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Abstract. We show that knowledge satisfies interpersonal independence, meaning

that a non-trivial sentence describing one agent’s knowledge cannot be equivalent to

a sentence describing another agent’s knowledge. The same property of interpersonal

independence holds, mutatis mutandis, for belief. In the case of knowledge, interper-

sonal independence is implied by the fact that there are no non-trivial sentences that

are common knowledge in every model of knowledge. In the case of belief, interper-

sonal independence follows from a strong interpersonal independence that knowledge

does not have. Specifically, there is no sentence describing the beliefs of one person

that implies a sentence describing the beliefs of another person.
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1. Introduction

Interactive epistemology. Epistemic attitudes toward sentences come in many shapes

and forms: knowledge, qualitative belief, and quantitative belief, each of which further

splits into a variety of attitudes. Since we are dealing here only with epistemic attitudes,

we will call them attitudes for short. The subjects to which epistemic attitudes are

attributed can vary and be, for example, individual human beings, firms, states, or

computers. We refer to such subjects as agents.

Of particular interest is the study of attitudes in environments that involve multi-

ple agents. This study provides insights into how agents interact, make decisions, and

cooperate or compete with each other. The study of such environments is relevant to

a range of disciplines, including psychology, economics, game theory, computer science,

sociology, biology, philosophy, logic and political science.

The epistemic attitude of each agent in an interactive environment refers not only

to objective facts, but also to subjective facts, namely, the attitudes of other agents.

Furthermore, the attitudes of agents may also concern attitudes that refer to attitudes,

and so on. For multi-agent environments, it is of interest to consider the extent to which

one agent’s attitude is independent of another agent’s attitude. We study this question

with respect to two commonly used versions of knowledge and (qualitative) belief.

We express the idea that the attitudes of two agents are independent in terms of the

relation between descriptions of the agents’ attitudes. We first explain what these de-

scriptions are via several instances. Consider for example the following description of

Alice’s knowledge.

(1) Alice knows that the black horse won the race.

Descriptions may include several simple descriptions, such as:

(2) Either Alice knows that the black horse won the race, or Alice does

not know that the red horse won the race.

A description of an agent’s knowledge may include knowledge of the agent about

another agent’s knowledge, as in the following:

(3) Alice knows that Bob does not know that the black horse won the

race.

If we replace ‘Alice knows’ with ‘Alice believes’ in these examples we get descriptions

of Alice’s belief. We can also replace ‘Alice knows’ with ‘Alice ascribes probability p’ to

obtain descriptions of Alice’s probabilistic beliefs.

Interpersonal independence. We define conditions of independence in terms of the

relations between the descriptions of the attitudes of two agents.
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An attitude satisfies interpersonal independence if no description of the

attitude of one agent is equivalent to the description of the attitude of

another agent, except for trivial cases.1

In other words, an attitude does not satisfy interpersonal independence if there are

non-trivial descriptions of both Alice’s and Bob’s attitudes such that one description is

true if and only if the other is true.

At first glance, knowledge and belief of agents seem to be obviously interpersonal

independent. After all, agents acquire their knowledge and belief independently, on their

own, and the way one agent acquires it seems to be independent of the way another agent

acquires it. On a second thought, there is a difference between knowledge and belief.

Knowledge is bound to be true, belief does not. Thus, while agents acquire their belief

completely independently of each other, there is dependence in the way they acquire

knowledge. The knowledge of two agents is related: their knowledge is bound by truth,

which is the same for both. Thus, the intuition leads us now to conclude that while

beliefs of different agents are independent their knowledge is not. But our intuition is

wrong again. To see why, we need to introduce another notion of independence.

We can require a stronger form of independence. Not only is it the case that no two

descriptions can be equivalent, but also that no description of one agent’s attitude tells

us anything about the attitude of another agent. This leads us to the following definition.

An attitude satisfies strong interpersonal independence if no description

of the attitude of one agent implies a description of the attitude of another

agent, except for trivial cases

We now check which of the two of independence conditions formulated above are

satisfied by the attitudes of knowledge and belief. Beginning with the condition of

strong interpersonal independence, we find that:

Belief satisfies strong interpersonal independence, but knowledge does not.

