
Repeat and Concatenate: 2D to 3D Image Translation
with 3D to 3D Generative Modeling

Abril Corona-Figueroa, Hubert P. H. Shum, Chris G. Willcocks
Department of Computer Science, Durham University, Durham, UK

https://github.com/abrilcf/3D-3D_repeat-concatenate

Abstract

This paper investigates a 2D to 3D image translation
method with a straightforward technique, enabling cor-
related 2D X-ray to 3D CT-like reconstruction. We ob-
serve that existing approaches, which integrate information
across multiple 2D views in the latent space, lose valu-
able signal information during latent encoding. Instead, we
simply repeat and concatenate the 2D views into higher-
channel 3D volumes and approach the 3D reconstruction
challenge as a straightforward 3D to 3D generative mod-
eling problem, sidestepping several complex modeling is-
sues. This method enables the reconstructed 3D volume to
retain valuable information from the 2D inputs, which are
passed between channel states in a Swin UNETR backbone.
Our approach applies neural optimal transport, which is
fast and stable to train, effectively integrating signal infor-
mation across multiple views without the requirement for
precise alignment; it produces non-collapsed reconstruc-
tions that are highly faithful to the 2D views, even after
limited training. We demonstrate correlated results, both
qualitatively and quantitatively, having trained our model
on a single dataset and evaluated its generalization ability
across six datasets, including out-of-distribution samples.

1. Introduction

2D to 3D image translation is a class of computer vision
problems where the goal is to learn the mapping between
one or more 2D images and a corresponding 3D volumet-
ric image. Years of research in this topic have given rise
to many image and graphics applications, such as aug-
mented reality [7, 27], sensor fusion [25, 33], scene ren-
dering [5, 19], and multimodal translation [17, 38, 50]. The
latter has attracted attention in the medical domain, includ-
ing 2D X-ray, Computed Tomography (CT), Magnetic Res-
onance Imaging (MRI), Ultrasound, among others, due to
the potential to translate from cheap, low-quality and avail-
able medical imaging modalities to those that are more ex-
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Figure 1. (a) Previous approaches focus on 2D to 3D mapping,
often employing asymmetric architectures and compressed latent
encoding. (b) In contrast, we propose 3D to 3D mapping from
repeated and concatenated inputs, enabling faster training with
highly correlated outputs without latent compression, even with
small datasets (a few hundred images).

pensive, with high-waiting times, or exhibit harmful ioniz-
ing radiation. While translating between image modalities
of common dimensionality (i.e., 2D to 2D, 3D to 3D) has
achieved notable results [50] due to its seemingly straight-
forward adaptation of specific state-of-the-art (SOTA) deep
learning models, translating between data of distinct dimen-
sionality poses further challenges. In particular, convert-
ing an image from lower-dimension to a higher-dimensional
representation (e.g., 2D to 3D) is considered a reconstruc-
tive generative modelling problem [4, 45].

One highly relevant application in the medical field in-
volves obtaining 3D CT representations from 2D X-ray pro-
jections [30]. However, unlike image super-resolution ap-
proaches, bridging the 2D to 3D data dimensionality gap
presents a unique modeling challenge to estimate spatial
missing details [45]. Moreover, machine learning models
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achieve remarkable results thanks to abundant natural image
data, but medical models often struggle due to the limited
size of medical datasets. Furthermore, real-world medical
3D datasets involve volumetric features with varying den-
sity structures, making hallucinated data a significant con-
cern that can prove counterproductive [34].

Existing methods approach 2D to 3D medical image
translation through asymmetrical architectures and/or incor-
porate various regularization techniques to enforce plausi-
ble reconstructions [35, 49] (Fig. 1). While these tech-
niques may generate high-quality outputs, even with high-
frequency details, they often lack correlation to the input
data. This means that the model becomes overly reliant on
the latent prior, potentially ignoring the original 2D signal.
The situation is further exacerbated if the training data is
limited (few hundred images), so when the model is pre-
sented with inputs significantly different from the training
dataset, such as out-of-distribution samples, it is likely to
perform poorly making it unusable for practical scenarios.

