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Abstract. We study strange non-chaotic attractors in a class of quasiperi-

odically forced monotone interval maps known as pinched skew products. We
prove that the probability of positive time-N Lyapunov exponents—with re-

spect to the unique physical measure on the attractor—decays exponentially

as N → ∞. The motivation for this work comes from the study of finite-time
Lyapunov exponents as possible early-warning signals of critical transitions in

the context of forced dynamics.

1. Introduction. In this article, we study quasiperiodically forced interval maps
of the form

Fκ : TD × [0, 1]→ TD × [0, 1], Fκ(θ, x) = (θ + ρ, tanh(κx) · g(θ)) . (1)

Here κ > 0 is a real parameter, ρ ∈ TD (with T = R/Z) is a totally irrational rota-
tion vector (that is, there is no n ∈ Zd \ {0} with 〈ρ, n〉 ∈ Z) and the multiplicative
forcing term g : TD → [0, 1] is given by

g(θ) =
1

D
·
D∑
i=1

sin(πθi), (2)

where θi denotes the i-th component of the point θ ∈ TD.
Systems of this kind are often called pinched skew products, where pinched refers

to the fact that the forcing term g vanishes for some θ ∈ TD (here, at θ = 0).
Pinched skew-products received considerable attention due the occurrence of so-
called strange non-chaotic attractors (SNAs) [1, 2, 3, 4, 5, 6, 7]. Due to their
specific properties—in particular, the pinching in combination with the invariance
of the zero line TD × {0}—they are technically more accessible than other forced
systems that exhibit SNAs so that they have been used on various occasions for
case studies concerning the structural properties of such attractors. This led, for
instance, to first results on the topological structure [6] and the dimensions [7] of
SNAs, which have later been extended to the more difficult situation of additive
quasiperiodic forcing [8, 9, 10].
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In a similar spirit, the aim of this article is to establish a quantitative result on
the distribution of positive finite-time Lyapunov exponents on the SNA appearing
in the system given by (1) and (2). Given (θ, x) ∈ TD × [0, 1] and N ∈ N, we define
the time-N -Lyapunov exponent as

λN (θ, x) = log
(
∂x π2◦ FNκ (θ, x)

)
/N ,

where π2 is the projection to the second coordinate. The (asymptotic) Lyapunov
exponents are then given by

λ(θ, x) = lim
N→∞

λN (θ, x) .

As established in [3], for any κ > κ0 := e−
∫
TD log g(θ)dθ, there exists a unique physical

measure Pκ of the system (1) that is ergodic and has a negative Lyapunov exponent.
As a consequence, asymptotic Lyapunov exponents are Pκ-almost surely negative.
However, on the invariant zero line TD × {0}, the pointwise Lyapunov exponents
almost surely equal log κ − log κ0 (see Remark 2.1 below). Hence, for κ > κ0,
positive asymptotic Lyapunov exponents are still present in the system and lead to
a positive probability of positive finite-time exponents for all times N ∈ N. Our
main result provides information on the scaling behaviour of these probabilities
if the rotation vector is Diophantine—see Section 3 for the specific Diophantine
condition.

Theorem 1.1. Denote by Pκ the unique physical measure of (1) with forcing func-
tion (2) and suppose ρ is Diophantine. Let pκ,N = Pκ({(θ, x) | λN (θ, x) > 0}).
Then there exists κ1 > κ0 such that for all κ ≥ κ1, there are constants γ+ ≥ γ− > 0
(depending on κ) such that

exp(−γ+N) ≤ pκ,N ≤ exp(−γ−N)

holds for all N ∈ N.

Apart from its intrinsic interest, motivation for this result stems from the study
of critical transitions. One major problem in this field is the identification of suit-
able (that is, observable and reliable) early warning signals [16, 17, 18, 19, 20,
21] for such transitions. A commonly proposed and utilized early warning signal
for fold bifurcations—which are often cited as a paradigmatic example of critical
transitions—are slow recovery rates (also referred to as a critical slowing down)
[16, 17, 18, 20]. Since this notion has been coined in an interdisciplinary context
and is used in a wide variety of situations, there is no comprehensive and rigorous
mathematical definition of this term and we refrain from attempting to give one
here. However, a more thorough discussion of this topic is given in the authors
previous work [22], and we refer the interested reader to the latter for more details
on the remarks in the remainder of this section.