The reason why knowledge does not satisfy strong interpersonal independence is the

property of knowledge, called the truth axiom. We demonstrate it using the following

sentences. Consider the description of Alice’s knowledge in (1). The truth axiom says

that the knowledge of a sentence implies the sentence. That is, if it is true that the

sentence is known, then the sentence is true. Thus, (1) implies that the black horse won

the race. But this implies in turn that Bob cannot know the opposite, that is:

(4) Bob does not know that the black horse did not win the race.

1By trivial cases we mean descriptions that are either true in every model of knowledge, or false in

every model. Equivalently, by the completeness theorem (see ?), the trivial cases are either theorems or

contradictions.
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In summary, the description of Alice’s knowledge in (1) implies the description of Bob’s

knowledge in (4).

The descriptions of belief obtained from (1) and (4) by changing ‘know’ to ‘believe’

do not satisfy the truth axiom because belief of a sentence does not imply the sentence.

Indeed, consider the following two descriptions of belief:

(5) Alice believes that the black horse won the race.

(6) Bob believes that the black horse did not win the race.

Obviously, one and only one of these two believed sentences is true. Yet (5) and (6) can be

both true, and therefore (5) does not imply the negation of (6). This does not yet prove

that belief satisfies strong interpersonal independence because we need to show that no

description of Alice’s belief, no matter how complicated, can imply any description of

Bob’s belief. We show that this is indeed the case.

A straightforward corollary is:

Belief satisfies interpersonal independence.

As knowledge does not satisfy strong interpersonal independence, the question of

whether it satisfies interpersonal independence cannot be answered so easily. Our main

result shows, however, that knowledge, like belief, does satisfy interpersonal indepen-

dence. We can summarize our results:

Both knowledge and belief satisfy interpersonal independence. Only belief

satisfies strong interpersonal independence.

The role of the truth axiom is intricate. It has a crucial role in distinguishing between

knowledge and believe regarding strong interpersonal independence. However, it does not

play any role regarding interpersonal independence which is satisfied by both knowledge

and belief.

The formalism. We study knowledge and belief as modalities in a formal language of

modal logic as was first suggested by ?. For belief we use the modal logic KD45.2 We

discuss later the relation between this type of belief and probabilistic belief. Knowledge

is modeled here by the modal logic S5. This type of logic is obtained by adding to

the axioms KD45 an axiom known as the truth axiom, which says that knowledge of a

sentence implies the sentence. Some philosophical reservations concerning the rendering

of knowledge in terms of the S5 logic were raised by ? and ?. Nevertheless, this model of

knowledge is by far the most commonly used by practitioners in the sciences that study

interactive epistemology.

2KD45 is the acronym of the names of the four axioms that define the logic. The logic of belief of n

agents each of which satisfy the axioms of KD45 is sometimes denoted by KD45n. In this paper we omit

the n.
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? proposed semantics for various modal logics in terms of models called Kripke struc-

tures, which consist of a set of possible worlds and accessibility relations between them.

Each sentence in the formal language is associated in each model with a subset of worlds,

considered to be the interpretation of the sentence in the model.

In the language of multi-agent modal logics there is one modality for each agent.

Similarly, the semantics for such logics has an accessibility relation for each agent. ?

studied multi-agent knowledge using partition models. In such a model the objects

that are subject to knowledge are subsets of a state space that are called also events.

Each agent is associated with a partition of the state space that describes the agent’s

knowledge: in each state the agent knows all the supersets of the partition element that

contains the state. Partition models are equivalent to Kripke structures for the S5 logic.

The truth axiom plays a pivotal role in this paper: it is the axiom that distinguishes

knowledge from belief. However, the paper’s central results hinge critically also on the

remaining axioms that guarantee that the knowledge and belief are defined by a partition.

We elaborate on this at the end of Section ??.

Common knowledge. To establish that knowledge satisfies interpersonal indepen-

dence, we use the concept of common knowledge in a partition model, as defined in ?.

