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Abstract: The Distance Conjecture holds that any infinite-distance limit in the scalar
field moduli space of a consistent theory of quantum gravity must be accompanied by a
tower of light particles whose masses scale exponentially with proper field distance ‖φ‖
as m ∼ exp(−λ‖φ‖), where λ is order-one in Planck units. While the evidence for this
conjecture is formidable, there is at present no consensus on which values of λ are allowed. In
this paper, we propose a sharp lower bound for the lightest tower in a given infinite-distance
limit in d dimensions: λ ≥ 1/

√
d− 2. In support of this proposal, we show that (1) it is

exactly preserved under dimensional reduction, (2) it is saturated in many examples of
string/M-theory compactifications, including maximal supergravity in d = 4 – 10 dimensions,
and (3) it is saturated in many examples of minimal supergravity in d = 4 – 10 dimensions,
assuming appropriate versions of the Weak Gravity Conjecture. We argue that towers
with λ < 1/

√
d− 2 discussed previously in the literature are always accompanied by even

lighter towers with λ ≥ 1/
√
d− 2, thereby satisfying our proposed bound. We discuss

connections with and implications for the Emergent String Conjecture, the Scalar Weak
Gravity Conjecture, the Repulsive Force Conjecture, large-field inflation, and scalar field
potentials in quantum gravity. In particular, we argue that if our proposed bound applies
beyond massless moduli spaces to scalar fields with potentials, then accelerated cosmological
expansion cannot occur in asymptotic regimes of scalar field space in quantum gravity.
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1 Introduction

In recent years, the search for universal features of theories of quantum gravity has produced
an enormous body of research. This search is hindered significantly by the complicated
nature of quantum gravity, and as a result our understanding of quantum gravity beyond
the weakly coupled, supersymmetric context is very limited.

Within this world of darkness and confusion, the Distance Conjecture shines as a
beacon of clarity and hope. This conjecture, originally referred to as “Conjecture 2” by
Ooguri and Vafa in their seminal work [1], deals with asymptotic limits of moduli spaces
of quantum gravity theories, which are parametrized by vacuum expectation values of
massless scalar fields. Exactly massless scalar fields ordinarily require an infinite degree of
fine-tuning, so they are expected to appear only in theories with eight or more supercharges,
where their masses are protected by supersymmetry. Furthermore, asymptotic limits of
moduli spaces represent weak coupling limits of quantum gravity. This means that the
claims of the Distance Conjecture, in its most conservative formulation, are restricted to
the weakly coupled, supersymmetric regime of quantum gravity, where our understanding is
extensive and claims can be tested with a relatively high level of rigor.1 So far, the Distance
Conjecture has passed all of these tests.

Morally speaking, the Distance Conjecture stipulates the existence of a tower of
exponentially light states in every infinite-distance limit of scalar field moduli space. A
more precise statement is as follows:

The Distance Conjecture. Let M be the moduli space of a quantum gravity theory in
d ≥ 4 dimensions, parametrized by vacuum expectation values of massless scalar fields.
Compared to the theory at some point p0 ∈M, the theory at a point p ∈M has an infinite
tower of particles, each with mass scaling as

m ∼ exp(−λ‖p− p0‖) , (1.1)

where ‖p− p0‖ is the geodesic distance in M between p and p0, and λ is some order-one
number in Planck units (8πG = κ2

d = 1).

This conjecture has been confirmed in a vast array of top-down examples in string theory,
and strong bottom-up arguments for its validity have been given in the context of effective
field theory. However, despite this enormous body of research into the Distance Conjecture,
a simple but crucial question remains: which values of λ are allowed? “Order-one” carries
a wide range of possible interpretations, but if λ is too small, the constraints from the
Distance Conjecture on low-energy effective field theory will be very weak. As a result, the
key open question facing us is to place a lower bound on the coefficient λ appearing in the
definition of the Distance Conjecture (1.1).

In this paper, we propose a simple answer to this question: in quantum gravity in d
dimensions, any infinite-distance limit in moduli space features at least one tower which

1Already in their original paper [1], Ooguri and Vafa conjectured that the Distance Conjecture should
apply beyond massless moduli spaces to include scalar fields with potentials as well. We will discuss scalar
fields with potentials further in section 6.
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satisfies the Distance Conjecture with

λ ≥ 1√
d− 2

. (1.2)

Note that this does not preclude the existence of additional, heavier towers in this infinite-
distance limit with λ < 1/

√
d− 2.

This proposed bound may come as a surprise to Distance Conjecture connoisseurs, since
there are a number of examples of towers in 4d theories that scale as m ∼ exp(−‖p−p0‖/

√
6),

naively satisfying the Distance Conjecture with λ = 1/
√

6 yet violating our proposed
bound (1.2). Indeed, this has led a number of authors to single out λmin = 1/

√
(d− 1)(d− 2)

as the minimal value for λ in d dimensions [2–7]. However, in what follows, we will not only
explain why towers with λ = 1/

√
(d− 1)(d− 2) are ubiquitous in supergravity theories and

string compactifications (namely, they arise upon dimensional reduction as Kaluza-Klein
zero modes of towers of particles in the parent (d+ 1)-dimensional theory), but we will also
argue that such towers are always accompanied in their appropriate limits in moduli space
by even lighter towers (namely, Kaluza-Klein towers) that satisfy the Distance Conjecture
with λ =

√
(d− 1)/(d− 2) and in turn satisfy our proposed bound (1.2). As mentioned

above, the bound (1.2) must therefore be understood as a bound on the lightest tower of
exponentially light states in a given infinite-distance limit of moduli space, not as a bound
on all towers of exponentially light particles in this limit. Indeed, there is no possible
nontrivial lower bound on the coefficient λ which applies to all such exponentially light
particles in a given infinite-distance limit.2

Our proposed bound (1.2) is closely related to the Scalar Weak Gravity Conjecture [3,
8, 9], which we define as follows:3

The Scalar Weak Gravity Conjecture. Given a massless scalar field modulus φ in a
quantum gravity theory in d spacetime dimensions, there necessarily exists a particle of
mass m satisfying

(∂φm)2

gφφm2 ≥ λ
2
minκ

2
d ≡

κ2
d

d− 2 , with ∂φm < 0 , (1.3)

where gφφ is the φφ component of the metric on scalar moduli space, so that 1
2gφφdφ ∧ ?dφ

is the kinetic term for φ in the action.
2For example, consider a theory with two canonically normalized massless scalar fields ρ, φ and a tower

of massive particles whose masses scale as m ∼ exp(−λρρ). Take ε > 0 to be an arbitrarily small positive
number. We then find an arbitrarily small coefficient λ < ε by considering the s → ∞ infinite-distance
limit of a geodesic (ρ(s), φ(s)) = (δs, s) for δ ≡ ε/(2λρ) (i.e., the limit ρ, φ→∞ with ρ/φ ≡ δ fixed). This
scenario readily occurs, for instance, in circle compactification of Type II string theory to nine dimensions,
where φ is the dilaton and ρ is the radion. Our bound (1.2) will nonetheless be satisfied in this scenario
provided there is a second tower whose masses decay at a faster rate in this limit.

3In its original formulation [8], the Scalar Weak Gravity Conjecture merely requires the existence of one
particle of mass m satisfying the bound

gij∂im∂jm

m2 ≥ γκ2
d ,

where gij is the inverse metric on moduli space and γ is some order-one coefficient. For γ ≥ (d− 3)/(d− 2),
this bound implies that the attractive force mediated by massless scalar fields is greater in magnitude that the
force of gravity. However, there is no compelling argument as to why the force mediated by massless scalar
fields should be greater than the gravitational force, and this proposal cannot be true in non-supersymmetric
systems like the world we live in.
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This is a natural extension of the ordinary Weak Gravity Conjecture [10], which holds that
given a 1-form gauge field A with coupling constant gA, there must exist a particle of mass
m and quantized charge qA ∈ Z satisfying

g2
Aq

2
A

m2 ≥ γ
2
dκ

2
d , (1.4)

where γd is an order-one number fixed by the black hole extremality bound. Note that
the condition ∂φm < 0 is needed to ensure that the mass of the particle is decreasing as φ
increases, since there is no analog of charge conjugation for scalar charges µφ = ∂φm the
way there is for gauge charges.

By varying over all possible 1-form gauge fields A in the theory, one finds that the
Weak Gravity Conjecture as stated in (1.4) is equivalent to the convex hull condition of [11].
Similarly, by varying over all massless scalar fields φ in the theory, (1.3) may be viewed
as an analog of the convex hull condition for scalar charges rather than gauge charges, as
proposed previously in [12]. More precisely, given a particle of mass m, we define the scalar
charge-to-mass vector as

ζi ≡ −
1
κd

∂

∂φi
logm, (1.5)

where the differentiation is performed with the d-dimensional Planck mass held fixed. The
length of a scalar charge-to-mass vector is determined by contracting with the inverse of
the scalar kinetic matrix, |~ζ| ≡

√
gijζiζj . The − sign convention is used so that ζi = λ

measures the coefficient of the tower of particles that become light in the limit φi →∞.
With these definitions, the Scalar Weak Gravity Conjecture defined above is equivalent

to the statement that the convex hull generated by all of the ~ζ-vectors contains a ball of
radius λmin = 1/

√
d− 2 centered at the origin of the scalar charge-to-mass vector space, as

illustrated in figure 1.
The coefficient 1/(d− 2) appearing in (1.3) has been carefully chosen to coincide with

the value of λ2
min we have proposed in (1.2), since for φ→∞, a tower of particles of mass

m = m0 exp(−λφ) will have gφφ(∂φm)2/m2 = λ2. In light of this, there is a simple analogy
between the various conjectures highlighted in this paper: just as the ordinary Weak Gravity
Conjecture requires a single particle satisfying the bound (1.4) and the tower Weak Gravity
Conjecture requires a whole tower of particles satisfying that bound, so too does the Scalar
Weak Gravity Conjecture require a single particle satisfying the bound (1.3), while the
Distance Conjecture requires a whole tower of particles satisfying this latter bound. Our
paper could therefore be viewed equally well as a sharpening of the Distance Conjecture or
as a sharpening of the Scalar Weak Gravity Conjecture.

There is one important difference between the Distance Conjecture and the Scalar
Weak Gravity Conjecture, however: the Scalar Weak Gravity Conjecture is a bound on the
scalar charges with respect to all massless scalars in the theory, including compact scalar
fields known as axions. The Distance Conjecture, on the other hand, says very little about
couplings to compact scalar fields, since it constrains infinite displacements in moduli space,
and a compact scalar field can have only a finite displacement. Thus, despite significant
overlap between the two conjectures, neither the Distance Conjecture nor the Scalar Weak
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Figure 1. The convex hull condition. The Scalar Weak Gravity Conjecture requires the convex
hull (blue, shaded) generated by the scalar charge-to-mass vectors ζi of the particles of the theory
(red dots) to contain a ball of radius 1/

√
d− 2 centered at the origin (gray, shaded).

Gravity Conjecture implies the other: the former requires an infinite tower of exponentially
light particles while the latter only requires a finite number, but the latter requires (1.3) to
be satisfied even if φ is an axion, while the former does not constrain couplings to axions.
Nonetheless, in what follows, we will see strong evidence that both conjectures are satisfied
in supergravity theories with a coefficient λmin = 1/

√
d− 2.

We provide several lines of evidence in support of our proposal (1.2). To begin, in
section 2 we argue that the bound is exactly preserved under dimensional reduction: a
simple theory that saturates the Distance Conjecture with λ ≥ 1/

√
D − 2 in D spacetime

dimensions will, after dimensional reduction, saturate the Distance Conjecture with λ =
1/
√
d− 2 in d = D−1 dimensions. This feature of preservation under dimensional reduction

is not a necessity: there is nothing wrong in principle with a bound that is saturated in D
dimensions yet satisfied comfortably after dimensional reduction to d dimensions. However,
many of the most rigorously tested quantum gravity conjectures-including the absence
of global symmetries [13, 14], the Weak Gravity Conjecture [10] and the Repulsive Force
Conjecture [8, 15]–are exactly preserved under dimensional reduction [14–16], and a number
of more speculative conjectures may be sharpened by demanding such preservation as
well [17, 18]. The preservation of (1.2) under dimensional reduction therefore offers a
tantalizing hint that λmin = 1/

√
d− 2 is indeed the correct value for a lower bound on λ,

but this hypothesis merits further testing.
In section 3–5, we thus carry out tests of our proposal in supergravity theories and

string/M-theory compactifications to 4 – 10 dimensions. These tests may be carried out in
one of two ways. The “top-down” approach begins with a particular infinite-distance limit
of an explicit string/M-theory compactification, computes the exponential decay of masses
of towers of light particles with increasing field distance, and compares the coefficient to
λmin = 1/

√
d− 2. This method is difficult for general Calabi-Yau compactifications, though

– 4 –
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a number of examples have already been considered in the four-dimensional context. In
section 3, we review these 4d examples and argue that they are consistent with our proposed
bound λ ≥ 1/

√
d− 2.

In section 4, we carry out further top-down checks of our proposed bound by considering
maximal supergravities in d = 4 – 10 dimensions, which arise from M-theory compactified
on Tn. Using U-duality [19], we show that our bound λ ≥ 1/

√
d− 2 is saturated in all

of these examples. We further argue that this bound is saturated in type I and heterotic
string theory in 10 dimensions. In all of these cases where we have checked, whenever the
bound is saturated, there is a string scale with an associated tower of string oscillator modes
saturating the bound.

In section 5, we employ a “bottom-up” approach (which was previously used in [4]) to
determine the coefficient λmin in minimal supergravity in 5 – 9 dimensions. This approach
proceeds by examining the behavior of the gauge couplings for the 1-form and 2-form
gauge fields in the theory and then invoking appropriate versions of the Weak Gravity
Conjecture. More precisely, the tower Weak Gravity Conjecture [16, 20, 21] holds that as
the gauge coupling gA for some 1-form gauge field A1 tends to zero, there will be a tower of
light states with masses bounded in Planck units as m . gA. If gA decays exponentially
in some asymptotic limit of moduli space as gA ∼ exp(−λ‖p− p0‖), therefore, the tower
Weak Gravity Conjecture will immediately imply that the Distance Conjecture is satisfied
with that same coefficient λ. Similarly, the Weak Gravity Conjecture for a 2-form gauge
field B2 says that as the gauge coupling gB tends to zero, there will be a charged string
whose tension in Planck units is bounded as Tstring . gB. If this string is a fundamental
string, meaning that its core probes quantum gravity physics in the deep ultraviolet [22]
(see also [23]), then it will give rise to a tower of string oscillator modes beginning at the
string scale Mstring ≡

√
2πTstring .

√
gB. If gB decays exponentially in some asymptotic

limit of moduli space as gB ∼ exp(−2λ‖p− p0‖), therefore, the Weak Gravity Conjecture
will immediately imply that the Distance Conjecture is satisfied with the coefficient λ.

Using this bottom-up approach, we find that the bound λ ≥ 1/
√
d− 2 is saturated

in certain infinite-distance limits in moduli space in d = 5 – 9 dimensions. All of these
limits are emergent string limits, meaning that some 2-form gauge coupling vanishes, and
the Weak Gravity Conjecture implies a charged string whose oscillator modes satisfy the
Distance Conjecture with λ = 1/

√
d− 2. In contrast, the other infinite-distance limits we

consider in these theories involve a 1-form gauge field whose gauge coupling vanishes in
the limit, and the tower implied by the tower Weak Gravity Conjecture instead satisfies
λ > 1/

√
d− 2 with room to spare. In fact, in all the cases we encounter, these towers

have the scaling behavior expected of Kaluza-Klein towers. Thus, both our top-down
and bottom-up analyses lend strong support to the Emergent String Conjecture [24, 25],
which holds that every infinite-distance limit must be either an emergent string limit or a
decompactification limit, and they further suggest that only the emergent string limits may
saturate our proposed bound λ ≥ 1/

√
d− 2.

In section 6, we conclude our analysis with brief discussion of open questions and
applications of our proposed bound (1.2). Notably, we point out in section 6.1 that the
lower bound λ ≥ 1/

√
d− 2 implies a low UV cutoff on effective field theory in any infinite-

– 5 –
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distance limit. If this bound applies to scalar fields with a potential and not merely massless
moduli (as conjectured in [1, 26]), then this low cutoff leads to an upper bound on scalar
potentials in asymptotic limits of scalar field space [3, 6, 27]. Assuming the Emergent String
Conjecture applies to such limits, we show that the resulting bound forbids accelerated
expansion of the universe in asymptotic regions of scalar field space [28], which agrees with
the strong asymptotic de Sitter Conjecture of [17, 29] and suggests that quintessence, like
de Sitter, can persist for only a finite period of time in quantum gravity.4

This low cutoff may also present a problem for large-field inflation models with |∆φ| &
10MPl, as we discuss in section 6.2. In section 6.3, we comment on an extension to periodic
scalar fields, also known as axions, and in section 6.4 we consider implications of our bound
for black holes in supergravity and the Repulsive Force Conjecture [8, 15]. In section 6.5,
we elaborate on connections to the Emergent String Conjecture and the possibility of an
upper bound on the coefficient λ.

2 Dimensional reduction

In this section, we use dimensional reduction to isolate three special values of the Distance
Conjecture parameter λ.

We begin with an Einstein-dilaton action in D = d+ 1 dimensions,

S =
∫

dDx
√
−g

(
1

2κ2
D

RD −
1
2
(
∇φ̂
)2
)
. (2.1)

Here and in what follows, we often use ·̂ to indicate that the scalar field · is canonically
normalized. We then consider the dimensional reduction ansatz:

ds2 = e−
ρ(x)
d−2 dŝ2(x) + eρ(x)dy2, (2.2)

where y ∼= y + 2πR.
Suppose that there is a tower of particles in D dimensions with masses that scale in

the limit φ̂→∞ as
m

(D)
part ∼ exp

(
−κDλDφ̂

)
. (2.3)

Upon reduction, the tower of particles reduces to a tower of particles with masses that
scale as

m
(d)
part ∼ exp

(
−κdλDφ̂−

κd√
(d− 1)(d− 2)

ρ̂

)
, (2.4)

where we have defined the canonically normalized radion field ρ̂ = 2
κd

√
d−2
d−1ρ. Defining

another canonically normalized field

φ̂′ = 1
λ2
D + 1

(d−1)(d−2)

(
λDφ̂+ 1√

(d− 1)(d− 2)
ρ̂

)
, (2.5)

4Note that our results do not forbid eternal inflation in the interior of scalar field space, which may occur
even if every de Sitter vacuum is metastable and every period of quintessence ends after a finite period of
time. For further discussion on this point, see section 6.1.
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we may also write this as

m
(d)
part ∼ exp

(
−κd

(
λ2
D + 1

(d− 1)(d− 2)

)1/2
φ̂′
)
≡ exp

(
−κdλdφ̂′

)
. (2.6)

There is also a tower of Kaluza Klein modes for the graviton with masses that scale as

m
(d)
KK ∼ exp

−κd
√
d− 1
d− 2 ρ̂

 . (2.7)

From the above analysis, we note three special values of the parameter λd:

1. λd = 1/
√

(d− 1)(d− 2). This is the coefficient of the radion ρ̂ for the dimensionally
reduced tower in (2.4). In other words, as ρ̂→∞, this tower of states will become
massless, with masses decaying exponentially as m ∼ exp(−λdκdρ̂).

2. λd =
√

(d− 1)/(d− 2). This is the coefficient of the radion ρ̂ for the Kaluza Klein
modes in (2.7). Note that this value is always larger than the first value of λd, so
these Kaluza Klein modes will become massless more quickly than the dimensionally
reduced modes

3. λd = 1/
√
d− 2. This value is distinguished by the fact that for λD = 1/

√
D − 2, (2.6)

gives λd = 1/
√
d− 2. In other words, this value of λd is exactly preserved under

dimensional reduction.5 Preservation under dimensional reduction has proven to
be a useful tool for sharpening various quantum gravity conjectures-see [15–18] for
examples.

Of the three distinguished values, the first is the smallest. It is therefore tempting to
conjecture that this is the “correct” minimum value of λ in the Distance Conjecture, i.e.,

λ ≥ 1√
(d− 1)(d− 2)

. (2.8)

This bound was, in fact, proposed in [3, 4], motivated by the work of e.g. [2].
However, we note something interesting in the example above: although towers of states

saturating the value λ = 1/
√

(d− 1)(d− 2) appear naturally in dimensional reduction, they
are accompanied in this context by Kaluza Klein towers, which saturate the stronger bound

λ ≥
√

(d− 1)/(d− 2) . (2.9)

Thus, every decompactification limit from d to D = d+ 1 dimensions seems to introduce a
tower of particles satisfying the Distance Conjecture with a coefficient λ ≥

√
(d− 1)/(d− 2).

However, not every infinite-distance limit is a decompactification limit, and the bound
λ ≥

√
(d− 1)/(d− 2) is not satisfied in general. According to the Emergent String Conjec-

ture [25], every infinite-distance limit that is not a decompactification limit is an emergent
5More generally, λ2

d = 1
d−2 + β is exactly preserved under dimensional reduction, but we will see many

examples below that saturate this bound with β = 0, leading us to single out this particular value from
the rest.

