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Abstract. Offshore wind farms are one of the major renewable energy resources
that can help the UK to reach its net zero target. Under the 10 point plan of the
green revolution, the UK is set to quadruple its wind energy production by increasing
its offshore wind capacity to 40GW by 2030 [1]. Research needs to be conducted to
study the failure and repair processes of wind turbines under various conditions as
the current models make a simplifying assumption that the failure/repair rate remains
constant over time. This research aims to create a more accurate model using SCADA
data. In this research, different mathematical models are fitted to the time to failure
and time to repair data of wind turbine components using frequentist methods (such
as Maximum Likelihood Estimation) and Bayesian methods. Further analysis will be
conducted using complex system analysis considering the failures of each electrical and
mechanical component of the wind turbine. The aim of this project is to perform a
more accurate reliability analysis that can help to further drive down costs of wind
energy by potentially reducing the downtimes of the wind turbines.

1. Introduction
In 2022, the UK’s offshore wind farms demonstrated their potential by supplying
electricity to 11.5 million homes [2]. It was buoyed by government incentives like
the Contract for Difference (CfD) scheme [2]. Despite operational and maintenance
challenges, offshore wind remains pivotal in the UK’s journey towards achieving net-
zero emissions. The decreasing Levelised Cost of Energy (LCOE) signals its growing
cost-effectiveness and investment attractiveness. For wind turbines to be economically
viable, they must be reliable in order to provide clean, renewable energy. In this context,
reliability refers to the probability of a system performing its expected task adequately
for a designated period of time under specific operating conditions [3]. The performance
and maintenance needs of wind turbines are heavily influenced by their times to failure
and repair. Therefore, to estimate the total reliability of the wind turbine, it is crucial
to comprehend the statistical characteristics of the time to failure of these components.



Currently, there are various tools available for the determination of unavailability of
offshore wind farms in the early stages of a wind farm’s life. The models utilised in these
tools are tailored towards simplifying assumptions namely, they consider that all the
turbine components to be repairable and the times to failure and repair exponentially
distributed, i.e. they have density

𝑓(𝑡) =
𝑃 (𝑡 ≤ 𝑇 ≤ 𝑡+ 𝑑𝑡)

𝑑𝑡
= 𝜃𝑒−𝜃𝑡 (1)

where 𝜃 is the parameter of the distribution (different for repair and failure), representing
the rate. Note that if the rate is 𝜃, then the mean of the distribution under these
assumptions is 1/𝜃 [4, 5]. Some papers also take a different approach towards these
calculations.

The exponential distribution assumption may lead to sub-optimal results when it
comes to analysing turbine failures and repairs as random processes. This is because
it assumes constant rates of failure and repair, which may not necessarily be true
[6]. It effectively makes simplifying assumptions which can lead to a poor estimation
of the Expected Energy Not Served (EENS). For this reason, some researchers have
started adopting other types of distributions when analysing failure/repair times for
wind turbines. For example, [7] uses two and three-parameter Weibull distributions and
the parameters for these are calculated by using least squares and Maximum Likelihood
Estimation (MLE). [8] also uses a modified version of the Weibull distribution for the
reliability study. The references mentioned above highlight the necessity for a more
robust uncertainty quantification process.

This research aims to improve the uncertainty quantification of failure and repair
processes and, therefore, also of indicators such as EENS and LCOE. In the long term,
this research can lead to more reliable maintenance schedules, resulting in cost reduction
and better decision-making for investors. In the short term, it can aid in the planning
and execution of maintenance activities. Consequently, this project aims to improve the
estimation and uncertainty quantification of the costs at the beginning of construction
of the wind farm. To this end, this paper aims to analyse a part of Supervisory Control
and Data Acquisition (SCADA) data pertaining to a fleet of wind turbines taken over
several years [9], and to frame a statistical model that more accurately models failures
and repair times of wind turbines.