Common knowledge is defined by the meet partition, which is the finest common coars-

ening of the agents’ partitions. A common knowledge event is any element of the field

generated by the meet partition.3 A sentence is common knowledge in a partition model

if it is interpreted as a common knowledge event. The claim that knowledge satisfies

interpersonal independence is equivalent to the following claim:

There are no sentences that are common knowledge in every model except

for the trivial ones.4

To show this we construct for any non-trivial sentence a model in which (i) the meet

contains only one set, namely the whole state space, and (ii) this sentence and its negation

are interpreted as nonempty events. Since the meet, in this case, does not contain any

proper subset that is a common knowledge event, it follows that the sentence is not

interpreted in this model as a common knowledge event.

The lack of no non-trivial sentences that are common knowledge in every model reveals

a gap between the syntax and the semantics of S5 knowledge. While common knowledge

is well defined in every model of knowledge, it is impossible to define common knowledge

syntactically in terms of the agents’ knowledge. ? discuss the definability of a modality

in terms of other modalities. ? demonstrates another gap between syntax and semantics.

They show that S5 knowledge cannot be syntactically defined in terms KD45 belief, while

3Including the empty set, which we consider a common knowledge event for convenience.
4See footnote 1.
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in every model of KD45 belief, S5 knowledge can be defined in a unique way. The reason

for this gap is that Kripke structures have some features that are not shared by other

models of modal logic. It is impossible to express syntactically the semantic difference

between different families of models. ? provides examples of models of possible worlds

for S5 knowledge that cannot be described in terms of accessibility relations and therefore

are not Kripke structures.

Probabilistic beliefs. ? defined a probabilistic belief space based on a topological

space of parameter of a game. A special case of such a space is a discrete one. The

relation between discrete models of KD45 belief and discrete spaces of probabilistic belief

is summarized succinctly in ? as follows. In every discrete model of probabilistic belief,

the restriction of the probabilistic belief to certainty, namely to belief in probability

1, is a model of KD45 belief. Conversely, every discrete model of KD45 belief can be

extended to a model of probabilistic belief. ? studies this relation in logics of probabilistic

belief. However, non-discrete spaces of probabilistic belief require topological or measure-

theoretic structure, while no such structures are required for non-discrete models of KD45

belief.

Since every discrete KD45 model can be extended to a probabilistic belief space, it

is natural to ask whether the latter has also the property of interpersonal independence

of probabilistic belief. An answer in the affirmative was given in ? who constructed

a universal space of probabilistic beliefs. This space is the product of type spaces, one

for each agent, and the set of parameters. The type space of an agent consists of all

coherent hierarchies of the agent’s beliefs. Due to the product structure, each type of

one agent is consistent with any combination of types of the other agents. In particular,

any description of an agent’s beliefs, which is a union of some of his types, is consistent

with a description of the beliefs of the other agents. It is easy to show that this condition

is equivalent to interpersonal independence of belief.

The equivalent of the universal probabilistic belief space in logic is the canonical

model of KD45. The worlds in the canonical model are maximal consistent sets of

sentences. ? showed that in the logic of probabilistic beliefs, worlds can be described

equivalently by types, namely hierarchies of beliefs, or by maximal consistent sets of

sentences. It is possible to show that the canonical model for KD45 is also a product of

maximal consistent sets of sentences that describe individual beliefs. It is worth noting,

however, that the product structure characteristic of universal probabilistic belief spaces

or canonical KD45 models is unique to these specific spaces and models. Non-universal

spaces and non-canonical models may not necessarily adhere to a product structure.

The fact that the universal probability belief space is a product space cannot be

used directly to show the interpersonal independence of beliefs. The reason is that the

construction of the universal space requires additional structure: topology as in ? or
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measurable spaces as in ?. In contrast, the models of KD45 do not require additional

structure.5 The direct proof that does not involve type spaces seems to be simpler and

straightforward.

Much like the canonical KD45 model for belief, there exists a canonical S5 model for

knowledge. It is important to note that, unlike the canonical KD45 model, the canonical

S5 model does not have a product structure. The distinction between these two canonical

models underscores the fact that, unlike belief, knowledge is not strongly interpersonal

independent.

Epistemic and probabilistic independence. The study of the concept of indepen-

dence is interesting for several reasons. Parallels between the independence of individual

beliefs and knowledge and the well-defined notion of probabilistic independence offer an

additional one, beyond the previously mentioned reasons. In both cases, the epistemic

and the probabilistic, independence is about learning from one entity about another.