– 7 –
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string limit, in which a charged fundamental string becomes tensionless asymptotically and
a tower of string states become light. As we will see below, the tension of a fundamental
string scales as Tstring ∼ exp(−2κdφ̂/

√
d− 2) for φ̂ the canonically normalized dilaton

in d dimensions, which means that the tower of light string states satisfies the Distance
Conjecture with coefficient λd = 1/

√
d− 2. This is nothing but the third distinguished

value of λ, which we saw was exactly preserved under dimensional reduction. This leads us
finally to conjecture

λ ≥ 1√
d− 2

(2.10)

as the correct, sharpened version of the Distance Conjecture, as stated previously in (1.2).
It is instructive to see how (2.10) is satisfied in the dimensional reduction example

considered above if we set λD ≥ 1/
√
D − 2. Upon dimensional reduction, we find a theory

with two towers of states: one tower of Kaluza-Klein modes, and one that descends from
the tower of particles in D dimensions. By the definition in (1.5), these have ~ζ-vectors in
the (φ̂, ρ̂) basis given by

~ζ
(d)
KK =

 0√
d−1
d−2

 and ~ζ
(d)
part =

 λD
1√

(d−1)(d−2)

 , (2.11)

which may be computed from the mass formulas in (2.4), (2.7). For λD = 1/
√
D − 2, the

vector ~ζ(d)
part has magnitude λd = 1/

√
d− 2 and therefore saturates our proposed bound

in the limit φ′ →∞. The vector ~ζ(d)
KK has magnitude λKK =

√
(d− 1)/(d− 2) and satisfy

our bound comfortably in the limit ρ → ∞. In the intermediate regime ρ, φ → ∞ with
fixed ρ/φ ≥ 1/

√
d− 2, these Kaluza-Klein modes will still satisfy our bound λ ≥ 1/

√
d− 2,

saturating this bound for λD = 1/
√
D − 2 when ρ, φ→∞ with fixed ρ/φ = 1/

√
d− 2.

This is illustrated pictorially in figure 2. The part of the convex hull generated by ~ζ(d)
KK

and ~ζ(d)
part remains outside the ball of radius 1/

√
d− 2 and is tangent to the ball at the point

~ζ
(d)
part provided λD = 1/

√
D − 2. This means that the Distance Conjecture will be satisfied

with λ ≥ 1/
√
d− 2 everywhere along this line segment, i.e., in any infinite-distance limit

with ρ, φ→∞, ρ/φ ≥ 1/
√
d− 2.

One additional feature of this line segment is worth noting, as it further distinguishes
the value λd = 1/

√
d− 2. Namely, when λD ≤ 1/

√
D − 2, the point on this line segment

closest to the origin is simply the endpoint ~ζ(d)
part. In contrast, when λD > 1/

√
D − 2, the

point on this line segment closest to the origin lies in the interior of the line segment.
A very similar analysis applies to a more general compactification from D = d + n

dimensions to d dimensions, for n ≥ 1. Such a compactification has [30]

m
(d)
KK ∼ exp

(
−κd

√
n+ d− 2
n(d− 2) ρ̂

)
, (2.12)

m
(d)
part ∼ exp

(
−λDφ− κd

√
n

(n+ d− 2)(d− 2) ρ̂
)
. (2.13)
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Figure 2. Dimensional reduction and the convex hull condition. The gray region is the ball of
radius 1/

√
d− 2 centered at the origin. The vector ~ζKK = (0,

√
(d− 1)/(d− 2)) comes from the

Kaluza Klein modes, and the vector ~ζpart = (1/
√
d− 1, 1/

√
(d− 1)(d− 2)) comes from particles

with scalar charges in the D-dimensional theory that saturate the proposed bound λ(D)
min = 1/

√
D − 2.

Since the convex hull of these vectors contains the ball of radius 1/
√
d− 2, the Distance Conjecture

will be satisfied with a coefficient λ ≥ 1/
√
d− 2 in every direction ρ, φ→∞ with ρ/φ ≥ 1/

√
d− 2.

This leads to

~ζ
(d)
KK =

 0(
n+d−2
n(d−2)

)1/2

 and ~ζ
(d)
part =

 λD(
n

(n+d−2)(d−2)

)1/2

 . (2.14)

As in the n = 1 case above, the vector ~ζ(d)
part lies on the ball of radius λmin = 1/

√
d− 2 for

λD = 1/
√
D − 2, and the line between this vector and ~ζ(d)

KK is tangent to this ball, as depicted
in figure 2. In the limit n→∞, the vectors ~ζ(d)

part and ~ζ(d)
KK coalesce, and λKK → 1/

√
d− 2.

2.1 Winding modes and Kaluza-Klein monopoles

Although the picture in figure 2 is suggestive, it is not complete. In order satisfy our
bound (1.2) in all infinite-distance limits, we must ensure that the entire ball of radius
λmin = 1/

√
d− 2 is contained in the convex hull of the ~ζ-vectors. So far in our discussion

of dimensional reduction, we have only considered limits in which the dilaton φ and the
radion ρ tend to +∞. What about the opposite limits, in which one or both of these fields
tend to −∞?

In these cases, satisfying the Distance Conjecture typically requires new ingredients
beyond what we have considered so far in this section. In string theory, the strong coupling
limit φ → −∞, in which the dilaton diverges, is typically equivalent to a weak coupling
limit in a dual frame. This is seen most clearly in the case of Type IIB string theory in 10
dimensions or Type II string theory compactified on a circle to 9 dimensions, which we will
review below.

In the limit ρ → −∞, the radius of the dimensional reduction circle vanishes. Here,
the Kaluza-Klein tower becomes heavy, but a tower of light charged particles appears from
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string winding modes. In particular, wrapping a string of tension T in D dimensions around
the dimensional reduction circle will produce a tower of charged particles in d dimensions
whose masses scale with the canonically-normalized radion ρ̂ as

m ∼ exp
(

d− 3√
(d− 1)(d− 2)

κdρ̂

)
. (2.15)

For d ≥ 5, these winding modes will satisfy our proposed bound (1.2). For d = 4, we have
λ = 1/

√
6, so these winding modes do not satisfy our proposed bound.

However, in d = 4, we expect another tower of light particles to appear in the ρ→∞
limit: Kaluza-Klein monopoles. Our dimensional reduction ansatz produces a Kaluza-Klein
gauge field AKK

1 in d dimensions with gauge coupling

1
e2

KK
= R2

2κ2
d

e2
√

(d−1)/(d−2)κdρ̂ . (2.16)

In the limit ρ̂ → −∞, the magnetic gauge coupling gKK ≡ 2π/eKK vanishes as gKK ∼
exp(−

√
(d− 1)/(d− 2)κd|ρ̂|). In 4d, the tower Weak Gravity Conjecture applied to the

electromagnetic dual gauge field therefore implies a tower of Kaluza-Klein monopoles with
m . gKK/κ4 ⇒ λ ≥

√
3/2, so the tower of Kaluza-Klein monopoles satisfies our proposed

bound (1.2).
In 5d, the Kaluza-Klein monopole is a string. This string will be charged magnetically

under the Kaluza-Klein gauge field, and its tension scales as

Tstring . 1/(eKKκ5) ∼ exp
( 2√

3
κ5ρ̂

)
. (2.17)

The oscillator modes of this string will produce a tower of massive particles beginning at
the scale Mstring =

√
2πTstring . exp(κ5ρ̂/

√
3), satisfying the bound λ ≥ 1/

√
d− 2 in the

small radius limit ρ̂→ −∞.
We expect, therefore, that in the small radius limit ρ̂→ −∞ of a dimensional reduction,

the Distance Conjecture with λ ≥ 1/
√
d− 2 will be satisfied by winding string modes in

d ≥ 5 and by Kaluza-Klein monopoles in d = 4, 5. Indeed, T-dualities in string theory
suggest that the small radius limit of a theory is likely equivalent to a large radius limit in
another duality frame, so it is unsurprising that our proposed bound is satisfied in each of
these two limits.

Let us pause here to emphasize a parallel between the large radius limit and the small
radius limit of a dimensional reduction from D = 5 to d = 4 dimensions. In the large radius
limit ρ̂→∞, we found one tower with λ = 1/

√
6, which came from the Kaluza Klein zero

modes of a tower of particles in the parent theory in D = 5 dimensions. We also found
another tower with λ =

√
3/2, which came from the Kaluza-Klein modes of the graviton.

Similarly, in the small radius limit ρ̂ → −∞, we found one tower with λ = 1/
√

6, which
came from winding string modes, and another tower with λ =

√
3/2, which came from

Kaluza-Klein monopoles. The Emergent String Conjecture suggests this is not an accident:
the ρ̂→ −∞ limit should correspond to a decompactification limit in a dual frame, so the
towers of winding modes and Kaluza-Klein monopoles are respectively identified with towers
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of 5d particles and Kaluza-Klein modes in this dual frame. More generally, while towers
with λ = 1/

√
6 (which do not satisfy our proposed bound (1.2)) seem to be common in

infinite-distance limits in 4d, the Emergent String Conjecture strongly suggests that these
limits will feature even lighter towers with λ =

√
3/2 (which do satisfy the bound (1.2)).

In the following section, we will see compelling evidence that this expectation is borne out
in 4d supergravity theories and string compactifications.

To conclude this subsection, we consider winding modes and wrapped branes in more
general compactifications. Consider a reduction from D = d+n dimensions to d dimensions,
and suppose that a (P − 1)-brane wraps k dimensions of the internal geometry, yielding a
(p−1)-brane in d dimensions (here, P = p+k). The tension of the resulting (p−1)-brane will
then scale with the canonically normalized radion in the small volume limit ρ̂→ −∞ as [30]

Tp ∼ exp
(
−
√

d− 2
n(n+ d− 2)

pn− k(d− 2)
d− 2 κdρ̂

)
. (2.18)

Let us now examine several special cases of this formula. First, we consider the case p = 1,
which corresponds to a particle in d dimensions, for which the tension T is simply the
mass. We further suppose that this particle arises from wrapping a brane over the entire
n-dimensional compactification manifold. Plugging in p = 1, k = n, we have

m ∼ exp

√ n(d− 2)
n+ d− 2

d− 3
d− 2κdρ̂

 ⇒ λ =

√
n(d− 2)
n+ d− 2

d− 3
d− 2 , (2.19)

which satisfies λ ≥ 1/
√
d− 2 for n ≥ 1, d ≥ 5. In other words, our proposed bound (1.2)

will be satisfied by n-branes wrapping a compactification n-manifold provided d ≥ 5.
Next, we consider the case p = 2, n = k, which corresponds to a 2-brane wrapping a

circle to produce a string in d dimensions. This gives

Tstring ∼ exp

√ n(d− 2)
n+ d− 2

d− 4
d− 2κdρ̂

 . (2.20)

This string will give rise to a tower of string oscillator modes at the mass scale Mstring =√
2πTstring, which satisfy the Distance Conjecture in the small volume limit with a coefficient

of λ =
√

n
(n+d−2)(d−2)

d−4
2 . This saturates the bound λ ≥ 1/

√
d− 2 in three cases: (i) n = 1,

d = 10, (ii) d = 8, n = 2, and (iii) n = 4, d = 7. Case (i) corresponds to an M2-brane
wrapped on a circle, which describes the strong coupling limit of the Type IIA superstring.
Case (ii) corresponds to a D3-brane wrapped on a 2-manifold, and case (iii) corresponds to
an M5-brane wrapped on a 4-manifold. It is not a coincidence that these three cases involve
precisely the branes in string/M-theory which are uncharged under a dilaton field in the
parent theory in D = d+ n dimensions (there is no dilaton in M-theory, and the D3-brane
tension does not depend on the dilaton in Type IIB string theory). String oscillator modes
which come from wrapping other branes will saturate the bound |~ζ(d)| = 1/

√
d− 2 only

after accounting for the dilaton-dependence of their tensions.
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2.2 A convex hull condition

We now combine the ingredients above in a simple yet illustrative toy model of dimensional
reduction, showing how the Distance Conjecture and the Scalar Weak Gravity Conjecture
may be satisfied with a coefficient λ(d)

min = 1/
√
d− 2 under the assumption that they are

satisfied in D = d+ 1 dimensions with λ(D)
min = 1/

√
D − 2.

We consider a D-dimensional theory with a single modulus, the dilaton φ, and we
suppose that this theory has two kinds of strings, where one kind of strings has a tension
which scales with the dilaton by T+

string ∼ exp
(
2λ(D)

stringκDφ
)
, and the other kind of strings

has a tension which scales with the dilaton by T−string ∼ exp
(
−2λ(D)

stringκDφ
)
, where λ(D)

string =
1/
√
D − 2 = 1/

√
d− 1. This behavior occurs, for instance, in Type IIB string theory, where

S-duality switches the strong and weak coupling limits φ → ±∞. The string oscillator
modes of these respective strings form towers with masses which scale with the dilaton as
m

(D)
string(φ) ∼ exp(±λ(D)

stringκDφ), and thus they saturate the Distance Conjecture and the
Scalar Weak Gravity Conjecture in D dimensions.

We may then calculate the minimal radius λ(d)
min by examining the convex hull of all

the ~ζ(d)-vectors, as discussed in the introduction. This convex hull is generated by the
~ζ(d)-vectors for (a) the Kaluza-Klein modes and (b) the string winding modes. By our
discussion earlier in this section, these have ~ζ(d)-vectors in the (φ̂, ρ̂) basis given by

~ζ
(d)
KK =

 0√
d−1
d−2

 , ~ζ
(d)
wind =

 ± 2√
d−1

− d−3√
(d−1)(d−2)

 . (2.21)

When d = 4, we must include an additional point corresponding to the Kaluza-Klein
monopoles:

~ζ(4)
mon =

 0
−
√

3
2

 . (2.22)

The string oscillator modes lie on the boundary of the convex hull. They have

ζ
(d)
string =

 ± 1√
d−1

1√
(d−1)(d−2)

 . (2.23)

When d = 5, we may include an additional point corresponding to the string oscillator
modes for the Kaluza-Klein monopole string:

~ζ
(5)
mon. str. =

(
0
− 1√

3

)
. (2.24)

For d ≥ 4, the convex hulls of the ~ζ(d)-vectors have a minimal radius λ(d)
min of precisely

λ
(d)
min = 1√

d− 2
, (2.25)

as shown in figure 3. Thus, the bound λ ≥ 1/
√
d− 2 is saturated in d dimensions, just

as it was in D dimensions. Whenever it is saturated, there is always a tower of string
oscillator modes with λ = 1/

√
d− 2, which either descend from string oscillator modes in

D dimensions or else come from the Kaluza-Klein monopole string in d = 5.
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(a) d > 5. (b) d = 5.

(c) d = 4.

Figure 3. The convex hull condition in a toy model of dimensional reduction. The gray region in both
figures is the ball of radius 1/

√
d− 2 centered at the origin. The vector ~ζ(d)

KK = (0,
√

(d− 1)/(d− 2))
comes from the Kazula-Klein modes; the vectors ~ζstring = (±1/

√
d− 1, 1/

√
(d− 1)(d− 2)) come

from string oscillation modes in the D-dimensional theory, and the vectors ~ζwind = (±2/
√
d− 1,−(d−

3)/
√

(d− 1)(d− 2) come from winding states. In the d = 5 case in b, there is additionally the
~ζ

(5)
mon-vector coming from the string oscillator modes of the Kaluza-Klein monopole string. In the
d = 4 case in c, the vector ~ζ(4)

mon = (0,−
√

3/2) comes from the Kaluza-Klein monopole and is needed
for the ball of radius 1/

√
d− 2 to be contained in the convex hull.

It is interesting to note that the string oscillator modes are not generators of the convex
hull in these examples, since they always saturate the bound λ ≥ 1/

√
d− 2. Instead, the

convex hull is generated by a combination of Kaluza-Klein modes, winding modes, and
Kaluza-Klein monopoles. More generally, if the Emergent String Conjecture is true, then
any generator ~ζ(d) of the convex hull must either correspond to a tower of string oscillator
modes or else a tower of Kaluza-Klein modes in some duality frame. By (2.12), this means
there is only a finite set of possibilities for the length of such a generator:

|~ζ(d)| = 1√
d− 2

or |~ζ(d)| =
√
n+ d− 2
n(d− 2) , (2.26)

for some n ≥ 1.6
6For further reading on the consequences of the Emergent String Conjecture in the context of Kaluza-Klein

reduction, see [31].
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In our brief analysis in this section, we have notably ignored the possibility of axions.
If the D-dimensional theory includes 1-form gauge fields, then the d-dimensional theory will
have axions, and the electric charge-to-mass ratios in the D-dimensional theory determine
the axion-charge components of the ~ζ(d)-vectors of the d-dimensional theory. The Weak
Gravity Conjecture and Repulsive Force Conjectures in the higher dimensional theory then
have important consequences for the axion components of the ~ζ(d)-vectors. We defer to
future research a thorough investigation of these consequences.

3 A reexamination of supergravity in four dimensions

So far, nearly all studies of the Distance Conjecture coefficient λ have taken place within
the context of four-dimensional supergravity [2, 32–37]. Multiple works have suggested
λmin = 1/

√
6 as the minimal bound in four dimensions [2–4], and several examples have

been previously claimed to saturate this bound. Such examples naively violate our proposed
bound λ ≥ 1/

√
d− 2, so before we provide evidence for this bound in higher dimensions,

we must first address this apparent contradiction between our proposal and previous claims
in the literature.

As we saw in the previous section, the coefficient λ = 1/
√

6 appears readily in decom-
pactification limits: it is the scaling behavior expected for the Kaluza-Klein zero modes of
a tower of particles in D = 5 dimensions after compactification to d = 4 dimensions. Such
towers are always accompanied in these decompactification limits by towers of Kaluza-Klein
modes with λ =

√
3/2, which ensure consistency with our proposed bound (1.2) on the

lightest tower of particles in any infinite-distance limit. In the remainder of this section, we
argue that this situation is generic: explicit examples with λ = 1/

√
6 discussed previously

in the literature always feature lighter towers with λ =
√

3/2, so they in fact represent
examples in support of our bound, not counterexamples to it.

The first extensive discussion of the coefficient λ = 1/
√

6 appeared in [2], which
examined the behavior of towers of massive particles in asymptotic regions of scalar field
space in four dimensions. In one-dimensional vector multiplet moduli spaces of Type IIB
compactifications, they argued that asymptotic limits are characterized by one of three
possible values for λ:

λ = 1√
6
,

1√
2
, 1 . (3.1)

These values can be determined from the type of singularity that occurs in the infinite-
distance limit of complex structure moduli space, which can be classified using the theory of
mixed Hodge structures [2, 38–40]. This classification, however, only implies the existence
of some exponentially light tower with coefficient λ given by one of the values above. It
does not imply that this is the only exponentially light tower, nor that it is the lightest such
tower. Thus, while infinite-distance limits in this classification corresponding to λ = 1/

√
2

and λ = 1 necessarily satisfy our bound (1.2), limits with λ = 1/
√

6 require further analysis.
Such an analysis was recently carried out in the supergravity context in [4], which

pointed out that for N = 2 theories with a single vector multiplet, there are three possible
forms for the perturbative part of the prepotential, which in turn lead to two distinct
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infinite-distance limits. Reference [4] considered one such prepotential in detail:

F = −(X1)3

X0 . (3.2)

After setting the axion vevs to vanish, this prepotential leads to a gauge kinetic matrix of
the form

aIJ = diag
(

e
√

6κ4ρ̂, 3e
√

2/3κ4ρ̂
)
, (3.3)

for ρ̂ a canonically normalized scalar field. In the limit ρ̂→∞, assuming the tower Weak
Gravity Conjecture, we therefore expect two towers of charged particles, one for each gauge
field, with

λ = 1√
6
, λ =

√
3
2 , (3.4)

respectively. This reflects precisely the behavior we expect: the existence of a tower with
λ = 1/

√
6 < 1/

√
2 is accompanied by another tower with λ ≥ 1/

√
2.

Indeed, these values of λ match precisely with what we expect from dimensional
reduction of N = 1 supergravity with no massless vector multiplets in five dimensions,
which has one 1-form gauge field but no scalar fields. Dimensionally reducing to 4d, a tower
of superextremal charged particles with λ5 = 0 will reduce to a tower of charged particles
with λ4 = 1/

√
6 as in (2.4), and there will be Kaluza Klein towers with λ4 =

√
3/2 as

in (2.7). These indeed match the values in (3.4). We see here that although there is a tower
of particles saturating the bound λ ≥ 1/

√
(d− 1)(d− 2) in the limit ρ̂ → ∞, there is an

even lighter tower of particles that satisfies our proposed bound, λ ≥ 1/
√
d− 2.

This behavior also fits nicely with the results of [5, 7, 41], which considered the behavior
of axion strings7 in infinite-distance limits in moduli space. Reference [7] argued that any
such limit corresponds to the tensionless limit of an axion string, and the mass of the
lightest tower of particles scales (in Planck units) as either m2 ∼ Tstring, m2 ∼ T 2

string, or
m2 ∼ T 3

string in this limit. According to [41], the large radius limit of pure 5d supergravity
with a nontrivial Chern-Simons coupling on a circle features two gauge fields A1 and AKK

1
with gauge couplings e and eKK satisfying the relation e ∼ e

1/3
KK, and consistency with

various forms of the Weak Gravity Conjecture implies an axion string whose tension scales
as Tstring ∼ e2. The tower Weak Gravity Conjecture for AKK

1 then implies a tower of
particles whose masses scale as m2

KK ∼ e2
KK ∼ T 3

string, in agreement with [7]. This tower is,
of course, simply the Kaluza Klein tower with λ =

√
3/2, whereas the tower with λ = 1/

√
6

is the tower of oscillator modes for the axion string.
The presence of a tower with λ =

√
3/2 accompanying a tower with λ = 1/

√
6 has

been observed not only in supergravity and Kaluza-Klein theory, but also in UV complete
string compactifications. In particular, [34] found that near an “M-point” of a Calabi-Yau
compactification of Type IIA string theory, there exists a tower of light D0-branes with
λ =

√
3/2 accompanied by a tower of light D2-branes with λ = 1/

√
6.8 This scaling behavior

7Recall that an axion string is a string charged magnetically under an axion θ, so that θ → θ+ 2π as one
circles the core of the string.