In the classical case of an autonomous fold bifurcation, recovery rates can be
identified with the Lyapunov exponents of the stable equilibria. Thus, in this sit-
uation, critical slowing down simply refers to the fact that when the stable and
unstable equilibria involved in the bifurcation approach each other and eventually
collide at the critical parameter, the resulting single fixed point is neutral, that is,
it has exponent zero.

This picture changes significantly when a fold bifurcation takes place under
the influence of external quasiperiodic forcing. First of all, the resulting non-
autonomous systems generally do not allow for fixed points. Therefore, when car-
rying over ideas from an autonomous to a non-autonomous setting, one needs an
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appropriate replacement. In the present context, this part is played by so-called
invariant graphs (see Section 2). Accordingly, non-autonomous fold bifurcations
occur as invariant graphs approach each other and collide upon a change of system
parameters. It is important to note that such collision does not necessarily take
place everywhere. That is, at the bifurcation, the graphs may coincide in some
points and differ in others, see [15] for the details. Specifically and in stark contrast
to autonomous fold bifurcations, non-autonomous fold bifurcations do not neces-
sarily yield neutral invariant graphs but may instead lead to a strange non-chaotic
attractor-repeller-pair [14, 15] created at the bifucation point. This alternative pat-
tern is referred to as a non-smooth saddle-node bifurcation. Moreover, just as for
pinched systems, under suitable conditions, there exists a unique physical measure
P which is supported on the attractor and has a negative Lyapunov exponent (see
[3, 12]). However, this means that Lyapunov exponents remain P-almost surely
negative and bounded away from zero during a non-smooth saddle-node bifurcation
(see Section 2 for more details).

While this seems to rule out the viability of slow-recovery rates as early warn-
ing signals for non-smooth fold bifurcations, one should bear in mind that experi-
ments never measure the actual Lyapunov exponent but rather approximations of
it—simply, because every experiment takes place over a finite period of time. In

Figure 1. A logarithmic plot of the numerically obtained proba-
bility pN = pκ,N over N for the system (1) with D = 1, κ = 3 and
ρ the golden mean. More specifically, the graph shows the relative
frequency of non-negative finite-time Lyapunov exponents among
a grid of 5 · 106 initial conditions on the SNA (see also Figure 2).
Consistent with the statement of Theorem 1.1, the plot indicates
an exponential decay. We note that for N > 40, the sample size
becomes too small to obtain a reliable estimate on the probabil-
ities. This explains why the constant slope observed before does
not extend all the way to the right.
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other words, one rather measures finite-time Lyapunov exponents instead of as-
ymptotic ones. Now, it is known that the presence of an SNA implies that positive
finite-time exponents occur with positive probability for any time N ∈ N [2, 22].
Accordingly, one may wonder whether the observation of non-negative finite-time
Lyapunov exponents can help to detect an SNA in practice. However, if N is cho-
sen too small, then positive time-N -exponents can be observed already far from
a bifurcation. Conversely, for large N , the probability of observing positive expo-
nents on this time-scale converges to zero since the unique physical measure has
a negative exponent—see Section 2 for the relation between pointwise Lyapunov
exponents and the Lyapunov exponent of the physical measure. It is in this context
that the scaling behaviour of the probabilities of time-N -exponents with N → ∞
becomes important. Numerical studies for the quasiperiodically forced Allee model
performed in [22] remained somewhat inconclusive, which is partly explained by
the fact that the simulation of continuous-time systems is considerably more time-
consuming than that of discrete-time systems. The exponential decay obtained in
Theorem 1.1 is an indication that very large data sets may be required to detect
positive finite-time Lyapunov exponents as early-warning signals in practice. As
mentioned before, this interpretation relies on the hypothesis that quasiperiodically
forced systems undergoing a saddle-node bifurcation—as studied in [22]—show a
behaviour comparable to that of pinched systems treated here. We expect that
using techniques from [8, 12, 10], similar statements can be established for non-
pinched systems but this would require a considerably more involved analysis due
to the inherent technical difficulties.

This article is organised as follows. In the next section, we introduce some
technical background on forced monotone interval maps and their invariant graphs.
There, we also describe the physical measure P from above in more detail. In
Section 3, we specify the class of pinched skew-products for which we prove (a
more general version of) the above theorem. This proof and the full statement—
Theorem 4.4 and Theorem 4.8 (which gives the upper bound and is the harder
part)—are given in the final section, Section 4.