In this paper, we propose a simple 2D to 3D mapping
translation framework that addresses the correlation issue,
ensuring highly-associated outputs even in limited datasets.
We achieve this by a preprocessing step that preserves 2D
information content throughout the network transforma-
tions without relying on other priors. First, we repeat the
various 2D input projections to match the output 3D target
depth (Fig. 1). These 3D volumes are then concatenated
into a single higher-channel 3D volume. Then we propose a
3D to 3D conditional generative modeling approach that ap-
plies neural optimal transport with the de-biased Sinkhorn
divergence. Such an approach effectively allows mass split-
ting; we find this particularly suitable for our task, as the
original 2D inputs contain valuable information content, re-
quiring each area of the 2D inputs to contribute to entire 3D
regions of details in the synthesized 3D image (Fig. 2).

The approach was found to give significant improvement
in terms of generalization, while being stable to train with
only a few hundred images (ideal for medical/real-world
datasets). Our evaluation showed that the method gener-
ates plausible reconstructions after only 2,000 training opti-
mization steps, which can generalize to out-of-distribution
inputs after approximately 28 hours of training.

To summarize, our contributions are
1. An alternative and simple 2D to 3D image translation

framework that effectively reconstructs a CT volumet-
ric representation given only one or any number of X-
ray projections, with potential application in clinical use
(e.g., cutting down costs and radiation to patients).

2. A processing pipeline that retains all 2D information
throughout the 3D transformation network without loos-
ing information content in the latent encoding.

3. Demonstrable generalization with very limited data (a
few hundred images) trained in less than 28 hours. The

processing step and approach can be directly applied to
other generative modelling approaches and applications.

2. Related Work
2D to 3D image translation: Several methods have at-
tempted to obtain 3D representations from 2D images for
medical applications, such as CT reconstruction from X-
rays. Conditional approaches, generating 3D images from
one or two 2D images are often based on Generative Adver-
sarial Networks (GANs) [13] and Variational Autoencoders
(VAEs) [22]. These methods transform noise sampled from
a Gaussian prior, which is concatenated with a latent rep-
resentation of the 2D data; this may loose or hallucinate
important 2D signal information not captured in the latent
encoding. Strategies to mitigate this include incorporating
3D priors from real data [18] or simply generating 2D slices
as output, which are stacked into a 3D representation [52].

Another line of work involves asymmetric autoencoder
architectures, where a 2D encoder extracts spatial fea-
tures, which are then expanded to fit into a 3D decoder
[15, 24, 26, 32, 40]. To mitigate information loss at the
bottleneck, additional objectives are learned, enforcing a
more interpretable latent space or adding an additional 2D
encoder [49]. Recent approaches explore implicit neural
representations [5, 28, 39] or two-stage vector-quantized
approaches combined with diffusion [6]. In contrast, we
explore a simpler approach that generalizes from small
datasets (∼1k images) in a 3D to 3D setting without rely-
ing on more complex asymmetric architectures.

Regularization and prior knowledge: Generalizing be-
yond the examples in the training set is a fundamental as-
pect of machine learning models for medical applications.
Key problems are mode collapse and overfitting, which
arise due to the limited availability and real-world com-
plexity of medical datasets. This is further exacerbated
by data noise and heterogeneity among different imaging
modalities. Fortunately, regularization techniques such as
parameter constraints or augmentation can mitigate overfit-
ting [31, 41] and help alleviate data shortages.

Data augmentation, in particular, is an established solu-
tion to mitigate overfitting [11, 21] by introducing semantic-
preserving data transformations such as rotation, transla-
tion, and contrast adjustments. However, selecting and
combining augmentations is a delicate process, especially to
prevent undesirable outcomes such as the model learning to
generate the augmented distribution and deviating from its
original objective [20]. In this context, incorporating prior
knowledge from initial assumptions about the data distribu-
tion can guide learning for improved generalization, such
as additional conditional information in generative model-
ing or via additional terms to the main objective functions
[10, 44, 46]. In our approach, we know that 2D X-rays cap-
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Figure 2. Proposed 2D to 3D image translation approach. (a) We learn the mapping between 2D inputs and their corresponding 3D
representation adapting a Swin UNe-Transformer gφ [16] for image translation. (b) Optimization is based on the dual optimal transport
regularization between networks gφ and dϕ, comparing data points from the two image spaces using the Sinkhorn divergence Sε on the
activations of a feature extractor f .

ture the underlying 3D objects over a range of depths, acting
as a prior that motivates our repeat and concatenate mapping
strategy. We find this facilitates improved generalization for
both in- and out-of-distribution inputs, even when trained
on small datasets.

