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1 Introduction

An anomaly is, generally speaking, some kind of obstruction to quantisation. Usually (but
not always [1]) we are concerned with anomalous symmetries. At least in the case of chiral
symmetries acting on massless fermions, the anomaly is then related to a topological index that
requires its coefficient be integer-quantised. As a result, this type of anomaly cannot change
under the renormalization group (RG) flow of a theory, which is a continuous deformation. The
anomaly therefore communicates robust information from microscopic scales to macroscopic
scales. This idea of anomaly matching over different scales has been immensely powerful in (a)
constraining the infrared dynamics of quantum field theories (QFTs), even when confronted
by strong coupling [2]; (b) providing highly non-trivial consistency checks on hypothesized
dualities e.g. [3–6]; and (c) explaining particular physical phenomena, most famously the
observed neutral pion decay to photons [7, 8].

While in high-energy physics examples such as these we are accustomed to applying the
anomaly matching to QFTs at zero temperature, the principle applies just as well for theories
at finite temperature and/or finite chemical potential. At least for microscopic theories that
are both gapped and interacting, the hydrodynamic limit obtained by coarse-graining over
all particle degrees of freedom arguably provides an ultimate ‘effective theory’, in which all
the dynamics are captured by an effective action for the background fields associated to
conserved currents for the global symmetries of the microscopic theory. Said more prosaically,
all that remains of the microscopic physics in the hydrodynamic limit are its symmetries.
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The symmetry currents of interest typically include a stress-energy tensor Tµν , and currents
jµ associated e.g. with U(1) particle number symmetry, for which background fields are a
spacetime metric gµν and gauge field Aµ respectively. Anomaly matching is now known
to play a powerful role in this hydrodynamic context [9–15], at least for perturbative ’t
Hooft anomalies, by constraining the coefficients of Chern-Simons-like terms appearing in the
low-energy effective action. These topological terms in the effective action manifest themselves
physically via certain transport coefficients. For example, an anomalous microscopic U(1)
symmetry might imply there is momentum and/or U(1) flux flowing in the direction of
magnetic fields and/or vorticity, as we will review in section 2.

In recent years, our understanding of anomalies has become more mathematically rigorous.
This is rooted in the idea of anomaly inflow [16] — which has a physical incarnation in
condensed matter phenomena such as the quantum Hall effect — whereby anomalies in
d-dimensional QFTs are captured by extending the theory to a bulk spacetime in d + 1
dimensions, whose boundary is the original spacetime. The anomaly is itself identified with
a QFT in d+ 1 dimensions, with special properties. In particular, because the anomalous
transformation always induces a re-phasing of the partition function, the anomaly theory is
an invertible QFT. A pioneering work of Freed and Hopkins [17] showed how such unitary,
invertible QFTs can be classified algebraically, using a particular cohomology theory called
cobordism.1 Our particular interest here is in chiral symmetries of massless fermions in d

spacetime dimensions, so let us now recap in a more explicit manner how the cobordism
classification of anomalies emerges in this context.

The key object is the fermionic partition function, formally the path integral over chiral
fermion fields Z[A] =

∫
DψDψ̄eiS[ψ,A], which is a functional of the background gauge fields

that we collectively denote A. At least for fermions weakly coupled to a gauge field via the
usual kinetic term, this partition function is the determinant of a suitably defined Dirac
operator. Witten and Yonekura recently proved [18], building on e.g. refs. [19–21], that
the phase of this fermion partition function is the exponentiated η-invariant appearing
in the index theorem of Atiyah, Patodi, and Singer [22–24], evaluated on a bulk (d + 1)-
manifold whose boundary is the original spacetime à la anomaly inflow. Equipped with
this formula for the phase of Z[A], one can then compute how that phase shifts under
any transformation of the background fields, which can involve both gauge transformations
A→ Ag but also diffeomorphisms of the background geometry, by evaluating exp(−2πiη) on
a (d+ 1)-dimensional mapping torus that interpolates between the two field configurations.2
Such mapping tori probe all possible anomalies, and so the original QFT is completely
anomaly-free if exp(−2πiη) = 1 on all possible mapping tori.

In fact, requiring that exp(−2πiη) = 1 on all closed (d+1)-manifolds equipped with all pos-
sible background field configurations (not just tori) is motivated by demanding locality of the
fermion partition function; in this way, we can understand anomaly cancellation to follow nec-

1Technically speaking, cobordism here refers to the shifted Anderson dual of bordism, where the latter
is a homology theory whose elements are equivalence classes of manifolds (equipped with structures, like
gauge bundles for the symmetry group) that can be ‘connected’ by an interpolating manifold in one higher
dimension.

2Note that our convention for the η-invariant, particularly in relation to bordism group computations,
follows from ref. [18], which differs from the convention used in [25, 26] by a factor of 2.

– 2 –



J
H
E
P
0
3
(
2
0
2
4
)
1
1
9

essarily from locality. This ‘strong’ notion of locality is thought to be an important ingredient
in embedding our QFT in a consistent description of quantum gravity, as suggested in e.g. [27].

To summarise, computing η-invariants detects all possible chiral fermion anomalies. In
perturbation theory, one can always choose a mapping torus that is itself the boundary
of a (d + 2)-manifold Y , and thus use the APS index theorem to learn that Z[Ag] =
Z[A] exp(−2πi

∫
Y Φd+2), where Φd+2 is the anomaly polynomial appearing in the index

theorem (for which we will see a precise formula later). This object detects all possible
perturbative (a.k.a. ‘local’) anomalies. But the real power of the anomaly inflow formula lies
in classifying non-perturbative, or ‘global’ anomalies. A canonical example of such a global
anomaly is that afflicting a 4d SU(2) gauge theory with an odd number of Weyl doublets [28].
When local anomalies vanish (Φd+2 = 0), the APS index theorem tells us that exp(−2πiη),
which detects all possible remaining anomalies when evaluated on mapping tori, is a bordism
invariant, which means that it is the trivial phase when evaluated on a manifold that is a
boundary. The global anomaly is therefore a homomorphism from the bordism group Ωd+1
to U(1); we ‘just’ need to compute it on each generator of the bordism group to determine
all possible anomalous phases that can arise for such a symmetry. This information is very
powerful. For instance, if the appropriate bordism group vanishes, we immediately learn
that there can be no global anomaly associated with any symmetry transformation, for any
spacetime geometry and background field configuration [27, 29–46].

It is not a priori obvious whether global anomalies of this kind should have any physical
consequences in the hydrodynamic limit of a theory.3 The equilibrium partition function for
the fluid is, as described above, a functional of the background fields for the (continuum)
global symmetries that characterise the theory, such as gµν and a U(1) background Aµ. In
contrast to the case of local anomalies, which recall can be matched by Chern-Simons forms
built from the Riemann curvature R and the field strength F , the low-energy effective action
that is needed to match a global anomaly cannot be captured using only this data. It might
therefore appear that a global anomaly can play no role.

In this paper, we use the cobordism classification to identify a novel mixed global anomaly
for a 4d microscopic theory with Spin × U(1) × Z2 global symmetry, before exploring its
consequences in the hydrodynamic limit. While neither U(1) nor Z2 can carry a global
anomaly on its own in 4d, we find that the presence of both symmetries allows for a global
anomaly.4 The ’t Hooft anomaly itself is valued in Z4, and is generated by a pair of Weyl

3We remark that the hydrodynamic consequences of an anomalous ‘large symmetry transformation’ was
considered in ref. [25], which is close in spirit to the present work. The symmetry type considered there
is Spin(4) × U(1), in the 4d case, and the symmetry transformation involves turning on a U(1) monopole
background and doing a large diffeomorphism. The anomaly is studied by computing the η-invariant.
Nonetheless, that anomaly comes from a term in the anomaly polynomial, namely 1

24 p1(R)c1(F ) ⊂ Φ6, and
so should be classified as a perturbative anomaly. Indeed, that anomaly can already be seen by doing an
infinitesimal gauge transformation; in particular, by taking a gravitational instanton background, for example
on the K3 surface (which has non-vanishing signature), and doing any infinitesimal U(1) gauge transformation.
Once this perturbative anomaly has been cancelled, which requires the sum of U(1) charges vanishes, there
is no remaining anomaly associated with any large symmetry transformation. This can be verified from the
vanishing of the bordism group ΩSpin

5 (BU(1)) [27].
4A qualitatively similar anomaly, probed by the bordism group ΩSpinc

5 (BZ2) ∼= Z8 × Z2, was very recently
studied by Chen, Hsieh, and Matsudo in ref. [47] in connection with the fermion-monopole scattering
problem [48] and related reflection anomalies in 2+1 dimensions.
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fermions that are vector-like under the U(1), but for which only one Weyl component is
charged under the Z2. This symmetry type, and the anomalous fermion content, arises
in very simple microscopic theories; for example, in which Weyl fermions are coupled to
massive real scalars. We explicitly construct a mapping torus that probes this anomaly, which
involves doing a large diffeomorphism in the presence of both a non-trivial Z2 holonomy and
non-zero U(1) monopole flux — the necessity of both these things is not surprising, and
confirms the assertion that it is a mixed anomaly. The fact that our mapping torus does
provide a valid generator for the bordism group ΩSpin

5 (B(U(1) × Z2)) = Z4 is verified by
an explicit calculation of the η-invariant thereon, which we do using the idea of ‘anomaly
interplay’ as introduced in refs. [36, 49].

We then turn to the hydrodynamic limit of such a microscopic theory, at finite temperature
and chemical potential, to explore the consequences of the mixed anomaly. The U(1) symmetry
that participates in the ’t Hooft anomaly has a conserved current jµ, obtained by varying the
equilibrium partition function Z with respect to the U(1) background gauge field Aµ as usual.
We find that, if there is Z2 holonomy around the time-circle on which we compactify the theory
at finite T , the mixed anomaly leaves its mark in the effective field theory. Even though there
is no perturbative anomaly in the 4d microscopic theory, matching the mixed global anomaly
requires there to be non-trivial 3d Chern-Simons terms on spatial hypersurfaces, whose
coefficients are fractionally quantised in units of a quarter. Such a fractional Chern-Simons
level is itself a hallmark of a global anomaly; being fractional, it cannot be removed by a
local counterterm — unless, of course, the global anomaly vanishes.