In probability theory, two random variables are independent if knowing the value of

one does not tell you anything about the value of the other. If knowing one reveals

information about the other, they are considered dependent. Now, let us shift our fo-

cus to sentences representing knowledge or beliefs. Sentences are dependent if they are

both true or both false. This means, in particular, that knowing the truth value of one

sentence tells you the truth value of the other. Moreover, if from one sentence’s truth

value one can learn something about the truth value of the other, we call them strongly

dependent. We show that two non-trivial sentences representing the knowledge of two

different agents are independent, while sentences representing the beliefs of two different

agents are strongly independent.

The structure of the paper. The next section describes the syntax and semantics of

knowledge and belief. Section ?? deals with the concept of independence, introducing the

idea and the main theorems: both knowledge and belief exhibit interpersonal indepen-

dence, but only belief shows the strong version of this property. Section ?? contains the

proof that belief exhibits strong interpersonal independence, followed by Section ?? that

presents the proof of the theorem stating the interpersonal independence of knowledge.

Section ?? provides a short summary.

2. Preliminaries

2.1. The syntax of the logic of knowledge. We consider a logic of multi-agent

knowledge for a finite set I of individuals.6 The set of sentences SK of this logic is

5? showed epistemic equivalence between Kripke models and type spaces relative to a doxastic lan-

guage. Their result can be used in principle to prove interpersonal independence of KD45 belief.
6This logic is described in detail in ? and ?.
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defined, starting with a set A of atomic sentences, using propositional connectors, ¬, →,

∧, and ∨, and knowledge operators Ki. Formally: (i) every atomic sentence is a sentence;

(ii) if ϕ and ψ are sentences, then ¬ϕ (read, not ϕ), (ϕ→ ψ) (read, if ϕ then ψ), (ϕ∧ψ)

(read, ϕ and ψ), (ϕ ∨ ψ) (read, ϕ or ψ), are sentences; (iii) if ϕ is a sentence, then for

each i ∈ I, Kiϕ (read, i knows ϕ) is a sentence. The set of sentences SK is the smallest

set that satisfies (i), (ii), and (iii). We denote by SKi the set of sentences that describe

i’s knowledge, that is, the sentences that are generated from the set {Kiϕ | ϕ ∈ SK} by

the propositional connectors.

The subset of theorems in SK is defined inductively starting with a set of sentences

called axioms. The set of axioms consists of all propositional calculus tautologies and

for any i and any two sentences ϕ and ψ, each of the following sentences:

(K) Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ);

(T) Kiϕ→ ϕ (truth axiom);

(5) ¬Kiϕ→ Ki¬Kiϕ (negative introspection).

The set of theorems is the smallest set of sentences that satisfies the following three

properties: (1) each axiom is a theorem; (2) if ϕ and ϕ → ψ are theorems then ψ is

a theorem (modus ponens); (3) if ϕ is a theorem, then for any i, Kiϕ is a theorem

(generalization). The negation of a theorem is called a contradiction. A sentence that

is not a contradiction is consistent. When ϕ → ψ is a theorem we say that ϕ logically

implies ψ and write ϕ⇒ ψ. If ϕ logically implies ψ and vice versa we say that ϕ and ψ

are logically equivalent and write ϕ⇔ ψ.

2.2. The semantics of knowledge. We use Kripke models, here models for short, as

the semantics of the logic. A model is a tuple M = (Ω, ( i)i∈I , [ · ]), where

• Ω is a set of elements called worlds or states;

• For each i,  i is a reflexive, symmetric, and transitive binary relation on Ω,

called an accessibility relation;

• [ · ] : A → 2Ω is an interpretation function that assigns to each atomic sentences

a subset of Ω.

The interpretation of atomic sentences in the model is extended to all sentences.