Deep generative modeling: 2D to 3D image translation
involves modeling the probability of unobserved 3D re-
gions which is therefore a generative modeling problem.
Deep generative modeling (DGM) is a very large field,
from which mainstream approaches include GANs, VAEs,
normalizing flows, autoregressive models and probablis-
tic diffusion models [4]. These methods classically bal-
ance an empirically observed trilemma of modeling quality,
mode coverage and the number of ‘steps’ taken during sam-
pling [47]. VAEs and normalizing flows are well-known for
lower quality sampling, while GANs suffer from mode col-
lapse, capturing only part of the distribution during training.
Various strategies, such as weight clipping, gradient penal-
ties, and spectral normalization, have been proposed to mit-
igate these issues, but they often fail to address fundamental
challenges rooted in optimal transport (OT) theory.

Neural optimal transport: In contrast, neural optimal
transport offers a more nuanced approach for mapping
probability distributions, which is especially relevant for
handling the intricacies of medical imaging data. Tradi-
tional methods like f -divergences, commonly employed

in GANs, perform poorly with smaller, high-dimensional
datasets, failing to provide meaningful gradients for effec-
tive training [42]. Capturing variability in limited medical
data is crucial, and leveraging regularity in human datasets
is one approach. For example, organs and bones consis-
tently occupy locations in the human chest, allowing neural
networks to learn the mapping between X-ray and 3D CT
volumes. OT is relevant in this setting by providing a rig-
orous distance metric that respects the geometric properties
of the distributions. It computes the minimal cost required
to transform one distribution into another, offering a coher-
ent and robust measure of similarity that is both intuitive
and stable [8]. This geometrically-aware approach enables
a more direct and meaningful comparison of medical im-
ages across different modalities, potentially facilitating the
development of more accurate and reliable diagnostic tools.

3. Method

We initially detail our 2D to 3D processing approach (Fig.
1), and then discuss our 3D to 3D generative modeling regu-
larized with optimal transport (Fig. 2). We also justify how
the 3D to 3D mapping approach improves correlation by an-
alyzing the information content through the transformation
strategies.



3.1. Processing pipeline

At a high-level, we wish to investigate whether multi-view
2D information can be combined for accurate 3D synthe-
sis without latent encoding. Previous approaches integrate
multi-view information in the latent space, as it typically
captures a degree of spatial and rotational invariance. How-
ever the latents, even with information-rich modeling, fail
to retain the full signal from the input 2D views. While,
through modern deep generative modeling, they may syn-
thesize high-quality signals with high-frequency details,
these are typically prone to over-hallucination [6] which can
potentially pose fatal in real-world medical application. In
this application, we would rather have blurriness and uncer-
tainty at the expense of outputs that are highly-correlated to
their corresponding 2D inputs.

To achieve this objective, we propose increasing the di-
mensionality at the 2D inputs to ensure the signal can in-
fluence an entire region of the 3D volume, and concatenat-
ing these inputs ensuring that information content loss is
reduced within 3D to 3D residual architectures.

More formally, we outline our processing pipeline for N
input X-ray projections. Let I ∈ RC×H×W be an input 2D
X-ray, representing a single view with height H , width W
and channels C. For a set of N views, we have {Ii}Ni=1,
each aiming to contribute to the reconstruction of a 3D CT
volume V ∈ RC×H×W×D, where D is the depth.

We ‘stretch’ the 2D inputs to match the dimensions of
the target 3D volume; we repeat each view D times by
Γ ∶ RC×H×W → RC×H×W×D and coarsely align them by
transposing views that differ by 90-degrees (leaving the oth-
ers unchanged, see our experiments section on Views align-
ment for further discussion on this). This is applied for
each of the N views, which are concatenated across the
depth axis (denoted by ⊕) yielding a composite volume
Vcat ∈ RNC×H×W×D, where

Vcat =
N

⊕
i=1

Γ(Ii), (1)

and the reconstructed 3D volume is modeled by a U-Net
based architecture gunet

φ ∶ RNC×H×W×D → RC×H×W×D.

3.2. Mapping network and generative modeling

For our 3D to 3D mapping network gφ with parameters φ
we considered a residual U-Net [36] equipped with self-
attention following the Swin UNEt-TRansformer (Swin
UNETR) model [16], applied for image translation instead
of image segmentation. Based on experimenting with a va-
riety of off-the-shelf U-Net backbones, we settled on Swin
UNETR as it empirically generated higher image quality
outputs across all metrics.