2. Forced monotone interval maps and invariant graphs—the general set-
ting. Throughout this article, we deal with quasiperiodically forced (qpf) monotone
interval maps, that is, skew products of the form

F : TD × [0, 1]→ TD × [0, 1], (θ, x) 7→ (ρ(θ), Fθ(x)), (3)

where TD = RD/ZD is the D-dimensional torus (for some D ≥ 1),

ρ : TD → TD, θ 7→ θ + ρ

is a minimal rotation with a rotation vector ρ (the slight abuse of notation should
not cause any confusion in the following) and for each θ ∈ TD, Fθ is a continuously
differentiable non-decreasing map on [0, 1] such that (θ, x) 7→ F ′θ(x) is continuous.
It is customary to refer to (TD, ρ) as the forcing system (defined on the base TD);
the maps Fθ (θ ∈ TD) are also referred to as fibre maps (defined on the fibres
{θ} × [0, 1]).

An invariant graph of (3) is a measurable function φ : TD → [0, 1] which satisfies

Fθ(φ(θ)) = φ(θ + ρ) for all θ ∈ TD.

From an intuitive perspective, invariant graphs are to be seen as non-autonomous
fixed points of (3)—observe that due to the minimality of ρ, (3) does not allow
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for actual fixed points. This idea is the basis for a bifurcation theory of invariant
graphs, see [14, 15]. Independent of this analogy, invariant graphs of qpf monotone
interval maps are key to understanding the dynamics of (3) due to their intimate
relationship with the invariant sets and ergodic measures of the system (e.g. [5]).

Every invariant graph φ comes with an ergodic measure µφ where µφ(A) =
LebTD (φ−1A) for each measurable A ⊆ TD × [0, 1]. Likewise, to each ergodic mea-
sure µ of (3) there is an invariant graph φ with µ = µφ [25, 26]. Moreover, given a
compact invariant set A ⊆ TD × [0, 1] (that is, A is compact and F (A) = A), let

φ+A(θ) = sup{x ∈ [0, 1] : (θ, x) ∈ A} and φ−A(θ) = inf{x ∈ [0, 1] : (θ, x) ∈ A}

for each θ ∈ TD. Then φ+A and φ−A define the so-called upper and lower boundary
graphs of A which are invariant and—due to the compactness of A—upper and
lower semi-continuous, respectively [5]. Of particular relevance for us will be the
upper boundary graph of the global attractor⋂

n∈N
Fn(TD × [0, 1]),

which we simply denote by φ+.
The long-term behaviour of orbits near an invariant graph φ is largely character-

ized by its Lyapunov exponent

λ(φ) =

∫
TD

logF ′θ(φ(θ))dθ,

provided this integral exists, see also [3].
If λ(φ) > 0, then φ is repelling; if λ(φ) < 0, then φ is attracting and µφ is a

physical measure, see [23] for the details. Here, by physical measure, we refer to an
F -invariant ergodic measure P for which there is a positive Lebesgue measure set
V ⊆ TD × [0, 1] such that for every continuous observable f : TD × [0, 1] → R and
all (θ, x) ∈ V

1/n ·
n−1∑
`=0

f(F `(θ, x)) =

∫
f dP,

see also [27]. It is noteworthy that under suitable concavity assumptions on Fθ
(which are verified by (1)), (3) has a unique physical measure given by the measure
µφ+ on the upper boundary graph φ+ of the global attractor, see [3, 15].

Observe that due to Birkhoff’s Ergodic Theorem, λ(φ) equals the Lyapunov
exponent of the point (θ, φ(θ)) for LebTD -almost every θ (equivalently: for µφ-
almost every (θ, x)) since

λ(θ, φ(θ)) = lim
n→∞

1

n
log(Fnθ )′(φ(θ)) = lim

n→∞

1

n

n−1∑
`=0

logF ′ρ`(θ)(φ(ρ`(θ)))

for LebTD -almost every θ ∈ TD. Note that on the left-hand side of the above
equation, we made use of the customary notation

Fnθ (x) = π2 ◦ Fn(θ, x) = Fθ+(n−1)ρ ◦ . . . ◦ Fθ+ρ ◦ Fθ(x), (4)

where π2 : TD × [0, 1]→ [0, 1] denotes the projection to the second coordinate.
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Remark 2.1. Note that for the model (1) and the a priori invariant graph ψ = 0
given by zero line, we have that F ′θ(ψ(θ)) = F ′θ(0) = κ · g(θ), so that

λ(ψ) = log κ+

∫
TD

log g(θ) dθ = log κ− log κ0

in this case. Hence, the zero line is repelling for all κ > κ0, and pointwise Lyapunov
exponents on this line are positive almost surely (with respect to the Lebesgue
measure on TD × {0}).