2. Background
2.1. Wind Turbine Models for Reliability Analysis
The overall lifetime of a wind turbine can be divided into three stages: early life failures
region, steady state region, and wear-out region. This can be seen in Figure 1 which
is commonly referred to as the bathtub curve. The bathtub curve shows how failure
rate changes with the life of the wind turbine. The early life failure region is at the
beginning of the life of the turbine. At this stage, the failures are initially high with
a time-dependent failure rate which decreases in time until a constant failure rate is
obtained in the steady-state region. Lastly, the failure rate increases towards the end of
the lifetime of the wind turbine [5].



Figure 1. Bathtub curve Figure 2. Two state Markov chain

The current models of reliability focus on the steady state region of the bathtub
curve. A constant failure rate means that the failure time probability density function is
exponential (see Eq. (1)). The same can be said for repair processes. In this case, failure
and repair times are assumed to be distributed exponentially with a constant, albeit
different parameters referred to as the failure and repair rate respectively. Consequently,
the random failure/repair processes of a component with constant failure and repair rates
can be modelled as a two-state Markov process as shown in Figure 2.

Extending the Markov assumption to a complex system like wind turbines with
multiple components, reliability block diagrams are employed to assess their reliability by
considering different failure scenarios and component interdependencies. These methods
rely on the Markov assumption for modeling the system’s failure and repair processes
as multi-state Markov processes, with states representing failure and normal operation,
assuming constant transition rates between these states [5].

In this paper, the aim is to relax the Markov assumption of having constant transition
rates between different states as shown in Figure 2 when modelling the failure and repair
processes of a complex system such as a wind turbine. The methodology by which the
state transition rates are estimated is outlined in the Methodology section of this paper.

3. Methodology
The project’s methodology adopts a comprehensive and advanced approach towards
modeling the failure and repair distributions with the help of SCADA data. The purpose
of this modelling is enhancing the reliability estimation and failure prediction of wind
turbines by developing more accurate models for failure and repairs. These improved
models will lead to more precise reliability assessments, ultimately impacting Operational
Expenditure (OPEX) and the LCOE in the long run. It includes parameter estimation
for the Probability Density Function (PDF) of times to failure distribution using Bayesian
Parameter estimation and MLE. MLE is a comparatively simple method of parameter
estimation whereas Bayesian statistics provides a full posterior distribution of the
parameters, allowing for the quantification of parameter uncertainty. This approach
allows for a deeper understanding of the failure and repair processes in repairable wind



turbine components. The methodology is laid out below in a structured manner for
clarity and coherence:

∙ DATA: SCADA data from wind turbines is used for the analysis. This SCADA data
consists of the SCADA signals such as generator rotational speed, average wind
speed, total active power, etc.

∙ PROCESSING: This data is processed alongside the wind turbine logs to determine
the periods of availability and unavailability. The values of interest are time to repair
and time to failure that are calculated once we know the duration of availability of
the wind turbine.

∙ MODEL: A new statistical model characterising the times to failure for each turbine
is prepared to understand the impact of the environment on the wind turbines’
failures. The parameter evaluation for this model (e.g., failure rate, mean time to
failure) is carried out by using either MLE or Bayesian inference.

3.1. Data Source
Our primary dataset is sourced from EDP Renewables [9], encompassing SCADA and
log data from a wind farm of 16 turbines, each rated at 2MW, with a focus on a subset
of 5 turbines. The data provides insights into the relationship between environmental
conditions and turbine operational parameters, such as rotor speed, temperature, and
net power production [9].

According to literature, it is initially assumed that the wind turbines experience
an average of 8.5 failures per year with a mean downtime of 10 days per failure.
These approximations are instrumental in shaping our prior parameter calculations and
validating the models developed [10].

3.2. Data Analysis
The aim of the data analysis is to get failure and repair times from wind turbine
observations. The data that is generally available comprises power, temperature, and
wind speeds, rather than failure and repair times. Therefore, it is necessary to process
the data first to convert it into sequences of times to failure and times to repair. This
processed data will be used for a statistical analysis.