3.2.1 Modeling with neural optimal transport

For the generative modeling task, we applied the dual reg-
ularized optimal transport (OT) learning approach [14] us-
ing the geometric de-biased Sinkhorn divergence Sε(⋅) [9]
as the cost function. The Sinkhorn divergence is suitable
for this task as it is an efficient yet positive and definite
approximation of OT that interpolates between Maximum
Mean Discrepancies (MMD) and OT. Specifically, we in-
corporate a feature extractor f that reduces the dimension-
ality of g(Vcat) and V through a mapping into a reduced
dimensional vector as suggested in [12]. We parametrized
f as a neural network and calculate the cost function in the
latent space,

Sε(α,β) ∶= OTε(α,β)−
1

2
OTε(α,α)−

1

2
OTε(β,β), (2)

where α represents the distribution of predicted features and
β the distribution of ground truth 3D CT features extracted
from f . While calculating the cost in the data space might
suffice in some cases, we find that incorporating the feature
extractor f is beneficial with 3D data as it reduces its dimen-
sionality and makes our mapping network less susceptible
to mode collapse.

This modeling approach is similar to the min-max objec-
tive in GANs where the Swin UNETR mapping network gφ
(Fig. 2a) replaces the generator and a residual discrimina-
tor dϕ assigns transportation costs to the produced samples
gφ(Vcat). We trained our networks using:

Lg = E(Vcat,V )∼pdata [Sε(g(Vcat), V ) − λd(g(Vcat))] , (3)

Ld = E(Vcat,V )∼pdata [d(g(Vcat)) − d(V )] . (4)

The optimization of the network d involves finding a func-
tion that yields the minimal cost associated with transport-
ing mass from each point in Vcat to each point in V . Over-
all this allows us to align the distributions of features from
ground truth CT samples with our samples from gφ at-
tained from the concatenated volumes from X-ray views
Vcat, through regularized dual OT (Fig. 2b).

Even though we can use the L2 distance to approximate
the OT plan, it does not capture the underlying structure of
the distributions or how to transport mass from one to an-
other. In contrast, the Sinkhorn divergence induces a scal-
ing process that ensures, at each step, the resulting trans-
portation plan satisfies probability distribution constraints,
thus helps avoiding common training instability issues in
adversarial training. Furthermore, our model relies solely
on 2D views, promoting deterministic mapping and reduc-
ing hallucination by avoiding sampling from additional dis-
tributions, such as Gaussian, typical of multimodal image
translation. We find that OT regularization greatly reduces
overfitting but may introduce blur in the generated outputs
due to the unconstrained nature of 2D-3D translation.



3.3. Justification

We justify our processing pipeline by examining informa-
tion loss through different approaches. In previous works,
encoded features z ∈ RM are typically obtained through
an encoding function z = f enc(I), where typically, M <
CHW , indicating a reduction in dimensionality. The de-
coding function V = f dec(z) similarly tries to reconstruct a
volume given the latent.

Information content I(⋅) Let I(⋅) quantify the informa-
tional content of an image or volume, indicating that I(V )
is maximized when V contains the full detail and structure
inherent to the original 3D object.

We show that the repetition and concatenation approach
retains information when integrated via U-Net over multiple
views, compared to classicial encoder-decoder approaches

gunet (Vcat) ≻ f dec (⊕N
i=1f

enc(Ii)) ,

where ≻ denotes higher fidelity (closeness to original) in 3D
reconstruction, directly correlated with informational con-
tent I(⋅).

Information loss in encoding and decoding Dimension-
ality reduction through encoding implies: M < CHW,
highlighting a reduction in the capacity to represent the full
informational content of the original volume. This reduc-
tion leads to inherent information loss, which the decoding
process cannot fully recover as

M < CHW Ô⇒ I(f dec(z)) < I(I), (5)

due to the lossy nature of compression in f enc and the lim-
ited ability of f dec to fully recover original information.

Information retention through skip-connections The
skip connections in gunet enable direct transfer of features
across layers, preserving and refining informational content
where

I(gunet(Vcat)) ≈ I(Vcat) = I(I), (6)

especially when V is constructed from repeating I across
the depth dimension (without information loss), thereby
maintaining high fidelity from input to output.