As we will discuss below, the unique physical measure of (1) is given by µφ+ ,
where φ+ is the upper boundary graph of the global attractor. Therefore, a big
part of the proof of Theorem 1.1 boils down to analysing φ+ in considerable detail.
In that context, we will utilize the obvious fact that φ+ is the pointwise limit of the
sequence of iterated upper boundary lines (φn)n∈N≥0

, where

φn : TD → [0, 1], θ 7→ Fnθ−nρ(1). (5)

Note that the graph of φn coincides with Fn(TD × {1}) (recall the notation from
(4)). It is further easy to see (and important to note) that the monotonicity of the
fibre maps Fθ implies φn+1 ≤ φn for all n ∈ N.

For the convenience of the reader, we close this section with a brief description of
the invariant graphs of (1). While this description will help to develop an intuition
for the dynamics of (1) and, more broadly, for the results discussed in this work, it
is strictly speaking not a prerequisite for the discussion in Section 3 and Section 4.
For simplicity, we may assume that D = 1 in the remainder of this section.

It is immediate that independently of the value of κ, one invariant graph of (1)
is given by the 0-line (which just happens to be the lower boundary graph of the
global attractor). Let us denote this graph by φ−. By direct computation, one can
obtain that λ(φ−) = log κ− log 2.

Clearly, if φ− equals the upper boundary graph φ+ of the global attractor, then
φ− is the only invariant graph of Fκ. However, with help of the iterated upper
boundary lines, one can show that λ(φ+) ≤ 0, see [23]. Accordingly, if κ > 2, the
0-line φ− is LebT1 -almost surely distinct from φ+.

In other words, Fκ has at least two invariant graphs if κ > 2. Moreover, just as
concavity of interval maps implies the existence of at most two fixed points (one of
which is attracting and one of which is repelling), one can show that the concavity
of the fibre maps of Fκ implies that φ− and φ+ are the only invariant graphs (and
further, λ(φ−) > 0 > λ(φ+)), see [3, 15]. Note that accordingly, the physical
measure P in the introduction has to coincide with µφ+ .

Now, since F (0, x) = 0, we have that φ+ necessarily intersects the 0-line along
the orbit of (ρ, 0) which is, by minimality of ρ, dense in TD ×{0}. Therefore, while
φ+ is upper-semicontinuous (as the upper boundary graph of the global attractor)
it clearly is not continuous and φ+ is referred to as a strange non-chaotic attractor,
see Figure 2 for a plot of φ+.

3. Pinched skew-product systems. In this section, we specify the class of skew
products within which we derive asymptotic estimates on the probability of positive
finite-time Lyapunov exponents. For later reference, we repeat some of the assump-
tions from the previous section. By F , we refer to the class of quasiperiodically
forced monotone interval maps of the form

F : TD × [0, 1]→ TD × [0, 1], (θ, x) 7→ (ρ(θ), Fθ(x)),
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Figure 2. The SNA φ+ of the parameter family (θ, x) 7→ (θ +
ρ, tanh(κx) · sin(πθ)) with κ = 3 and ρ the golden mean. The
points in the above plot are exactly the initial conditions used to
estimate pκ,N in Figure 1.

which satisfy

(F1): the fibre maps Fθ are non-decreasing;
(F2): the fibre maps Fθ are differentiable and (θ, x) 7→ F ′θ(x) is continuous on

TD × [0, 1];
(F3): F is pinched, that is, there is θ∗ ∈ TD with Fθ∗(x) = 0 for all x ∈ [0, 1];
(F4): Fθ(0) = 0 for all θ ∈ TD (invariance of the 0-line).