8Note that the conventions of [34] differ from ours by a factor of
√

2: λthem =
√

2λus, as previously
noted in [3].
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is unsurprising, as this limit may be viewed as a decompactification of the M-theory circle
of Type IIA.

In that same paper, [34] studied towers of particles that occur near the “s-point” of a
Calabi-Yau geometry they called X2,2,2,2. In section 6.2.3. of that paper, they found that
the masses of the light particles are given in terms of a pair of integers x, y by

m(x, y) = m0|y|e−κ4φ̂/
√

6 +m1|2iy log(4)− x|e−κ4φ̂
√

3/2 +O

(
e−κ4φ̂

√
5/2
)
, (3.5)

where m0, m1 are constants, and the s-point corresponds to the limit φ̂→∞. For |y| 6= 0,
therefore, there is a tower of light particles indexed by y ∈ Z with λ = 1/

√
6. For |y| = 0,

however, the first term vanishes, and there is a tower of light particles indexed by x ∈ Z with
λ =

√
3/2. Again, these towers have the expected scaling behavior for a decompactification

limit to five dimensions.
Similarly, [36] found towers with λ =

√
3/2 and 1/

√
6 in a Type IIB Calabi-Yau

orientifold compactification. This example is especially interesting because it features N = 1
supersymmetry in four dimensions, so the scalar field in question is not even a massless
modulus. We will elaborate on the application of the Distance Conjecture to massive scalar
fields below in section 6.

The authors of [7] studied the spectrum of charged particles and strings in a model
of Type IIA string theory compactified on a Calabi-Yau threefold X given by a particular
P1 fibration over P2. In one limit, they found an asymptotically tensionless string with
Tstring ∼ exp(−

√
2/3κ4ρ̂) and a tower of Kaluza-Klein modes for the Calabi-Yau threefold

X with m ∼ exp(−κ4ρ̂/
√

6). From our discussion in section 2, this scaling behavior is
precisely what is to be expected for M-theory compactified first on the Calabi-Yau X and
then on S1, where ρ̂ is the canonically normalized radion of the S1. From an M-theory
perspective, the tower of Kaluza-Klein modes for X with λ = 1/

√
6 in the ρ̂ → ∞ limit

will be accompanied in four dimensions by a tower of light Kaluza-Klein modes for the
M-theory circle with λ =

√
3/2. From a Type IIA perspective, these latter Kaluza-Klein

modes will be D0-branes, which were not considered in the analysis of [7].
Reference [4] also considered a 4d N = 2 theory with two vector multiplets and a

prepotential of the form
F = − 1

6X0TS
2 . (3.6)

They argued that every infinite-distance limit has a tower satisfying λ ≥ 1/
√

2, and this
bound is in fact saturated in certain directions in scalar field space. This matches precisely
with our proposed bound.

In summary, the literature on the Distance Conjecture contains a number of references
to towers in four dimensions with λ < 1/

√
2. All the examples we have considered here

feature even lighter towers with λ ≥ 1/
√

2, and a number of examples in fact saturate this
bound. We have not yet discussed the numerical examples of [33, 35], which are listed in
table 3 of [3]. These examples involve an averaging procedure, so the associated values
of λ are known only within a range, λ ∈ [λ−, λ+]. Some of these ranges have λ− < 1/

√
2,

indicating a possible violation of our proposed bound (1.2), but all of them have λ+ > 1/
√

2,
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which is consistent with our bound. In fact, the central values λ0 = (λ− + λ+)/2 across
all the examples range from λ0 = 0.7668 to 0.8638, tantalizingly close to our proposed
minimum value λmin = 1/

√
2 ≈ 0.7071. Thus, more precise studies of these examples could

lead to either a counterexample to our bound or remarkable evidence in favor of it, but we
leave this to future study.

4 Top-down evidence in maximal supergravity

In these sections, we explicitly compute λmin in maximal supergravity in four to ten
dimensions. In each dimension, we find that the Distance Conjecture and Scalar Weak
Gravity Conjecture are satisfied in all directions of moduli space by a tower of particles
with λ ≥ λmin = 1/

√
d− 2. For each dimension, this bound is in fact saturated in one or

more directions, and in all cases that we have checked (namely, for d ≥ 7), these directions
correspond to emergent string limits featuring a tower of string oscillator modes with
λ = 1/

√
d− 2.

4.1 Ten dimensions

There are three types of 10d supergravity for us to consider: Type I, Type IIA, and Type
IIB. The relevant parts of their actions (in Einstein frame) take the form [42]:

SIIA = 1
2κ2

10

(∫
−1

2dσ ∧ ?dσ −
1
2e

σH3 ∧ ?H3 −
1
2e
−3σ/2F2 ∧ ?F2

)
(4.1)

SIIB = 1
2κ2

10

(∫
−1

2dσ ∧ ?dσ −
1
2e

σH3 ∧ ?H3

)
(4.2)

SI = 1
2κ2

10

(∫
−1

2dσ ∧ ?dσ −
1
2e

σH3 ∧ ?H3 −
1
g2
A

eσ/2Tr(F2 ∧ ?F2)
)
. (4.3)

Let us consider each of these in turn, beginning with Type IIA. Here, in the limit σ →∞,
the gauge coupling for the 2-form B2 scales as gB ∼ e−σ/2. Assuming that a fundamental
string charged under B2 satisfies the Weak Gravity Conjecture bound T . gBκ10, its string
oscillator modes will scale as

Mstring ∼
√

2πT ∼ exp
(
κ10σ̂/

√
8
)
, (4.4)

where we have defined σ̂ = σ/(
√

2κ10) to be the canonically normalized dilaton. Thus, this
tower of string oscillator modes will satisfy the Distance Conjecture with

λ = 1/
√

8 , (4.5)

saturating our proposed bound λ ≥ 1/
√
d− 2. Of course, such a string is not merely a

hypothetical entity: this is simply the IIA superstring.
In the other infinite-distance limit, σ → −∞, the gauge field A1 will become weakly

coupled as gA ∼ exp(3σ/4) ∼ exp(
√

9/8κ10σ̂). The tower Weak Gravity Conjecture then
implies a tower of light particles with masses beginning at the scale gAκ10, which satisfy
the Distance Conjecture with a coefficient of

λ =
√

9
8 . (4.6)
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This matches the value expected for Kaluza Klein modes (2.7), and indeed it points towards
the well-known fact that this tower of charged particles in Type IIA string theory (D0-branes)
is in fact a Kaluza Klein tower for M-theory on a circle.

Next, let us consider Type IIB supergravity. The limit σ → +∞ is identical to the
Type IIA case, and the bound λ ≥ 1/

√
d− 2 is saturated by oscillator modes of the Type

IIB superstring. The limit σ → −∞ is mysterious from the perspective of the supergravity
action we have written above, as the gauge field B2 becomes strongly coupled. However,
here we invoke the well-known S-duality of the Type IIB superstring, which implies that the
strong coupling limit of one Type IIB superstring is the weak coupling limit of a different
Type IIB superstring. The bound λ ≥ 1/

√
d− 2 will therefore be saturated in this limit

also. More generally, taking into account the axion C0, the convex hull condition for the
~ζ-vectors will be satisfied in every direction in scalar field space by towers of string oscillator
modes for (p, q)-strings, as the corresponding vectors ~ζp,q densely fill in the sphere of radius
λ = 1/

√
d− 2. We see that the duality web plays a crucial role here in satisfying our

proposed bound.
Finally, we have Type I supergravity. Here, the limit σ →∞ once again introduces a

tower of string oscillator modes saturating the bound λ ≥ 1/
√
d− 2, by the same calculation

as in Type IIA. The strong coupling limit σ → −∞ is more mysterious, and again we must
use known details of the string duality web. Three different string theories have Type I
supergravity as their low energy limit: Type I string theory, SO(32) heterotic string theory,
and E8 × E8 heterotic string theory. The first two of these are S-dual, so the σ → −∞
limit of Type I string theory corresponds to the σ → +∞ limit of SO(32) heterotic string
theory, and vice versa. Thus, each of these limits will saturate the bound λ ≥ 1/

√
d− 2 as

well. The σ → −∞ limit of E8×E8 heterotic string theory, on the other hand, corresponds
to M-theory on an interval separating two Hořava-Witten walls. Here, there is a tower of
Kaluza Klein modes with λ =

√
9/8, as in the decompactification limit of Type IIA string

theory to M-theory above. Once again, we see that string dualities ensure that our proposed
Distance Conjecture bound is satisfied.

4.2 Nine dimensions

In d = 9 dimensional maximal supergravity, coming from M-theory on T 2, there are three
moduli, all originating from the eleven-dimensional graviton. To determine their couplings,
we reduce the D = 11 dimensional Einstein-Hilbert action with the ansatz

ds2
D = ‖g‖−

1
d−2 gµνdx

µdxν + gmndy
mdyn , (4.7)

where m,n index the k = D− d compact directions, µ, ν index the d noncompact directions,
ym ∼= ym + 2πR, and ‖g‖ = det gmn. It is convenient to decompose gmn in terms of volume
and shape parameters U and τ = τ1 + iτ2, respectively, where

gmn = eU
1
τ2

(
1 τ1
τ1 |τ |2

)
. (4.8)
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With this, the Einstein-moduli sector of the dimensionally reduced action is

S9 = 1
2κ2

9

∫
d9x
√
−g

(
R− 9

14(∂U)2 − (∂τ1)2 + (∂τ2)2

2τ2
2

)
. (4.9)

Working in modified nine-dimensional Planck units where 2κ2
9 = (2π)6 for convenience,

the spectrum of 1/4 BPS particles is

mp,q,w = |p+ τq|
√
τ2R

e−
9

14U +R4/3|w|e
6
7U , (4.10)

where p, q ∈ Z are the Kaluza-Klein charges and w ∈ Z is the M2 brane winding charge.
These particles are 1/2 BPS when either w = 0 or p = q = 0.

At a particular point in moduli space, the canonically normalized moduli are

φ̂a = (Û , τ̂1, τ̂2) = 1
κ9

(√
9
14U,

τ1√
2〈τ2〉

,
τ2√
2〈τ2〉

)
, (4.11)

where 〈τ2〉 is the value of τ2 at the point in question (not including its fluctuations). The
canonically normalied scalar charge-to-mass vectors ζa = 1

κ9
∂
∂φ̂a

logmp,q,w are then

ζÛ =
4√τ2e

3U
2 R7/3|w| − 3|p+ τq|

√
14
(
|p+ τq|+√τ2e

3U
2 R7/3|w|

) , (4.12a)

ζτ̂1 =
√

2qτ2(p+ τ1q)
|p+ τq|

(
|p+ τq|+√τ2e

3U
2 R7/3|w|

) , (4.12b)

ζτ̂2 = q2τ2
2 − (p+ τ1q)2

√
2|p+ τq|

(
|p+ τq|+√τ2e

3U
2 R7/3|w|

) , (4.12c)

for the 1/4 BPS particles.
As illustrated in figure 4, these ~ζ-vectors lie on a cone. At the tip of the cone lie the

1/2 BPS states with p = q = 0 and w 6= 0, corresponding to an M2 brane wrapped w

times on T 2:
~ζwinding

9 =
(√

8
7 , 0, 0

)
. (4.13)

The base of the cone is populated by the 1/2 BPS Kaluza-Klein modes with w = 0 but
nonzero p or q:

~ζKK
9 ∈

{(
− 3√

14
, ζτ1 , ζτ2

)
∈ R3 : ζ2

τ1 + ζ2
τ2 = 1

2

}
. (4.14)

The remaining 1/4 BPS states lie along the cone somewhere between its tip and circular
base. From this example, we see that the convex hull generated by the 1/2 BPS states
contains the convex hull generated by the 1/4 BPS states.

The purely winding ~ζwinding
9 -vectors are a distance

√
8
7 from the origin, and so too are

the Kaluza Klein mode ~ζKK
9 -vectors. Thus, the points on the cone closest to the origin lie
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Figure 4. The convex hull in 9d maximal supergravity. The ~ζ-vectors of BPS states densely fill the
shaded cone, with 1/2 BPS states at the base and apex and 1/4 BPS states in between. The ball of
radius 1/

√
d− 2 = 1/

√
7 lies entirely within the cone, touching it along the dashed red circle, which

is itself densely populated by the oscillator modes of 1/2 BPS fundamental strings.

on a circle halfway between the base and apex. The radius of this circle is λmin = 1/
√
d− 2,

saturating our proposed bound.
Note that wrapping an M2 brane on the (p, q) cycle of the torus gives rise to 1/2 BPS

fundamental strings of tension

Tstring = R1/3

2π
|p+ τq|
√
τ2

e
3U
14 . (4.15)

The corresponding string oscillator modes of mass m ∝
√

2πTstring densely populate the
λ = 1/

√
d− 2 circle where the bound is saturated. Thus, when our bound is saturated,

there is an associated string scale, as before.

4.3 Eight dimensions

Reducing the M-theory effective action

S11 = 1
2κ2

11

∫
d11x
√
−g

(
R− 1

2 |F4|2
)
− 1

12κ2
11

∫
C3 ∧ F4 ∧ F4 , F4 = dC3 , (4.16)

with the ansatz (4.7), we obtain the Einstein-moduli sector in d = 8 dimensions,

Sd = 1
2κ2

d

∫
ddx
√
−g
(
R− 1

4

(
gmm

′
gnn

′ + 1
d− 2g

mngm
′n′
)
∂gmn · ∂gm′n′

− 1
2× 3!g

mm′gnn
′
gpp
′(∂Cmnp · ∂Cm′n′p′)

)
, (4.17)

where gmn = eU ĝmn, gmn is its matrix inverse, and Cmnp are the components of C3 along
the compact directions.
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The BPS states are characterized by the integral Kaluza-Klein momenta Nm as well as
the integral M2 brane wrapping numbers Wmn = −Wnm around the various cycles of the
three-torus, and 1/2 BPS states exist when NmW

mn = 0. In terms of the rescaled quantities

nm = Nm

R
, wmn = R

d−5
3 Wmn , (4.18)

the 1/2 BPS mass formula is [43]

m2 = ‖g‖−
1
d−2

(
ZmZ

m + 1
2wmnw

mn
)
, Zm = nm + 1

2Cmnpw
np, Znw

mn = 0,
(4.19)

again in modified 8d Planck units 2κ2
d = (2π)d−3, where indices are raised and lowered

using gmn and ‖g‖ = det gmn.
At this point, it is expedient to specialize more particularly to the case d = 8. We

define wm = 1
2εmnpw

np where εmnp = ±1 is the Levi-Civita symbol on the k = 3 compact
directions. Then in terms of C such that Cmnp = εmnpC, the 1/2 BPS mass formula
becomes

m2 = ‖g‖−
1
6 ((~n+ C ~w)2 + ‖g‖~w2) , εmnpnnwp = 0, (4.20)

using the notation ~v2 = vpv
p. Furthermore, the shortening condition εmnpnnwp = 0 implies

that ~n and ~w are proportional, so ~w = 1
r~n for some r ∈ R. Thus,

m2 = ‖g‖−
1
6
[
(r + C)2 + ‖g‖

]~n2

r2 . (4.21)

In terms of the moduli
φa = 1

2κ8

(
gmn
C

)
, (4.22)

we obtain

~ζ(θ, n̂) =
(
ζmn

ζ

)
=
(

1
2 cos(θ)gmn + 1

3g
mn − n̂mn̂n

sin(θ)

)
, (4.23a)

~ζ · ~̃ζ = Gabζaζ̃b = ζmnζ̃mn −
1
9ζ

m
m ζ̃

n
n + 1

2ζζ̃, (4.23b)

where θ = 2 arctan(r + C), n̂ = ~n/
√
~n2, Gab is the inverse metric on moduli space read off

from the effective action (4.17), and we set 〈‖g‖〉 = 1 (i.e., 〈U〉 = 0) after taking the moduli
derivatives.

Notice that ~ζ(θ, n̂) = ~N(n̂) + ~T (θ) decomposes into pieces ~N(n̂) and ~T (θ) depending
only on n̂ and θ, respectively, where

~N(n̂) :=
(

1
3g
mn − n̂mn̂n

0

)
, ~T (θ) :=

(
1
2 cos(θ)gmn

sin(θ)

)
, (4.24)

and

| ~N(n̂)|2 = 2
3 ,

~N(n̂) · ~T (θ) = 0 , |~T (θ)|2 = 1
2 ,

~ζ2(θ, n̂) = 7
6 . (4.25)
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Thus, the convex hull of 1/2 BPS ~ζ vectors is the product of the radius 1/
√

2 circle around
the origin traced out by ~T (θ) with the convex hull traced out by ~N(n̂) in the remaining
five directions orthogonal to this circle. In particular, λmin for the overall convex hull is the
smaller of 1/

√
2 (λmin for the circle ~T (θ)) and λmin for the convex hull of the ~N(n̂).

To determine the latter, we first outline a general strategy for obtaining λmin from a
set of ~ζ-vectors that we will use repeatedly. Suppose that ∆ is the convex hull generated by
a set of points B = {~ei}. To find λmin for ∆, it is sufficient to find

λ(n̂) = max
~e∈B

(~e · n̂), (4.26)

and then minimize over different choices of n̂. Alternatively, for each direction n̂, we can
choose ~π ∝ n̂ such that

~ei · ~π ≤ 1 (4.27)

for all ~ei ∈ B, where at least one ~ei saturates the bound. Then |~π| = 1
λ(n̂) and we find λmin

by maximizing |~π| as we vary n̂.
Applying the latter method to the case at hand, consider the vector space of traceless,

symmetric k × k matrices with the inner product ~M · ~N = Tr(MN), with B consisting of
those of the form

Emn = êmên − 1
k
δmn (4.28)

for any unit vector êm. Choosing any direction Π̂mn, we use an O(k) transformation to
diagonalize Π̂mn, so that

Πmn = diag(λ1, . . . , λk),
k∑
i=1

λi = 0. (4.29)

We impose Tr(ΠmnEmn) = êmΠmnên ≤ 1 with at least one unit vector giving equality. This
is nothing but the condition λi ≤ 1 with at least one equality, i.e.,

Πmn = diag(1, λ2, . . . , λk), λ2, . . . , λk ≤ 1,
k∑
i=2

λi = 1. (4.30)

Now we want to scan over directions to maximize Π2, per the strategy explained above.
Note that for two variables x and y with a fixed total t, x2 + y2 = x2 + (t−x)2 is minimized
when x = y = t/2, and increases as the difference between x and y increases (in either
direction). Thus, for any pair of λi’s, we can increase Π2 by increasing their difference while
maintaining

∑k
i=2 λi = −1, until we saturate one of the inequalities λ2, . . . , λk ≤ 1. Thus,

there is always a way to increase Π2 unless all but one of the λi’s is equal to 1, i.e., the
longest Πmn will be of the form

Πmn
max = diag(1, . . . , 1,−(k − 1)) ⇒ Π2

max = (k − 1) + (k − 1)2 = k(k − 1), (4.31)

and so
λmin = 1√

k(k − 1)
= 1√

6
, (4.32)

– 22 –



J
H
E
P
1
2
(
2
0
2
2
)
1
1
4

<latexit sha1_base64="fhsFXnh7Ld+G0ZfRXZ1wBHCw05I=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsJ+3SzSbsboQa+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJYPZpqgH9GR5CFn1Fip039CQwfeoFxxq+4CZJ14OalAjuag/NUfxiyNUBomqNY9z02Mn1FlOBM4K/VTjQllEzrCnqWSRqj9bHHujFxYZUjCWNmShizU3xMZjbSeRoHtjKgZ61VvLv7n9VIT3vgZl0lqULLlojAVxMRk/jsZcoXMiKkllClubyVsTBVlxiZUsiF4qy+vk3at6l1V6/f1SqOWx1GEMziHS/DgGhpwB01oAYMJPMMrvDmJ8+K8Ox/L1oKTz5zCHzifPw9Tj1k=</latexit>

⇣1

<latexit sha1_base64="OiaUQvVGWalzAE+qmA0+vnj/Tk0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsJ+3SzSbsboQa+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKLSPJYPZpqgH9GR5CFn1Fip039CQwe1QbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLcGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/Hcy5AqZEVNLKFPc3krYmCrKjE2oZEPwVl9eJ+1a1buq1u/rlUYtj6MIZ3AOl+DBNTTgDprQAgYTeIZXeHMS58V5dz6WrQUnnzmFP3A+fwAQ149a</latexit>

⇣2

Figure 5. A schematic representation of the convex hull of the ~N(n̂) vectors. Only the moduli
arising from the diagonal components of ĝmn are depicted and likewise only the points corresponding
to n̂ = (1, 0, 0), n̂ = (0, 1, 0) and n̂ = (0, 0, 1) are shown,.

since k = 3 in the case of interest. The convex hull of the ~N(n̂) vectors is illustrated
schematically in figure 5.

Since 1/
√

6 < 1/
√

2, we conclude that λmin = 1/
√

6 = 1/
√
d− 2 for 8d maximal

SUGRA, again saturating our bound. As before, there are fundamental strings arising from
wrapping M2 branes on the various one-cycles of T 3, with tension

Tstring = ‖g‖
−1/6

2π
√
gmnWmWn , (4.33)

where the integers Wm describe the cycle in question. The corresponding string oscillator
modes m ∝

√
2πTstring have ~ζ vectors

~ζ(Ŵ ) =
(
−1

6g
mn + 1

2Ŵ
mŴn

0

)
, (4.34)

and indeed these are precisely the directions in which our bound was saturated. Thus, there
is a string scale associated to each such direction, as before.