Information retention across views The concatenation
of repeated views tends to preserve informational content,
while the concatenation of encoded views may lead to in-
formation loss due to aggregation

I (⊕N
i=1Γ(xi)) ≈

N

∑
i=1

I(Γ(Ii)), (7)

LIDC-IDRI dataset [1] (in-of-distribution inputs) using two views

Experiment ↑ SSIM ↑ PSNR ↓MSE ↓MAE

2D-3D AE 0.1545 3.804 995.2582 5.81
2D-3D AE + L2 Norm. 0.2086 10.833 197.2649 2.5103
3D-3D U-Net 0.4787 22.063 58.7546 0.9264

GT 3D-3D U-Net 2D-3D AE
+ L2 Norm

2D-3D AE
(mode collapse)
3D-3D U-Net

train traintest test

(overfit)
3D-3D U-Net

Figure 3. Effect of reformulating 2D-3D mapping into 3D-3D.

I (⊕N
i=1g

enc(xi)) ≤
N

∑
i=1

I(Ii). (8)

Therefore, the combination of multiple views through
concatenation and subsequent processing with gunet tends to
retain information content, whereas concatenating the en-
codings leads to significant loss in the correlation on aggre-
gate, leading to

I (gunet (⊕N
i=1Γ(Ii))) > I (f dec (⊕N

i=1f
enc(Ii))) , (9)

indicating the potential of enhanced fidelity of 3D recon-
struction achieved through a U-Net based architecture with
repeated concatenation and skip connections over latent in-
tegration frameworks.

4. Experiments
We trained our models on the LIDC chest dataset [1], which
consists of only 916 training CT scans, and tested them on
both in-distribution and out-of-distribution inputs from six
lung datasets. We created paired datasets generating digi-
tally reconstructed radiographs as 2D inputs from the CT
scans using the open-source software Plastimatch, follow-
ing previous work [5, 6, 35, 49]. Our model’s convergence
plateaued after 2,000 iterations, taking only an average of
28 hours to reach 5,000 steps (selected weight). The train-
ing runs were performed on NVIDIA TITAN RTX with a
batch size of eight using PyTorch.

Mapping reformulation In Figure 3, we present results
from initial experiments comparing an asymmetrical 2D to
3D strategy versus our reformulation as a 3D to 3D map-
ping. The 2D to 3D approach involves aggregating the indi-
vidual encoded 2D view features, which serve as input to a
3D decoder. However, this results in highly blurred outputs
due to the information content loss from the latent encoding.
Despite the simplicitiy of such and approach in terms of fea-
ture alignment, important fine-grained details are missing.
In contrast, our approach reformulates the problem into a
3D to 3D mapping in a simple architecture, achieving high-
fidelity image translations even when using a single input
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Figure 4. Example projections from generated 3D CT volumes from inputs using one, two, four and eight X-rays; obtained from our 3D-3D
translation approach with Swin UNETR backbone. We use testing instances from LIDC-IDRI dataset [1].

In-distribution inputs (LIDC-IDRI dataset [1])

No. input views ↑ SSIM ↑ PSNR ↓MSE ↓MAE

1 ⊕ z ∼ N (0, I) 0.2337 20.2827 0.0403 0.1342
1 0.4891 23.2198 0.0214 0.0751
2 0.5272 24.3192 0.0180 0.0665
4 0.5129 24.3358 0.0167 0.0666
8 0.5402 24.6352 0.0155 0.0613

Out-of-distribution inputs (MIDRC-1b dataset [43])

1 ⊕ z ∼ N (0, I) 0.1353 15.3223 0.0800 0.2334
1 0.4043 20.0800 0.0526 0.1510
2 0.4048 20.3636 0.0505 0.1474
4 0.3779 21.2115 0.0439 0.1337
8 0.2029 17.7972 0.0777 0.2029

Table 1. Primary results of our mapping approach with varying
input views. Each model was trained on LIDC dataset [1] and
tested for both in- and out-of-distribution inputs from MIDRC-
1b dataset [43]. We computed metrics five times with different
random seeds and report their average.

view. We ablate our ’repeat and concatenate’ preprocess-
ing pipeline by instead concatenating noise sampled from
a normal distribution. When the vector z is fixed for each
patient, the model causes overfitting, while gathering a new
z for each iteration results in mode collapsing, where it pro-
duces the same output irrespective of the input.