Besides the qualitative assumptions (F1)–(F4), we need a number of quantitative
assumptions. Let F ∈ F and assume that there exist parameters α > 2, β > 0, γ >
0 and L0 ∈ (0, 1) such that for all θ ∈ TD, the following holds.

|Fθ(x)− Fθ(y)| ≤ α |x− y| for all x, y ∈ [0, 1], (F1)

|Fθ(x)− Fθ(y)| ≤ α−γ |x− y| for all x, y ∈ [L0, 1], (F2)

|Fθ(x)− Fθ′(x)| ≤ β d(θ, θ′) for all x ∈ [0, 1]. (F3)

In particular, (F2) implies that the fibre maps Fθ are contracting in [L0, 1].
While the above assumptions specify the shape of F in the fibres, we need some

additional control over the forcing on TD. To that end, we assume that the rotation
vector ρ ∈ TD is Diophantine. More specifically, setting τn = ρn(θ∗) = θ∗+nρ (the
nth-iterate of the pinched point θ∗), we assume that there are constants c > 0 and
d > 1 such that

d(τn, θ∗) ≥ c · n−d for all n ∈ N. (F4)

Finally, bringing the behaviour along the fibres and the dynamics on the base
TD together, we assume that there are constants m ∈ N, a > 1 and 0 < b < 1 with

m > 22

(
1 +

1

γ

)
, (F5)
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a ≥ (m+ 1)d, (F6)

b ≤ c, (F7)

d(τn, θ∗) > b for all n ∈ {1, · · · ,m− 1} (F8)

such that

Fθ(x) ≥ min {2L0, ax} ·min

{
1,

2

b
d(θ, θ∗)

}
for all (θ, x) ∈ TD × [0, 1]. (F9)

Our analysis of positive finite-time Lyapunov exponents will take place within the
class

F∗ = {F ∈ F : F satisfies (F1)–(F9)}.
Instead of the abstract description of F∗ given above, readers may simply think of
the system given in (1) (for large κ) in all of the following. This is justified by the
next statement.

Lemma 3.1 (see [7, Lemma 4.2]). Consider Fκ as in (1) and let ρ satisfy the
Diophantine condition (F4) for some c > 0 and d > 1. There exists a constant
κ0 = κ0(c, d,D) such that for all κ ≥ κ0, the map Fκ satisfies (F1)–(F9) (with
appropriately chosen constants α, γ, β, L0,m, a, b, c).

Note that as [0, 1] 3 x 7→ F ′θ(x) is continuous for each θ ∈ TD (due to (F2)), the
mean value theorem and (F9) imply

F ′θ(0) ≥ a ·min

{
1,

2

b
d(θ, θ∗)

}
for all θ ∈ TD. (F10)

While (F10) yields the existence of positive finite-time Lyapunov exponents on the
zero line (see Lemma 4.3 below), in order to ensure big enough lower bounds on
the probability of positive finite-time Lyapunov exponents outside the zero line, we
additionally assume that for all δ > 0 there is xδ > 0 with

F ′θ(x) ≥ (1− δ) · F ′θ(0) for all x ∈ [0, xδ] and all θ ∈ TD. (F11)

Clearly, this additional assumption is satisfied by (1) (for all κ,D and ρ).

4. Rigorous bounds on the probability of positive finite-time Lyapunov
exponents in pinched skew-products. In this section, we show that within the
class of pinched skew-products, the µφ+ -measure of points (θ, x) with λN (θ, x) ≥ 0
decays exponentially as N →∞—recall that φ+ refers to the upper boundary graph
of the global attractor, see Section 2.

We start by deriving a lower bound for this probability. To that end, we first
need to study the occurrence of positive finite-time Lyapunov exponents on the zero
line. Due to (F10), this essentially amounts to analysing the frequency of visits of
points θ ∈ TD to the vicinity of θ∗.

For j ∈ N, set

rj =
b

2
a−(j−1) and Rj =

b

2
a
−(j−1)
m . (6)

Proposition 4.1. Suppose (F4)–(F8) are satisfied. Then, for n ∈ {1, . . . ,m− 1},
we have

Br1(θ∗) ∩ (Br1(θ∗) + nρ) = ∅.
Similarly, for j ≥ 2 and n ∈ {1, . . . , (m+ 1)(j−1)}, we have

Brj (θ∗) ∩ (Brj (θ∗) + nρ) = ∅.
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Proof. We only discuss j ≥ 2. With (F8), the other case is obvious.
Suppose Brj (θ∗) ∩ (Brj (θ∗) + nρ) 6= ∅ for some n, that is, d(θ∗, τn) < 2rj =

ba−(j−1). Note that (F4) gives d(θ∗, τn) ≥ c · n−d. Therefore, ba−(j−1) > c · n−d
and thus, n > (c/b)1/d · a(j−1)/d ≥ (m+ 1)j−1, where we used (F6) and (F7) in the
last step.