The constraints that we derive at the level of the effective action translate directly to
constraints on certain transport coefficients for both Tµν and jµ, meaning the anomaly,
while subtle, has dramatic physical implications. We show that the Noether currents jµ, Tµν
are compelled to have a non-zero component parallel to the magnetic field and/or fluid
vorticity ωµ := ϵµνρσuν∂ρuσ when the mixed anomaly is non-vanishing. This phenomena is
a non-perturbative anomaly version of the well-known chiral magnetic and chiral vortical
effects of [50] and, to the best of our knowledge, is the first such example. We confirm the
results of our anomaly-matching arguments by explicitly calculating the transport coefficients
using the associated Kubo formulae, which relate them to the IR limits of 2-point functions
in the finite temperature QFT, for a microscopic theory of free fermions (that exhibit the
1 mod 4 valued ’t Hooft anomaly in question). The key calculational step here, by which
the Z2 symmetry enters the picture, is that the presence of Z2 holonomy dictates a certain
choice of non-standard boundary conditions for our free fermion wavefunctions.

We emphasise that, if the discrete Z2 global symmetry were neglected, then we would
predict this transport coefficient (and others) to be zero, again by anomaly matching, because
there is no perturbative anomaly. This phenomenon uncovers a surprising way in which a
discrete symmetry in a microscopic theory can leave its vestige in the hydrodynamic limit,
even though there is no associated continuous current for that symmetry appearing in the
fluid equations of motion. The long-distance transport behaviour only becomes sensitive to
the presence of a microscopic discrete symmetry when there is the global mixed anomaly.
This exemplifies the power of anomaly-matching in effective field theory.
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The structure of the rest of the paper is as follows. In section 2, we briefly review the
equilibrium constraints on hydrodynamics and the effective partition function construction.
Our purpose here is to introduce key ingredients required to describe the effect of the non-
perturbative anomaly, as well as to clarify differences between this and the well-known effects
from perturbative anomalies. In section 3, we derive the U(1)× Z2 anomaly using bordism
theory. We explicitly construct a 5-dimensional mapping torus that probes the anomaly and
compute the η-invariant thereon, and we present a microscopic realisation of this anomaly.
Section 4 presents the result of anomaly-induced transport coefficients associated to this
mixed anomaly, firstly via a general macroscopic anomaly-matching argument, which we then
verify in a particular free fermion limit by direct computation. We summarise our results
and discuss possible future directions in section 5. We present bordism group computations
for ΩSpin

d (B(U(1) × Z2)), as well as for related symmetry structures ΩPin−
d (BU(1)) and

ΩSpinc
d (BZ2),5 using the Adams spectral sequence, together with a short introduction to

the method, in appendix A.

2 Hydrodynamics: partition functions and anomaly matching

Relativistic hydrodynamics is often viewed as a system of differential equations, consisting of
the Ward identities for continuous global symmetries. In the case considered in this work,
these are translational and U(1) symmetries, with the associated Noether currents Tµν and
jµ, respectively. The system is said to be in the normal phase of hydrodynamics when these
operators can be expressed in terms of the local densities of the conserved charges and/or their
conjugates, such as the temperature T , the U(1) chemical potential µ, and the velocity uµ,
as well as the background fields. The Noether currents are then constructed order by order
in the gradient expansions. These expansions are referred to as the constitutive relations:

Tµν = (ε+ p)uµuν + pgµν + Tµν1st +O(∂2) , jµ = nuµ + jµ1st +O(∂2) , (2.1)

where Tµν1st and jµ1st are sums of all possible symmetric rank-2 tensors and vectors, respectively,
at first order in the derivative expansions.6 The coefficients accompanying each structure,
known as transport coefficients for the hydrodynamic system, are not arbitrary — they are
determined by the microscopic theory that underlies the fluid description. However, even
without access to the microscopic picture, there are macroscopic consistency conditions that
these coefficients must satisfy. Chief among them is that when the system is in equilibrium,
the Noether currents must reduce to those obtained from an equilibrium partition function via

Tµν = − 2i√
−g

δ

δgµν
logZ , jµ = − i√

−g
δ

δaµ
logZ , (2.2)

5The particular case of ΩSpinc
d (BZ2) bordism groups have been already calculated by other more analytical

methods, going back to classic computations of Bahri and Gilkey in ref. [51].
6For example, T µν

1st ⊃ −ησµν , where σµν is the shear tensor constructed from the symmetric-traceless part
of ∂µuν . This is a standard approach elucidated in e.g. [52]. See also [53] for a modern review on the subject.
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where Z is the analytic continuation of the thermal partition function with all the background
fields turns on. This condition has been explored in various kinds of fluid and has been shown
to put strong constraints on various transport coefficients [14, 54].7

Let us briefly review the systematic construction of the equilibrium partition function
based on the global symmetry of the system. Since we are interested in describing hydrody-
namic systems in equilibrium, we consider only configurations that are invariant under time
translations. This means the background metric g admits a time-like Killing vector Kt (i.e.
the Lie derivative LKtg = 0) which, without loss of generality, we can take to be Kt = ∂/∂t

by choice of our time-like coordinate t. The most general geometry on a 4-manifold X4 that
admits such a Killing vector is an S1 fibration over a (spatial) manifold X3, which can be
parametrized via the Kaluza-Klein ansatz, as follows (see e.g. [14]):

g = e2σ(x)(dt+ αi(x)dxi)2 + γij(x)dxidxj , (2.4)

where xi are coordinates parametrizing the spatial hypersurfaces normal to Kt. Beyond the
time-translation symmetry we imposed, any such metric admits more general symmetries
of the form:

t 7→ t+ ϕ(x), αi(x) 7→ αi(x)− ∂iϕ(x) , (2.5)

which is formally equivalent to doing a 3d U(1) gauge transformation on αi, regarded as
the components of a dimensionally-reduced U(1) connection. It is conventional to refer to
this symmetry as a ‘Kaluza-Klein (KK) gauge transformation’.

We now couple the theory to a conserved U(1) current, for which we introduce a
background gauge field a = atdt+ aidx

i. In doing so we wish to preserve time-translation
symmetry, meaning we require LKta = 0, which simply implies that the components at and
ai are functions only of xi. The U(1) gauge transformations of interest act as

at(x) 7→ at(x), ai(x) 7→ ai(x) + ∂iλ(x) , (2.6)

where again we do not consider gauge transformations that would take us to configurations
with an explicit time-dependence; this restriction can be thought of as a partial gauge-fixing.
It is then convenient to split up the U(1) connection a into terms that are each invariant
under the transformation (2.5). We decompose

a = at(x)(dt+ αi(x)dxi) +Ai(x)dxi . (2.7)

Since the combination dt + αidx
i is invariant under (2.5), it follows that the object Ai is

also invariant under the KK gauge transformation.
The fluid variables can be expressed in terms of the background fields as follows. Starting

from the zeroth derivative quantities, we have

uµ = (e−σ, 0, 0, 0) , T = β−1e−σ , µ = e−σat (2.8)
7For example, applying this constraint at the zeroth derivative level, one finds that p is the density of log Z

and relations
dp = sdT + ndµ , and ε + p = sT + µn , (2.3)

which are the first law of thermodynamics and the extensivity condition respectively.

– 6 –
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up to the derivative corrections. Almost all first derivative structures vanishes in this
configuration except the magnetic field Bµ and the vorticity ωµ,

Bµ := 1
2ϵ

µνρσuν(da)ρσ , ωµ := ϵµνρσuν∂ρuσ , (2.9)

which can be related to the field strengths of the two abelian gauge fields via

(dα)µν = 1
2ϵµνρσu

ρωσ , (dA)µν = 1
2ϵµνρσu

ρ(Bσ + µωσ) . (2.10)

With all these ingredients, one can write down the most general equilibrium partition
function Z[g, a] = Z[eσ, αi, γij , at,Ai] that is invariant under both diffeomorphisms and gauge
transformations, to ensure the conservation of the Noether currents. Since we are interested
in the long-wavelength limit, where the thermal size β ∼ 1/T is small compared to the
gradient of the hydrodynamic variables, we can expand W = − logZ order by order in
the gradient expansion. Expressed in the terms of the dimensionally reduced 3d effective
action on X3, the leading terms are

W = − logZ = β

∫
X3
⋆3(eσp[T, µ])+i

∫
X3
c0A∧dA+iβ−2

∫
X3
c1α∧dα+iβ−1

∫
X3
c2α∧dA+O(∂2)

(2.11)
where ⋆3(·) denotes the hodge dual of a 0-form on the three-dimensional spatial slice X3,
which is assumed to have no boundary.

The nature of the coefficients c0, c1 and c2 determines the physical consequences of
these first derivative terms, as follows:

• If the ci are constants and properly quantised, namely

c0 = n

4π , c1, c2 = n

2π , n ∈ Z, (2.12)

then these are bona fide Chern-Simons term for the background gauge fields. They are
gauge invariant contributions to the exponentiated effective action, and their presence
preserves both the U(1) symmetry and diffeomorphism invariance. However, these are
contact terms and as such they can be added or removed from this system. In other
words one can, in principle, redefine the microscopic theory with the contact term
included, and thereby freely shift the coefficients of this kind in the effective description.
Furthermore, by requiring that the action W is invariant under CPT symmetry, one
notices that the pure Chern-Simons terms are CPT odd. Thus the coefficients c0, c1 have
to vanish, and only the mixed Chern-Simons coefficient c2 can remain non-zero [14].

• If the ci are not constants, then the system loses the global symmetry. Interestingly,
when the non-invariance take a particular form, it can be used to capture the non-
conservation of currents in theories with perturbative anomalies, as we shall soon recap.
See e.g. refs. [14, 15, 55, 56].

• Finally, if the ci are constant but not quantised as in (2.12), then the effective action
will typically transform under ‘large’ gauge transformations. The integer-quantised part
of it can be removed by a contact term, but the fractional part is physical and reflects

– 7 –
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the global anomaly of the system. The case considered in the present paper is of this
type. More discussion about this type of contact term in 2+1 dimensions can be found
in ref. [57], and an earlier application to hydrodynamics in ref. [58].

These Chern-Simons terms have a profound effect on transport phenomena in the hydrody-
namic limit, as captured by the transport coefficients λ1,2, ζ1,2 defined via the constitutive
relations 8

Tµν1st = λ1(uµBν + uνBµ) + λ2(uµων + uνωµ) ,
jµ1st = ζ1B

µ + ζ2ω
µ .