Thus, for each sentence ϕ we defined a subset of Ω denoted by [ϕ]. The interpretation

is defined inductively; if [ϕ] and [ψ] are defined, then [¬ϕ] = Ω \ [ϕ]; [ϕ ∧ ψ] = [ϕ] ∩ [ψ];

[ϕ∨ψ] = [ϕ]∪ [ψ]; [ϕ→ ψ] = (Ω\ [ϕ])∪ [ψ]; and [Kiϕ] = {ω | if ω  i ω
′, then ω′ ∈ [ϕ]}.

That is, a world ω is in [Kiϕ] if ϕ is true at all the worlds accessed from ω via i’s

accessibility relation. When ω ∈ [ϕ] in the model M , we say that ϕ is true in ω ∈ M
and write M,ω |= ϕ.

We say that a sentence ϕ is valid if it is true in each model in all the states of the

model, that is, in each model [ϕ] = Ω. The completeness theorem states that for any
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sentence ϕ, ϕ is a theorem if and only if ϕ is valid.7 It follows that ϕ is a contradiction

if and only ¬ϕ is valid, that is, if in every model [ϕ] = ∅. Also, ϕ is consistent if and

only if there exists a model and a world in the model where ϕ is true. By the definition

of interpretation and the completeness theorem, ϕ⇒ ψ if and only if [ϕ] ⊆ [ψ] in every

model, and ϕ⇔ ψ if and only if [ϕ] = [ψ] in every model.

2.3. The logic of belief. The set of sentences SB of this logic is defined similarly to

the set of sentences of the logic of knowledge, SK , except that the knowledge operators

Ki are replaced by belief operators Bi. The set of axioms consists of all tautologies and

for each i, ϕ, and ψ, any sentence in the following list:

(K) Bi(ϕ→ ψ)→ (Biϕ→ Biψ);

(D) Biϕ→ ¬Bi¬ϕ (consistency);

(4) Biϕ→ BiBiϕ (positive introspection);

(5) ¬Biϕ→ Bi¬Biϕ (negative introspection).

The set of theorems in SB is defined similarly to the set of theorems in SK , with the

knowledge operators Ki replaced by belief operators Bi.

It is easy to see that (D) is a theorem of the logic of knowledge. It can be also shown

that (4) is a theorem of this logic.8 Thus, the only difference between knowledge and

belief is that the former satisfies the truth axiom and the latter does not.

2.4. The semantics of belief. A model for the logic of belief is defined like a model

of the logic of knowledge except that the properties of the accessibility relations are as

follows:  i is transitive, serial (that is, for each ω there is an ω′ such that ω  i ω
′),

and Euclidean (that is, if ω  i ω
′ and ω  i ω

′′, then ω′  i ω
′′). It is readily seen that

if such a relation is also reflexive, then it is an equivalence relation. The interpretation

of sentences in a model of the logic of belief is defined like the interpretation in the case

of the logic of knowledge, with Bi replacing Ki. The completeness theorem holds also

for the logic of belief.

2.5. Replacing accessibility by subsets. There is a one-to-one mapping between

accessibility relations  i that are equivalence relations and partitions of Ω. Each such

relation i is uniquely associated with a partition Πi of Ω into equivalence classes. Define

Πi to be the partition of Ω into the equivalence classes of the accessibility relation. We

denote by Πi(ω) the element of Πi that contains ω. We can now equivalently define the

interpretation of Kiϕ is terms of Πi: [Kiϕ] = {ω | Πi(ω) ⊆ [ϕ]}. In what follows we

sometimes describe a model for the logic of knowledge as M = (Ω, (Πi)i∈I , [ · ]) where

the elements of the partitions Πi are the equivalence classes of  i.

7For a proof, see ?.
8See footnote 3 in ?.
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The definition of belief models in terms of subsets rather than accessibility relations

is done as follows. There is a one-to-one mapping of accessibility relations  i that are

transitive, serial, and Euclidean onto pairs (Πi,Σi) with the following properties:

• Πi is a partition of Ω;

• Σi is a family of non-empty subsets of Ω, called supports, such that each element

of Πi contains exactly one support.