Ablations & comparisons Our approach allows the use
of multiple views as input without modifying our model’s
architecture. We observe that the model benefits from ad-
ditional views when tested on in-distribution inputs (Fig.
4). However, this correlation was found not strictly hold
for out-of-distribution inputs. This suggests that when there
are disparities in view alignment or style-domain features
compared to the training distribution, the model predom-
inantly relies on views that closely resemble the learned
patterns. Investigating whether certain projections contain
more valuable information than others is a valuable research
direction for future work. Overall, we find that the combi-
nation of 2 or 4 views to be empirically effective (Table 1).

(a) In-of-distribution inputs
Dataset Method ↑ SSIM ↑ PSNR ↓MSE ↓MAE

LIDC-IDRI [1]
X2CT-GAN [49] 0.321 19.68 0.045 0.151
CCX-rayNet [35] 0.386 22.66 0.032 0.108
Ours 0.527 24.35 0.018 0.066

(b) Out-of-distribution inputs

COVID-19-NY-SBU [37]
X2CT-GAN [49] 0.236 16.74 0.089 0.199
CCX-rayNet [35] 0.205 19.03 0.054 0.144
Ours 0.400 22.78 0.022 0.077

SPIE-AAPM-NCI [2]
X2CT-GAN [49] 0.174 15.63 0.115 0.245
CCX-rayNet [35] 0.130 17.87 0.080 0.196
Ours 0.399 22.04 0.026 0.087

MIDRC-1b [43]
X2CT-GAN [49] 0.220 14.70 0.156 0.360
CCX-rayNet [35] 0.114 18.06 0.076 0.228
Ours 0.404 20.36 0.050 0.147

ANTI-PD-1 [29]
X2CT-GAN [49] 0.286 18.04 0.072 0.164
CCX-rayNet [35] 0.205 18.15 0.067 0.167
Ours 0.349 20.93 0.040 0.112

LCTSC [48]
X2CT-GAN [49] 0.326 19.20 0.052 0.125
CCX-rayNet [35] 0.206 19.75 0.062 0.156
Ours 0.331 20.38 0.040 0.109

NSCLC [3]
X2CT-GAN [49] 0.280 18.13 0.072 0.163
CCX-rayNet [35] 0.122 16.62 0.093 0.216
Ours 0.315 19.85 0.047 0.126

Table 2. Quantitative results on both in-distribution and several
out-of-distribution datasets using only two input X-rays. We used
our model weights for 5,000 training optimization steps, trained
with Swin-U-Net. Other models weights are from 100 epochs (∼
90k iterations).

In Table 2 we compare our approach to paired alternative
methods in terms of quality of the 3D outputs for both in-
and out-of-distribution inputs. Despite variations in datasets
originating from different imaging systems, resolutions, and
patients’ health conditions, our model demonstrates supe-
rior performance across all metrics and maintains consis-
tency across all out-of-distribution datasets. Refer to Fig-
ures 5 and 9 for qualitative results.

Gradients & patient-specific learning In Figure 8, we
visualize the magnitudes of the gradients of our model with
respect to a varying number of input views. We observe
higher variability across different patients, indicated by the
color variations for one, two, four, and eight views inde-
pendently. On the other hand, if we analyze intra-patient



(a) COVID-19-NY-SBU (b) SPIE-AAPM-NCI (c) NSCLC

(d) ANTI-PD-1 (e) LCTSC (f) MIDRC-1b 

Figure 5. CT projections from generated 3D volumes on various out-of-distribution lung datasets. Model weights were selected from
iteration 5,000 on the LIDC-IDRI dataset [1]. GT projections are displayed in odd rows, while our model’s outputs are shown in even rows.

(a) In-of-distrib. inputs (LIDC-IDRI dataset [1])

Oblique views ablation ↑ SSIM ↑ PSNR ↓MSE ↓MAE

no alignment 0.5001 24.0513 0.0178 0.0682
coarse alignment 0.4248 22.5182 0.0259 0.0872

(b) Out-of-distrib. inputs (COVID-19-NY-SBU dataset [37])

no alignment 0.3581 21.9844 0.0272 0.0881
coarse alignment 0.3365 21.0851 0.0340 0.1026

Figure 6. Results on oblique views with coarse alignment.