(2.13)

These coefficients capture the flow of momentum and U(1) current along the magnetic
field line and vorticity. By varying the effective action W in (2.11) with respect to the
background metric and U(1) gauge field, one can obtain expressions for ζi, λi in terms of
the Chern-Simons coefficients ci appearing in the effective action (2.11) [14], which we do
not reproduce explicitly here.9

As suggested, the Chern-Simons coefficients c0,1,2 in the effective action, and thus
the transport coefficients λ1,2 and ζ1,2, are closely related to anomalies in the underlying
microscopic theory, which has long been appreciated in the case of perturbative anomalies
(see e.g. [9] and [61] for reviews). In the case of a theory with U(1) and Poincaré global
symmetry, the possible anomalies (which are strictly perturbative) are captured by the
anomalous conservation law

∇µjµcov = 1
4ϵ

µνρσ
(
3cAfµνfρσ + cmR

α
βµνR

β
αρσ

)
. (2.14)

Here cA ∝
∑
i q

3
i and cm ∝

∑
i qi are the perturbative anomaly coefficients, jµcov is the covariant

U(1) current, and f,R are the field strength and the Riemann curvature tensor associated to
the U(1) background gauge field and the metric, respectively. One can employ a macroscopic
argument10 to show that the transport coefficients are almost entirely fixed in terms of the
microscopic anomaly coefficients and the thermodynamic quantities T and µ, as follows:

ζ1 = −6cAµ , ζ2 = c2T
2 − 3cAµ2 ,

λ1 = c2T
2 − 3cAµ2 , λ2 = 2c2µT

2 − 2cAµ3 .
(2.15)

8Note that the constitutive relation presented in (2.13) follows the convention in e.g. [13, 15]. This is
different from those presented in [11, 12] where their fluid velocity uµ is chosen such that T µνuν = 0 at the
level of derivative correction. This so-called frame choice ambiguity is due to the fact that the fluid velocity,
and other thermodynamic variables, are defined up to first derivative corrections. The procedure to go from
one choice to another has been discussed in great detail in e.g. [14].

9Note that the direct variation of W in (2.11) results in the so-called consistent currents, which are not
invariant under a small gauge transformation a → a + dλ. To obtain the currents of the form (2.13), one has
to form covariant currents by adding a Bardeen-Zumino term [59]. This procedure is well-documented for the
equilibrium effective action setup in sections 2-3 of [14]. A modern review of this can also be found in [60].

10One argument is to require that the entropy production for a theory with Ward identity (2.14) and
constitutive relation (2.13) is positive definite [11, 12]. See also [62] where the same result is obtained using
the KMS condition at the level of the effective action. Another argument, more in the spirit of direct anomaly
matching, is to choose the coefficients c0,1,2 to be appropriate functions of thermodynamic quantities (T and µ)
such that the EFT in (2.11) reproduces the Ward identity (2.14).

– 8 –



J
H
E
P
0
3
(
2
0
2
4
)
1
1
9

At the moment, c2 is a free coefficient of the mixed Chern-Simons term in (2.11). These
relations are consistent with the gradient expansion — when one treats µB, T, gµν , aµ to be
of order O(∂0), then the mixed U(1)-gravitational anomaly term multiplying cm in (2.14)
is of order O(∂4) while the rest are of order O(∂2).

In fact, one can go further: the response functions that encode the transport coeffi-
cients in (2.15) can be computed given a microscopic description. In both the perturbative
régime [13, 63–65] and in the large coupling régime (via the holographic dual) [66–68], it
has been shown that the as-yet-unfixed coefficient c2 is related to the gravitational anomaly
coefficient cm via

c2 = −8π2cm . (2.16)

This strongly suggests there should be additional mechanisms that relate c2 and cm. Sure
enough, the relation (2.16) can also be derived using perturbative anomaly matching for
the mixed anomaly between U(1) and gravity,11 as in refs. [25, 26, 62] — see our discussion
in footnote 3. In summary, the transport coefficients λ1,2 and η1,2 are fixed (in terms of T
and µ) entirely by perturbative anomaly matching.

One might conclude from this that if all perturbative anomaly coefficients vanish, i.e. if
cA = cm = 0, then all the transport coefficients in (2.13) should also vanish via (2.15). In
this paper we show that such a naïve statement need not be true when discrete symmetries
in the underlying microscopic theory are taken into account. In particular, some of the
transport coefficients in (2.13) are compelled to be non-zero through a non-zero Chern-Simons
coefficient c2, when the additional Z2 symmetry has a mixed non-perturbative anomaly with
the continuous U(1) current. This effect is rather subtle; if one were to follow the standard
hydrodynamics construction and list only the continuous global symmetries, then the role of
the Z2 charge would be missed entirely. For instance, the ‘positivity of entropy production’
argument (footnote 10) cannot fix the coefficient c2, because the Ward identities with and
without an additional Z2 symmetry are identical. This is no surprise, since a non-perturbative
anomaly, such as the original SU(2) anomaly of Witten [28], cannot be seen in Ward identities.
Similarly, if one naïvely applies the cone method of [15] (footnote 11) while ignoring the
possible Z2 holonomy, one would conclude that c2 ∝ cm = 0.

3 A new mixed anomaly

Following this hydrodynamical prelude, we now turn to the main subject of this paper. Our
mathematical starting point is the observation of a new non-perturbative anomaly in 4d
quantum field theories with internal symmetry G = U(1) × Z2 and defined with a spin
structure, which means the microscopic theory has fermionic degrees of freedom. As reviewed
in the Introduction, when perturbative anomalies cancel, the residual global anomaly is
classified by the bordism group ΩSpin

5 (BG), where BG denotes the classifying space of the
11An alternative derivation [15] for (2.16) employs a particular derivation of the Cardy formula, which

relates the thermodynamic pressure and the central charge by putting a theory on a cone [69], to demand
the consistency of the theory in the limit of small conical deficit angle to find the relation (2.16) between c2

and cm.
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d 0 1 2 3 4 5 6

ΩSpin
d (BU(1)×BZ2) Z Z2

2 Z× Z2
2 Z2 × Z8 Z2 Z4 Z2

Table 1. The spin bordism groups for BU(1)×BZ2 for degrees 0 through 6, which we compute in
appendix A.2.

U(1) Z2
ψ1 1 1
ψ2 −1 0
Φ 0 1

Table 2. Global symmetries of a pair of 4d Weyl fermions coupled to a massive real scalar. The
fermion charges serve to generate the Z4-valued mixed anomaly at the heart of this paper.

group G. In appendix A.2 we compute via the Adams spectral sequence that

ΩSpin
5 (BU(1)×BZ2) ∼= Z4 . (3.1)

(We compute all bordism groups ΩSpin
d (BU(1)×BZ2) in degrees d = 0 through 6, which we

reproduce in table 1 for reference.) eq. (3.1) tells us that the finest possible anomaly is Z4-
valued. We moreover know that this must be a mixed anomaly, because neither U(1) nor Z2
on its own carries a global anomaly in 4d, as follows from ΩSpin

5 (BU(1)) = ΩSpin
5 (BZ2) = 0 [27].

Indeed, the group Z2 on its own can have no chiral anomalies whatsoever simply by virtue of
the fact that it has only real irreducible representations. But by intertwining the discrete
Z2 symmetry with a U(1), we open up possibly anomalous complex representations, and
a global anomaly can remain even when we cancel both perturbative anomalies associated
with the U(1) charge assignment. We will show in this section that this Z4 anomaly is
carried by the matter content in table 2.

Before we show this, it is helpful to first motivate the consideration of such a symmetry
type, at the level of the microscopic QFT. It is not especially exotic or ad hoc; it can arise
in otherwise run-of-the-mill weakly coupled theories. For example, consider just a pair of
left-handed Weyl fermions ψ1,2 with a Yukawa coupling to a single real scalar Φ that is massive.
In Weyl notation, where ϵαβ is used to contract the spinor indices, we have the Lagrangian

LUV = iψ†
1σ̄

µ∂µψ1+iψ†
2σ̄

µ∂µψ2+1
2(∂Φ)2−1

2m
2Φ2+yϵαβψα1 Φψβ2 +h.c. , y ∈ C, m ∈ R . (3.2)

We want to know what are the global symmetries of this Lagrangian. A pair of 4d Weyl
fermions on their own would, classically, have a pair of U(1) symmetries, vector and axial,
but these symmetries cannot be simultaneously preserved by the Yukawa coupling unless the
real scalar Φ is charged. But under any symmetry, the real scalar Φ can transform only up
to a minus sign in order for the kinetic term (∂Φ)2 to remain invariant. Therefore, there is a
single U(1) symmetry under which the fermion components are charged oppositely and Φ
is neutral, which is the usual vector-like symmetry. The scalar kinetic and mass terms are
however consistent with a Z2 symmetry that acts non-trivially on Φ, provided exactly one
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of the Weyl components (say ψ1, without loss of generality) is also charged, and the other
Weyl is neutral. The global symmetry therefore acts as in table 2.12

Indeed, at low energies E < m one can integrate out the massive scalar Φ to obtain an
EFT of only the Weyl fermions in table 2, which are massless given that Φ does not condense.
It is these massless fermions that are of interest to our discussion, because they carry any
’t Hooft anomalies that obstruct gauging of the symmetry.

3.1 Mapping torus construction

As mentioned, the bordism group computation (3.1) means that the finest phase one can
obtain by computing exp(−2πiη) for any fermion representation of G = U(1)× Z2 for which
the perturbative anomalies vanish, and evaluated on any suitably spun mapping torus, is a
fourth root of unity. Equivalently, four identical copies of any fermion representation must be
anomaly-free. Our task is now to identify a fermion representation, and an explicit 5d mapping
torus, for which the Z4-valued anomaly is exposed by computing the exponentiated η-invariant.

The 4d Z4 anomaly we are describing is in fact closely related to a well-known Z8-valued
anomaly in 2d [70], associated with a Z2-charged Majorana-Weyl fermion, which guides our
construction of the mapping torus.13 Because we consider a fermion representation under
the internal symmetry G that is not real, which is a necessary condition for any chiral
fermion anomaly in 4d, there is no analogue of the 2d Majorana-Weyl spinor available to us.
Consequently, the bordism group cannot detect a Z8 phase: but, as we will see, the Z4 phase
is closely related to the anomalous phase one would obtain for a pair of 2d Majorana-Weyls
with Z2 charge, which together constitute a (complex) Weyl charged under U(1).