Interpreting when failures happen is inherently subjective to a certain degree, and this
is reflected in our approach. The available data does not explicitly provide information
on failure and repair times; however, it includes variables like power production, power
curve of the wind turbine, and wind speed with corresponding timestamps. Using this
data, we derive the times to failure and times to repair for both wind turbines.

For this, at first, a heuristic criteria is established to determine the turbine’s
operational status based on wind speed and power production. A turbine is classified
as failed if the wind speed is high and the corresponding power production falls below
30% of the expected active power output. Conversely, a turbine is deemed to be in an
unknown state if the wind speed is below cut-in or above cut-out and there is no power
production. Otherwise, when the wind speed is high enough and the power production
aligns closely with the power curve, then the wind turbine is considered to be in an
available state.

https://www.edp.com/en/innovation/open-data/onsite-metmast-scada-2017


This analysis results in 36 data points. This indicates 36 repairs in a year. These
repairs could have been carried out for small or large failures. These times to failures are
obtained in the unit of minutes and then converted to days.

3.3. Model Development
Let 𝑇1, . . . , 𝑇𝑛 be i.i.d. random variables representing the times to failure of a wind
turbine, with values 𝑡1, . . . , 𝑡𝑛, each distributed according to the same density 𝑃 (𝑡𝑖 | 𝜃),
where 𝜃 is an unknown model parameter. The prior density function of the model
parameter 𝜃 is denoted by 𝑃 (𝜃) and the posterior density as 𝑃 (𝜃 | 𝑡), where 𝑡 denotes
(𝑡1, . . . , 𝑡𝑛). To estimate the parameter 𝜃, Maximum Likelihood Estimation and Bayesian
estimation are used. The joint PDF for these 𝑛 random variables, conditional on the
parameter 𝜃, is

𝑃 (𝑡|𝜃) =
𝑛∏︁

𝑖=1

𝑃 (𝑡𝑖|𝜃) (2)

Two primary models are considered in this paper.
∙ Model 1 (Weibull Model): In this model, it is assumed that failure times follow

a Weibull distribution, therefore,

𝑇𝑖 | 𝜆, 𝑘 ∼ Weibull(𝜆, 𝑘) (3)

∙ Model 2 (Exponential Model): This model assumes that failure times follow
an exponential distribution, which is a special case of a Weibull distribution with
𝑘 = 1. This is done to simplify the comparison of the parameter evaluation in both
cases. Therefore,

𝑇𝑖 | 𝜆 ∼ Weibull(𝜆, 1) (4)

The PDF of the two-parameter Weibull distribution used here is:

𝑃 (𝑡𝑖 | 𝜆, 𝑘) :=
𝑘𝑡𝑘−1

𝜆𝑘
exp

[︃
−
(︂
𝑡

𝜆

)︂𝑘
]︃

(5)

where 𝑘 > 0 is the shape parameter and 𝜆 > 0 is the scale parameter. In this scenario,
since the dataset is very small, the selected prior will highly impact the posterior. An
inverse gamma function is selected to be a prior for a Weibull distribution as a likelihood
function. This function belongs to a family of two-parameter distributions. We choose
the prior distributions as follows:
∙ The scale parameter 𝜆 is modelled with an Inverse Gamma distribution, denoted

as InverseGamma(𝛼, 𝛽). Here, 𝛼 denotes the shape parameter and 𝛽 is the scale
parameter of the prior. The mean of the prior for 𝜆 should approximately be equal
to the prior expected failure time if 𝑘 does not deviate too much from 1.

∙ The shape parameter 𝑘 is a priori assumed to follow a Uniform distribution,
expressed as Uniform(𝜅*, 𝜅

*).The mean of the prior for lambda should approximately
be equal to the prior expected failure time if 𝑘 does not deviate too much from 1.

Here, a two-parameter prior ensures a more accurate calculation, as it allows more
flexibility and specificity.