4.4 Seven dimensions

The 7d Einstein-moduli action is still given by (4.17), now with d = 7. Likewise, the
1/2 BPS mass formula (4.19) is still valid, except that an additional shortening condition
w[mnwpq] = 0 (trivial for k < 4) now comes into play. Defining vmn = 1

2εmnpqw
pq and Cq

such that Cmnp = εmnpqC
q, we obtain

m2 = ‖g‖−
1
5

(
ZmZ

m + ‖g‖2 vmnv
mn
)
, Zm = nm + vmqC

q, (4.35)

with the 1/2 BPS shortening conditions

εmnpqZnvpq = 0, εmnpqvmnvpq = 0. (4.36)
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Thus, in terms of the moduli

φa = 1
2κ7

(
gmn
Cm

)
, (4.37)

we obtain

~ζ =
(
ζmn

ζm

)
=
(
−1

5δ
mn + δmnv2−ZmZn−vmpvn p

Z2+v2

2Znvnm
Z2+v2

)
, (4.38a)

~ζ · ~̃ζ = ζmnζ̃
mn − 1

9ζ
m
m ζ̃

n
n + 1

2ζmζ̃
m. (4.38b)

where Z2 := ZmZ
m, v2 := 1

2vmnv
mn, and we choose a basis where gmn = δmn for simplicity.

Note that for Zm 6= 0 the 1/2 BPS shortening conditions can be solved by vmn = Zmun −
Znum for some um that can be chosen to be orthogonal to Zm without loss of generality.
One can easily check that this leads to ~ζ2 = 6/5, which also holds when Zm = 0.

To find the convex hull of the 1/2 BPS states, we simplify the above expressions by
encapsulating ζmn and ζm into a single 5× 5 symmetric traceless matrix

ζab =
(
ζmn − 1

3ζ
p
pδ
mn 1

2ζ
n

1
2ζ
m 1

3ζ
m
m

)
, (4.39)

so that
ζabζ̃

ab = ζmnζ̃
mn − 1

9ζ
m
m ζ̃

n
n + 1

2ζmζ
m = ~ζ · ~̃ζ . (4.40)

For the 1/2 BPS states, we find explicitly:

ζab =
(2

5δ
mn − ZmZn+vmpvn p

Z2+v2
Znvnm
Z2+v2

Znvnm
Z2+v2

2
5 −

Z2

Z2+v2

)
. (4.41)

Defining the 5× 5 antisymmetric matrix,

Vab =
(
vmn −Zm
Zn 0

)
, (4.42)

we see that the above is the same as

ζab = 2
5δ

ab − V acV b
c

V 2 , V 2 ≡ 1
2VabV

ab, (4.43)

where the 1/2 BPS shortening conditions are now

εabcdeVbcVde = 0. (4.44)

The simplicity of these expressions is a manifestation of U-duality, where the 7d U-duality
group is SL(5,Z), which enhances to SL(5,R) in the low-energy effective action (ignoring
charge quantization).

The shortening condition (4.44) implies that Vab = XaYb − XbYa has rank two. In
particular, choosing Xa and Ya to be orthogonal without loss of generality,

Πa
b = V acVbc

V 2 = X̂aX̂b + Ŷ aŶb, (4.45)
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is a rank-two projection matrix, i.e., satisfying Π2 = Π and Tr Π = 2. Thus,

ζab = 2
5δ

ab −Πab ⇒ ζabζ
ab = Tr

[ 4
251 + 1

5Π
]

= 4
5 + 2

5 = 6
5 . (4.46)

Now consider an arbitrary symmetric traceless matrix P ab, and diagonalize

P ab =


λ1

. . .

λ5

 , 5∑
i=1

λi = 0, λ1 ≥ λ2 ≥ · · · ≥ λ5. (4.47)

We have
P · ζ = −

∑
a

λaΠaa. (4.48)

The rank-two projector is constrained by Πaa ≤ 1 (no sum) and
∑
a Πaa = 2, so

P · ζ ≥ −λ1 − λ2, (4.49)

and the minimum value is achieved for Πab = diag(1, 1, 0, 0, 0). Thus, we set λ1 + λ2 = 1 to
obtain P · ζ ≥ −1 with the bound saturated in at least one direction. We then have:

P ab = diag(λ1, λ2, λ3, λ4, λ5), λ1 + λ2 = 1,
λ3 + λ4 + λ5 = −1, min(λ1,2) ≥ max(λ3,4,5).

(4.50)

We want to maximize P abPab = λ2
1 + λ2

2 + λ2
3 + λ2

4 + λ2
5 subject to these constraints. Recall

that for fixed x+ y = t, x2 + y2 increases as the difference between x and y increases. Thus,
for fixed λ1,2 it is optimal to saturate the bound min(λ1,2) ≥ max(λ3,4,5) with two out of
three of λ3, λ4 and λ5, so that (again taking λ1 ≥ λ2 ≥ · · · ≥ λ5 without loss of generality)

P ab = diag(1− λ2, λ2, λ2, λ2,−1− 2λ2), 1
2 ≥ λ2 ≥ −

1
3 . (4.51)

Now we just have to maximize

PabP
ab = (1− λ2)2 + 3λ2

2 + (1 + 2λ2)2, for 1
2 ≥ λ2 ≥ −

1
3 . (4.52)

The maximum value occurs at λ2 = 1/2, i.e., for

P ab = diag
(1

2 ,
1
2 ,

1
2 ,

1
2 ,−2

)
. (4.53)

We find P 2
max = 4

4 + 4 = 5, hence λmin = 1√
5 = 1√

d−2 , once again saturating our bound.
As before, there are BPS fundamental strings arising from M2 branes wrapping the

various one-cycles of T 4, but now there are also BPS fundamental strings arising from
M5 branes wrapping T 4; these are characterized by integer winding numbers Wm and W ,
respectively. The two are intermixed by U-duality, so we define

Ua =
(
wm + wCm

w

)
where wm = R−1/3Wm and w = R4/3W . (4.54)
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Here the relative powers of R and the term involving Cm are both fixed by the fact that in an
alternate basis upon which SL(5,Z) naturally acts, Vab =

( 1
2 εmnpqW

pq −Nm
Nn 0

)
and Ua =

(
Wm

W

)
both have integral components. Thus, U-duality together with a few easily-analyzed special
cases fixes the tension formula for 1/2 BPS strings

Tstring = 1
2π

√
δabUaU b = ‖g‖

− 1
5

2π

√
(wm + wCm)2 + ‖g‖w2 , (4.55)

where in the second equality we return to an arbitrary basis where gmn 6= δmn, restoring
the correct factors of ‖g‖ by considering the special cases of wrapped M2 branes and of
wrapped M5 branes with Cmnp = 0. A straightforward calculation then gives

ζab = − 1
10δ

ab + 1
2
UaU b

U2 , (4.56)

for the string oscillator modes. These are precisely the directions that saturated the bound
λ ≥ 1/

√
d− 2 above, hence there is a string scale associated to each such direction as before.

4.5 Six, five, and four dimensions

As seen above, U-duality plays an increasingly important role as we compactify further. In
appendix A we use an approach that incorporates U-duality from the start to show that
the formula λmin = 1/

√
d− 2 persists for d ∈ {4, 5, 6}.

5 Bottom-up evidence in minimal supergravity

In the previous section, we saw that our proposed bound λ ≥ 1/
√
d− 2 is saturated in

maximal supergravity in dimensions d = 4 – 10. In this section, we present further evidence
that this bound is saturated in minimal supergravity in diverse dimensions. As the title
of the section suggests, our analysis here proceeds by a bottom-up approach: with only a
couple of exceptions, we will not study UV complete string/M-theory compactifications.
Instead, following the approach of [4] in four dimensions, we study the scaling behavior
of gauge couplings in infinite-distance limits in moduli space. Invoking the tower Weak
Gravity Conjecture or the Weak Gravity Conjecture for strings then implies a tower of light
charged particles/string oscillator modes in the limit of vanishing gauge couplings, and by
working out the scaling of the gauge couplings with proper field distance, we may in turn
determine the scaling of the particle masses in this limit.

In the remainder of this section, we will find no counterexamples to the bound λ ≥
1/
√
d− 2, and we will find many examples in which this bound is saturated by oscillator

modes of a charged string. We will also find many examples of decompactification limits, in
which one tower satisfies the Distance Conjecture with λ =

√
(d− 1)/(d− 2) (as expected

for a tower of Kaluza-Klein modes under dimensional reduction), while another satisfies
the bound with λ = 1/

√
(d− 1)(d− 2) (as expected for the Kaluza-Klein zero modes of a

D-dimensional tower after dimensional reduction to d = D − 1 dimensions). This provides
support not only for our bound (1.2), but also for the Emergent String Conjecture, which
holds than any infinite-distance limit is either a decompactification limit or an emergent
string limit.
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This approach relies on several important assumptions. First of all, it relies on the
assumption of the tower Weak Gravity Conjecture and the Weak Gravity Conjecture for
strings, but given the vast body of evidence in favor of these conjectures (see e.g. [16, 20,
21, 44–48]), this seems to be a relatively minor assumption.

Secondly, this approach relies on the assumption that the tensionless string which
emerges in the weak coupling limit of a 2-form gauge field is a fundamental string, meaning
that its core probes the deep ultraviolet. Otherwise, one would not expect an infinite
tower of string oscillator modes, but merely a finite tower. This assumption follows from
the Emergent String Conjecture [24] and the Distant Axionic String Conjecture [7], and
it is satisfied in many examples in string theory [7, 25, 25, 45, 49], so it appears to be a
valid assumption.

Finally, and perhaps most significantly, our discussion in this section will ignore questions
of charge quantization, focusing instead on the scaling behavior of gauging couplings in the
classical action in asymptotic limits of moduli space. Given a gauge kinetic matrix aIJ , we
may compute the eigenvalues of this matrix as a function of the moduli in the theory, and we
may say that a gauge coupling vanishes when some eigenvalue of aIJ diverges. However, the
eigenvector associated with the gauge coupling is generically an axion-dependent quantity, so
the linear combination of gauge fields whose coupling vanishes in the infinite-distance limit
is a function of these axions. The presence of these axions does not necessarily present a
problem, since the axions appearing in such a linear combination may be fixed to particular
values in an asymptotic limit. However, for certain values of the axions, there may not be
any particles charged solely under the weakly coupled gauge field in question, due to charge
quantization.

For instance, consider two 1-form gauge fields A1
1, A2

1 with field strengths F i2 = dAi1
and electric charges quantized in the A1, A2 basis as

1
g2

1

∮
Sd−2

?F 1
2 ,

1
g2

2

∮
Sd−2

?F 2
2 ∈ Z . (5.1)

We may then consider the linear combinations

A+
1 = cos(θ)A1

1 + sin(θ)A2
1 , A−1 = − sin(θ)A1

1 + cos(θ)A2
1 , (5.2)

with associated gauge couplings

g+ = cos(θ)g1 + sin(θ)g2 , g− = − sin(θ)g1 + cos(θ)g2 . (5.3)

Then, the limit g+ → 0 is a weak coupling limit for the gauge field A+
1 , and if tan(θ) is

rational, then the tower Weak Gravity Conjecture implies a tower of light particles, charged
under A+

1 but not A−1 , whose masses vanish in the limit.
On the other hand, if tan(θ) is irrational, then because of our charge quantization

condition (5.1), there can be no particles charged under A+
1 that are not also charged under

A−1 . As a result, the tower Weak Gravity Conjecture does not imply a tower of particles
whose masses vanish in the limit g+ → 0, as long as g− remains finite in this limit.

In [48, 49], it was argued in the context of M-theory compactifications to d = 5
dimensions that the g+ → 0 limit with tan(θ) rational corresponds to an infinite-distance
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limit of moduli space, where the tower of light particles required by the tower Weak Gravity
Conjecture also satisfies the Distance Conjecture. In contrast, the g+ → 0 limit with tan(θ)
irrational corresponds to a “periodic boundary”: a boundary of moduli space in which a
compact scalar field traverses its fundamental domain many times. Such a boundary is not
at infinite distance in moduli space, so the Distance Conjecture is satisfied trivially despite
the absence of a tower of light particles.

Guided by our understanding of 5d M-theory compactifications, we will assume through-
out this section that the presence of a vanishing gauge coupling indicates either (a) an
infinite-distance limit in moduli space in which the tower Weak Gravity Conjecture leads
to a tower of massless particles charged solely under the weakly coupled gauge field or (b)
a finite-distance, periodic boundary of moduli space, in which the Distance Conjecture is
satisfied trivially, but there are no particles charged solely under the weakly coupled gauge
field. Confirming this assumption would require us to go beyond low-energy supergravity
and study these systems from a top-down approach in string/M-theory. However, the
absence of any counterexamples to the Distance Conjecture in known string/M-theory
compactifications offers solid justification for our assumption.

5.1 Five dimensions

In [38, 50], it was argued that every infinite-distance point in vector multiplet moduli space
is a point of vanishing gauge coupling, and vice versa. Thus, to place an upper bound on
the Distance Conjecture coefficient λ in five dimensions, we assume that the tower weak
gravity conjecture holds, and we study the scaling of the gauge couplings at infinite distance
in moduli space.

We begin by reviewing relevant aspects of supergravity in five dimensions, following [48].
At a generic point in vector multiplet moduli space, the action for the bosonic fields in a
gauge theory with n vector multiplets is given by

S = 1
2κ2

5

∫
d5x
√
−g

(
R− 1

2gij(φ)∂φi · ∂φj
)
− 1

2g2
5

∫
aIJ(φ)F I ∧ ?F J

+ 1
6(2π)2

∫
CIJKA

I ∧ F J ∧ FK , (5.4)

where I = 0, . . . , n, i = 1, . . . , n, and g2
5 = (2π)4/3(2κ2

5)1/3. The scalar metric gij(φ), the
gauge kinetic matrix aIJ(φ), and the Chern-Simons couplings CIJK are all determined
by a prepotential F [Y ], which is a cubic in Y I . We define FI ≡ ∂IF , FIJ ≡ ∂I∂JF and
FIJK ≡ ∂I∂J∂KF . The Chern-Simons couplings are determined by CIJK = FIJK , and the
gauge kinetic matrix is given by

aIJ(φ) = FIFJ −FIJ . (5.5)

The vector multiplet moduli space corresponds to the slice F = 1. The metric on vector
multiplet moduli space is the pullback of aIJ to this slice,

gij = aIJ∂iY
I∂jY

J . (5.6)
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It is useful to work in homogenous coordinates, invariant under Y I → λY I . We may
then drop the constraint F = 1 and instead set

aIJ = FIFJ
F4/3 −

FIJ
F1/3 . (5.7)

In homogenous coordinates, the metric on scalar field space may be written as [50]

gIJ = 2
3
FIFJ
F2 − FIJ

F
. (5.8)

The distance of a path in moduli space, γ = γ(s), s ∈ [si, sf ], may then be written in
homogenous coordinates as

` = 1√
2κ5

∫ sf

si

ds
√
gIJ Ẏ I Ẏ J , (5.9)

where Ẏ I = ∂Y I/∂s, and the factor 1/
√

2κ5 comes from the prefactor in the action (5.4).
As noted in [50], a path γ(s) approaching an infinite-distance point Y i

0 in homogenous
coordinates may always be rescaled via Y I(s)→ λY I(s) to ensure that Y I

0 remains finite
for all I, and Y I

0 is nonzero for at least one I. The condition that Y i
0 lies at infinite distance

then requires that gIJ must diverge in the Y I → Y I
0 limit. Since Y I was assumed finite, FI

must also be finite, which by (5.8) means that F must vanish in the limit.
We assume that the path is a straight line in homogeneous coordinates:

Y I = Y I
0 + sY I

1 , s ∈ [0, 1] , (5.10)

such that Y I
0 lies at infinite distance. Not all infinite-distance limits take this straight-line

form, but such paths offer a useful starting point for analysis, and we will return to the more
general case below. Note that such straight lines necessarily remain within the moduli space
due to the convexity of the vector multiplet moduli space (in homogeneous coordinates)
for M-theory compactifications to five dimensions [48]. We further assume that the path
remains within a single Kähler cone, i.e., there are no flop transitions. This assumption can
be justified in M-theory compactifications on Calabi-Yau threefolds if the strong birational
cone conjecture of [49] holds true. (This conjecture is a strengthening of the birational cone
conjecture of [51].)

By a suitable redefinition of coordinates, we may in fact set

Y I
0 = δI0 , Y

I
1 = δI1 . (5.11)

We may then expand the prepotential along the path near Y I
0 in powers of s:

F = 1
6CIJKY

IY JY K

= 1
6CIJKY

I
0 Y

J
0 Y

K
0 + 1

2CIJKY
I

0 Y
J

0 Y
K

1 s+ 1
2CIJKY

I
0 Y

J
1 Y

K
1 s2 + 1

6CIJKY
I

1 Y
J

1 Y
K

1 s3

= 1
6C000 + 1

2C001s+ 1
2C011s

2 + 1
6C111s

3 . (5.12)
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By the argument above, F must vanish as s → 0 if we assume that the Y I have been
rescaled homogeneously so that Y I

0 is finite for all I. This implies CIJKY I
0 Y

J
0 Y

K
0 = 0,

which implies F ∼ sm, for m = 1, 2, or 3. It turns out that m = 3 is not at infinite distance,
so we have only two options to consider: i) F ∼ s and ii) F ∼ s2. For reasons that will
become clear shortly, we will refer to these as decompactification limits and emergent string
limits, respectively.

Decompactification limits: F ∼ s. At an asymptotic boundary corresponding to a
decompactification limit, we have C000 = 0 but C001 6= 0, so F = 1

2C001Y
I

0 Y
J

0 Y
K

1 s+O(s2) =
1
2C001s+O(s2). We then have

FI Ẏ I = FIY I
1 = 1

2CIJKY
I

0 Y
J

0 Y
K

1 = 1
s
F +O(s) , (5.13)

FIJ Ẏ I Ẏ J = FIJY I
1 Y

J
1 = 1

2CIJKY
I

0 Y
J

1 Y
K

1 = O(s0) . (5.14)

Plugging these equations into (5.8) and using (5.9) gives in the limit ε→ 0,

`(ε) = 1√
2κ5

∫ 1

ε
ds
√

2
3s2 +O(1/s) = − 1√

3κ5
log(ε) +O(ε0) , (5.15)

so indeed, the point Y I
0 is at infinite distance.

Meanwhile, from (5.12), we have

F0 = C001s+O(s2) , F1 = 1
2C001 +O(s) , (5.16)

F00 = C001s+O(s2) , F01 = C001 +O(s) , F11 = C011 +O(s) , (5.17)

which by (5.7) gives

a00 =
(√

2C001
)2/3

s2/3+O
(
s5/3

)
, a11 = (C001/2)2/3 s−4/3+O

(
s5/3

)
, a01 =O

(
s2/3

)
.

(5.18)
By positive-definiteness of aIJ , the scaling of a00 and a11 with s implies that one eigenvalue
of aIJ must scale as amin ∼ s2/3 while another scales at least as amax ∼ s−4/3 in the limit
s→ 0. The eigenvalues of aIJ are (up to normalization constants) simply the inverse-squares
of the gauge couplings. Thus, employing (5.15), we have in the limit ε→ 0:

gmin ∼ a−1/2
max . ε2/3 ∼ exp

(
− 2√

3
κ5`

)
. (5.19)

If the tower weak gravity conjecture is satisfied, we expect a tower of particles charged
under this gauge field with mass scale m . gmin. The Distance Conjecture is satisfied in
this case with a coefficient

λ = 2√
3
. (5.20)

This coefficient matches the value λ =
√

(d− 1)/(d− 2) expected for Kaluza Klein modes
upon dimensional reduction from D = 6 dimensions, hence justifying our use of the term
“decompactification limit.” Further justification comes from noting that the vanishing
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eigenvalue amin ∼ s2/3 from (5.18) implies a diverging gauge coupling gmax ∼ s−1/3 in the
limit s → 0. The magnetic Weak Gravity Conjecture for this gauge field then implies a
tensionless string with string oscillator modes beginning at the scale

Mstring =
√

2πTstring ∼ ε1/6 ∼ exp
(
− 1

2
√

3
κ5`

)
. (5.21)

This coefficient 1/(2
√

3) is precisely the value 1/
√

(d− 1)(d− 2) observed in (2.4): it is the
expected scaling for the Kaluza-Klein zero modes of a tower of particles in D dimensions
after reduction to d dimensions. Thus, assuming the tower Weak Gravity Conjecture and
the magnetic Weak Gravity Conjecture for strings in 5d, we find both of the towers expected
in a Kaluza-Klein decompactification to six dimensions.

Emergent string limit: F ∼ s2. Next, we turn our attention to the other type of
boundaries, which have

F = 1
2CIJKY

I
0 Y

J
1 Y

K
1 s2 +O

(
s3
)

= 1
2C001s

2 +O
(
s3
)
. (5.22)

We then have

FI Ẏ I = FIY I
1 = CIJKY

J
0 Y

K
1 Y I

1 s+O
(
s2
)

= 2
s
F +O

(
s2
)

(5.23)

FIJ Ẏ I Ẏ J = FIJY I
1 Y

J
1 = CIJKY

I
0 Y

J
1 Y

K
1 = 2

s2F +O (s) . (5.24)

Plugging these equations into (5.8) and using (5.9) gives in the limit ε→ 0,

`(ε) = 1√
2κ5

∫ 1

ε
ds
√

2
3s2 +O(1/s) = − 1√

3κ5
log(ε) +O

(
ε0
)
, (5.25)

so indeed, the point Y I
0 is at infinite distance along the path.