The 5d mapping torus we consider, which turns out to be a valid representative of the
generator of the bordism group ΩSpin

5 (BU(1)×BZ2) ∼= Z4, is a product manifold of the form

M5 = S2 ×M3, (3.3)

where S2 has the U(1) flux of a unit monopole through it, and M3 is a particular twisted 3-torus,
which itself furnishes a generator of ΩSpin

3 (BZ2) ∼= Z8, following the construction in ref. ([36],
section 4). Let us recap that construction, which is important to the present discussion.

While we work in Euclidean signature, we keep in mind that one direction will be identified
with time and hence inverse temperature when we pass to the hydrodynamic application. We
denote this the τ direction, compactified via τ ∼ τ + β. The S2 factor in (3.3) is in purely
spatial directions. To construct M3, start with a 3d cylinder of the form S1

τ × S1
θ × Ix, where

S1
τ is the circle in the (Euclideanised) time-direction, which we will refer to as a ‘thermal

cycle’, and S1
θ is a circle in the remaining spatial direction of our (3+1)-d theory, parametrized

by θ ∼ θ + L. The remaining Ix factor is, to begin with, an interval parametrized by an
12Since the fermions have odd charges while the scalar’s charge is even under U(1), the most refined

tangential structure for this toy model is, in fact, Spinc × Z2, where Spinc
∼= (Spin × U(1))/Z2 where the

quotient identifies the element (−1)F ∈ Spin(4) with eiπ ∈ U(1). Using this more refined tangential structure
would allow us to define the theory on any orientable 4-manifolds, not just those that are spin. Nonetheless,
the choice of either symmetry type will ultimately not affect the quantisation conditions we derive for the
anomalous hydrodynamic transport — see footnote 14.

13This 2d anomaly is in turn related to a Z8-valued parity anomaly in 1d, via the Smith isomorphism
ΩSpin

3 (BZ2) ∼= ΩPin−
2 ∼= Z8 [71, 72].
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auxiliary coordinate x ∈ [0, 1] that takes us round the mapping torus (whose ends we are yet
to glue). The spin structure corresponds to anti-periodic boundary conditions in both τ and
θ directions. Finally, and crucially, we take the Z2 background gauge field to have non-trivial
holonomy on 1-cycles that wrap around S1

τ , but trivial holonomy otherwise.
To form X3, we then glue the ends of the cylinder but with a twist, by identifying

(τ, θ, 0) ∼
(
τ + 2βθ

L
, θ, 1

)
, (3.4)

and taking the anti-periodic spin structure also around the new cycles parametrized by the
(now-compactified) x-direction. We can think of this mapping torus as implementing a ‘large
diffeomorphism’, which the reader might recognize as (twice) the modular T-transformation on
the (τ, θ) torus, in the presence of both Z2 holonomy on the τ circle and U(1) monopole flux
through an auxiliary sphere. It is only with both Z2 holonomy and U(1) flux that the mapping
torus is not nullbordant, hence the conclusion that we are detecting a mixed anomaly.

The anomaly theory for chiral fermions is given by the exponentiated η-invariant [18] of
Atiyah, Patodi and Singer (APS) [22–24], as reviewed in the Introduction. For the fermion
representation of table 2, perturbative gauge anomalies vanish (Φ6 = 0), meaning that
exp(−2πiη) becomes a bordism invariant. So, by evaluating exp(−2πiη) on the mapping
torus M5 for this Dirac operator, we detect the bordism class [M5] ∈ ΩSpin

5 (BU(1)×BZ2), as
well as evaluating the anomalous phase accrued under the transformation described above.

3.2 Computing the η-invariant by anomaly interplay

We can compute exp(−2πiη(M5)) using the idea of ‘anomaly interplay’, as formulated
in [36], by which pushforwards and pullbacks are defined for bordism theories with different
symmetry types G and G′ that are related by group homomorphisms. The specific calculation
mirrors that of ([36], section 4), albeit in two dimensions higher and with an extra U(1)
symmetry factor.

The strategy is to embed the Z2 factor of G inside a second U(1) factor, call it U(1)′.
The mapping, which is a group homomorphism, is simply

π : Z2 → U(1)′ : (1 mod 2) 7→ eiπ ∈ U(1)′ . (3.5)

Then, because

ΩSpin
5 (BU(1)×BU(1)′) = 0 , (3.6)

we know that π∗M5 must be nullbordant in ΩSpin
5 (BU(1)2), meaning that the mapping torus

can be realised as the boundary of a 6-manifold by embedding the Z2 connection inside a
U(1)′ connection. As in ([36], section 4), an explicit U(1)′ connection on X3 that matches the
desired Z2 holonomies is given by A′(τ, θ, x) = π

βdτ . This can be extended to a 4-manifold
Y4 by filling in a disc D2 bounded by S1

τ with radial coordinates (r ∈ [0, 1], τ), such that
∂Y4 = X3, via A′(r, τ, θ, x) = πr

β dτ + 2π
L (1− r)xdθ, which one can check is compatible with

the mapping torus gluing relations. For this A′, we integrate [36]
1

8π2

∫
Y4
f ′ ∧ f ′ = 1

4 , (3.7)

where f ′ = dA′.
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Having realised the (pushed-forward) mapping torus π∗M5 as the boundary of a 6-manifold
M6 = S2 × Y4, the APS index theorem [22–24] allows us to evaluate the exponentiated η-
invariant simply by integrating the differential form Φ6:

exp (−2πiη(M5)) = exp
(
−2πi

∫
M6

Φ6

)
. (3.8)

Here, Φ6 is the anomaly polynomial for the particular Dirac operator under consideration:

Φ6 = Â(R) Tr exp
(
F

2π

) ∣∣∣∣
6

= − 1
48πp1(R) Tr F + 1

8π3 Tr F 3 , (3.9)

where Â(R) and p1(R) denote the Dirac genus and first Pontryagin number of the tangent
bundle of M6. For our pair of U(1) background fields, we can write F = ft + f ′t′, where
t(′) denotes the single Lie algebra generator of U(1)′.

Considering a generic spectrum of 4d left-handed Weyl fermions ψi, i = 1, . . . , n, with
charges (Qi mod 2, qi) under G = Z2 × U(1), such that ∑i q

3
i = ∑

i qi = 0 to ensure
the cancellation of perturbative anomalies, the embedding π : Z2 ⊂ U(1)′ is consistent
with ‘pushed forward’ charges Q̃i that satisfy Q̃i ∼= Qi mod 2. The U(1) generators t, t′,
which are just charge matrices, are now explicitly given by t = diag (q1, . . . , qn), t′ =
diag(Q̃1, . . . , Q̃n). When integrated on M6, only the cross-term ∼ ff ′2 in Φ6 survives.

Using (3.8) and (3.9), we get

exp(−2πiη(M5)) = exp
(
−πiC

∫
S2

f

2π

∫
Y4

f ′ ∧ f ′

(2π)2

)
= exp

(
−πiC

2

)
, (3.10)

where we define the anomaly coefficient C to be

C :=
∑
i

qiQ
2
i ∈ Z . (3.11)

The anomalous phase on this mapping torus is indeed an element of Z4, with the anomaly
given by C mod 4. As a consistency check, we note that this anomaly formula depends only
on the original Z/2 charges Qi and not on the choice of lift to U(1)′ charges, because it is
well-defined under Q̃i → Q̃i + 2ri for any integers ri.

The minimum value C = 1 mod 4 is realised by the fermion content in table 2. This
computation also establishes that [M5] = 1 mod 4 ∈ ΩSpin

5 (BU(1) × BZ2) ∼= Z4, and so
the mapping torus we constructed does indeed provide a generator for the bordism group
in question.

4 Fractional transport from the discrete anomaly

In this section, we show how this non-perturbative mixed anomaly is manifest in the hy-
drodynamic limit of a theory with U(1)× Z2 symmetry type, by using the mapping torus
M5 constructed previously to constrain the equilibrium effective action discussed in sec-
tion 2. In section 4.1 we show how to adapt the anomaly-matching method first employed in
ref. [25], there for a theory of Weyl fermions with (perturbative) mixed U(1)-gravitational
anomaly (see footnote 3), to the system with G = U(1)× Z2 global symmetry. The mapping
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torus M5 encodes how the partition function, evaluated in a particular background field
configuration, transforms under a large diffeomorphism; by requiring that the hydrodynamic
effective action (2.11) reproduces the same variation, one can relate the coefficients ci of the
effective action, and consequently the transport coefficients λi and ζi, to the non-perturbative
anomaly in the microscopic theory.

The mapping torus method’s prediction for the transport coefficients should also be
confirmed in a microscopic theory that realised the mixed U(1)× Z2 anomaly, in a régime
in which the transport coefficients are calculable. We perform such a non-trivial check in
section 4.2, in a microscopic theory with the fermion content in table 2. Taking a limit in
which the interactions decouple, we reproduce the predicted values of the transport coefficients
obtained in section 4.1 by the general anomaly matching argument.

4.1 Anomaly matching constraints on the hydrodynamic effective action

The goal is to arrive at the effective action W = − logZ, where Z is the thermal partition
function of a theory with U(1)× Z2 global symmetry on a four dimensional spin-manifold
X4. As in section 2, X4 is a thermal-cycle-fibration over a spatial 3-manifold X3, viz.
S1
τ ↪→ X4 → X3. The partition function is

Z = tr
[
exp

(
−β(Ĥ − µq̂) + iw1Q̂

)]
, (4.1)

where q̂ and Q̂ are the charge operators for the U(1) and Z2 symmetries, respectively, defined
on the spatial slice X3. The term βµ is the analytic continuation of the U(1) holonomy
around the thermal cycle, and w1 is the Z2 holonomy which takes value in H1(X4;Z2). When
w1 = 1 mod 2, the term eiw1Q̂ introduces an insertion of the operator eiQ̂ on the thermal
circle, which flips the boundary condition from periodic to anti-periodic and vice versa for
the fields charged under the Z2 symmetry. This way, the holonomy w1 can be viewed as a
source term for the Z2 charge operator in the Euclidean theory. A similar procedure, albeit
with w1 replaced by a U(1)(1) valued parameter, is also considered in the QCD context where
it is interpreted as an imaginary chemical potential, see e.g. [88] for a recent discussion. The
most general form of W = − logZ is the same as in (2.11).