This immediately gives

Corollary 4.2. Assume (F4)–(F8) and let θ ∈ TD. Suppose n1 < n2 ∈ N are such
that θ + n1ρ ∈ Brj (θ∗) and θ + n2ρ ∈ Brj (θ∗). If j = 1, then n2 − n1 ≥ m and if

j ≥ 2, then n2 − n1 ≥ (m+ 1)j−1.

In the following, recall that we set F∗ = {F ∈ F : F satisfies (F1)–(F9)}.

Lemma 4.3. Suppose F ∈ F∗ and N ∈ N. For each θ ∈ BrN (θ∗), we have

λN (θ + ρ, 0) ≥ 1/2 · log a.

Proof. Set ∆j = (m+1)j−1. By the previous corollary, given θ as in the assumptions
and 2 ≤ j ≤ N , we have

#{` ∈ {1, . . . , N} : θ + `ρ ∈ Brj (θ∗)} ≤ bN/∆jc

and

#{` ∈ {1, . . . , N} : θ + `ρ ∈ Br1(θ∗)} ≤ bN/mc.

Note further that for j ≥ 0, (F10) gives

F ′θ+`ρ(0) ≥ a · 2

b
rj+1 = a−(j−1) whenever θ + `ρ ∈ Brj (θ∗) \Brj+1

(θ∗),

where—for notational convenience—r0 =
√
D and hence Br0(θ∗) = TD. We there-

fore have

λN (θ + ρ, 0)

= 1/N ·
N∑
`=1

logF ′θ+`ρ(0) ≥ 1/N ·
N∑
`=1

∑
j≥0

log a−(j−1) · 1Brj (θ∗)\Brj+1
(θ∗)(θ + `ρ)

= 1/N ·
N∑
`=1

∑
j≥0

(1− j) log a · 1Brj (θ∗)\Brj+1
(θ∗)(θ + `ρ)

= log a− log a · 1/N ·
∑
j≥1

j ·
N∑
`=1

1Brj (θ∗)\Brj+1
(θ∗)(θ + `ρ)

≥ log a− log a · 1/N · (bN/mc+
∑
j≥2

j · bN/∆jc) ≥ log a− log a · (1/m+
∑
j≥2

j/∆j)

= log a− log a · (1/m+
∑
j≥2

j/(m+ 1)j−1) ≥ 1/2 · log a,

where we used (F5) in the last step.

In order to prove the lower bound in Theorem 1.1, it remains to show that the
positive finite-time Lyapunov exponents on the zero line are observable not only on
but already close to the zero line. This is what the proof of the next statement is
about.



10 FLAVIA REMO, GABRIEL FUHRMANN AND TOBIAS JÄGER

Theorem 4.4. Suppose F ∈ F∗ satisfies (F11). Then there is γ+ > 0 such that
for all N ∈ N

µφ+{(θ, x) ∈ TD × [0, 1] : λN (θ, x) ≥ 0} ≥ e−γ+N .

Proof. Choose δ > 0 small enough such that

log(1− δ) > −(log a)/4 (7)

and let xδ be such that (F11) holds true. Without loss of generality, we may assume
that xδ ≤ βb/2 (with β from (F3)). For N ∈ N, set r̃N = xδ/β · α−(N−1). Observe
that α ≥ a (because of (F1) and (F9)) so that r̃N ≤ rN for all N . We first show
that for θ ∈ Br̃N (θ∗) and j = 1, . . . , N , we have φ+(θ + jρ) ≤ xδ.

To that end, observe that the monotonicity of the sequence of the iterated upper
boundary lines (φn)n∈N (recall (5)) and (F3) yield

φ+(θ + ρ) = lim
n→∞

φn(θ + ρ) ≤ Fθ(1) ≤ β · d(θ, θ∗).

Therefore, given θ ∈ Br̃N (θ∗) and j = 1, . . . , N , we have—due to F1 and (F1)—that

φ+(θ + jρ) = F j−1θ+ρ

(
φ+(θ + ρ)

)
≤ F j−1θ+ρ (β · d(θ, θ∗)) ≤ αj−1β · d(θ, θ∗) ≤ xδ.