Meanwhile, we have

F0 = 1
2C011s

2 , F1 = C011 +O
(
s2
)
, (5.26)

F00 = 0 , F01 = C011s+O
(
s2
)
, F11 = C011 +O(s) , (5.27)

so by (5.7),

a00 = (C011/2)2/3 s4/3+O
(
s7/3

)
, a11 =

(√
2C011

)2/3
s−2/3+O

(
s5/3

)
, a01 = O(s4/3) .

(5.28)
By positive-definiteness of aIJ , the scaling of a00 and a11 with s implies that one eigenvalue
of aIJ must scale as amin ∼ s4/3 while another scales at least as amax ∼ s−2/3 in the limit
s→ 0. The eigenvalues of aIJ are (up to normalization constants) simply the inverse-squares
of the gauge couplings. Thus, employing (5.15), the smallest gauge coupling scales in the
limit ε→ 0 as:

gmin ∼ a−1/2
max . ε1/3 ∼ exp

(
− 1√

3
κ5`

)
. (5.29)
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Geometry Prepotential F Asymptotic Boundary Type

Symmetric Flop 1
3X

3 + 2X2Y X → 0 ES

GMSV 5
6X

3 + 2X2Y X → 0 ES

h1,1 = 3 KMV
4
3X

3 + 3
2X

2Y + 1
2XY

2 X → 0 Decomp.

+X2Z +XY Z X, Y → 0, X/Y fixed ES

Table 1. Types of asymptotic boundaries (emergent string or decompactification) for M-theory
compactified on three examples of Calabi-Yau geometries (the symmetric flop geometry [48], the
Greene-Morrison-Strominger-Vafa geometry [52, 53], and the h1,1 = 3 Klemm-Mayr-Vafa geome-
try [54]). Further details of these examples can be found in section 7 of [48].

If the tower weak gravity conjecture is satisfied, we expect a tower of particles charged
under this gauge field with mass scale m . gmin. The Distance Conjecture is satisfied in
this case with a coefficient

λ = 1√
3
, (5.30)

thereby saturating our proposed bound λ ≥ 1/
√
d− 2.

Evidence that this boundary corresponds to an emergent string limit can be seen by
further analyzing the largest gauge coupling of the system, which by scales with the smallest
gauge coupling as

gmax ∼ a−1/2
min κ5/g

2
min . (5.31)

In the gmin → 0 limit, gmax diverges, but the magnetic Weak Gravity Conjecture suggests
that a string charged magnetically under this gauge field should have a tension bounded
above as

Tstring . 1/(κ5gmax) ∼ ε2/3 ∼ exp
(
− 2√

3
κ5`

)
, (5.32)

so we see that indeed, a tensionless string emerges in the limit gmin → 0. Furthermore, this
string will have a tower of string oscillator modes beginning at the mass scale Mstring =√

2πT ∼ gmin/κ5, and it is natural to identify this with the tower required by tower Weak
Gravity Conjecture for the gauge field with coupling gmin.

Indeed, the scaling F ∼ s2 implies a nonzero Chern-Simons coupling of the form C0ij
for some i, j > 0, which by anomaly inflow [55] implies that a string charged magnetically
under A0 will carry electric charge under Ai and Aj . This string is precisely the emergent
string discussed above, which becomes tensionless in the gmin → 0 limit [49]. For more
details, see [41, 56] for the simple case of a theory with a single vector multiplet or [49]
for the more general case. Several examples of asymptotic boundaries were discussed in
section 7 of [48]. Table 1 classifies each of these boundaries by type.

Finally, we return to important point mentioned above: not every infinite-distance
geodesic in moduli space takes the form of a straight line in homogeneous coordinates.
However, our analysis of these straight line paths has revealed that they have precisely the
towers expected for a decompactification limit and an emergent string limit, as discussed in
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Figure 6. A 5d supergravity theory with no decompactification limits. A theory with multiple
emergent string boundaries but no decompactification limits will violate the convex hull condition
for the Scalar Weak Gravity Conjecture in some directions in scalar field space, and it will violate
our Distance Conjecture bound λ ≥ 1/

√
d− 2.

section 2. Thus, we expect that any system featuring two or more of these straight-line
boundaries will essentially prove to be just a special case of the dilaton-radion system
studied above. Just as the convex hull condition was satisfied for the system in section 2.2,
we expect that the convex hull condition will be satisfied here, so that towers satisfying our
bound λ ≥ 1/

√
d− 2 will appear in any infinite-distance limit in field space, including the

non-straight-line paths which approach an intermediate regime between an emergent string
boundary and a decompactification boundary.

One interesting corollary of our analysis from section 2.2 is that a single 5d supergravity
theory cannot have multiple (straight-line) emergent string boundaries unless there is also
a decompactification boundary: since the former saturate our bound (1.2), the convex hull
condition will be violated in the intermediate regime between these two directions in field
space, as shown in figure 6. It would be interesting to prove this statement, or at least to
confirm it in examples of 5d supergravity theories arising from M-theory compactifications.
More generally, such compactifications may offer a fertile testing ground for our proposed
bound (1.2).

5.2 Six dimensions

To begin, we review relevant aspects of 6d supergravity coupled to abelian gauge fields,
following [57, 58]. A generic 6d supergravity features one supergravity multiplet, nT tensor
multiplets and nV vector multiplets. It may also include hypermultiplets, but we do not
consider these in what follows. The supergravity multiplet includes the metric and an
anti-self-dual 2-form gauge field, but no scalar field. A tensor multiplet features one self-dual
2-form gauge field and a scalar field. A vector multiplet features a 1-form gauge field, but
no scalar field.

– 33 –



J
H
E
P
1
2
(
2
0
2
2
)
1
1
4

As a result, a theory with nT tensor multiplets will have nT + 1 2-form gauge fields and
nT scalar fields. These scalar fields parametrize the tensor multiplet moduli space, which is
the coset space SO(1, nT )/SO(nT ). We may describe these in terms of the SO(1, nT ) matrix:

V =
(
vr
xMr

)
(5.33)

where r = 0, 1, . . . , nT and M = 1, 2, . . . , nT . These are subject to the conditions

vrvr = 1 , vrx
M
r = 0 , vrvs − xMr xMs = ηrs , (5.34)

where here, repeated indices are summed, and r and s indices are raised and lowered via
the metric ηrs = diag(−1, 1, 1, . . . , 1).

The gauge kinetic matrix for the tensor fields is then given by

G = vrvs + xMr x
M
s , (5.35)

and the relevant part of the action is given by

S = 1
2κ2

6

∫ (
R− dvr ∧ ?dvr −

1
2GrsH

r
3 ∧ ?Hs

3 −
1
2vrc

rabF a ∧ ?F b + 1
2c

ab
r B

r
2 ∧F a2 ∧F b2

)
.

(5.36)
To analyze the general case with nT tensor multiples, we begin by taking V to be the

identity matrix and perform boosts and rotations to get any matrix in SO(1, nT ). Thus
we have

V = Λ
(
v0,r
xM0,r

)
(5.37)

where v0 = e1 =
(
1 0 0 . . .

)
, xM0 = eM+1, and Λ is a Lorentz transformation. Without loss

of generality we can write Λ as

Λ = (B0 ({φk}))

 ∏
i,j 6=0

Rij (φij)

 , (5.38)

where Rij are rotations on the plane of ith and jth axis and B0k({φk}) are boosts along
the kth direction.

The kinetic matrix for the 2-form gauge fields then takes the form

Grs = vrvs + xMr x
M
s = ΛkrΛls

(
(v0)k (v0)l +

(
xM0

)
k

(
xM0

)
l

))
= ΛkrΛlsδkl =

(
ΛTΛ

)
rs

=

 ∏
i,j 6=0

Rij

T (B0)2

 ∏
i,j 6=0

Rij

 , (5.39)

since BT = B for any boost matrix. Since rotations do not change the eigenvalues of a
matrix, the eigenvalues of G are equal to the eigenvalues of B2

0 .
To find the eigenvalues of the boost matrix B0, we first write it in terms of the boost

generators as
B0({φk}) = eφiKi = eA, (5.40)
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where Ki is the standard generator of boosts in the ith direction. The eigenvalues of G({λi})
are then given in terms of the eigenvalues of A({ai}) as

a1 =
√∑

i

(φi)2 = φ⇒ λ1 = e2φ

a2 = −
√∑

i

(φi)2 = −φ⇒ λ1 = e−2φ (5.41)

ai = 0⇒ λi = 1 for i > 2 ,

where we defined φ =
√∑

i(φi)2 as the magnitude of the boost vector. In the limit φ→∞,
we see that one of the eigenvalues of Grs diverges as e2φ, indicating a vanishing 2-form
gauge coupling in this limit.

The boosted vectors vr, xM are given by

vr = Be1 =



cosh(φ)
φ1

sinh(2φ)
φ

φ2
sinh(2φ)

φ

. . .

φN−1
sinh(2φ)

φ


,

(
xM
)
r

= BeM+1 =



φM
sinh(2φ)

φ

φMφ1
cosh(φ)−1

φ2

. . .∑
i 6=M (φi)2+φ2

M cosh(φ)
φ2

. . .

φMφN−1
cosh(φ)−1

φ2


. (5.42)

Defining angular variables rk = φk
φ , we may rewrite vr as

vr =


cosh(φ)
r1 sinh(φ)
r2 sinh(φ)

. . .

rN−1 sinh(φ)

 . (5.43)

Note that φ is independent of ri, and
∑
i r

2
i = 1. We keep ri constant and take the limit

φ→∞. With this, the scalar kinetic term in the Lagrangian (5.36) takes the form

− 1
2κ2

6
∂µv

r∂µvr = − 1
2κ2

6

∂vr

∂φ

∂vr
∂φ

∂µφ∂
µφ+ . . . , (5.44)

from which we can read off

gφφ = 1
κ2

6

∂vr

∂φ

∂vr
∂φ

= 1
κ2

6

(
− sinh2(φ) +

N−1∑
i=1

r2
i cosh2(φ)

)
= 1
κ2

6
. (5.45)

So, φ→∞ is indeed at infinite distance in moduli space, and the canonically normalized
scalar field is given by φ̂ = φ/κ6.

Assuming the Weak Gravity Conjecture is satisfied for the weakly coupled 2-form gauge
field B in the limit φ→∞, we expect a string with tension

Tstring . gB ∼ exp(−φ) ∼ exp(−κ6φ̂) . (5.46)
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The oscillator modes of this string will then give rise to a tower of light particles at the
string scale

Mstring =
√

2πTstring .
√
gB ∼ exp(κ6φ̂/2) , (5.47)

so the Distance Conjecture is satisfied with

λ = 1
2 = 1√

d− 2

∣∣∣∣
d=6

, (5.48)

which saturates our proposed bound (1.2). An analogous computation applies in the
φ→ −∞ limit as well. Note that each of these limits involve weakly coupled 2-form gauge
fields, which by the Weak Gravity Conjecture imply emergent tensionless strings, so once
again the scaling λ = 1/

√
d− 2 is characteristic of an emergent string boundary, as we

found in five dimensions above.

5.3 Seven dimensions

Minimal 7d supergravity [59] features one supergravity multiplet and n vector multiplets.
The supergravity multiplet has a graviton, one scalar field, three abelian vector fields, and
one 2-form gauge field, while each vector multiplet has three scalar fields and one vector
field. This means that there are a total of 3n+ 1 scalar fields: a dilaton σ, which comes
from the gravity multiplet, and 3n scalars φα, which come from the vector multiplets and
parametrize the coset SO(3, n)/(SO(3)× SO(n)).

The 3n scalars of the vector multiplets may then be thought of as boosts Bai(φai) in an
ambient R3,n, with coordinates {ta, xi}, a = 1, 2, 3, i = 1, . . . , n. An infinite-distance path
in the moduli space is a one-parameter family of boosts. As in the case of 6d supergravity
above, we suppose that this path takes the simple linear form φai = raiφ for some constant
rai. By an appropriate choice of coordinate axes, we may in fact further assume rai = δa1δi1,
so the infinite-distance limit is simply the limit of an infinite boost B11(φ→∞) in the t1,
x1 plane of R3,n.

After this convenient choice of coordinates, the relevant part of the 7d supergravity
action is given by [56]:

S = 1
2κ2

7

∫ (
R− 1

2e
σ
(
F 1

2 ∧ ?F 1
2 + F 2

2 ∧ ?F 2
2

)
− 1

2e
σ
(
e2φF+

2 ∧ ?F
+
2 + e−2φF−2 ∧ ?F 2−

)
− 1

2e
2σH3 ∧ ?H3 −

5
4dσ ∧ ?dσ − dφ ∧ ?dφ

)
, (5.49)

where

H3 = dB2 + 1
3
√

2

(
A1 ∧ F 1

2 +A2
1 ∧ F 2

2 + 1
2
(
A+

1 ∧ F
−
2 +A−1 ∧ F

+
2

))
. (5.50)

The limit σ is then a weak coupling limit for the 2-form B2, and the Weak Gravity Conjecture
implies a tower of string oscillator modes beginning at the string scale

Mstring =
√

2πTstring ∼ exp(−σ/2) . (5.51)
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After canonically normalizing the dilaton, this tower the Distance Conjecture with a
coefficient of

λ = 1√
5

= 1√
d− 2

, (5.52)

which saturates our bound (1.2), as expected for a tower of string oscillator modes.
Meanwhile, the tower Weak Gravity Conjecture implies a tower of particles in the weak

coupling limits σ ± 2φ→∞ for the gauge fields A±. These towers have

λ =
√

6
5 , (5.53)

which is precisely what we expect for towers of Kaluza-Klein modes under dimensional
reduction, from (2.7).

Indeed, the parallels between this system and the one studied in section 2 become even
clearer if we define canonically normalized scalar fields:

ρ̂ ≡ 1
2κ7

√
5
6 (σ + 2φ) , σ̂8 = 1

2κ7

1√
6

(−5σ + 2φ) . (5.54)

In terms of these fields, the string scale (5.51) is given by

Mstring ∼ exp
(
− 1√

6
κ7σ̂8 + 1√

30
κ7ρ̂

)
. (5.55)

This matches precisely with (2.4) upon setting λD = 1/
√
D − 2 and taking ρ̂ to be the

radion while σ̂8 is the 8d dilaton. Meanwhile, the Weak Gravity Conjecture tower for the
gauge field A+ begins at a scale

m ∼ exp
(
−κ7

√
6
5 ρ̂
)
, (5.56)

which matches precisely with (2.7). In other words, the towers required by the Weak Gravity
Conjecture for B and by the tower Weak Gravity Conjecture for A+ have precisely the
scaling behavior expected upon dimensional reduction of an 8d theory with a dilaton σ̂8
and a Distance Conjecture tower with λ8 = 1/

√
6. By a similar analysis for the gauge field

A−, taking φ→ −φ, the same is true for the limit φ→ −∞. As a result, the analysis of
section 2.2 implies that the convex hull condition λ ≥ 1/

√
5 will be satisfied in the limit

φ→ ±∞, σ →∞ for any value of the ratio φ/σ. Minimal supergravity cannot tell us about
the strongly coupled σ → −∞ limit, however, so we must invoke string dualities to cover
this case.

Note that our analysis here also provides good evidence for the Emergent String
Conjecture, as all of the infinite-distance limits of moduli space in seven dimensions we
have introduce a light tower of fields whose masses scale either as Kaluza-Klein modes or
string oscillator modes.
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5.4 Eight dimensions

The case of 8d supergravity [60] is similar to 7d supergravity. It features one supergravity
multiplet and n vector multiplets. The supergravity multiplet has a graviton, one scalar
field, two abelian vector fields, and one 2-form gauge field, while each vector multiplet has
two scalar fields and one vector field. This means that there are a total of 2n+ 1 scalar
fields: a dilaton σ, which comes from the gravity multiplet, and 2n scalars φα, which come
from the vector multiplets and parametrize the coset SO(2, n)/(SO(2)× SO(n)).

Similar to 7d supergravity, we can think of the 2n scalar fields in the vector multiplets
as boosts Bai(φai) in an ambient R2,n, with coordinates {ta, xi}, a = 1, 2, i = 1, . . . , n.
An infinite-distance path in the moduli space is a one-parameter family of boosts. If we
suppose that this path takes the simple linear form φai = raiφ for some constant rai, then
by appropriate choice of axes we may set rai = δa1δi1, so the infinite-distance limit is simply
the limit of an infinite boost B11(φ→∞) in the t1, x1 plane of R2,n.

Under this assumption, we may ignore the angular directions in scalar field space (i.e.,
axions) and focus our attention on the scaling of gauge couplings with the dilaton σ and
the radial mode φ. The relevant part of the supergravity action then takes the simple form

S = 1
2κ2

8

∫ (
R− 1

2e
σ
(
F 1

2 ∧ ?F 1
2

)
− 1

2e
σ
(
e2φF+

2 ∧ ?F
+
2 + e−2φF−2 ∧ ?F 2−

)
− 1

2e
2σH3 ∧ ?H3 −

3
2dσ ∧ ?dσ − dφ ∧ ?dφ

)
. (5.57)

This action may be obtained simply by reducing pure supergravity in 9 dimensions and
ignoring the axion θ associated with the holonomy of the 9d gauge field around the circle,
setting the axion vev to zero. Consequently, this system takes precisely the form studied in
section 2 above: the limit σ → ∞ is an emergent string limit as the 2-form B2 becomes
weakly coupled, and the tower of string oscillator modes satisfy the Distance Conjecture with
λ = 1/

√
6 = 1/

√
d− 2, saturating our proposed bound. Meanwhile, the limit σ ± 2φ→ 0

is a decompactification limit, associated with a tower of light Kaluza-Klein modes with
λ =

√
7/6 charged under the gauge fields A±. The whole system is consistent with the

Emergent String Conjecture, and by our analysis in section 2, it is consistent with our
proposed bound (1.2) as well.

5.5 Nine dimensions

9d supergravity [61] features one supergravity multiplet and n vector multiplets. The
supergravity multiplet has a graviton, a 2-form gauge field, a 1-form gauge field, and
a scalar, while each vector multiplet has a vector field and a scalar field. This means
that there are a total of n + 1 scalar fields: a dilaton σ, which comes from the gravity
multiplet, and n scalars φα, which come from the vector multiplets and parametrize the
coset SO(1, n)/SO(n).

The relevant part of the supergravity action takes the form

S =
∫ 1

2κ2
9

(
R− 1

2e
−2σH3 ∧ ?H3 −

1
2e
−σaIJF

I
2 ∧ ?F J2 − gαβdφα ∧ ?dφβ −

7
4dσ ∧ ?dσ

)
.

(5.58)
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Here, the metric on vector multiplet moduli space is identical to the metric on tensor
multiplet moduli space in 6d supergravity considered above, as the moduli spaces in
question are identical. Likewise, the gauge kinetic term aIJ is identical to the 2-form gauge
kinetic term Grs in 6d supergravity. Thus, borrowing our results from our 6d analysis, we
have that in an infinite-distance limit of the vector multiplet moduli space φ→∞, we have
eigenvalues of aIJ given by

λ1 = e2φ , λ2 = e−2φ , λi = 1 , i > 2 , (5.59)

and the kinetic term for gφφ is determined to be

gφφ = 1 . (5.60)

As expected, this system takes the form studied in section 2 above: the limit σ →∞ is an
emergent string limit as the 2-form B2 becomes weakly coupled, and the tower of string
oscillator modes satisfy the Distance Conjecture with λ = 1/

√
7 = 1/

√
d− 2, saturating our

proposed bound. Meanwhile, the limit σ ± 2φ→ 0 is a decompactification limit, associated
with a tower of light Kaluza-Klein modes with λ =

√
8/7 =

√
(d− 1)/(d− 2) charged under

the gauge fields A± associated to the eigenvalues λ1 and λ2. The whole system is consistent
with the Emergent String Conjecture, and by our analysis in section 2, it is consistent with
our proposed bound (1.2) as well.

6 Discussion

In this paper, we have proposed and provided evidence for a bound on the minimal value
of the coefficient λ appearing in the Distance Conjecture. Whether or not this bound will
stand up to further scrutiny is undoubtedly the most pressing question opened by our work.
In the meantime, however, it is worth considering possible applications of our bound. In the
remainder of this paper, we contemplate possible applications to various quantum gravity
conjectures and cosmology.

6.1 Scalar field potentials

If indeed our proposed bound λ ≥ 1/
√
d− 2 is correct, the next item of interest is possible

applications of the bound. From a phenomenological perspective, the Distance Conjecture
in its original formulation is not very interesting: the real world is not supersymmetric,
and there are no massless scalar fields in the Standard Model. In order to connect the
Distance Conjecture to observable physics, therefore, one must subscribe to its “refined”
version [1, 26], which holds that a tower of exponentially light charged particles should
exist when any scalar field is taken to infinite distance, not just a massless modulus. Before
applying our bound to phenomenological context, it is therefore crucial to determine if the
bound λ ≥ 1/

√
d− 2 applies to the refined version of the Distance Conjecture as well.

In the most optimistic scenario in which the refined Distance Conjecture is indeed
satisfied with λ ≥ 1/

√
d− 2, our conjecture would have important consequences for scalar

field potentials in asymptotic limits of scalar field space [27]. A scalar field displacement
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∆φ in d dimensions implies a tower of light states beginning at the mass scale m .
exp(−|∆φ|κd/

√
d− 2)MPl;d, which for |∆φ| � 1/κd in turn implies a large number of light

species and a “species bound” cutoff [62] no larger than

ΛUV . exp
(
− κd|∆φ|

(d− 1)
√
d− 2

)
MPl;d . (6.1)

Demanding that this UV scale lies above the IR Hubble scale H ∼
√
V κd . ΛUV thus leads

to a bound on the potential,

V . exp
(
− 2κd|∆φ|

(d− 1)
√
d− 2

)
Md

Pl;d . (6.2)

This suggests a bound
|∇V |
V
≥ 2

(d− 1)
√
d− 2

κd (6.3)

in asymptotic regions of scalar field space. In other words, this simple argument suggests
that the asymptotic de Sitter conjecture [27, 28] should be satisfied with a coefficient of
c = 2/((d− 1)

√
d− 2).