For this partition function to describe a theory with the mixed anomaly described in
the previous section, it must transform appropriately under the modular-T transformation
described in section 3.1 above, when placed on a background X4 = S2 × S1

τ × S1
θ with Z2

holonomy w1 ̸= 0 around the thermal cycle S1
τ and the background U(1) monopole

∫
S2 f ̸= 0.

More precisely, the partition function must transform as

Z → ZT2 = Z exp (−2πiη(M5)) (4.2)

where T2 is a modular transformation on the torus S1
τ × S1

θ which takes

T2 : τ → τ + 2β
L
θ , θ → θ , (4.3)

with L being the circumference of S1
θ , and η(M5) being the APS η-invariant evaluated on

the mapping torus as discussed in detail in section 3.1.
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The hydrodynamic equilibrium partition function (2.11) can capture the variation (4.2).
We follow a similar argument to that proposed by Golkar and Sethi [25]. First, notice that
under the large diffeomorphism transformation (4.3) the KK gauge field is transformed,
per (2.5), as

T2 : αθ → αθ + 2β
L
, (4.4)

with the U(1) gauge field Ai, the time-component at, and other components left unchanged.
The effective action in (2.11) thus transforms as

W →W T2 = W + 2ic2

∫
S2
dA . (4.5)

Thus, for the effective action W = − logZ to match the anomalous variation (4.2) in the
fundamental theory with mixed U(1)× Z2 anomaly, the hydrodynamic effective description
must satisfy

−i(W T2 −W ) = 2c2

∫
S2
dA = 2πη(M5) . (4.6)

For the mapping torus M5 with unit U(1) monopole flux through the spatial S2 factor, we
have

∫
dA = 2π, and thus14

c2 = 1
2η[M5] =


1
2

(
1
4 mod 1

)
if w1 = 1 ,

0 if w1 = 0 .
(4.7)

One might ask whether or not this analysis really fixes the coefficients in the effective action;
in particular, are there constraints on the other Chern-Simons coefficients c0 and c1? Firstly,
all the Chern-Simons coefficients c0,1,2 cannot depend on the thermodynamic variables T or µ
when the system has no perturbative anomaly (which means that W has to be invariant under
small gauge transformations and diffeomorphisms). If the c0,1,2 are integer-quantised, then
CPT symmetry enforces both c0 and c1 to vanish as pointed out in [14], and as we reviewed
in section 2. The remaining possibility is that c0 and c1 are non-zero fractional Chern-Simons
couplings. However, the fact that ΩSpin

5 (BU(1)×BZ2) ∼= Z4 is already realised by the mapping
torus M5, plus the fact that the bordism group ΩSpin

5 (BU(1)) vanishes, suggests that there is
no background configuration and large diffeomorphism that requires c0 or c1 to be non-zero.

With all coefficients ci in the effective description fixed, one can now derive the conse-
quences for the hydrodynamic transport coefficients λi and ζi, as defined in (2.13). We obtain
the constitutive relation in (2.13) with the fractionally quantised transport coefficients:

ζ1 = 0 , ζ2 = λ1 = −T
2

2

(1
4 mod 1

)
, λ2 = µT 2

2

(1
4 mod 1

)
, (4.8)

14We do not expect the answer to change when the more refined symmetry type Spinc ×Z2 of the toy model
eq. (3.2) is used instead, although the anomalies are now classified by ΩSpinc

5 (BZ2) ∼= Z8 × Z2 [51] (which
are related to reflection anomalies in 3d [47]). Heuristically, the finest mod 8 anomaly should be detectable
by a non-spin orientable manifold that generates the Z8 factor in the bordism group, allowing us to take∫

dA/2π to be half-integers. But the extra factor of 1/2 is cancelled in eq. (4.6) by the same extra factor
in the η-invariant, which is now 1/8 rather than 1/4. The upshot is that the quantisation condition on c2 is
unaffected.
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which will be further verified by a direct computation in the following subsection. It should also
be emphasised that the Z2 holonomy plays a crucial role in this effect, as all the above transport
coefficients vanish without it. Physically, one can think of the Z2 holonomy as providing a
choice of valid boundary conditions for quantising our Z2-charged microscopic fields.

While the prediction of non-trivial hydrodynamic transport coefficients due to ‘mapping
torus constraints’ has been considered in [25] (see also [26, 62]), we wish to emphasise
two important differences between the existing literature and the example presented here.
First, the aforementioned works consider theories with perturbative anomalies (in particular,
perturbative mixed anomalies between U(1) and gravity) as we discussed in footnote 3, while
the anomaly considered in this work is a genuine non-perturbative anomaly which does not
violate the conservation of the energy-momentum tensor or U(1) current at any level in
the derivative expansions. Second, the global Z2 symmetry, which plays a crucial role in
this anomaly matching, is often ignored in the study of transport and hydrodynamics as
it does not have a Noether current to enter systems of differential equations. We argue
that neglecting such discrete global symmetries may not always be completely justified;
non-trivial discrete holonomy can still leave its mark on the continuous U(1) current through
the mixed U(1) × Z2 anomaly.

4.2 Explicit computations in the free fermion limit

It is well-known in linear response theory that the transport coefficients can be extracted
from certain limits of the retarded 2-point correlation functions of the Noether currents via
the Kubo formalism (see e.g. [53, 73] for reviews). The associated Kubo formulae, namely
appropriate 2-point functions and limits, for the transport coefficients in this work can be
derived directly from the constitutive relation (2.13). They are found to be [74, 75]15

ζ1 = 1
2 lim
km→0

lim
ω→0

ϵijm
∂

∂km
Im ⟨ji(ω, km)jj(−ω,−km)⟩R ,

ζ2 = 1
2 lim
km→0

lim
ω→0

ϵijm
∂

∂km
Im ⟨ji(ω, km)T 0j(−ω,−km)⟩R ,

λ1 = 1
2 lim
km→0

lim
ω→0

ϵijm
∂

∂km
Im ⟨T 0i(ω, km)jj(−ω,−km)⟩R ,

λ2 = 1
2 lim
km→0

lim
ω→0

ϵijm
∂

∂km
Im ⟨T 0i(ω, km)T 0j(−ω,−km)⟩R

(4.9)

The subscript R denotes retarded 2-point correlation functions, obtained via

⟨OA(ω, k)OB(−ω,−k)⟩R = 1√
−g

δ2 logZ
δϕA(−ω,−k)δϕB(ω, k)

∣∣∣
ϕA,ϕB=0

, (4.10)

15Note that the formulae in (4.9) are slightly different from those presented in the mentioned references,
where the transport coefficients are written schematically as

lim
k→0

lim
ω→0

1
ik

⟨OA(ω, k)OB(−ω,−k)⟩R .

This derivation is equivalent to ours provided that (i) Re⟨OAOB⟩ = O(k2) and (ii) Im⟨OAOB⟩ ∝ k + O(k2)
in the limit of zero frequency and large wavelength. The requirement (i), however, may not hold due to
the contact term. Hence, we adopt the alternative prescription (4.9) for the Kubo formulae to avoid this
unnecessary requirement.
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k

ji

q

k + q

k

jj

(a)

k

ji

q

k + q

k

T 0j

(b)

Figure 1. The relevant Feynman diagrams for (a) the j-j and (b) the j-T correlators. These diagrams
and those in figure 2 are drawn with the TikZ-Feynman package [78].

where ϕA = {δgµν , δaµ} being the source of the operator OA = {Tµν , jµ}. The correlation
functions listed in (4.9) are static correlation functions and are accessible from the equilibrium
effective description in (2.11).

In this subsection, we use these Kubo formulae to calculate the transport coefficients
λ1,2 and ζ1,2 given an explicit microscopic theory that carries our 1 mod 4 mixed anomaly
in U(1) × Z2 symmetry. We consider the fermion content written in table 2, in the limit
of zero interactions. Technically-speaking, the free theory presented here does not have
a well-defined hydrodynamic limit whereby the length- and time-scales of the collective
excitation are larger than the microscopic interaction scale (which, formally, is infinite). But
crucially, if these transport properties are controlled by the global anomaly, then they are
rigidly quantised in a way that cannot vary smoothly in the coupling constants. Thus, the
transport coefficients obtained via the free field computation should be in agreement with
those from hydrodynamic consistency conditions in (4.8).

Similar computations of transport coefficients can be found in refs. [13, 74–77]. They
boil down to computing the 1-loop Feynman diagrams shown in figure 1 and figure 2 in
the Euclidean theory, which involves performing the Matsubara sum over frequencies, and
then analytically continuing to obtain the retarded 2-point functions that appear in the
Kubo formulae. For a single Weyl fermion with anti-periodic boundary condition around
the thermal cycle S1

τ , one finds

ζsingle
1 = 1

4π2

∫ ∞

0
dqf(q, µ) ,

ζsingle
2 = λsingle

1 = 1
4π2

∫ ∞

0
dq qf̄(q, µ) ,

λsingle
2 = 1

8π2

∫ ∞

0
dq q2f(q, µ) ,

(4.11)

where f and f̄ are combinations of the Fermi-Dirac distribution nF (q, µ) =
(
eβ(q−µ)) + 1

)−1
,

namely
f(q, µ) = nF (q, µ)− nF (q,−µ) , f̄(q, µ) = nF (q, µ) + nF (q,−µ) . (4.12)

The integrals in eq. (4.11) can be evaluated and expanded in the limit T ≫ µ, to obtain all
the transport coefficients for a theory with U(1)3 and mixed U(1)-gravitational anomalies,
as in (2.15).

– 17 –



J
H
E
P
0
3
(
2
0
2
4
)
1
1
9

k

T 0i

q

k + q

k

T 0j

(a)

k k

T 0i T 0j

(b)

Figure 2. The relevant Feynman diagrams that contribute to the T -T correlator: (a) the bubble
diagram, and (b) the seagull diagram.