As a consequence, Lemma 4.3 and (7) in conjunction with (F11) give that λN (θ +
ρ, x) ≥ (log a)/4 for all (θ, φ+(θ)) with θ ∈ Br̃N (θ∗). The statement follows.

Having thus seen how within F∗ (under the additional assumption of (F11)) the
probability of positive finite-time Lyapunov exponents decays at most exponentially,
we next come to show that this decay is, in fact, not slower than exponential.

Before we turn to the rigorous analysis, we briefly explain its idea on an intu-
itive level. First, note that (F2) implies that above L0, fibres are contracted—we
emphasize this fact by calling TD × [L0, 1] the contracting region. In other words,
visits to TD × [L0, 1] contribute negatively to the (finite-time) Lyapunov exponent
of an orbit. Second, (F9) enables us to control the number of times an orbit spends
outside of the contracting region. Finally, since (F1) gives an upper bound for
the possible fibre-wise expansion, the control obtained through (F9) enables us to
ensure an overall contraction, that is, a negative (finite-time) Lyapunov exponent,
along most finite orbits.

Let us specify this control in quantitative terms by collecting two auxiliary state-
ments from [7]. Given θ ∈ TD and n ∈ N, let θk := ρk−n(θ) and xk := φk(θk) for

0 ≤ k ≤ n. Note that φk(θk) = F kθ0(1) and φn(θ) = Fn−kθk
(xk). Let

snk := #{k ≤ j < n : xj < 2L0}

and set snn(θ) = 0. Recall the definition of Rj in (6).

Lemma 4.5 ([7, Lemma 4.6]). Let F ∈ F∗ and q, n ∈ N with n ≥ mq+1. Suppose

that θ /∈
n⋃
j=q

BRj (τj) and consider t ≥ mq. Then

snn−t(θ) ≤
11t

m
.

As discussed in Section 2, the iterated upper boundary lines φn approximate the
graph φ+ whose measure µφ+ we are interested in. The next statement effectively
provides numerical bounds for this approximation.
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Proposition 4.6 ([7, Proposition 4.4]). Let F ∈ F∗, q ∈ N and η = γ− 11
m (1+γ) >

0. Then, for n ≥ mq + 1 and θ /∈
n⋃
j=q

BRj (τj), we have that |φn(θ)− φn−1(θ)| ≤

α−η(n−1).

Remark 4.7. Observe that η > 0 due to (F5) and note that η is independent of q.

Clearly, Proposition 4.6 gives that if k, n ∈ N satisfy mq ≤ k < n and θ /∈
n⋃
j=q

BRj (τj), then

|φn(θ)− φk(θ)| ≤
n∑

i=k+1

|φi(θ)− φi−1(θ)| ≤
n∑

i=k+1

α−η(i−1) ≤ α−ηk

1− α−η
. (8)

With the above statements, we are now in a position to prove the upper bound in
Theorem 1.1.

Theorem 4.8. Suppose F ∈ F∗. Then there is γ− > 0 such that for all N ∈ N

µφ+{(θ, x) ∈ TD × [0, 1] : λN (θ, x) ≥ 0} ≤ e−γ−N .

Proof. Note that it suffices to show the statement for sufficiently large N .
Let N ∈ N be given. As φ+ is the pointwise limit of the non-increasing sequence

φn and due to the continuous differentiability of the fibre maps (see (F2)), we have
that for each θ

λN (θ0, φ
+(θ0)) =

1

N

N−1∑
k=0

log
∣∣F ′θk(φ+(θk))

∣∣ = lim
n→∞

1

N

N−1∑
k=0

log
∣∣F ′θk(φn(θk))

∣∣ ,
where—as above—θk = ρk−N (θ).

In a first instance, our goal is to derive assumptions on θ which ensure that the

expression 1
N

∑N−1
k=0 log

∣∣F ′θk(φn(θk))
∣∣ is negative and bounded away from zero for

n ≥ N and large enough N . The statement then follows by showing that these
assumptions are only violated in a set of exponentially small measure as N →∞.