However, our work above, combined with the Emergent String Conjecture, suggests
that this result can be strengthened. This conjecture implies that every infinite-distance
limit should be either an emergent string limit or a decompactification limit. Combined
with our results above, this suggests that the Distance Conjecture should be satisfied in
any infinite-distance limit by either a tower string oscillator modes with λ = 1/

√
d− 2 or a

tower of Kaluza-Klein modes with λ ≥ 1/
√
d− 2. Thus we have

min(Mstring,mKK) . exp
(
−κd|∆φ|√

d− 2

)
MPl;d . (6.4)

At the string scale Mstring, a Hagedorn density of states appears, and effective field theory
breaks down. Consistency of the low-energy effective field theory therefore requires a
bound on the Hubble scale, H .Mstring. Similarly, the Hubble scale H must lie below the
Kaluza-Klein scale mKK = L−1, ensuring that the horizon H−1 is larger than the size L of
the extra dimensions so that the system can be treated as a d-dimensional FRW cosmology.
Thus we have a bound

H . ΛUV ≡ min(Mstring,mKK) . (6.5)

A scalar field rolling in an exponential potential V ∼ exp(−λκdφ)Md
Pl;d gives rise at late

times to a Hubble scale H ∼
√
V κd [63]. Together with (6.4) and (6.5), this implies

V . exp
(
−2κd|∆φ|√

d− 2

)
Md

Pl;d , (6.6)

which gives
|∇V |
V
≥ 2√

d− 2
κd . (6.7)

This bound is precisely the statement of the strong asymptotic de Sitter Conjecture [17, 29]
(see also [28, 64]), which ensures that the strong energy condition is satisfied and forbids
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accelerated expansion in asymptotic regimes of scalar field space. This bound is saturated
in a number of string theory examples in d = 4 dimensions [3], as well as supercritical string
theories in d ≥ 4 spacetime dimensions [65]. This result also fits nicely with the results
of [29, 66], which proved that the bound (6.7) is satisfied for any equidimensional limit at
which supersymmetry is restored.

It is important to note that this bound has been derived under the assumption of a
d-dimensional FRW cosmology and therefore depends on the dynamics of the scalar field.
In particular, the bound (6.7) may be violated at the expense of decompactification by
relaxing the constraint H−1 > L. Furthermore, the bound (6.6) assumes that the path
in question is a gradient flow trajectory along which the scalar field φ rolls to infinity at
late times. This means, as emphasized in [17, 29], that the strong asymptotic de Sitter
Conjecture (6.7) bounds the gradient of the potential |∇V | in asymptotic regions of field
space rather than the derivative |V ′(φ)| along an arbitrary path in field space. The two
are equal for a gradient flow trajectory, but for a more general path the former will be
larger than the latter, as it receives contributions from scalar fields orthogonal to the path.
Indeed, the bound (6.7) is false in asymptotic regions of scalar field space if one replaces
∇V with the derivative V ′(φ) along an arbitrary geodesic in field space [3].9

It is also important to note that our bound forbids indefinite periods of accelerated
expansion in asymptotic regimes of scalar field space, but it does not restrict accelerated
expansion of the universe in the interior of field space, nor does it forbid finite periods of
accelerated expansion. For instance, certain compactifications of supercritical string theories
support periods of accelerated expansion [67], and even in a theory that satisfies (6.7),
one can attain a short burst of accelerated expansion by giving the scalar field a kick of
kinetic energy towards the top of its potential.10 Instead, our bound simply implies that
any period of accelerated expansion in asymptotic regimes of string theory must end after a
finite time. Indeed, it is widely believed that de Sitter vacua in string theory are at best
metastable [68–70], so it seems quite plausible that any period of accelerated cosmological
expansion in quantum gravity can persist for only a finite length of time.

This does not imply that eternal inflation is forbidden, however. In the standard picture
of eternal inflation [71–74], a given observer will, with probability 1 [68, 70], experience
a phase transition after a finite period of time from a parent accelerating phase to a
daughter decelerating/Minkowski/AdS phase. Inflation is nonetheless “eternal” in this
scenario because bubbles of the daughter phase continue to inflate away from one another
due to the accelerated expansion in the parent phase, and some nonzero fraction of the
universe at comoving time t remains in the parent accelerating phase even in the limit
t→∞ (see e.g. [75] for further explanation). This means that eternal inflation may occur

9For example, consider a 4d theory with two scalar fields φ, ρ, with action L = − 1
2 (∂φ)2− 1

2 (∂ρ)2−V (φ),
where V (φ) ∼ V0 exp(−(

√
2φ+

√
2/3ρ)/MPl) in asymptotic regions of scalar field space. Along the geodesic

ρ→∞, we have MPl|∂ρV |/V =
√

2/3, which violates the bound (6.6). However, this path is not a gradient
descent trajectory, so (6.6) need not apply to it. And indeed, (6.6) is satisfied along a gradient descent
trajectory because MPl|∇V |/V = 2

√
2/3 ≥

√
2, satisfying (6.7). In fact, precisely this system appears in

the dilaton-radion field space of heterotic string theory compactified to four dimensions [17].
10We thank Thomas Van Riet for pointing this out to us.
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even if every de Sitter vacuum is metastable and every period of accelerated expansion in
quantum gravity can persist for only a finite length of time. Thus, while our results suggest
that quintessence, like de Sitter, cannot exist indefinitely in quantum gravity, they do not
necessarily point towards a ban on eternal inflation.

It is interesting that the coefficient cmin = 2/
√
d− 2 we have derived in (6.7) is twice

the Distance Conjecture coefficient λmin = 1/
√
d− 2 we have proposed throughout this

paper. Such a relationship between cmin and λmin has been discussed previously [3, 6, 27],
and it is encouraging here that the resulting value of cmin matches precisely with a value
that is already supported by several independent lines of evidence [17, 29].

6.2 Large-field inflation

Specializing to four dimensions, the bounds developed here may lead to important conse-
quences for large-field inflation. A scalar field displacement ∆φ in four dimensions implies
a tower of light states beginning at the mass scale m . exp(−|∆φ|/

√
2) in Planck units,

which for ∆φ�MPl implies species bound cutoff no larger than

ΛUV . exp
(
− |∆φ|

3
√

2MPl

)
MPl , (6.8)

assuming that the tower begins at or below the Planck scale MPl when the field starts
to roll. For a large-field model of inflation with |∆φ| = 10MPl, this leads to a bound
ΛUV . 10−1MPl, which yields a narrow window for a hierarchy of scales between the IR
cutoff H ∼ 10−4MPl and the UV cutoff ΛUV.

In fact, the window for large-field inflation may be even tighter than this. Invoking
the Emergent String Conjecture once again, we assume that every infinite-distance limit in
scalar field space is either an emergent string limit or a decompactification limit. This leads
to a cutoff

ΛUV ≡ min(Mstring,mKK) . exp
(
− |∆φ|√

2MPl

)
MPl . (6.9)

Here, we have made the seemingly reasonable assumption [76] that the string scale and
the Kaluza-Klein are bounded above by the Planck scale when the field starts to roll. For
|∆φ| = 10MPl, this yields a string scale cutoff ΛUV ∼ 10−3MPl, and for |∆φ| = 15MPl, it
yields a string scale cutoff ΛUV ∼ 10−5MPl.

Thus, at best, the UV cutoff is only one order of magnitude above the IR cutoff
H ≈ 10−4MPl when |∆φ| ∼ 10MPl, effectively ruling out any semblance of theoretical
control over the effective field theory. Models with |∆φ| & 15MPl, such as m2φ2 inflation,
are excluded entirely for H ≈ 10−4MPl. A detailed investigation into our proposed
bound and its applicability beyond the supersymmetric context could therefore have
important consequences for the viability of large-field inflation (and relaxion models [77])
in string theory.

A couple of important caveats are in order here: first, we have assumed that string
scale and the Kaluza-Klein scale begin below the Planck scale, so the tower of particles
implied by the Distance Conjecture appears almost immediately as the scalar field starts to
roll. Although the Distance Conjecture is, strictly speaking, a statement about asymptotic
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behavior of scalar field space, various works (see e.g. [26, 35]) have found in examples that
the exponential towers required by the Distance Conjecture appear rather quickly, when
|∆φ| . 1MPl, so our assumption is likely a reasonable one.

Perhaps a more serious difficulty is the question of whether or not our argument here
may be applied to axion models of inflation, which have historically represented the most
popular models of large-field inflation [78–80]. We will consider this question next.

6.3 Axions and a Tower Scalar Weak Gravity Conjecture

As discussed in the introduction, the Distance Conjecture deals with infinite-distance limits
of moduli space and so does not directly constrain axions, which have a compact field space.
On the other hand, the Scalar Weak Gravity Conjecture does constrain couplings to axion
fields, but it does not imply the existence of an infinite tower of light particles: a finite
number of particles may be sufficient to satisfy the convex hull condition.

The evidence we have seen here for both the Distance Conjecture and the Scalar Weak
Gravity Conjecture-along with the fact that neither conjecture is quite strong enough to
imply the other-suggests a third, stronger conjecture which implies both of them. This
led the authors of [12] to propose the Convex Hull Distance Conjecture, which we call the
tower Scalar Weak Gravity Conjecture:

The Tower Scalar Weak Gravity Conjecture. Given a massless scalar field modulus
φ in a quantum gravity theory in d spacetime dimensions, there necessarily exists an infinite
tower of particles of mass mn, n ∈ Z satisfying

(∂φmn)2

gφφm2
n

≥ λ2
minκ

2
d ≡

κ2
d

d− 2 , with ∂φmn < 0 , (6.10)

where gφφ is the φφ component of the metric on scalar moduli space.

In other words, the Scalar Weak Gravity Conjecture should be satisfied by a whole tower of
particles. When φ is a non-compact field, this tower is the usual Distance Conjecture tower,
but this conjecture goes beyond the Distance Conjecture in that it also requires a tower if
φ is a compact scalar field.

One way to justify the tower Scalar Weak Gravity Conjecture qualitatively (i.e., up to
O(1) factors) is by the emergence proposal [2, 81, 82]. Large field traversals in quantum
gravity generally come from weakly coupled scalar fields, which in turn come from integrating
out towers of exponentially light particles. This is true even for axion fields [81]: a large-field
model of natural inflation requires a large axion decay constant, which by the emergence
proposal requires a tower of exponentially light particles, which points strongly towards
the tower Scalar Weak Gravity Conjecture. This emergence argument only works, however,
when the mass scale of the tower of particles in question is far below the quantum gravity
scale ΛQG, where gravity becomes strongly coupled.

Thus, it seems likely that the arguments of the previous subsection do apply to large-
field models of natural inflation as well, which may help explain why these models have so
far resisted an embedding in quantum gravity [83–90]. It is less clear, however, that the
tower Scalar Weak Gravity Conjecture will place important constraints on axion monodromy
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models of inflation [79, 80], since these do not require a large axion decay constant, and
towers of particles may remain heavy even as the axion traverses its fundamental domain
many times (see however [91]). A more thorough investigation of axion monodromy in light
of our results in this paper could be a worthwhile direction for future study.

6.4 Black holes and repulsive forces

Consider a Einstein-Maxwell-dilaton action in d dimensions for a 1-form gauge field:

S = 1
2κ2

d

∫
ddx
√
−g

(
R− 1

2(∇φ)2
)
− 1

2e2

∫
ddx
√
−ge−αφF 2

2 . (6.11)

The extremality bound for a black hole of quantized charge Q and mass M takes the form

e2Q2

M2 ≥
[
α2

2 + d− 3
d− 2

]
κ2
d . (6.12)

For φ → −∞, the gauge field becomes weakly coupled, and by the tower Weak Gravity
Conjecture we expect a tower of particles whose mass scales as

m ∼ exp(−αφ/2) ∼ exp
(
−ακdφ̂/

√
2
)
, (6.13)

where φ̂ = φ
√

2κd is the canonically normalized scalar field. For large charge, we expect
that this tower will approach the black hole extremality bound, so that (6.13) applies to
both quantum mechanical particles at small charge and semiclassical black holes at large
charge and smoothly interpolates between them.

Two copies of a given particle in this theory will repel each other if their gauge repulsion
overwhelms the attraction due to the gravitation force and the scalar force-in other words, if

e2Q2

M2 ≥
[
2(∂φM)2

M2 + d− 3
d− 2

]
κ2
d . (6.14)

Plugging in ∂φM = αM/2 from (6.13), this is precisely the bound (6.12): two copies of a
particle in the tower will repel each other at long distances precisely if they are superextremal,
so the Repulsive Force Conjecture is equivalent to the Weak Gravity Conjecture for this
tower of particles.

So far, this discussion is simply a review (see e.g. [8, 9, 15, 92]). The novelty comes
when we impose our bound λ ≥ 1/

√
d− 2, which by (6.13) implies α ≥

√
2/(d− 2). As a

result, both the tower Weak Gravity Conjecture and the tower Repulsive Force Conjecture
imply the bound

e2Q2

M2 ≥ κ
2
d (6.15)

for charged particles in the tower. Note that this bound only applies for exactly massless
scalar fields, since massive scalar fields do not mediate long range forces. The consequences
and validity of this bound are problems for future study.
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6.5 The Emergent String Conjecture and an upper bound on λ

The Emergent String Conjecture has played an important role throughout this paper. If
every infinite-distance limit in scalar moduli space is either an emergent string limit or
a decompactification limit, then our analysis in section 2 is not merely one illustrative
example of what may happen in an asymptotic limit of scalar field space. Rather, it is
more or less the only example of what may happen. The Emergent String Conjecture
therefore provides strong evidence that our proposed lower bound on λ is correct. It also
offers a compelling explanation for why towers with λ = 1/

√
(d− 1)(d− 2) are so often

accompanied by other towers with λ =
√

(d− 1)/(d− 2), since these values occur readily
in dimensional reduction.

In turn, our analysis provides strong evidence for the Emergent String Conjecture.
We have found in all of our examples that the limits which saturate our proposed bound
λ ≥ 1/

√
d− 2 are emergent string limits, and the states which saturate this bound are

oscillator modes of fundamental strings. The other towers we have encountered have the
scaling properties expected of Kaluza-Klein towers, with λKK > 1/

√
d− 2.

When our results are combined with the Emergent String Conjecture, further interesting
results emerge. For one thing, if we assume that the lightest tower of particles in a given
infinite-distance limit is either a Kaluza-Klein tower or a tower of string oscillator modes,
then we conclude that any generator of the convex hull in ~ζ-vector space must have length

|~ζ(d)| = 1√
d− 2

or |~ζ(d)| =
√
n+ d− 2
n(d− 2) , (6.16)

for some n ≥ 1. These values correspond to string oscillator modes and Kaluza-Klein towers,
respectively. As a corollary to this, we also deduce that the parameter λ is upper-bounded as

λ ≤ λmax =
√

(d− 1)/(d− 2) . (6.17)

This bound is satisfied in the examples we have encountered in this paper. Further
exploration of this bound-as well as a more thorough investigation of the Emergent String
Conjecture-is warranted in light of the results of this paper.
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A Top down evidence in maximal supergravity for six, five, and four
dimensions

We now investigate the value λmin for the Scalar Weak Gravity Conjecture for maximal
supergravity in six, five, and four dimensions, making extensive use of U-duality to simplify
the calculation. In all cases, we obtain λmin = 1/

√
d− 2.

A.1 Symplectic conventions

The unitary symplectic group USp(2n) is the subgroup of U(2n) that preserves the symplectic
form Ωab, which is an antisymmetric tensor with the property that

ΩacΩ?
bc = δab . (A.1)

Note that an arbitrary antisymmetric tensor Aab of U(2n) can be put in the block-
diagonal form

Aab = diag
[(

0 λ1
−λ1 0

)
, . . . ,

(
0 λn
−λn 0

)]
, for λi real and non-negative (A.2)

by a unitary transformation A → UAU>. In the case of the symplectic form, the con-
straint (A.1) implies λ1 = · · · = λn = 1, hence all choices of Ωab are equivalent up to a
unitary transformation. Thus,

Ωab =


ε2×2 02×2 02×2

02×2
. . . 02×2

02×2 02×2 ε2×2

 , or Ωab =
(

0n×n 1n×n
−1n×n 0n×n

)
, (A.3)

in two closely related bases, where ε2×2 = iσ2 =
(

0 1
−1 0

)
. These two bases manifest the

important subgroups SU(2)n ⊆ USp(2n) (with equality for n = 1) and U(n) ⊂ USp(2n).
It is convenient to define Ωab = (Ωab)−1 = (Ωba)?, so that ΩabΩbc = δca. We raise and

lower indices with the symplectic form Ωab acting on the left, as follows:

V a = ΩabVb ⇔ Va = ΩabV
b. (A.4)

Note that this implies

V aWa =
(
ΩabVb

)
Wa = −Vb

(
ΩbaWa

)
= −VbW b, (A.5)

so it is important to keep track of index position.

A.2 U-duality results

Per [43], the 1/2 BPS particles have a mass formula that is quadratic in the central charge

M2 = MIJ(φ)ZIZJ , (A.6)

– 46 –



J
H
E
P
1
2
(
2
0
2
2
)
1
1
4

where MIJ(φ) is some moduli-dependent matrix. Moreover, the 1/2 BPS condition takes
the form

fα = SαIJZ
IZJ = 0, (A.7)

where SαIJ is some φ-independent, U-duality invariant such that α sits in the string repre-
sentation of the U-duality group.

We are interested in

ζa = 1
M

∂M

∂φa
= 1

2M2
∂MIJ

∂φa
ZIZJ , (A.8)

where φa are the independent scalar fluctuations at a given point in the moduli space, with
accompanying metric Gab(φ). Let us write this as

ζa = Gabζb = ζaIJ Ẑ
I ẐJ , ẐI ≡ N ZI√

MIJZIZJ
, (A.9)

where N is some normalization factor that depends on conventions.
The moduli space has a coset structure M = G/H. Focusing on a single point, the

subgroup H plays the role of a “symmetry” group in the low-energy effective theory, albeit
not an exact symmetry for the same reasons that, e.g., SO(2) ⊂ SL(2,R) is not an exact
symmetry of type IIB string theory: the charge lattice, massive spectrum, etc., are not
invariant, but the two-derivative effective action is invariant at the classical level.

This means thatMIJ , SαIJ , and ζaIJ must beH invariants. Combined with representation
theory, that is enough to fix the formula for ζa in terms of the central charges (again,
ignoring charge quantization) up to a change of basis. In particular, to do so we need to
know what representation of H the scalars φa transform under (call it Rmod), as well as the
representation Rpart under which the central charges ZI transform and the representation
Rstr under which the 1/2 BPS conditions fα = 0 transform. For 4 ≤ d ≤ 9, we get:

d H Rmod Rpart Rstr

9 SO(2) ⊕ 1 ⊕ 1
8 SO(3)× SO(2) ( ,1)⊕ (1, ) ( , ) ( ,1)
7 SO(5)
6 Spin(5)× Spin(5) ( , ) (S, S) ( , 1) + (1, )

5 USp(8)

4 SU(8) C Adj⊕

(A.10)

where S is the four-dimensional (pseudoreal) spinor of Spin(5), which is the of USp(4).
All the reps are real except the explicitly indicated C for particles in 4d, where the reality
condition on the vectors will relate F and ?F , i.e., the complexity of the representation is
related to the presence of magnetic charge. Note that the 6d line can also be written in terms
of H = USp(4)×USp(4), whence Rmod =

(
,
)
, Rpart = ( , ), and Rstr =

(
, 1
)
⊕
(
1,

)
.

This makes the embedding into USp(8) in one lower dimension more obvious.
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To see where (A.10) comes from, note that Rmod can be fixed from the coset structure
M = G/H, where G and H are well known (see, e.g., table B.3 of [42]). Moreover, Rpart

and Rstr descend from the irreps R(G)
part and R(G)

str of G that are listed in [43], so one only
needs to understand the G→ H branching rules. In particular, we have the following:

d G H R
(G)
part R

(G)
str

9 SL(2,R)× SO(1, 1) SO(2) ⊕ 1
8 SL(3,R)× SL(2,R) SO(3)× SO(2) ( , ) ( ,1)
7 SL(5,R) SO(5)
6 Spin(5, 5) Spin(5)× Spin(5) S

5 E6(6) USp(8) 27 27′

4 E7(7) SU(8) 56 Adj = 133

(A.11)

Here S denotes the minimal, 16-dimensional Majorana-Weyl spinor rep of Spin(5, 5), E6(6)
and E7(7) denote the split real forms of the E6 and E7 algebras (and their corresponding
groups) and 27 and 27′ are the two different fundamental representations of E6(6) related
by the Z2 outer automorphism of the Dynkin diagram. The non-trivial point now is to
understand the branching rules in the exceptional cases (which depend only on the Lie
algebras, not on the choice of real forms); these can be computed using SAGE [93]. One
finds that

E6 → C4 : 27,27′ → , Adj→ Adj⊕ , (A.12)

E7 → A7 : 56→ ⊕ , Adj→ Adj⊕ . (A.13)

Noting that AdjG → AdjH ⊕ Rmod, this is enough to deal with the cases of interest in
the table.