The above computation of the transport coefficients can easily be adapted to the free
fermion theory with mixed U(1)× Z2 anomaly in section 3. The key idea is to realise that,
upon turning on the Z2 holonomy, the symmetry operator eix1q̂ in (4.1) is activated and
the operator q̂ flips the boundary condition of ψ1, which is charged under Z2, while the
boundary condition of ψ2, neutral under Z2, remains anti-periodic. Upon turning on the
chemical potential for the U(1) symmetry, we find that

ψ1(τ + β) = eβµψ1(τ) , ψ2(τ + β) = −e−βµψ2(τ) (4.13)

where the chemical potential µ appears in the exponentials with opposite sign for ψ1 and ψ2,
due to their opposite U(1) charge assignment as in table 2. Due to these different boundary
conditions, the Euclidean propagators for fermions ψs, with s = 1, 2, are

Ss(q) = 1
2
∑
t=±

∆t(iω(s)
n + (−1)s+1µ, q)P+γµq̂

µ
t , ∆t(ix+ y, q) = 1

ix+ y − tEq
, (4.14)

where we follow the notation in e.g. [76], and where P+ = 1
2(1 + γ5) is the usual projection

operator. Hatted vectors are defined to be q̂t = (1, tqi/Eq) with Eq = |q|. The set of
Matsubara frequencies ω(s)

n for each fermion mode reflects the boundary conditions, namely

ω(1)
n = 2πn

β
, ω(2)

n = π

β
(2n+ 1) , (4.15)

where n ∈ Z.
Plugging these propagators into the Feynman diagrams in figures 1 and 2, one can find

the contributions to the transport coefficients from each fermion species. Those due to ψ2
are the same as the contributions (4.11) from a single Weyl fermion (modulo the sign of the
chemical potential), while those from ψ1 have a slightly different form due to the difference
at the stage of the Matsubara frequency sum. To see this, let us first introduce the functions

b(q, µ) = nB(q, µ)− nB(q,−µ) , b̄(q, µ) = nB(q, µ) + nB(q,−µ) , (4.16)

where nB(q, µ) =
(
eβ(q−µ) − 1

)−1
is the Bose-Einstein distribution function. Then, combining
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the contributions from both fermions, we find the resulting transport coefficients to be

ζ1 = 1
4π2 Re

∫ ∞

0
dq (f(q, µ) + b(q, µ)) = 0 ,

ζ2 = − 1
4π2 Re

∫ ∞

0
dq q

(
f̄(q, µ) + b̄(q, µ)

)
= T 2

8π2 Re
[
Li2(e

2µ
T ) + Li2(e−

2µ
T )− 4Li2(e

µ
T )− 4Li2(e−

µ
T )
]

= − 1
2π2

(
π2T 2

4

)
,

(4.17)

where Li2(z) = −
∫ z

0
log(1−t)

t dt is the di-logarithm function, and

λ1 = ζ2 ,

λ2 = 1
8π2 Re

∫ ∞

0
dq q2 (f(q, µ) + b(q, µ))

= 1
8π2

T 3

2 Re
[
Li3(e−

2µ
T )− Li3(e

2µ
T ) + 8Li3(e

µ
T )− 8Li3(e−

µ
T )
]

= 1
8π2

(
π2µT 2

)
,

(4.18)

where Li3(z) =
∫ z

0
Li2(t)
t dt is the tri-logarithm function. Note that the final results in eqs. (4.17)

and (4.18) are exact, due to the inversion formulae for polylogarithms. Had one used the
anti-periodic boundary condition for ψ1, corresponding to the case where the discrete Z2
holonomy is turned off, the computation can be carried out in the same manner. In that
case, one finds that the resulting transport coefficients take the same form but with b(q, µ)
replaced by −f(q, µ). In this case, all the transport coefficients vanish.

The transport coefficients obtained in (4.17) and (4.18) are in perfect agreement with
those we previously obtained from the effective action approach in section 4.1, see eq. (4.8).
We again see that the non-trivial Z2 holonomy w1 ∈ H1(M4;Z2) plays a crucial role, as we
did before from our η-invariant computation; from the perspective of the present subsection,
this is seen by the flipping of the boundary condition for one of the two fermion modes, that
is necessary to obtain non-zero transport coefficients.

5 Discussion and outlook

The purpose of this work is twofold. Firstly, we uncover a new Z4-valued non-perturbative
anomaly in 4d quantum field theories with G = U(1) × Z2 global symmetry (and spin
structure), that can be realised in a very simple system. Following now-standard lore, if a 4d
QFT with global symmetry G has no perturbative anomaly, then the exponentiated APS
η-invariant which controls the transformation properties of the fermion partition function
becomes a bordism invariant, living in the group Hom

(
Tor ΩSpin

5 (BG),U(1)
)
. We compute

the bordism group ΩSpin
5 (BG) to be the cyclic group Z4 using the state-of-the-art Adams

spectral sequence. We explicitly construct a 5d mapping torus that serves as a generator of
the bordism group, and employ ‘anomaly interplay’ to not only confirm that the η-invariant
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on the mapping torus is indeed Z4-valued, but also to determine the charge assignments in
the microscopic theory that exhibit this new anomaly.

Our second main purpose is to study the effect of this new U(1)× Z2 anomaly at the
level of transport phenomena in the hydrodynamic effective description of a theory at finite
temperature and U(1) chemical potential. We find that the anomaly gives rise to a (non-
dissipative) current and momentum flow along the magnetic field and/or vorticity similar
to the chiral magnetic and chiral vortical effects, despite the absence of any perturbative
anomaly. We derive these conditions from two viewpoints: (i) by demanding consistency of the
hydrodynamic constitutive relation and the thermal partition function with the microscopic
anomaly, and (ii) via a direct EFT matching computation starting from a microscopic theory
in the free-fermion limit; the two calculations are in perfect agreement. In doing so, we also
hope to further clarify how to utilise information from the bordism group and its generator to
constrain unknown coefficients in the equilibrium effective action which, in turn, determines
the anomaly induced transport coefficients.

The essential role of the Z2 symmetry, in particular of the non-trivial Z2 holonomy,
should be emphasised — without the Z2, a continuous U(1) current on its own cannot exhibit
any global anomaly. A non-trivial Z2 holonomy is crucial in allowing the exponentiated
η-invariant to yield a non-trivial phase, which results in the non-trivial anomalous transport
phenomena; from the viewpoint of the free-fermion computation, the Z2 holonomy effectively
switches a fermionic boundary condition in the microscopic computation. A discrete global
symmetry such as this, which goes beyond C, P and T symmetry, can be subtle and is often
ignored in the construction of low-energy effective theories. This is especially true for a
conventional construction of hydrodynamics as a system of differential equations involving
the Noether currents. There, the discrete global symmetry would be completely discarded,
and the effect of the U(1)×Z2 anomaly missed entirely. The anomaly we study in this paper
demonstrates that all global symmetries, not just the continuous ones, can be important
in the hydrodynamic régime. It would therefore be interesting to revisit the said limit of
theories with known discrete and continuous symmetries for which the appropriate bordism
groups are non-trivial, to identify other examples of fractional anomalous transport induced
by non-perturbative anomalies.

The existence of the new mod 4 anomaly opens up a number of interesting future
directions. An immediate follow-up question is what happens to the anomaly when we
condense the real scalar field that couples to the Dirac fermion in the toy model introduced
in section 3. In the condensed phase, the Z2 breaks spontaneously and there exist domain
walls separating different vacua. The Z2 unitary global symmetry descends to an anti-unitary
time-reversal symmetry T with T2 = 1, giving rise to the tangential structure Pin−×U(1) on
the domain wall [72, 79]. We would like to determine explicitly how the Z4-valued anomaly
in 4d is accounted for in the domain wall theory. The anomalies of the latter theory are
classified by the bordism group ΩPin−

4 (BU(1)) which, sure enough, is also isomorphic to
Z4 as we show in appendix A.3.

Another area worthy of further exploration is whether this anomaly can provide us
with new examples of symmetric mass generation, a phenomenon whereby fermions become
massive without breaking a chiral symmetry through a strongly coupled interaction. A
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well-known example occurs in the Fidkowski-Kitaev spin chain model [70], which is in fact
directly related at the bordism level to the mapping torus we construct in section 3.1 of this
paper. It is widely believed that symmetric mass generation can be realised whenever the
chiral symmetry is anomaly-free. Thus, in principle we should be able to trivially gap out a
system of 4 Dirac fermions without breaking its U(1)× Z2 chiral symmetry, even though the
naïve mass term does not allow it. One mechanism for symmetric mass generation that has
been explored in detail e.g. in refs. [80, 81], that one could imagine might be used to gap our
4d Dirac fermions, is through the phenomenon of s-confinement [4], whereby confinement
occurs without chiral symmetry breaking in N = 1 supersymmetric gauge theories. We
aim to explore this possibility in future work.

A holographic realisation of this mixed anomaly would also be an interesting direction of
study. In contrast to the perturbative anomaly, where the bulk anomaly theory is provided
by the Chern-Simons differential form, the Z4 torsion nature of the mixed U(1)×Z2 anomaly
implies that its corresponding bulk anomaly theory cannot be written in terms of a differential
form, and that a more general mathematical structure such as those in [82, 83] is required.
Finding a holographic dictionary and extracting the observable hydrodynamic data would
not only be interesting in itself, but could also provide a window to explicitly check our
predictions for the transport coefficients at strong coupling. Understanding how torsion effects
can be incorporated into a ‘continuous’ description could also shed light on how anomalies
of this kind are manifest in other low-energy effective theories, such as non-linear sigma
models for non-abelian gauge theory. See e.g. [72, 84–88] for recent work in this direction,
and real-time prescriptions for hydrodynamic effective actions.16

Another interesting avenue is to understand new symmetry structures that arise upon
gauging the U(1) or Z2 subgroup. It is known, in the case of U(1) × U(1) symmetry
with a perturbative mixed anomaly, that the gauging can result in either 2-group global
symmetry [93] or non-invertible symmetry [94, 95]. The mixed U(1)×Z2 anomaly can suggest
a new pathway to such categorical symmetries, and its connection to hydrodynamics that we
explored in this paper might provide a link toward potential observable consequences.