Maximum Likelihood Estimation
Maximum Likelihood Estimation offers a distinct method for parameter estimation. The
MLE of 𝜃 is determined by maximising the likelihood function 𝑃 (𝑡 | 𝜃), a process which
can be efficiently computed using the log-likelihood function [11]. Mathematically, this
is expressed as:

ℓ(𝜃) = log𝐿(𝜃) =
𝑛∑︁

𝑖=1

log𝑃 (𝑡𝑖|𝜃) (6)

𝜃 = argmax
𝜃

ℓ(𝜃) (7)

Bayesian Statistics for Parameter Estimation
In our analytical framework, Bayesian statistics play a crucial role in conducting a
parameter estimation. The methodology involves selecting a prior distribution 𝑃 (𝜃),
which includes our initial understanding or hypothesis about the parameter 𝜃. The
likelihood function 𝑃 (𝑡 | 𝜃) quantifies the probability of observing the data given a
particular value of the parameter. Through the application of Bayes’s theorem, this
prior belief is updated to a posterior distribution 𝑃 (𝜃 | 𝑡), effectively synthesising our
initial knowledge with the empirical data. According to Bayes’s theorem:

𝑃 (𝜃 | 𝑡) = 𝑃 (𝑡|𝜃)𝑃 (𝜃)

𝑃 (𝑡)
=

𝑃 (𝑡 | 𝜃)𝑃 (𝜃)∫︀
𝑃 (𝑡 | 𝜃′)𝑃 (𝜃′)𝑑𝜃′

(8)

where 𝑃 (𝑡) represents the marginal joint probability density function. To extract samples
from this posterior distribution, we employ advanced computational techniques such as
Markov Chain Monte Carlo (MCMC), which are integral for managing the complexities
inherent in Bayesian analysis [11]. Some other techniques could be used here as well,
such as, Sequential Monte Carlo and variational inference. All these techniques have
their own pros and cons as compared to a conventional Bayesian statistical method.
Bayesian statistical model provides an exact posterior distribution whereas, Sequential
Monte Carlo and Variational Inference provide approximate values.

Markov Chain Monte Carlo in Bayesian Analysis Within the Bayesian modelling
framework used in this paper, MCMC algorithms are useful for effectively sampling from
the posterior distribution for computationally complex calculations, particularly those
involving the integration of prior distributions and the likelihood derived from data.

The focus of this paper is the shape 𝑘 and scale parameters 𝜆 of the Weibull
distribution, treating them as independent variables a priori. This assumption simplifies
the complexity of prior specification. These distributions reflect our initial hypotheses
about the likely ranges and behaviours of the parameters. The test data visualised in
our study, alongside these specified priors, forms the foundation for the Bayesian model.

MCMC provides a full distribution of model parameters, rather than single-point
estimates, thereby offering a detailed perspective on parameter uncertainty suitable for
research analysis.

The major difference between MLE and Bayesian estimation is that MLE provides
a point estimate, which is an approximate single value that maximizes the likelihood



function, whereas Bayesian estimation provides a probability distribution, known as the
posterior distribution, which represents the uncertainty in the parameter estimates [11].

4. Hyperparameter Selection
The process of selecting hyperparameters relies on prior knowledge. Once the likelihood
is specified, the next step involves assigning priors for the parameters of interest, in this
case, 𝑘 and 𝜆. We assume that 𝑘 and 𝜆 are a priori independent. To choose suitable
hyperparameters, the prior knowledge of the wind turbine failure rate obtained from the
literature is utilised. Specifically, the mean time to failure is used as a reference point
for selecting the shape and scale parameters of the prior distribution. This reference
point helps inform the choice and ensures that the prior distribution aligns with the
expectations regarding the underlying process. Once initial hyperparameters are chosen,
they are iteratively adjusted until a reasonable prior predictive distribution is achieved.
This iterative process involves evaluating the prior predictive distribution and comparing
it with historical data or expert knowledge. Adjustments are made to strike a balance
between incorporating prior information and allowing flexibility for the data to influence
the posterior inference. Figures 3 and 4 provide a visual representation of the prior
predictive distributions of both Weibull and exponential distributions. The simulated
data helps with the model validation by comparing the model’s performance against
historical data and expert knowledge. The value of shape parameter for Weibull function
for this analysis is set to 2.5 and scale parameter is 56.25.