A.3 Six dimensions

In 6d, H = USp(4) × USp(4) and the central charge Za;b transforms in the bivector
representation ( , ). While the rep of USp(4) is pseudoreal, the ( , ) rep is real.
Specifically, the reality condition

(Za;b)? = Za;b = ΩacΩbdZ
c;d, (A.14)

is consistent, since

Z? = ΩZΩ> ⇒ (Z?)? = Ω?Z?Ω† = Ω?ΩZ(Ω?Ω)> = Z (A.15)

using Ω?Ω = −1.
Noting that

( , )⊗S ( , ) = ( , )⊕
(
⊕ 1, ⊕ 1

)
, (A.16)

we see that the 1/2 BPS shortening condition, in the
(
,1
)
⊕
(
1,

)
rep, is uniquely fixed

by H invariance to be
Za;cZb;c = Zc;aZc;b = 1

4δ
a
bZ

c;dZc;d. (A.17)
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Likewise, due to H invariance, the mass formula must take the form:

M2 = Za;b(Za;b)? = Za;bZa;b, (A.18)

up to an overall normalization factor that we absorb into the definition of Za;b.
Last but not least, the scalar charge-to-mass ratio vector ζab;cd sits in the

(
,
)

representation. Note that the representation of USp(4) (the of SO(5)) is itself real, i.e.,
the condition (

Aab
)?

= Aab = ΩacΩbdA
cd (A.19)

is consistent for much the same reason as in (A.15). Likewise, ζ satisfies(
ζab;cd

)?
= ζab;cd. (A.20)

As there is a unique singlet in
(
,
)
⊗S

(
,
)
, i.e., written in terms of SO(5)× SO(5) reps:

( , )⊗S ( , ) = ( ⊕ 1, ⊕ 1)⊕
(
,
)

= 1⊕ (· · · ), (A.21)

the metric on ζ-space is also fixed by H invariance to be

ζ2 = ζab;cd
(
ζab;cd

)?
= ζab;cdζab;cd, (A.22)

up to an overall factor that we absorb into the definition of ζab;cd.
In the case of a 1/2 BPS state, we should have an expression schematically of the form

ζ = 1
M2ZZ (A.23)

with some index structure. Because ( , ) ⊗S ( , ) has a unique copy of
(
,
)
in its

decomposition, the index structure is again fixed by H invariance to be

ζab;cd = N
(
Ẑa;cẐb;d − Ẑa;dẐb;c − 1

8ΩabΩcd
)
, Ẑa;b = Za;b√

Za;bZa;b
, (A.24)

where the last term is required to ensure Ωabζ
ab;cd = 0 and ζab;cdΩcd = 0.

The normalization factor N can no longer be absorbed by redefinitions. To determine
it, first note that the unit-normalized central charge Ẑa;b satisfies

Ẑa;bẐa;c = 1
4δ

b
c, Ẑa;bẐc;b = 1

4δ
a
c , (A.25)

⇒ ΩabẐ
a;cẐb;d = −1

4Ωcd, Ẑa;cẐb;dΩcd = −1
4Ωab, (A.26)

upon imposing the 1/2 BPS condition. Thus, for a 1/2 BPS state

ζ2 = 2N 2
(
Ẑa;cẐb;d − Ẑa;dẐb;c − 1

8ΩabΩcd
)
Ẑa;cẐb;d = 2N 2

(
1− 1

4 −
1
8

)
= 5

4N
2.

(A.27)
However, we know that Kaluza Klein modes are 1/2 BPS states, which moreover satisfy
ζ2 = d−1

d−2 = 5
4 . Thefore, N = 1.
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Next, note that reality condition combined with the 1/2 BPS condition gives
Ẑa;b(Ẑc;b)? = 1

4δ
a
c , i.e, ẐẐ† = 1

4 , so 2Ẑ is a unitary matrix. We can therefore fix Ẑa;
b = 1

2δ
a
b

by a unitary rotation on the right-hand factor of USp(4)×USp(4). Thus, we obtain

ΩR
bcẐ

a;c = 1
2δ

a
b ⇒ Ẑa;b = −1

2Ωab
R , (A.28)

where we are now careful to distinguish the symplectic form ΩR for the right-hand factor
from the one ΩL for the left-hand factor. However, the reality condition on Ẑ now gives:

(Ẑa;b)? = Ẑa;b = ΩL
acΩR

bdẐ
c;d ⇒ −1

2ΩR
ba = −1

2ΩL
acΩR

bdΩcd
R ⇒ ΩR

ab = ΩL
ab, (A.29)

using (Ωab)? = Ωba, so they are in fact the same.
Thus, we obtain:

ζab;cd = 1
4

[
ΩacΩbd − ΩadΩbc − 1

2ΩabΩcd
]
, (A.30)

in this basis for a 1/2 BPS state. As a check this satisfies Ωabζ
ab;cd = 0, ζab;cdΩcd = 0, and

ζ2 = 1
8

[
ΩacΩbd − ΩadΩbc − 1

2ΩabΩcd
]

ΩacΩbd = 1
8[16− 4− 2] = 5

4 . (A.31)

Now we want to write ζ and ζI;J , a bivector of SO(5)× SO(5) with metric

ζ2 = ζI;JζI;J = Tr
(
ζζ>

)
. (A.32)

By choosing a Ẑa;b above, we picked a particular identification between the two factors
of the group, and having done so ζ could be written purely in terms of invariants of the
diagonal USp(4) that remained. Likewise, if we consider the diagonal SO(5) there is a
unique invariant matrix, i.e., the identity matrix. Thus, we conclude that, in this basis

ζI;J = 1
2δIJ , (A.33)

where the normalizing factor is chosen to ensure that

ζ2 = 1
4Tr(1) = 5

4 , (A.34)

as before.
Thus, in an arbitrary basis we have the 1/2 BPS state ζ vectors

ζI;J = 1
2OIJ , (A.35)

where OIJ is any element of SO(5).
We want to understand the convex hull of these ζ vectors. Note that it is actually

O(5) × O(5) invariant. Consider some arbitrary bivector PI;J . Using the singular value
decomposition, we can set

PI;J = diag(λ1, . . . , λ5), λI ≥ 0 (A.36)
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after an O(5)×O(5) transformation. Thus, for arbitrary ζI;J = 1
2OIJ ,

Tr
(
ζP>

)
= 1

2

5∑
I=1

λIOII . (A.37)

We have the constraints ∑
I

OIJOIK = δJK . (A.38)

Clearly this requires OII ≤ 1, and the constraint can be saturated by taking OIJ = δIJ .
Thus,

Tr
(
ζP>

)
≤ 1

2

5∑
I=1

λI = 1, (A.39)

and we should take
∑5
I=1 λI = 2 to enfore ζ · P ≤ 1 with at least one 1/2 BPS state

saturating the constraint.
With this constraint, we seek to maximize

P · P = Tr
(
PP>

)
=
∑
I

λ2
I , (A.40)

subject to the constraints
∑5
I=1 λI = 2 and λI ≥ 0. As before, for fixed x+ y = t, x2 + y2

increases as the difference between x and y increases. Thus, if more than one λI is positive
we can increase P 2 by reducing the value of the smaller one and increasing the value of
the larger one. As a result, we achieve the maximum value when all but one vanishes, e.g.,
λ1 = 2 and λ2 = λ3 = λ4 = λ5 = 0. Thus,

P 2
max =

∑
I

λ2
I = 4. (A.41)

This gives λmin = 1
Pmax

= 1√
4 = 1

2 , which indeed verifies (and saturates) the bound
λmin ≥ 1√

d−2 .

A.4 Five dimensions

In 5d, H = USp(8) and the central charge Zab transforms in the traceless antisymmetric
tensor representation . This representation is real, with the reality condition(

Zab
)?

= Zab ≡ ΩacΩbdZ
cd. (A.42)

Since ⊗S = ⊕ ⊕ ⊕ 1, there is (1) a unique mass formula, coming from the 1

component, (2) a unique 1/2 BPS constraint, coming from the component, and (3) a

unique ζ ∝ Ẑ2, coming from the component. We examine these in turn. The mass
formula is

M2 = 1
2Z

ab(Zab)? = 1
2Z

abZab, (A.43)

up to an overall normalization that we absorb into the definition of Zab. The 1/2 BPS
constraint is

ZacZbc = 1
8δ

a
bZ

cdZcd, (A.44)

transforming in the traceless antisymmetric tensor rep as required.
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Likewise, the charge-to-mass ratio ζabcd transforms in the traceless four-form represen-
tation . This representation is real, with the reality condition

(
ζabcd

)?
= ζabcd ≡ ΩaeΩbfΩcgΩdhζ

efgh. (A.45)

The metric is
ζ2 = 1

4!ζ
abcd

(
ζabcd

)?
= 1

4!ζ
abcdζabcd, (A.46)

up to an overall normalization absorbed into ζabcd, which is unique because

⊗S = ⊕ ⊕ 1, (A.47)

contains only one singlet.
For 1/2 BPS particles, we must have

ζabcd = 3N
[
Ẑ [abẐcd] + 1

12Ω[abΩcd]
]
, Ẑab = Zab√

1
2Z

abZab
, (A.48)

for a still-to-be determined normalization factor N , where the second factor is chosen to
ensure tracelessness:

Ωabζ
abcd =NΩab

[
ẐabẐcd + ẐacẐdb + ẐadẐbc + 1

12ΩabΩcd + 1
12ΩacΩdb + 1

12ΩadΩbc
]

=N
[
0 + 1

4Ωcd + 1
4Ωcd − 2

3Ωcd + 1
12Ωcd + 1

12Ωcd
]

= 0.

(A.49)

We then find

ζ2 =N
2

8 ẐabẐcd

[
ẐabẐcd + ẐacẐdb + ẐadẐbc + 1

12ΩabΩcd + 1
12ΩacΩdb + 1

12ΩadΩbc
]

=N
2

8

[
4− 1

2 −
1
2 + 0− 1

6 −
1
6

]
= N

2

3 .

(A.50)

Since Kaluza Klein modes are 1/2 BPS and satisfy ζ2 = d−1
d−2 = 4

3 , we conclude that
N = 2, i.e.,

ζabcd =6
[
Ẑ [abẐcd] + 1

12Ω[abΩcd]
]

=2
[
ẐabẐcd + ẐacẐdb + ẐadẐbc + 1

12ΩabΩcd + 1
12ΩacΩdb + 1

12ΩadΩbc
]
.

(A.51)

Now consider the conditions on Ẑab. Written in terms of Ẑa b ≡ ΩbcẐ
ac, we find

(recalling that (Ωab)? = Ωba = −Ωab):

Ẑa a = 0,
(
Ẑa b

)?
= Ẑb a, Ẑa cẐ

c
b = 1

4δ
a
b , (A.52)
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i.e., 2Ẑa b is a traceless Hermitian matrix that squares to 1. Thus, after a unitary change
of basis:

Ẑa b = 1
2diag(1, 1, 1, 1,−1,−1,−1,−1). (A.53)

In this basis, we observe that Ωab and Ẑab = Ẑa cΩbc are both antisymmetric matrices. This
requires Ωab to be block diagonal in the 4 × 4 blocks defined by Ẑa b, i.e., the stabilizer
subgroup of Ẑ is USp(4)×USp(4), where

Ẑab = 1
2
(
−Ωab

1 + Ωab
2

)
, Ωab = Ωab

1 + Ωab
2 , =⇒ Ẑab = 1

2([Ω1]ab − [Ω2]ab),
(A.54)

in terms of the symplectic forms Ωab
1 and Ωab

2 for the two USp(4) blocks. Then:

ζabcd = 2
(
Ω[ab

1 Ωcd]
1 + Ω[ab

2 Ωcd]
2 − Ω[ab

1 Ωcd]
2

)
. (A.55)

Now choose an arbitary traceless four-form P abcd satisfying the reality condition (A.45).
We seek a 1/2 BPS central charge Ẑab(0) that globally maximizes P abcdζ(0)

abcd with ζabcd

given by (A.51). Since all Ẑab’s are related by USp(8) transformations, we can rephrase
this problem by going to the basis where Ẑab(0) takes the form (A.54), then requiring that
P abcdζ

(0)
abcd is maximized under USp(8) rotations of P abcd with ζ(0)

abcd held fixed in its canonical

form (A.55). In other words, fixing Ω1 = Ω2 = diag
[(

0 1
−1 0

)
,

(
0 1
−1 0

)]
we maximize

P · ζ = 1
3
(
2P 1234 + 2P 5678 − P 1256 − P 1278 − P 3456 − P 3478

)
. (A.56)

The traceless condition on P abcd implies that

P 1234 + P 1256 + P 1278 = 0, P 1234 + P 3456 + P 3478 = 0,
P 1256 + P 3456 + P 5678 = 0, P 1278 + P 3478 + P 5678 = 0.

(A.57)

These equations can be rewritten as

P 5678 = P 1234, P 3478 = P 1256, P 3456 = P 1278, P 1234 + P 1256 + P 1278 = 0,
(A.58)

where the reality condition on P abcd implies that all of these are real. Thus,

P · ζ = P 1234 + P 5678 = 2P 1234. (A.59)

Defining the four-form Πabcd such that Π1234 = +1 with other components vanishing, we
see P · ζ = 2

4!P
abcdΠabcd and the condition for a critical point is

δ(P · ζ) ∝ iT ae P ebcdΠabcd = 0, (A.60)

where T ae is an arbitrary generator of USp(8), i.e., a Hermitian matrix satisfying T ac Ωcb +
T bcΩac = 0. In particular,

T a b =
(

T1 X

Ω−1
1 XΩ2 T2

)
, (A.61)
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for any T1, T2 generators of USp(4)1,2 and X any 4 × 4 matrix. This means that
(A.60) becomes

P ebcdΠabcd = 0, (A.62)

i.e., P abcd has no components with 3 legs on the first 4× 4 block and 1 leg on the second.
By an analogous argument P abcd has no components with 1 leg on the first block and 3 on
the second either. Thus, we can write

P abcd = 3
2λ
(
Ω[ab

1 Ωcd]
1 + Ω[ab

2 Ωcd]
2 − Ω[ab

1 Ωcd]
2

)
+ P̂ abcd, (A.63)

where λ = 2P 1234 and P̂ abcd only has components with 2 legs on each 4×4 block. Combined
with the traceless condition, this implies that P̂ abcd(Ω1)cd = P̂ abcd(Ω2)cd = 0, and so P̂ abcd

transforms in the
(
,
)
irrep of USp(4)×USp(4), which is the ( , ) irrep of Spin(5)×Spin(5).

Notice that (A.63) implies

1
2P

abcdẐcd =3
8λ
(
Ω[ab

1 Ωcd]
1 + Ω[ab

2 Ωcd]
2 − Ω[ab

1 Ωcd]
2

)
([Ω1]cd − [Ω2]cd)

=λ

2
(
−Ωab

1 + Ωab
2

)
= λẐab.

(A.64)

using (A.54). We recognize this is an eigenvalue equation for the 28× 28 matrix P ab cd

1
2P

ab
cdẐ

cd = λẐab. (A.65)

We’ve shown that this is a necessary condition to maximize P · ζ. In fact, it is also a
sufficient condition, since

P · ζ = 1
4 ẐabẐcdP

abcd, (A.66)

⇒ δ(P · ζ) ∝ iT ae ẐabẐcdP ebcd = 2λiT ae ẐabẐeb = iλ

2 T
a
a = 0, (A.67)

since the generators of USp(8) are traceless. The reformulation (A.65) of the condition for
extremizing P · ζ will be useful again later.

So far, we have imposed the condition that P · ζ is extremized, but not that it is
maximized, much less that it realizes its global maximum value. To do so, we first use the
fact that P̂ abcd reduces to the ( , ) irrep of Spin(5) × Spin(5) to put it into a canonical
form. First, we need to determine the map between of USp(4) and of Spin(5), which is
related to the Γ matrices for Spin(5). In terms of the 2× 2 Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.68)

we choose a basis where

(Γi)a b =
(

0 −iσi

iσi 0

)
, (Γ4)a b =

(
0 1
1 0

)
, (Γ5)a b =

(
1 0
0 −1

)
. (A.69)
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Choosing the symplectic form

Ωab =
(
ε 0
0 ε

)
, ε = iσ2 =

(
0 1
−1 0

)
, ⇒ Ωab =

(
−ε 0
0 −ε

)
, (A.70)

we find that Γmab ≡ Ωac(Γm)c b is given by

Γiab =
(

0 iεσi

−iεσi 0

)
, Γ4

ab =
(

0 −ε
−ε 0

)
, Γ5

ab =
(
−ε 0
0 ε

)
. (A.71)

Since ε> = −ε and

iεσ1 =
(
i 0
0 −i

)
, iεσ2 =

(
−1 0
0 −1

)
, iεσ3 =

(
0 −i
−i 0

)
, (A.72)

are all symmetric, the Γmab are all antisymmetric, with ΩabΓmab = 0 because the (Γm)a b are
traceless. Thus, (Ω−1Γm)> = −Ω−1Γm, or ΓmΩ = Ω(Γm)>, from which one can readily
check that Ω is indeed a Spin(5) invariant.

The Γmab matrices (A.71) provide the desired dictionary for translating between the
traceless antisymmetric tensor representation of USp(4) and the vector representation of
Spin(5). Each Γmab has non-zero components with indices in disjoint pairs, i.e., Γ1

13 = −Γ1
24 =

i, Γ2
13 = Γ2

24 = −1, Γ3
14 = Γ3

23 = −i, Γ4
14 = −Γ4

23 = −1 and Γ5
12 = −Γ5

34 = −1, with all other
components vanishing except those related by antisymmetry. Thus, if we write P̂ abcd as
a ( , ) of Spin(5)× Spin(5) and diagonalize it, then in 4-form langauge its non-vanishing
components are

P̂ 1357 = P̂ 2468, P̂ 1368 = P̂ 2457, P̂ 1458 = P̂ 2367, P̂ 1467 = P̂ 2358,

P̂ 1256 = P̂ 3478 = −P̂ 1278 = −P̂ 3456,
(A.73)

with all of them real. Working backwards, P abcd therefore has real components

P 1357 = P 2468, P 1368 = P 2457, P 1458 = P 2367, P 1467 = P 2358,

P 1256 = P 3478, P 1278 = P 3456, P 1234 = P 5678,
(A.74)

subject to the tracelessness condition P 1234 + P 1256 + P 1278 = 0. We define

λ1 = P 1234, λ2 = P 1256, λ3 = P 1278, λ4 = P 1357,

λ5 = P 1368, λ6 = P 1458, λ7 = P 1467.
(A.75)

with λ1 + λ2 + λ3 = 0. The matrix P ab cd is now block diagonal. First, there is 4× 4 block
consisting of the 12, 34, 56 and 78 components:11

12, 34, 56, 78 :


0 λ1 λ2 λ3
λ1 0 λ3 λ2
λ2 λ3 0 λ1
λ3 λ2 λ1 0

 , λ1 + λ2 + λ3 = 0. (A.76)

11Note that raising the index pairs using the symplectic form takes 12→ 12, 34→ 34, 56→ 56, 78→ 78.
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One can easily check that the non-zero eigenvalues λ for this block are 2λ1, 2λ2 and 2λ3
(the zero eigenvalue is associated to the trace component and should be ignored). There are
6 remaining 4× 4 blocks, e.g12

13, 24, 57, 68 :


−λ1 0 λ5 λ4

0 −λ1 λ4 λ5
λ5 λ4 −λ1 0
λ4 λ5 0 −λ1

 , 14, 23, 58, 67 :


−λ1 0 −λ7 −λ6

0 −λ1 −λ6 −λ7
−λ7 −λ6 −λ1 0
−λ6 −λ7 0 −λ1

 .
(A.77)

The eigenvalues in the first case are λ = −λ1±1 λ4±2 λ5, and likewise λ = −λ1±1 λ6±2 λ7
in the second. Similarly,13

15, 26, 37, 48 :


−λ2 0 −λ6 −λ4

0 −λ2 −λ4 −λ6
−λ6 −λ4 −λ2 0
−λ4 −λ6 0 −λ2

 , 16, 25, 38, 47 :


−λ2 0 λ7 λ5

0 −λ2 λ5 λ7
λ7 λ5 −λ2 0
λ5 λ7 0 −λ2

 ,
(A.78)

with eigenvalues λ = −λ2 ±1 λ4 ±2 λ6 and λ = −λ2 ±1 λ5 ±2 λ7, and finally

17, 28, 35, 46 :


−λ3 0 λ7 λ4

0 −λ3 λ4 λ7
λ7 λ4 −λ3 0
λ4 λ7 0 −λ3

 , 18, 27, 36, 45 :


−λ3 0 −λ6 −λ5

0 −λ3 −λ5 −λ6
−λ6 −λ5 −λ3 0
−λ5 −λ6 0 −λ3

 ,
(A.79)

with eigenvalues λ = −λ3 ±1 λ4 ±2 λ7 and λ = −λ3 ±1 λ5 ±2 λ6.
Using (A.65), we see that the eigenvalues found above are precisely the critical values

of P · ζ as we vary Ẑab with P abcd held fixed.14 The critical value we found initially is
2λ1 = 2P 1234; now we can write down the necessary and sufficient conditions for this to be
a global maximum of P · ζ:

λ1 ≥ λ2, λ1 ≥ λ3, 2λ1 ≥ −λ1 + |λ4|+ |λ5|, 2λ1 ≥ −λ1 + |λ6|+ |λ7|,
2λ1 ≥− λ2 + |λ4|+ |λ6|, 2λ1 ≥ −λ2 + |λ5|+ |λ7|,
2λ1 ≥− λ3 + |λ4|+ |λ7|, 2λ1 ≥ −λ3 + |λ5|+ |λ6|.