Starting with such a relation i, we call a world a source if it is not accessible from any

world. Denote by S the subset of worlds in Ω that are not sources. This set has a partition

Σi such that for each σ ∈ Σi all the worlds in σ are accessible from each other but do not

accesses any world out of σ. For σ ∈ Σi let π(σ) be the set of worlds that access worlds

in σ. Obviously, σ ⊆ π(σ) and moreover, each world in π(σ)\σ accesses all the worlds in

σ and only these worlds. The family of sets π(σ) forms a partition Πi of Ω. Starting with

a pair (Πi,Σi) as described above we can easily construct the unique transitive, serial,

and Euclidean accessibility relation that gives rise to the pair. We denote by Πi(ω) the

element of Πi that contains ω, and by Σi(ω) the element in Σi contained in Πi(ω). We

can equivalently redefine Bi in terms of Σi as [Biϕ] = {ω | Σi(ω) ⊆ [ϕ]}. In what follows

we sometimes describe a model for the logic of belief as M = (Ω, (Πi,Σi)i∈I , [ · ]), where

the elements of the partitions Πi are the equivalence classes of  i.

Claim 1. If ϕ ∈ SKi (ϕ ∈ SBi ) then in every model, [ϕ] is a union of elements of Πi.

By definition, for each sentence Kiϕ, [Kiϕ] is a union of elements of Πi. Moreover, if

ϕ and ψ are sentences such that in each model, [ϕ] and [ψ] are unions of elements of Πi,

then [¬ϕ] and [ϕ∪ψ] also have this property, and similarly for the rest of the connectors.

Thus this property holds for all the descriptions of i’s knowledge. The proof for belief is

similar.

3. Interpersonal independence

Our main results concern the relationship between the knowledge or belief of different

agents. We show that knowledge is interpersonal independent in the sense that a de-

scription of the knowledge of one agent cannot serve as a description of the knowledge of

another agent. Formally, we claim that, for j 6= i, a sentence in SKi cannot be logically

equivalent to a sentence in SKj . This claim requires fine tuning because sentences that

are vacuous descriptions of knowledge and belief should be excluded. A sentence is a

vacuous description of knowledge or belief if it is either a theorem, or a contradiction.

Thus, if we take sentences ϕ in SKi and ψ in SKj that are theorems, then, of course, they

are logically equivalent. This is also the case when we take two such sentences that are

contradictory. Thus, interpersonal independence of knowledge claims that if a sentence

in SKi is logically equivalent to a sentence in SKj , for i 6= j, then these sentences are
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vacuous descriptions of knowledge. We show likewise that belief is also interpersonal

independent. In what follows we assume for simplicity that I = {1, 2}.

Theorem 1. (Interpersonal independence of knowledge)

If ϕ1 ∈ SK1 , ϕ2 ∈ SK2 and ϕ1 ⇔ ϕ2, then either both sentences are theorems, or both are

contradictions.

The same result holds also for belief.

Theorem 2. (Interpersonal independence of belief)

If ϕ1 ∈ SB1 , ϕ2 ∈ SB2 and ϕ1 ⇔ ϕ2 , then either both sentences are theorems, or both are

contradictions.

Interestingly, the proofs of the two theorems are fundamentally different. The proof

of Theorem ?? relies on a stronger condition of interpersonal independence, which is

satisfied by belief but not by knowledge. Specifically, this stronger form of independence

requires not only that two agents’ belief descriptions cannot be logically equivalent, but

even that one cannot logically imply the other. Since knowledge does not satisfy strong

interpersonal independence, the proof of Theorem ?? requires a different approach which

we describe later. But first, we formally state that belief satisfies strong interpersonal

independence.

Theorem 3. (Strong interpersonal independence of belief)

If ϕ1 ∈ SB1 , ϕ2 ∈ SB2 and ϕ1 ⇒ ϕ2 then either ϕ1 is a contradiction or ϕ2 is a theorem.

Theorem ?? easily implies Theorem ??. If ϕ1 ∈ SB1 , ϕ2 ∈ SB2 and ϕ1 ⇔ ϕ2, then

ϕ1 ⇒ ϕ2. Thus, by Theorem ?? either ϕ1 is a contradiction, and therefore, as ϕ1 ⇔ ϕ2

it follows that ϕ2 is also a contradiction, or else, ϕ2 is a theorem, and then again, ϕ1 is

a theorem too.