Overall, the process of selecting hyperparameters for the prior distribution for this
paper involved a thoughtful consideration of prior knowledge, iterative adjustment, and
validation against historical data. This approach ensured that the prior distribution
effectively captures the beliefs about the parameters of interest and facilitates Bayesian
inference.

5. Results
The results of processing the data are visualised in Figure 5. The data points are visually
represented with colour coding. Here, blue is assigned to instances of low wind speed
and low power production or an unknown state, while red represents failed states, and
green is used to indicate an available state.

Next, to convert the unknown states into known states, we assume that if the state
was available previously, the turbine remains available, and similarly, if the turbine was
failed, it remains failed. This assumption allows us to construct a time series for the wind
turbine that contains no unknown states, which we can then finally turn into a series of
failure and repair times, as shown in Table 6.

This analytical technique and visual representation allows for a detailed examination
of the wind turbine performance and state, facilitating a comprehensive understanding of
the system dynamics and behavior. The low wind speed instances will be used to extract
time series data of operating and non-operating states of the wind turbines. This data
will then be used to calculate times to failure and times to repair of the wind turbine.
These times to failure, and times to repair will then be used as inputs for the parameter
estimation of a probability density function, initially using the MLE, as shown above in
the methodology.



Figure 3. Simulated prior predictive
data with an exponential likelihood
function

Figure 4. Simulated prior predictive
data with a Weibull likelihood func-
tion

Figure 5. Power Curve for Turbine 07
for 2017

Figure 6. Determining unknown states
for the given data

Time State Final State
0:00:00:00 1 1
0:00:00:10 1 1
0:00:00:20 ? 1
0:00:00:30 ? 1
0:00:00:40 1 1

. . . . . . . . .
5:10:00:20 0 0
5:10:00:30 ? 0
5:10:00:40 ? 0
5:10:00:50 1 1

When the shape parameter is set to 1, the value of scale parameter is estimated to
be 21.7 by using Bayesian estimation (Figure 8) and 21.03 by using MLE, which is an
exponential curve (Figure 7). If 𝑘 is not fixed, the value of 𝑘 is obtained to be 0.872
and the value of 𝜆 is 19.71 using MLE (Figure 7) whereas the values of 𝑘 is 0.84 and 𝜆



Figure 7. Exponential and two parameter
Weibull distribution parameter estimation
using Maximum Likelihood Estimation

Figure 8. Parameter estimation for 𝜃
in case of an exponential curve

Figure 9. Parameter estimation for k and 𝜆

is 20.31 by conducting Bayesian analysis (Figure 9). Here, the value of 𝑘 in case of a
two parameter Weibull function is close to 1, hence, both the Weibull and exponential
distributions are close to each other.

6. Conclusion
This research focuses on determining a more generalised statistical model pertaining
to times to failure (and repair) in offshore wind turbines, which in turn could lead to
better estimations of impacts of failure/repairs on measures such as Expected Energy Not
Served or Levelised Cost of Energy for offshore wind farms. Moreover, these models are
used to predict the failures and repairs of wind turbine components and to determine any
correlations between the failures and repairs and their wider environmental conditions.
This newly developed model can be used to simulate the operation of exemplar wind
farms.



The results indicate that both Bayesian inference and MLE provide estimates for the
parameters of the statistical models pertaining to failure and repair times of components
of the turbine. The estimated parameters differed slightly between the two methods, with
Bayesian analysis offering a more robust estimation considering parameter uncertainty.

In this paper, we have only focused on uncertainty quantification of the model
parameters, and not on prediction of future failures and repairs. In future work, we
plan to explore other numerical methods for efficient prediction and inference based on
the Bayesian models developed in this paper, such as for instance variational Bayesian
methods, and approximate Bayesian computation, potentially in combination with
sequential Monte Carlo.
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