We start by collecting a number of estimates which we will then combine to

obtain an upper bound for 1
N

∑N−1
k=0 log

∣∣F ′θk(φn(θk))
∣∣. First, let κ ∈ N be large

enough such that κ ≥ m and α−η·κ

1−α−η < L0. Consider k0 ∈ N with k0 ≥ κq (for

some q ∈ N which we may consider fixed for now). Then (8) gives that for every

n > k ≥ k0 and θ /∈
n⋃
j=q

BRj (τj), we obtain |φn(θ)− φk(θ)| < L0. In particular, if

φk(θ) ≥ 2L0, then φn(θ) ≥ L0. Therefore, if n ≥ k and θk /∈
n⋃
j=q

BRj (τj) for some

k ≥ k0 with φk(θk) > 2L0, (F2) yields

|F ′θk(φn(θk))| ≤ α−γ . (9)

Second, observe that due to (F1), we have

N−1∑
k=0

log
∣∣F ′θk(φn(θk))

∣∣ ≤ k0+1∑
k=0

logα+

N−1∑
k=k0

log
∣∣F ′θk(φn(θk))

∣∣ . (10)

Third, let N0 = N0(k0) ∈ N be the smallest integer such that N0−k0 ≥ mk0/κ ≥
mq. Then, Lemma 4.5 allows us to estimate the number of times for which φk(θk) <
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2L0. Specifically, if N ≥ N0 and k ∈ {k0, . . . , N − 1}, we obtain for all θ /∈
N⋃
j=q

BRj (τj)

sNk0(θ) = sNN−(N−k0)(θ) ≤
11

m
(N − k0). (11)

Observe that with (F1), (11) and (9), we get

N−1∑
k=k0

log
∣∣F ′θk(φn(θk))

∣∣ ≤ sNk0(θ) logα−
(
N − k0 − sNk0(θ)

)
γ logα

≤ 11

m
(N − k0) logα− γ ·

(
N − k0 −

11

m
(N − k0)

)
logα

=

((
γ − 11

m
(1 + γ)

)
k0 +

(
11

m
(1 + γ)− γ

)
N

)
logα = (ηk0 − ηN) logα

(12)

whenever n ≥ N ≥ N0 and θk /∈
n⋃
j=q

BRj (τj) for all k = k0, . . . , N and where η is as

in Proposition 4.6. Plugging (12) into (10), we obtain (under the same assumptions
as above)

N−1∑
k=0

log |F ′θk(φn(θk))| ≤ (2 + (η + 1)k0 − ηN) logα. (13)

Now, as η > 0, there is ν = ν(η) > 0 such that for all N ≥ k0/ν, the right-hand
side in (13) is negative (so that for all n ≥ N , the left-hand side is negative and
bounded away from 0). Note that we may assume without loss of generality that ν
is small enough to ensure k0/ν ≥ N0(k0).

Set

Bq,k0,N =
{
θ ∈ TD : θk ∈

∞⋃
j=q

BRj (τj) for some k ∈ {k0, . . . , N}
}
.

Observe that (13) holds whenever θ is in the complement of the set Bq,k0,N (given
k0 ≥ κq and n ≥ N ≥ N0(k0)). Note that

LebTD (Bq,k0,N ) ≤ (N − k0 + 1) · LebTD

 ∞⋃
j=q

BRj (τj)


≤ (N − k0 + 1) · ζD ·

(
b

2

)D ∞∑
j=q

a
−(j−1)D

m

= (N − k0 + 1) · ζD ·
(
b

2

)D
a−

(q−1)D
m

∞∑
j=0

(a−
D
m )j = (N − k0 + 1) · a−

(q−1)D
m c(D),

where ζD denotes the LebTD -measure of the D-dimensional unit ball and c(D)
simply collects all the terms in the above estimate which are independent of q, k0

and N , that is, c(D) = ζD ·
(
b
2

)D∑∞
j=0(a−

D
m )j .

Now, set k0(N) = bδNc for some δ ∈ (0, ν) and q(N) = bNεc for some ∈ε(0, δ/κ).
Note that for large enough N , we have k0(N) ≥ κq(N) and N ≥ k0(N)/ν ≥ N0[=
N0(k0(N))]. Hence, for sufficiently large N , the above gives

LebTD ({θ ∈ TD : (λN (θ, φ+(θ)) ≥ 0}) ≤ LebTD (Bq(N),k0(N),N )
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≤ N · a−
(bNεc−1)D

m c(D) ≤ a−
NεD
2m .

The statement follows with γ− = (log a) ·Dε/2m.
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