The sentences ϕ1 and ϕ2 play an asymmetric role in Theorem ??, as opposed to the

symmetric role they play in Theorem ??. Nevertheless, Theorem ?? has an equivalent

formulation in which ϕ1 and ϕ2 play a symmetric role. We write Theorem ?? in a

contrapositive form. The negation of the consequence is that ϕ1 is not a contradiction

and ¬ϕ2 is not a contradiction. The negation of the antecedent is that ϕ1 ∧ ¬ϕ2 is

consistent. Thus, Theorem ?? can be written as: If ϕ1 ∈ SB1 , ϕ2 ∈ SB2 and ϕ1 and ¬ϕ2

are consistent then ϕ1 ∧ ¬ϕ2 is consistent. Obviously, ϕ2 ∈ SB2 if and only if ¬ϕ2 ∈ SB2
and thus we can replace ¬ϕ2 by ϕ2 and get the equivalent formulation:

Theorem 3’. If ϕ1 ∈ SB
1 and ϕ2 ∈ SB

2 are consistent sentences, then ϕ1 ∧ ϕ2 is

consistent.
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Obviously, knowledge does not have strong interpersonal independence. The culprit

is the truth axiom. Consider, for instance, the two sentences, K1p and ¬K2¬p for some

atomic sentence p. Obviously, the first sentence is not a contradiction and the second

is not a theorem. Yet, by the truth axiom, K1p ⇒ p, and also p ⇒ ¬K2¬p. Thus, by

the transitivity of logical implication, K1p ⇒ ¬K2¬p. Hence, a sentence that describes

1’s knowledge implies a certain sentence that describes 2’s knowledge. Thus, strong

interpersonal independence does not hold for knowledge.

Theorem 3’ suggests that the canonical KD45 space for multiple agent is a product

space. This is a subject that we intend to elaborate on in a subsequent paper.

In the next section, we provide a short proof of Theorem ??. In the section that

follows we give the more elaborate proof of Theorem ??.

4. Strong interpersonal independence of belief

To prove Theorem ??’ we use the following claim.

Claim 2. If ϕ ∈ SBi , then ϕ⇔ Bi(ϕ). If ϕ ∈ SKi , then ϕ⇔ Ki(ϕ)

Proof: By Claim ??, if ϕ ∈ SBi , then in each model, [ϕ] is a union of elements of Πi.

By definition, if [ϕ] is a union of elements of Πi then [ϕ] = [Biϕ]. Since this equality

holds in any model, it follows that ϕ⇔ Bi(ϕ). The proof for knowledge is similar.

Proof of theorem ??’: If ϕ1 ∈ SB
1 and ϕ2 ∈ SB

2 are consistent sentences then by

Claim ??, B1ϕ
1 and B2ϕ

2 are consistent. Therefore for k = 1, 2 there is a model

Mk = (Ωk, ( k
i )i=1,2, [ · ]k) and a state ωk ∈ Ωk, such that ωk ∈ [Bkϕ

k]Mk . We can

assume that Ω1 ∩ Ω2 = ∅.
We construct a model M = (Ω, ( i)i=1,2, [ · ]) by taking the union of the models M1

and M2 and adding a state ω0. We will show that in M , ω0 ∈ B1ϕ
1∧B2ϕ

2, which proves

the consistency of B1ϕ
1 ∧B2ϕ

2.

We set Ω = {ω0} ∪ Ω1 ∪ Ω2, where ω0 /∈ Ω1 ∪ Ω2. The restriction of ( i) for i = 1, 2

to Ωk, k = 1, 2 is  k
i . For ω0 we set ω0  1 ω when ω ∈ Σ1

1(ω1) and ω0  2 ω when

ω ∈ Σ2
2(ω2), where Σi

i(ω
i) is the support of Bi at ωi in M i. Finally, we set [ · ] = [ · ]1∪[ · ]2.

It is easy to see that  i, for i = 1, 2 is serial, transitive, and Euclidean, and thus M is

a model of belief.