Last but not least, we should highlight the possibility of experimentally observing the
signature of the new mixed anomaly. It is known that the low-energy excitations of a class of
materials called Weyl semimetals are governed by the Weyl equation [96]. This class of system
exhibits perturbative anomalies, in particular the mixed U(1)-gravitational anomaly [97, 98],
whose effect has been observed experimentally, see e.g. [99, 106]. It should be emphasised,
however, that due to the symmetry of the system presented here being U(1)× Z2, there is no
axial current response to the external U(1) vector magnetic field, unlike in the usual chiral
magnetic effect. This is because the Z2 background gauge field does not allow a non-trivial
flux and that the response of the Z2 charge due to external U(1) source is not captured by
our effective description of hydrodynamics. Nevertheless, we have shown that there could
still be a response in the U(1) current due to the external vorticity that can be observed

16When viewed as a theory of light degrees of freedom fluctuating around thermal equilibrium, one can
also recast hydrodynamics using a ‘pion-like’ coset construction i.e. as a non-linear sigma model [89], with
dissipation obtained by putting the theory in the complex time contour of the Schwinger-Keldysh formalism.
See e.g. [89, 90] for a review, and e.g. [62, 91, 92] for discussions concerning anomalies in real-time hydrodynamic
effective actions.
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in the thermoelectric response, similar to those demonstrated in [99], albeit the response
in our case would be in the vector current and not the axial current as in the standard
chiral vortical effect. It is also worth pointing out that, while U(1) × Z2 is a subgroup of
U(1)×U(1) symmetry, the anomaly that gives rise to the novel transport is of a different
nature. The more familiar anomaly in the latter case is characterised by integers, while the
former is captured by an integer mod 4. This striking feature of Z4-quantised transport
coefficients would be a clean signature of an anomaly of this type, and it would be very
interesting to see if it can be detected experimentally.
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A Bordism computation for the mixed anomaly

In this appendix, we first give a short review of the Adams Spectral Sequence (ASS) [100]
for computing spin bordism groups in section A.1, before presenting our computations
for ΩSpin

d (BU(1) × BZ2), ΩPin−
d (BU(1)), and ΩSpinc

d (BZ2) in sections A.2, A.3, and A.4,
respectively. For a detailed practical guide to using the ASS in computing bordism groups,
see e.g. [101] and [102]. In the rest of this section, all cohomology groups are understood
to have Z2 coefficients.

A.1 Spin bordism groups via the Adams spectral sequence

A cohomological spectral sequence (Es,tr , dr) is a sequence of bi-graded Abelian groups Es,tr
(in all our cases, the gradings s, t are in the range N≥0), r = 2, 3, 4, . . ., together with
homomorphisms

dr : Es,tr → Es+r,t−1+r
r . (A.1)

These homomorphisms are required to be differentials, meaning they should be nilpotent
viz. dr ◦ dr = 0, so that Es,tr at a fixed r form a layer of differential cochain complexes.
The ‘next page’ Es,tr+1 is computed by taking the homology of the complex Es,tr with respect
to dr. The set of groups Es,tr for a given value of r (for all bi-gradings (s, t)), sometimes
denoted simply as Er, are collectively likened to a page of a book, with r serving as a page
number. The process of computing successive Er is then likened to turning the pages of
an (infinitely long) book, called the spectral sequence.

Thankfully, at least in all cases where the spectral sequence yields a calculable result,
only a finite number of pages is needed. At a fixed bi-grading (s, t), the page-turning process
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comes to an end after a certain number of steps because the entry stabilises: Es,tr = Es,tR ,
∀r ≥ R for some R (which depends on s and t). We conventionally call the stabilised entry
as belonging to the ‘last page’ of the spectral sequence, and denote it by Es,t∞ .

The spectral sequence relevant to our spin bordism computation is a specific version of
the Adams spectral sequence (ASS), used for the computation of stable homotopy groups
in general. It is defined by how the E2-page is built, and what it ‘converges’ to. Our ASS
that computes ΩSpin

n (BG) for a symmetry group G is given by

Es,t2 = Exts,tA(1) (H•(BG),Z2) =⇒
(
ΩSpin
t−s (BG)

)∧
2
. (A.2)

Here G∧2 denotes completion at 2 of an abelian group G (see e.g. [101], Definition 4.7.12 for a
definition), where (Z)∧2 is the 2-adic integers and (Zm)∧2 is equal to Zm ⊗ Z2, and H•(BG)
is the mod-2 cohomology of BG, thought of as a module over the Steenrod subalgebra
A(1) generated by the lowest degree Steenrod squares Sq0, Sq1 and Sq2. These Steenrod
squares Sqi, defined in general for all i ≥ 0, are stable cohomology operations i.e. natural
transformations between cohomology functors of the form

Sqi : H•(X)→ H•+i(X) , (A.3)

such that the following axioms are satisfied:

1. Sq0 is the identity homomorphism;

2. Sqi(x) = 0 if i > |x|, the degree of x;

3. Sqi(x) = x ∪ x if |x| = i;

4. Cartan formula Sqi(x ∪ y) = ∑
j+k=i Sqj(x) ∪ Sqk(y) .

To write down the 2nd page Es,t2 = Exts,tA(1)(H
•(BG),Z2), we must know the A(1)-module

structure of H•(BG). This task is aided by the conventional graphical representation of
A(1)-modules, which we now describe. Firstly, Z2 summands of H•(BG), considered as a
cohomology ring, are represented by dots on a vertical ladder according to their degrees in
the cohomology ring. To show the actions of the elements of A(1) on the module, we draw a
vertical line between two dots separated by 1 degree for the action of Sq1, while a curved
line that jumps by 2 degrees represents Sq2. As an example, consider H•(BU(1)) ∼= Z2[c1],
where c1 ∈ H2(BU(1)) is the mod 2 reduction of the universal first Chern class. By the
axioms and the degree constraint, we have

Sq1(c1) = 0, Sq2(c1) = c1 ∪ c1, Sq2(c1 ∪ c1) = 2c3
1 = 0, . . . (A.4)

One can then easily represent the lower degrees of H•(BU(1)) as anA(1)-module by figure 3(a).
We clearly see that H•(BU(1)) can be written as a direct sum of more fundamental A(1)-
modules, as

H•(BU(1)) ∼= Z2 ⊕ Σ2A(1) � E(1)⊕ Σ6A(1) � E(1)⊕ . . . , (A.5)
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1

c1

c2
1

c3
1

c4
1

(a) H•(BU(1)) as an A(1)-module. (b) The A(1)-module A(1) �
E(1).

Figure 3. Graphical representations of two A(1)-modules.

(degree 1)

(a) R0.

(degree 0)

(b) R6.

Figure 4. Graphical representations of the other two A(1)-modules used in the main part of the
paper.

where A(1) � E(1) is an A(1)-module represented by figure 3(b) and the suspension Σn

simply raises the degrees by n. Other A(1)-modules that appear in the computation of
ΩSpin

5 (BU(1) × BZ2) in the next subsection are shown in figures 4(a) and 4(b).
Given the A(1)-module structure of H•(BG), one can then compute Exts,tA(1)(H

•(BG),Z2)
from first principles using tools from homological algebra as described in detail in e.g. ref. ([101],
sections 4.4 and 4.5). We will not cover this here, relying instead on the many results already
computed in [101] and elsewhere in the literature. Once it is computed, Exts,tA(1)(H

•(BG),Z2)
is represented on a 2d grid called the Adams chart, with s as the vertical coordinate and the
topological degree t− s as the horizontal coordinate. Each Z2 summand is represented by
a dot. For example, Exts,tA(1)(Z2,Z2) is given in the Adams chart form as in figure 5 below.
The various lines reflect the fact that Exts,tA(1)(H

•(BG),Z2) is a module over Exts,tA(1)(Z2,Z2).
Here, a vertical line always expresses a multiplication by the generator h0 of Ext1,1

A(1)(Z2,Z2),
while a 45-degree line represents a multiplication by the generator h1 of Ext1,2

A(1)(Z2,Z2).
They also satisfy

dr(hix) = hidr(x), for i = 0, 1, (A.6)

meaning that dr are h0- and h1-linear. For more examples, we display the Adams charts
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t− s

s

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

Figure 5. The Adams chart for Exts,t
A(1)(Z2,Z2).

E2 page

t− s

s

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

(a) Adams chart for
Exts,t

A(1)(A(1) � E(1),Z/2).

E2 page

t− s

s

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

(b) Adams chart for
Exts,t

A(1)(R0,Z/2).

E2 page

t− s

s

0 1 2 3 4 5

0

1

2

3

4

(c) Adams chart for
Exts,t

A(1)(R6,Z/2).

Figure 6. Other Adams charts that we need for the computation of ΩSpin
5 (BU(1)×BZ2).

of Exts,tA(1)(M,Z2) for the A(1)-modules M = R0, A(1) � E(1), and R6, that will appear
in the computation of ΩSpin

5 (BU(1) × BZ2) in the next subsection, in figures 6(b), 6(a),
and 6(c), respectively.

The ASS (Es,tr , dr) is said to converge to
(
ΩSpin
n (BG)

)∧
2

, meaning that there is a filtration

{F s,n+s
∞ }s∈N of

(
ΩSpin
n (BG)

)∧
2
:(

ΩSpin
n (BG)

)∧
2

= F 0,n
∞ ⊇ F 1,n+1

∞ ⊇ F 2,n+2
∞ ⊇ . . . (A.7)

where the quotients of adjacent layers are given by the last page of the ASS as follows

F s,n+s
∞

/
F s+1,n+s+1
∞ = Es,n+s

∞ . (A.8)

These relations can be turned into successive short exact sequences for F 0,n
∞
/
F s,n+s
∞ , s ≥ 1,

which allow us to obtain F 0,n
∞
/
F s+1,n+s+1
∞ from F 0,n

∞
/
F s,n+s
∞ by solving the extension problems

0→ Es,n+s
∞ → F 0,n

∞
/
F s+1,n+s+1
∞ → F 0,n

∞
/
F s,n+s
∞ → 0 (A.9)
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with the initial term F 0,n
∞
/
F 1,n+1
∞

∼= E0,n
∞ . The final result

(
ΩSpin
n (BG)

)∧
2

is given by the
inverse limit of all these quotients:(

ΩSpin
n (BG)

)∧
2
∼= lim←−

s

F 0,n
∞
/
F s,n+s
∞ . (A.10)

Solving the extension problems (A.9) is generally hard. However, we are aided by the
Ext•,•A(1)(Z2,Z2)-module structure on E∞. It is known that if there is an h0-multiplication
connecting Es,n+s

∞ and Es−1,n+s−1
∞ , the extension (A.9) is non-trivial [103]. If there are no

exotic extensions,17 we can recover the 2-completion factors in ΩSpin
n (BG) from the last page

of the Adams chart, by following the two practical ‘rules’:

• A finite string of m ≥ 1 dots connected by h0-lines in the column t− s = n corresponds
to a factor of Z2m in

(
ΩSpin
n (BG)

)∧
2

and ultimately a factor of Z2m in ΩSpin
n (BG).

