Nedjati, B. Vizvári, and J. Arkat, “Complete coverage
path planning for a multi-uav response system in post-earthquake
assessment,” Robotics, vol. 5, no. 4, p. 26, 12 2016.

[4] B. Ai, M. Jia, H. Xu, J. Xu, Z. Wen, B. Li, and D. Zhang, “Coverage path
planning for maritime search and rescue using reinforcement learning,”
Ocean Engineering, vol. 241, p. 110098, 2021.

[5] K. Wu, J. Hu, Z. Ding, and F. Arvin, “Finite-time fault-tolerant formation
control for distributed multi-vehicle networks with bearing measure-
ments,” IEEE Transactions on Automation Science and Engineering,
2023.

[6] D. Noh, W. Lee, H.-R. Kim, I.-S. Cho, I.-B. Shim, and S. Baek,
“Adaptive coverage path planning policy for a cleaning robot with
deep reinforcement learning,” in 2022 IEEE International Conference
on Consumer Electronics (ICCE), 2022, pp. 1–6.

[7] S. Xie, J. Hu, Z. Ding, and F. Arvin, “Cooperative adaptive cruise control
for connected autonomous vehicles using spring damping energy model,”
IEEE Transactions on Vehicular Technology, vol. 72, no. 3, pp. 2974–
2987, 2022.

[8] C. Denniston, T. R. Krogstad, S. Kemna, and G. S. Sukhatme, “Planning
safe paths through hazardous environments,” 2018.

[9] F. Rekabi-Bana, M. Stefanec, J. Ulrich et al., “Mechatronic design for
multi robots-insect swarms interactions,” in 2023 IEEE International
Conference on Mechatronics, 2023, pp. 1–6.

[10] M. Torres, D. A. Pelta, J. L. Verdegay, and J. C. Torres, “Coverage path
planning with unmanned aerial vehicles for 3D terrain reconstruction,”
Expert Systems with Applications, vol. 55, pp. 441–451, 2016.

[11] P. Abad-Manterola, I. A. D. Nesnas, and J. Burdick, “Motion planning
on steep terrain for the tethered axel rover,” in 2011 IEEE International
Conference on Robotics and Automation, 2011, pp. 4188–4195.

[12] O. Salzman and D. Halperin, “Optimal motion planning for a tethered
robot: Efficient preprocessing for fast shortest paths queries,” in 2015
IEEE International Conference on Robotics and Automation (ICRA),
2015, pp. 4161–4166.

[13] A. C. Kapoutsis, S. A. Chatzichristofis, and E. B. Kosmatopoulos,
“DARP: Divide areas algorithm for optimal multi-robot coverage path
planning,” J. Intell. Robotics Syst., vol. 86, no. 3–4, p. 663–680, jun
2017.

[14] S. D. Han and J. Yu, “Ddm: Fast near-optimal multi-robot path plan-
ning using diversified-path and optimal sub-problem solution database
heuristics,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
1350–1357, 2020.

[15] Y. Hu, J. Geng, C. Wang, J. Keller, and S. Scherer, “Off-policy
evaluation with online adaptation for robot exploration in challenging
environments,” IEEE Robotics and Automation Letters, vol. 8, no. 6, pp.
3780–3787, 2023.

[16] M. Hassan and D. Liu, “Ppcpp: A predator–prey-based approach to
adaptive coverage path planning,” IEEE Transactions on Robotics,
vol. 36, no. 1, pp. 284–301, 2020.

[17] K. Wu, J. Hu, Z. Li, Z. Ding, and F. Arvin, “Distributed collision-free
bearing coordination of multi-UAV systems with actuator faults and time
delays,” IEEE Transactions on Intelligent Transportation Systems, 2024.

Citation on deposit:

Champagnie, K., Arvin, F., & Hu, J. (in press).
Decentralized Multi-Agent Coverage Path
Planning with Greedy Entropy Maximization.
In 2024 IEEE International Conference on
Industrial Technology (ICIT) (1-6)

For final citation and metadata, visit Durham Research Online URL:
https://durham-repository.worktribe.com/output/2379771

Copyright statement: This accepted manuscript is licensed under the Creative
Commons Attribution 4.0 licence.
https://creativecommons.org/licenses/by/4.0/

https://durham-repository.worktribe.com/output/2379771

	Kale_GEM_2024 (1)
	Citation page-V1-2023