No. input views
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IM

Out-distribution inputs
In-distribution inputs
Transposed views
Rotated views
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Out-distribution inputs
In-distribution inputs
Transposed views
Rotated views

Figure 7. Comparison between only transposing perpendicular
views (indicated by a star marker) and a coarse alignment (triangle
marker), using two, four, and eight input views. Smoother colors
represent results for out-of-distrib. inputs (MIDRC dataset [43]).

gradients, we notice lower variability, suggesting consistent
patterns captured in views coming from the same patient.
With our approach, the generative model implicitly learns
patient-specific representations, where outputs reflect dif-
ferences in anatomical structures and/or pathological con-
ditions present in the input data from each patient.

View alignment We study the effect of aligning the in-
put views during the preprocessing stage prior to the repeat
and concatenation operations. Initially, we experimented
without any alignment, which resulted in outputs contain-
ing checkerboard-like artifacts that diminished after an ad-
ditional 1k training iterations. However, a simple transposi-
tion of perpendicular views from coronal and sagittal planes
alleviated this. To test our model capacity on views outside
of such geometry, we tested on four oblique projections, for
which we find that our model performs equally well without
relying on any sort of alignment (Fig. 6). We also investi-
gated a coarse alignment by approximating their locations
through 3D rotations using data transformations from Ko-
rnia’s library (Figs. 6, 7). However, we observe that this
might required a precise and potentially non-affine trans-
formation which is non-trivial. Overall, we find that the
model learns some invariance to this, where a simple trans-
pose consistently yields improved results without apparent
artifacts (Fig. 7). While precise projection alignment in 3D
space could potentially enhance results, we consider there
may be a tradeoff between alignment robustness (e.g., due
to patient movement) and generation accuracy. In the fu-
ture, an iterative 3D alignment approach would be worth-
while investigating as a secondary objective.

4.1. Implementation Details

Our training algorithm is based on the neural optimal trans-
port approach by Korotin et al. [23]. In this approach,
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Figure 9. Examples of the correlated 3D projections from our
proposed approach compared to alternative supervised methods
X2CT-GAN [49] and CCX-rayNet [35].

the mapping network gφ undergoes k = 10 iterations while
the parameters of the potential network dϕ remain frozen.
Then, a single training step is performed for d, unfreezing
its parameters while freezing those of g. Our feature extrac-
tor f is parameterized by a 3D convolutional neural network
with Kaiming weight initialization. We set λ = 0.1 to con-
trol the degree of regularization of the reconstructed outputs
by d. Improving generation quality could be achieved by
scaling to higher resolutions and adjusting the λ parameter.
Our networks are trained using the AdamW optimizer with
parameters β1 = 0.5, β2 = 0.999, ϵ = 0.001, and a learning
rate of 10−5 with weight decay. We apply a combination of
differential augmentations [51], including random contrast,
rotation, and horizontal flip, to the input 2D X-rays in all ex-
periments. 3D reconstructions are saved in both numpy and
.mha formats for visualization using medical image soft-
ware such as 3D Slicer.

5. Limitations and future directions

The approach, while simple and intuitive, has several clear
limitations. Firstly, our current architecture attempts the
non-linear transformation in a ‘single’ transformative step,

resulting in uncertainty and therefore blurriness. We expect
improved performance through an iterative multi-step trans-
formation, such as a modern probabilistic diffusion gener-
ative model. Secondly, while we found some invariance to
the input alignment, we would like to investigate whether
the concatenated 3D inputs could be better aligned to match
the target 3D locations and therefore support better model-
ing of some high-frequency details near their corresponding
specific 3D slices. For example we could potentially op-
timize the input affine transformations, in particular their
roto-translations, according to a secondary objective, re-
peated at inference as part of the modeling.

6. Conclusion
In conclusion, we found that simply repeating the 2D in-
puts into concatenated 3D volumes, then treating the 2D
to 3D translation problem as a 3D to 3D translation task,
leads to improved correlation between the synthesized out-
puts over more sophisticated multi-view latent integration
approaches. While we expect other off-the-shelf 3D to 3D
conditional generative modeling approaches to be immedi-
ately applicable within our framework, we found particu-
lar success by directly applying 3D to 3D neural optimal
transport to attain highly correlated 3D synthesized outputs
with their corresponding 2D inputs. The overall proposed
approach is fast to train, data efficient, stable, and gener-
alizes well to new out-of-distribution views making it ap-
plicable in a real-world clinical setting. However it does
exhibit blurriness where there is uncertainty in the outputs;
in the future it would be worth investigating iterative align-
ment optimization for the repeated 3D inputs as a secondary
objective to the generative modeling, repeated during infer-
ence, potentially mitigating this uncertainty.
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