(A.80)

Using λ1 + λ2 + λ3 = 0, the conditions on the second line simply to

λ1 − λ3 ≥ |λ4|+ |λ6|, λ1 − λ3 ≥ |λ5|+ |λ7|,
λ1 − λ2 ≥ |λ4|+ |λ7|, λ1 − λ2 ≥ |λ5|+ |λ6|,

(A.81)

12In this case, raising the index pairs takes 13↔ 24, 57↔ 68, 14↔ −23, 58↔ −67.
13Now raising the index pairs takes 15↔ 26, 37↔ 48, 16↔ −25, 38↔ −47, 17↔ 28, 35↔ 46, 18↔ −27,

36↔ −45.
14We must be careful here, as we have not yet imposed the conditions (A.52) on the Ẑab eigenvectors.

However, it is straightforward to check that they are satisfied for all the eigenvectors in question, up to a
(complex) overall factor that can be freely chosen.
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from which the conditions on the first line automatically follow. Thus, setting λ1 = 1
2 (so

that P · ζ ≤ 1) we get

λ3 + |λ4|+ |λ6| ≤
1
2 , λ3 + |λ5|+ |λ7| ≤

1
2 , λ2 + |λ4|+ |λ7| ≤

1
2 ,

λ2 + |λ5|+ |λ6| ≤
1
2 , λ2 + λ3 = −1

2 .
(A.82)

Subject to these constraints, we wish to maximize:

P 2 = 2λ2
1 + 2λ2

2 + 2λ2
3 + 2λ2

4 + 2λ2
5 + 2λ2

6 + 2λ2
7. (A.83)

Clearly we need to saturate at least two of the inequalities in (A.82) to do so, since otherwise
we can increase at least one of λ4,5,6,7 for free. In particular, we must either saturate the
first two or the second two, since if we only saturate one from the first pair and one from
the second then there is still one of λ4,5,6,7 that can be increased for free. Because the
problem is symmetric under the simultaneous exchange λ2 ↔ λ3, λ4 ↔ λ5, we can assume
that the saturated pair is

λ2 + |λ4|+ |λ7| = λ2 + |λ5|+ |λ6| =
1
2 , (A.84)

without loss of generality. Summing the inequalities for λ3, this implies that

2λ2+|λ4|+|λ5|+|λ6|+|λ7| = 1 ≥ 2λ3+|λ4|+|λ5|+|λ6|+|λ7| =⇒ λ2 ≥ λ3. (A.85)

Thus, for fixed λ2 the sums |λ4|+ |λ7| and |λ5|+ |λ6| are fixed. Maximizing P 2 with this
constraint, it is optimal to maximize the difference between |λ4| and |λ7| and between |λ5|
and |λ6|, i.e., to set one of each pair to zero. If, e.g., we set |λ6| = |λ7| = 0, then the
inequalities

λ3 + |λ4|+ |λ6| = λ3 + |λ4| ≤
1
2 , λ3 + |λ5|+ |λ7| = λ3 + |λ5| ≤

1
2 , (A.86)

follow from (A.84) and λ2 ≥ λ3, so we can do so consistent with the λ3 inequalities.15 Thus,
for fixed λ2 ≥ λ3, the maximum P 2 occurs when

|λ4| = |λ5| =
1
2 − λ2, λ6 = λ7 = 0. (A.87)

Specifically

P 2 = 2
[

1
4 + λ2

2 +
(
−1

2 − λ2

)2
+
(1

2 − λ2

)2
+
(1

2 − λ2

)2
+ 0 + 0

]
,

−1
4 ≤λ2 ≤

1
2 ,

(A.88)

where the latter constraint comes from λ3 ≤ λ2 ≤ λ1. Since this is a quadratic function of
λ2 with a positive coefficient for λ2

2, it is maximized at one boundary or the other. In fact,
the value is the same at both boundaries:

P 2
max = 3. (A.89)

This indeed yields λmin = 1√
3 = 1√

d−2 as expected.
15We cannot necessarily set, e.g., |λ5| = |λ7| = 0, since the λ3 inequality λ3 + |λ4|+ |λ6| ≤ 1

2 might then
be violated; we could keep track of the point where we first violate the λ3 inequality in this direction, but
the resulting P 2 is submaximal, so we can just ignore this case altogether.
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A.5 Four dimensions

In 4d, H = SU(8) and the central charge Zab transforms in the complex antisymmetric
tensor representation . Let us define Zab ≡ (Zab)?. Z can alternately be thought of as
living in the real representation ⊕ with twice the dimension, composed of components
Zab and Zab with the reality condition Zab = (Zab)?.

Note that (
⊕

)
⊗S

(
⊕

)
= ⊕ ⊕ ⊕ ⊕ ⊕Adj⊕ 1. (A.90)

This means that there is a unique mass formula

M2 = 1
2Z

ab
(
Zab

)?
= 1

2Z
abZab, (A.91)

up to an overall normalizing factor that we set to 1 by redefining the central charge.

However, since ∼= and Rstr = Adj⊕ the half-BPS condition at first seems ambiguous.
In particular,

Xabcd = Z [abZcd], (A.92)

is complex, but the BPS condition should involve a real four-form, i.e., one satisfying

ω?abcd = 1
4!εabcdefghω

efgh, (A.93)

which is a consistent condition since

[(ω?)?]abcd = 1
4!ε

abcdefghω?efgh = 1
4!2 ε

abcdefghεefghijklω
ijkl = ωabcd. (A.94)

In general, the 1/2 BPS condition could involve a linear combination of the real and
imaginary parts of Xabcd, i.e., schematically Im[eiθZZ] = 0, but by redefining Zab by a
phase (leaving the mass formula invariant) we can set θ = 0. Thus, after this redefinition
the 1/2 BPS conditions become

ZacZbc = 1
8δ

a
bZ

cdZcd, Z[abZcd] = 1
4!εabcdefghZ

efZgh. (A.95)

The scalar charge-to-mass ratio ζabcd also sits in the rep, satisfying the reality condition

ζ?abcd = 1
4!εabcdefghζ

efgh. (A.96)

Because

⊗S = ⊕ ⊕ 1, (A.97)

the metric is uniquely determined to be

ζ2 = 1
4!ζ

abcd
(
ζabcd

)?
= 1

4!ζ
abcdζabcd = 1

4!2 εabcdefghζ
abcdζefgh, (A.98)

up to an overall normalization that we can absorb into the definition of ζ, where
ζabcd ≡ (ζabcd)?.
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Given the 1/2 BPS condition, there is a unique component inside
(
⊕

)
⊗S

(
⊕

)
,

so for 1/2 BPS states we must have

ζabcd = 3N Ẑ [abẐcd] = N
(
ẐabẐcd + ẐacẐdb + ẐadẐbc

)
, Ẑab ≡ Zab√

1
2Z

cdZcd
,

(A.99)
up to an unknown normalizing factor N . To fix N , we compute ζ2 for a 1/2 BPS state:

ζ2 = 3
4!N

2
(
ẐabẐcd + ẐacẐdb + ẐadẐbc

)
ẐabẐcd = 1

8N
2
(

4− 1
2 −

1
2

)
= 3N 2

8 .

(A.100)
Since Kaluza Klein modes are 1/2 BPS with ζ2 = d−1

d−2 = 3
2 , we conclude that N = 2, i.e.,

ζabcd = 6Ẑ [abẐcd] = 2
(
ẐabẐcd + ẐacẐdb + ẐadẐbc

)
, Ẑab ≡ Zab√

1
2Z

cdZcd
. (A.101)

Note that we can solve the 1/2 BPS conditions

ẐacẐbc = 1
4δ

a
b , Ẑ[abẐcd] = 1

4!εabcdefghẐ
ef Ẑgh, (A.102)

as follows. After an SU(8) transformation we can fix

Ẑab = eiφdiag
[(

0 λ1
−λ1 0

)
, . . . ,

(
0 λ4
−λ4 0

)]
, (A.103)

where λ1, . . . , λ4 are real and non-negative and the overall phase factor is needed because
we can only perform a special unitary change of basis, not a general unitary change of basis.
The first equation of (A.102) then implies that λ1 = λ2 = λ3 = λ4 = 1

2 . The second one
implies that

ζ2 = 3
2 = 3

2 Ẑ
[abẐcd]Ẑ[abẐcd] = 3

2 ·
1
4!εabcdefghẐ

abẐcdẐef Ẑgh = 3
2Pf

(
2Ẑab

)
⇒ Pf

(
2Ẑab

)
= 1,

(A.104)

where
Pf(Mab) = 1

2nn!εa1...anM
a1a2 · · ·Man−1an (A.105)

is the Pfaffian. Thus, we obtain Pf(2Ẑab) = e4iφ = 1, so eiφ is a fourth root of unity.
However, the SU(8) transformation diag(eπi/4, . . . , eπi/4) imparts an overall phase eiπ/2 to
Ẑab, so we can set eiφ = 1 by such transformations, leaving

Ẑab = diag
[(

0 1
−1 0

)
, . . . ,

(
0 1
−1 0

)]
, (A.106)

in this basis. In other words, all the 1/2 BPS choices of Ẑab are equivalent up to SU(8)
transformations, and a particular choice of Ẑab is left invariant by a USp(8) ⊂ SU(8)
subgroup.
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Now choose an arbitary four-form P abcd satisfying the reality condition (A.96). We seek
a 1/2 BPS central charge Ẑab(0) that globally maximizes P abcdζ(0)

abcd with ζabcd given by (A.101).
Since all Ẑab’s are related by SU(8) transformations, we can rephrase this problem by going
to the basis where Ẑab(0) takes the form (A.106), then requiring that P abcdζ(0)

abcd is maximized
under SU(8) rotations of P abcd with ζ(0)

abcd held fixed in its canonical form (A.106). In other
words, we maximize

P 1234 +P 1256 +P 1278 +P 3456 +P 3478 +P 5678 = 2Re
[
P 1234 + P 1256 + P 1278

]
, (A.107)

under SU(8) rotations, where P 5678 = (P 1234)?, P 3478 = (P 1256)? and P 3456 = (P 1278)? by
the reality condition (A.96).

Maximizing with respect to the Cartan subgroup, it is evident that P 1234, P 1256 and
P 1278 must be real and non-negative. More generally, the condition to obtain an extremum
of P · ζ is

δ(P · ζ) = 1
6 iT

a
e P

ebcdζabcd = 0 (A.108)

for any generator T ab of SU(8), i.e., for any traceless Hermitian matrix T ab . In fact, since
the condition is C-linear and any traceless matrix can be written as T1 + iT2 for traceless
Hermitian matrices T1 and T2, the condition holds for any traceless matrix T ab , so that

1
3P

ebcdζabcd = δea(P · ζ). (A.109)

In terms of Ẑab, this becomes:

2P ebcdẐabẐcd = δea(P · ζ) ⇔ 1
2P

abcdẐcd = Ẑab(P · ζ), (A.110)

using (A.102). Thus, decomposing

P abcd = 4λẐ [abẐcd] + P̂ abcd, λ = P · ζ, (A.111)

we find that P̂ abcdẐcd = 0. In other words P̂ abcd transforms in the traceless 4-form
representation of the residual USp(8) preserving Ẑab. Moreover, because any two top-
forms are proportional

1
24 · 4! Ẑ[abẐcdẐef Ẑgh] = 1

8!εabcdefgh(PfẐ) = 1
24 · 8!εabcdefgh, (A.112)

where the overall normalization can be fixed by contracting with εabcdefgh. Thus, the reality
condition (A.96) for P abcd becomes

P̂ ?abcd = 8!
4!2 Ẑ[abẐcdẐef Ẑgh]P̂

efgh = 24ẐaeẐbf ẐcgẐdhP̂
efgh, (A.113)

i.e., P̂ abcd is real in the sense of (A.45) with symplectic form Ωab = 2Ẑab. Thus, per
the discussion in section A.4, we can put P̂ abcd into canonical form with non-vanishing
real components

P̂ 1357 = P̂ 2468, P̂ 1368 = P̂ 2457, P̂ 1458 = P̂ 2367, P̂ 1467 = P̂ 2358,

P̂ 1256 = P̂ 3478, P̂ 1278 = P̂ 3456, P̂ 1234 = P̂ 5678,
(A.114)
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subject to the tracelessness condition P̂ 1234 + P̂ 1256 + P̂ 1278 = 0. Working backwards, we
see that P abcd has real components

P 1357 = P 2468, P 1368 = P 2457, P 1458 = P 2367, P 1467 = P 2358,

P 1256 = P 3478, P 1278 = P 3456, P 1234 = P 5678,
(A.115)

satisfying no further constraints.
To see that (A.115) is not, in fact, some random collection of directions, note that

exactly one in each pair has a leg along any given direction, e.g., the 1 direction. Stripping
off this leg, we find the combinations

234, 256, 278, 357, 368, 458, 467. (A.116)

These are nothing but the lines on a Fano plane with points 2, . . . , 8 (up to convention-
dependent relabling). To present it more symmetrically, represent each number with 3 digit
binary code, in this case the binary digits of that number minus 1:

2→ 001, 3→ 010, 4→ 011, 5→ 100, 6→ 101, 7→ 110, 8→ 111, (A.117)

where the codes are chosen such that 3 points are colinear iff the sums of their digits mod2
are all zero (e.g., 001 + 011 + 010 = 000 with no carrying, so 001 − 011 − 010 forms the
line 234). The symmetries of the Fano plane are then GL(3; Z2) acting on these digits.
Note that this group is 2-transitive — any pair of points can be mapped to any other
pair of points — and the stabilizer subgroup fixing any pair of points is Z2 × Z2; e.g., if
the fixed points are 100 and 010 then one Z2 is generated by adding the third digit to
the first (001 ↔ 101, 011 ↔ 111) and the other by adding the third digit to the second
(001↔ 011, 101↔ 111).

Using these facts, one can also show that GL(3; Z2) acts 2-transitively on the set of
lines, with the stabilizer subgroup fixing a pair of lines equal to Z2 × Z2; e.g., if the fixed
lines are 001− 010− 011 and 001− 100− 101 then one Z2 is generated by adding the first
digit to the third (100↔ 101, 110↔ 111) and the other is generated by adding the second
digit to the third (010↔ 011, 110↔ 111). In fact, the Fano plane is self-dual under the
exchange of lines and points, so this similarity between the action on points and lines is no
accident. Explicitly, on such point-line duality is

(001, 010, 011)→ 100, (100, 011, 111)→ 011, (110, 101, 011)→ 111, (A.118)

with the other elements of the dictionary given by permuting the three digits. With this in
mind, we assign labels:

λ001 = P 1357 = P 2468, λ010 = P 1256 = P 3478, λ011 = P 1458 = P 2367,

λ100 = P 1234 = P 5678, λ101 = P 1368 = P 2457, λ110 = P 1278 = P 3456,

λ111 = P 1467 = P 2358.

(A.119)

Now we study the “eigenvalue” problem:

1
2P

abcdẐcd = λ
(
Ẑab

)?
, (A.120)
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which is a necessary and sufficient condition for a given Ẑab satisfying (A.102) to extremize
P · ζ, where the eigenvalue λ ∈ R is equal to P · ζ. In general,

Mv = λv? ⇔
(

0 M

M? 0

)(
v

v?

)
= λ

(
v

v?

)
, (A.121)

so this becomes a standard eigenvalue problem for a matrix twice as large, supplemented
by a reality condition on the eigenvectors(

0 1
1 0

)(
v

v?

)
=
(
v

v?

)?
. (A.122)

In particular, if M is real and symmetric then it has a basis of real eigenvectors with
real eigenvalues

Mvi = λivi, vi = v?i . (A.123)

From each such eigenvector we obtain a pair of
(

0 M

M 0

)
eigenvectors satisfying the

reality condition:(
0 M

M 0

)(
vi
vi

)
= λi

(
vi
vi

)
,

(
0 M

M 0

)(
ivi
−ivi

)
= −λi

(
ivi
−ivi

)
. (A.124)

Thus the eigenvalues in the equation Mv = λv? are those of M together with those of −M .
Fortunately, the real symmetric matrix P abcd (viewed as a 28 × 28 matrix of index

pairs) is block diagonal. For example, in the 12, 34, 56, 78 block we find:

M =


0 λ100 λ010 λ110
λ100 0 λ110 λ010
λ010 λ110 0 λ100
λ110 λ010 λ100 0

 . (A.125)

The eigenvalues of this matrix are λ100+λ010+λ110, λ100−λ010−λ110, −λ100+λ010−λ110 and
−λ100−λ010 +λ110, so in combination with those of −M , we obtain ±1λ100±2 λ010±3 λ110,
the largest eigenvalue of which is

λmax = |λ100|+ |λ010|+ |λ110|. (A.126)

It is straightforward to check that the resulting eigenvectors Ẑab satisfy (A.102) after fixing
their overall normalization as required.

Fortunately, due to the symmetries of the Fano plane, there is no need to consider the
other six 4× 4 blocks of P abcd, which are related by permutations on the indices 1, . . . , 8
that correspond to these symmetries. Thus, the requirement P · ζ ≤ 1 for all half-BPS
central charges Ẑab translates to the seven conditions,

|λijk|+ |λi′j′k′ |+ |λ(i+i′)(j+j′)(k+k′)| ≤ 1, (A.127)

one for each line on the Fano plane with points 100, 010, etc. Meanwhile,

P 2 = 2
∑
i,j,k

|λijk|2. (A.128)
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We seek to maximize P 2 while satisfying all the constraints. To do so, first note that
we can take λijk ≥ 0 without loss of generality. If any given λijk does not show up in a
constraint (A.127) that is saturated then we can increase it at no cost, increasing P 2 at
no cost. Thus, the lines corresponding to the saturated constraints must intersect every
point on the Fano plane. Therefore, there must be a least one point for which all the lines
intersecting it are saturated constraints.16 Choose this to be λ111, so that

λ111 + λ101 + λ010 = λ111 + λ100 + λ011 = λ111 + λ001 + λ110 = 1. (A.129)

If there were no other constraints, then for fixed λ111 the maximum value of P 2 would occur
when one of each of the other pairs vanishes, e.g., λ101 = λ110 = λ011 = 0, so that

λ100 = λ010 = λ001 = 1− λ111. (A.130)

This satisfies the remaining constraints provided that λ111 ≥ 1
2 , and since

P 2 = 2
(
λ2

111 + 3(1− λ111)2
)
, (A.131)

the maximum values are achieved at the boundaries λ111 = 1 (implying λ100 = λ010 =
λ001 = 0) and λ111 = 1

2 (implying λ100 = λ010 = λ001 = 1
2), with P

2 = 2 in both cases.
Thus, by process of elimination we consider the case λ111 <

1
2 . Now after maximizing

P 2 the constraint associated to at least one other line in the Fano plane must be saturated.
Using the symmetries of the Fano plane, we can fix this to be

λ110 + λ101 + λ011 = 1, (A.132)

without loss of generality. Ignore the other constraints for the time being. Applying the
symmetries of the Fano plane, we may assume that λ110 ≥ λ101 and λ110 ≥ λ011 (without
loss of generality). Then taking

λ110 → λ110 + ∆, λ101 → λ101 −∆, λ001 → λ001 −∆, λ010 → λ010 + ∆,
(A.133)

preserves the constraints (A.129) and (A.132), whereas

P 2 → P ′2 = P 2 + 4(λ110 +λ010−λ101−λ001)∆ + 8∆2 = P 2 + 8(λ110−λ101)∆ + 8∆2 > P 2,

(A.134)
since λ110 ≥ λ101 by assumption, so P 2 increases. This can be continued until either
λ101 = 0 or λ001 = 0. If the former occurs, then we exchange the roles of λ101 and λ011
and carry out the same process until either λ011 also vanishes or λ001 = 0. If the former,
then (A.132) implies that λ110 = 1, but then (A.129) implies that λ001 = 0, so we ultimately
obtain λ001 = 0 regardless. Next, we again apply the symmetries of the Fano plane to fix
λ101 ≥ λ011, and then carry out an analogous process to increase λ101 at the expense of

16Otherwise, since any two lines on the place intersect at a point, we can form a chain of saturated lines.
Once we have three such lines we will have a loop of saturated lines but this only covers six of the points,
leaving one out.
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λ011 while steadily increasing P 2. This terminates when either λ011 = 0 or λ010 = 0. If the
former occurs, then our Fano plane now looks like

λ111
λ001 λ010 λ100

λ110 λ101 λ011

=
x

0 1− 2x 1− x
1− x x 0

, (A.135)

but then λ110 + λ010 + λ100 = 1− x+ 1− 2x+ 1− x = 3− 4x > 1 since x = λ111 <
1
2 , so

we reach a contradiction. If the latter, the our Fano plane now looks like:

λ111
λ001 λ010 λ100

λ110 λ101 λ011

=
x

0 0 2− 3x
1− x 1− x 2x− 1

, (A.136)

but now since x = λ111 <
1
2 , λ011 = 2x− 1 < 0 and we again reach a contradiction.

Thus, we conclude that another line must be saturated. Using the symmetries of the
Fano plane, we can fix it to be

λ001 + λ010 + λ011 = 1. (A.137)

Imposing all the constraints (A.129), (A.132), (A.137), the Fano plane looks like:

λ111
λ001 λ010 λ100

λ110 λ101 λ011

=
x

y 1− x− y 1− 2x
1− x− y y x

, (A.138)

and the remaining two lines impose the constraints

1− 2x ≤ y ≤ x. (A.139)

As usual, the maximum value of P 2 will be found on a boundary, either where y = x or
y = 1− 2x, where in either case we obtain P 2 = 2(4x2 + 3(1− 2x)2). Since x ≥ 1

3 to satisfy
the previous inequality and x ≤ 1

2 by prior assumption, we obtain P 2 = 2 for x = 1
2 (as

before) and P 2 = 14
9 for x = 1

3 . The former is larger of course, so we finally obtain

P 2
max = 2, (A.140)

which corresponds to λmin = 1√
d−2 = 1√

2 precisely as expected.
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