• An infinitely tall h0-tower in the column t− s = n corresponds to a factor of the 2-adic
integers Z∧

2 in
(
ΩSpin
n (BG)

)∧
2

, which comes from a Z factor in ΩSpin
n (BG).

A.2 Computation of ΩSpin
d (BU(1) × BZ2)

We are now ready to compute the bordism group ΩSpin
5 (BU(1) × BZ2) using the Adams

spectral sequence (ASS) outlined in the previous subsection. The ASS is initialised in this
case on the second page, which is given by the formula:

Es,t2 = Exts,tA(1)

(
H̃•(BG),Z2

)
⇒
(
Ω̃Spin
t−s (BG)

)∧
2
. (A.11)

The observant reader will notice the appearance of ‘tildes’ with respect to (A.2), on both
cohomology and bordism groups. This is because we here use a variant of the ASS adapted
for reduced bordism groups Ω̃Spin

d (BG), defined from the natural splitting of the full bordism
group as

ΩSpin
d (BG) ∼= ΩSpin

d (pt)⊕ Ω̃Spin
d (BG) . (A.12)

The reduced cohomology groups H̃ i(BG) are similarly defined by

H i(BG) ∼= H i(pt)⊕ H̃ i(BG) . (A.13)

The full bordism groups can be then be assembled from the reduced spin bordism groups
and the well-known result for the spin bordism groups of a point [104], which we here
reproduce in table 3.

We are interested in the case G = U(1) × Z2. First of all, we need the structure of
the cohomology ring H•(BU(1)×BZ2) as an A(1)-module, which is easy to piece together:
it is a classical result that

H•(BZ2) ∼= Z2[w1], H•(BU(1)) ∼= Z2[c1] , (A.14)

where w1 and c1 are the universal first Stiefel-Whitney class of Z2 ∼= O(2) and the universal
first Chern class of U(1) respectively, and so by Künneth’s theorem we get

H•(BU(1)×BZ2) ∼= Z2[w1, c1] . (A.15)

Its A(1)-module structure is shown in figure 7(a).
17Exotic extensions are non-trivial extensions that do not come from h0-multiplications.
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d 0 1 2 3 4 5 6

ΩSpin
d (pt) Z Z2 Z2 0 Z 0 0

Table 3. The spin bordism groups of a point [104].

w1
c1

c3
1

w1c1

w1c
2
1 + w3

1c1

(a) A(1)-module structure for the cohomology
ring H̃•(BU(1)×BZ2);Z2).

E2 page

t− s

s

0 1 2 3 4 5 6

0

1

2

3

4

5

d2d2

(b) Adams chart for Exts,t
A(1)(H̃•(BU(1)×BZ2);Z2).

Figure 7. Module structure and Adams chart relevant to the new mod 4 anomaly that is central to
this paper, and in particular to the fractional hydrodynamic transport constraints that we derive in
section 4.

Thus, up to degree 6, the A(1)-module H̃•(BZ2×BU(1)) can be written as the direct sum

H̃•(BU(1)×BZ2) ∼= R0 ⊕ Σ2A(1) � E(1)⊕ Σ6A(1) � E(1)⊕ Σ3R6 ⊕ . . . (A.16)

adopting the notation of ref. [101], and where we coordinate the colours between figure 7(a)
and eq. (A.16). The module R0 is nothing but H̃•(BZ2) whose Adams chart is known ([44],
section A.5), already shown in figure 6(b). Similarly, we also know the Adams chart for the
A(1)-modules A(1) � E(1) and R6, as shown in figures 6(a) and 6(c), respectively (cf. [101],
figures 22, 41).

We then combine these results together to obtain the Adams chart for H̃•(BU(1)×BZ2),
as shown in figure 7(b). To turn the page, we know that the differentials d2 from the column
t − s = 5 must be trivial. This can be proven by contradiction, as follows. Let us denote
the generator of the h0-tower in topological degree t − s = 4 by x, and the generator of
the truncated h0-tower in topological degree t − s = 5 by y, with h2

0y = 0. If d2 were
non-trivial, then we would have d2y = h0x. Multiplying by h2

0 and using the fact that d2
and h0 commute, we get h3

0x = h2
0d2y = d2(h2

0y) = d2(0) = 0, which is a contradiction. The
same argument also shows that the differentials dr on the rth page of the spectral sequence
from topological degrees t− s = 3, 5 are all trivial. The differentials from topological degrees
t − s = 1, 2, 4, 6 are trivial simply for degree reasons.
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d 0 1 2 3 4 5

ΩPin−
d (BU(1)) Z2 Z2 Z2 × Z8 0 Z4 0

Table 4. The Pin− bordism groups of BU(1).

Knowing these differentials, and knowing that there is no odd torsion, we can read off
the reduced spin bordism groups of BU(1)×BZ2 from the Adams chart 7(b) by applying
the two practical ‘rules’ given in A.1, whence the full spin bordism groups can be recovered
through (A.12) and table 3. We summarise all the bordism groups in degrees 0 through 6, as
recorded in table 1 in the main text. In particular, in degree 5 we obtain the Z4 reported
in eq. (3.1) that is the main object of physical interest in this paper.

A.3 Computation of ΩPin−

d (BU(1))

To compute the bordism groups for the tangential structure Pin− × BU(1), we have to
use a slightly different version of the ASS to the one discussed above. A similar strategy
was used to compute spin-U(2) bordism groups in [49]. Applying the Anderson-Brown-
Peterson Theorem [105] to the weak equivalence between two Madsen-Tillmann spectra,
MTPin− ≃MTSpin ∧ Σ−1MO(1), where MTH denotes the Madsen-Tillmann spectrum of
H and MO(1) is the Thom space of BO(1), we can show that there is an ASS converging
to ΩPin−

d (BU(1)) given by

Es,t2 = Exts,tA(1)

(
Σ−1H̃•(MO(1))⊗H•(BU(1)),Z2

)
=⇒

(
ΩPin−

t−s (BU(1))
)∧

2
. (A.17)

The mod 2 cohomology ring H̃•(MO(1)) ⊗H•(BU(1)) is given by

H̃•(MO(1))⊗H•(BU(1)) ∼= Z2[w1, c1] {U} (A.18)

where U ∈ H̃1(MO(1)) is the Thom class. This means a generic generator of this ring takes
the form cn1w

m
1 U . The action of the Steenrod subalgebra A(1) on this ring as an A(1)-module

is standard: the action on w1 and c1 was already spelled out in appendix A.2, while the
additional action on U is given by

Sq1U = w1U, Sq2U = 0 . (A.19)

From this information, the A(1)-module structure of Σ−1H̃•(MO(1)) ⊗ H•(BU(1)) can
be easily inferred:

Σ−1H̃•(MO(1))⊗H•(BU(1)) ∼= Σ−1R0 ⊕ Σ2R6 ⊕ . . . (A.20)

as shown in figure 8(a), where the modules R0 and R6 are the same as in the previous
appendices. In the diagram U0 denotes the virtual Thom class obtained by shifting U down
by one degree — a consequence of the suspension shift Σ−1 appearing in eq. (A.20) etc. The
corresponding Adams chart for Es,t2 is shown in figure 8(b), whence we can read off the Pin−

bordism groups of BU(1) from degrees 0 through 5, recorded in table 4.
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U0

w1U0

w2
1U0

c1U0

(c2
1 + c1w

2
1)U0

(a) A(1)-module structure of
Σ−1H̃•(MO(1))⊗H•(BU(1))).

E2 page

t− s

s

0 1 2 3 4 5

0

1

2

3

4

(b) Adams chart for
Exts,t

A(1)
(
Σ−1H̃•(MO(1))⊗H•(BU(1))),Z2

)
.

Figure 8. Module structure and Adams chart for Pin− ×U(1) symmetry type, which we believe is
relevant for anomaly matching in a domain wall theory obtained by breaking the Z2 symmetry in the
original 4d Spin×U(1)× Z2 theory — see section 5 of the main text.

A.4 Computation of ΩSpinc
d (BZ2)

Finally, the method we here employ to compute the Spinc bordism groups of BZ2 parallels
our computation of the Pin− bordism groups of BU(1) in the previous subsection. (We stress
that these bordism groups have been calculated previously by other means, in work of Bahri
and Gilkey [51].) The weak equivalence of spectra

MTSpinc ∼= MTSpin ∧ Σ−2MU(1), (A.21)

gives rise to the following ASS:

Es,t2 = Exts,tA(1)

(
Σ−2H̃•(MU(1))⊗H•(BZ2),Z2

)
=⇒

(
ΩSpinc
t−s (BZ2)

)∧
2
. (A.22)

The cohomology ring Σ−2H̃•(MU(1)) ⊗ H•(BZ2) is known to be

Σ−2H̃•(MU(1))⊗H•(BZ/2) ∼= Z2[c1, w1] {U0} , (A.23)

where, as before, c1 and w1 denote the universal first Chern class and the universal first
Stiefel-Whitney class associated with U(1) and Z2, respectively. Note that the (virtual)
Thom class U0 is again in degree 0, indicated by the subscript, which is this time shifted
down two degrees because of the suspension Σ−2.

The action of the Steenrod square on U0 is given by

Sq1U0 = 0, Sq2U0 = c1U0. (A.24)
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U0

c1U0

c3
1U0

w1U0

(w3
1+c1w1)U0

w1c2
1U0

(w3
1+c1w1)c2

1U0

(a) The A(1)-module structure of
Σ−2H̃•(MU(1))⊗H•(BZ2)

E2 page

t− s

s

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

(b) The Adams chart for
Exts,t

A(1)
(
Σ−2H̃•(MU(1))⊗H•(BZ2),Z2

)
Figure 9. Module structure and Adams chart relevant for the Spinc variant of our symmetry type.

d 0 1 2 3 4 5 6

ΩSpinc
d (BZ2) Z Z2 Z Z4 Z2 Z8 × Z2 Z2

Table 5. The Spinc bordism groups of BZ2.

This is sufficient to determine the A(1)-module structure, which we show in figure 9(a), with
the associated Adams chart of the Ext-functor from this module to Z2 given in figure 9(b).
We can read off the bordism groups ΩSpinc

d (BZ2) in degrees d = 0 through 6 directly from
the Adams chart, as recorded in table 5, matching the results of [51]. In particular, the
5th Spinc bordism group of BZ2 is given by

ΩSpinc
5 (BZ2) ∼= Z8 × Z2. (A.25)
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