We now show that for any sentence ϕ, [ϕ] ∩ (Ω1 ∪ Ω2) = [ϕ]M1 ∪ [ϕ]M2 . For ϕ ∈ A
this follows from the definition of [ · ]. Suppose that ϕ and ψ satisfy this equality. Then,

[ϕ∪ψ]∩(Ω1∪Ω2) = ([ϕ]∩(Ω1∪Ω2))∪([η]∩(Ω1∪Ω2)) = ([ϕ]M1∪[ϕ]M2)∪([ψ]M1∪[ψ]M2) =

[ϕ∪ψ]M1∪[ϕ∪ψ]M2 . Also, [¬ϕ]∩(Ω1∪Ω2) = (Ω1∪Ω2)\[ϕ] = (Ω1\[ϕ]M1)∪(Ω2\[ϕ]M2) =
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[¬ϕ]M1 ∪ [¬ϕ]M2 . Finally, as for i = 1, 2,  i coincides with  1
i on Ω1 and with  2

i on

Ω2, it follows that [Biϕ] ∩ (Ω1 ∪ Ω2) = ([Biϕ] ∩ Ω1) ∪ ([Biϕ] ∩ Ω2) for i = 1, 2.

Since ω1 ∈ [B1ϕ
1]M1 and ω2 ∈ [B2ϕ

2]M2 it follows that ω1 ∈ [B1ϕ
1] and ω2 ∈ [B2ϕ

2].

Thus, Σ1(ω1) ⊆ [ϕ1] and Σ2(ω2) ⊆ [ϕ2]. As Σ1(ω0) = Σ1(ω1) and Σ2(ω0) = Σ2(ω2) we

conclude that ω0 ∈ [B1ϕ
1] and ω0 ∈ [B2ϕ

2]. Hence, ω0 ∈ [B1ϕ
1 ∧ B2ϕ

2], and again by

Claim ??, ω0 ∈ [ϕ1 ∧ ϕ2]. This implies that ϕ1 ∧ ϕ2 is consistent.

Claim ?? is essential to the rest of the paper. Roughly speaking, it states that the

subset of SB
i that consists of the simple sentences of the form Bi(ϕ) actually create, in

the logical sense, all of the sentences in SB
i . Formally, every formula ϕ in SB

i is logically

equivalent toBi(ϕ). This equivalence was crucial for proving Theorem ??. It is important

to note that Claim ?? hinges on the fact that belief and knowledge generate partitions

and that sentences of the forms Bi(ϕ) and Ki(ϕ) are unions of their elements. From

the axiomatic perspective, this means that belief should satisfy consistency, positive and

negative introspections, while knowledge should satisfy, on top of it, the truth axiom.

Under weaker axiomatic systems, Claim ?? and the proof of Theorem ?? are not valid.

5. Interpersonal independence of knowledge

The proof of the interpersonal independence of belief cannot work for knowledge, as

knowledge does not have the property of strong interpersonal independence. We prove

Theorem ?? using the following result, which involves only one sentence rather than two

sentences as in Theorem ??.

Theorem 4. If ϕ ⇒ K1(ϕ) and ϕ ⇒ K2(ϕ), then ϕ is either a contradiction or a

theorem.

Proof of Theorem ??: Assume that (a) ϕ1 ∈ SK1 , (b) ϕ2 ∈ SK2 , and (c) ϕ1 ⇔ ϕ2. Then

from (a) and (b) we conclude, by Claim ??, that (d)ϕ1 ⇔ K1ϕ
1 and (e)ϕ2 ⇔ K2ϕ

2.

By (c) and the definition of interpretation, it follows that (f) K2ϕ
1 ⇔ K2ϕ

2. Using (c),

(e), and (f), we infer (g) ϕ1 ⇔ K2ϕ
1. Applying Theorem ?? to ϕ1, using (d) and (g), we

conclude that ϕ1 is either a contradiction, and thus by (c), ϕ2 is also a contradiction, or

ϕ1 is a theorem, and therefore by (c), ϕ2 is also a theorem.

We rephrase Theorem ?? in terms of common knowledge. Following ?, we define in

a partition model the common knowledge partition Π to be the meet of the partitions

Π1 and Π2. That is, Π is the finest partition among the partitions that are coarser than

both Π1 and Π2. Alternatively, let F1 and F2 be the fields generated by the elements of

Π1 and Π2, respectively. Then F = F1 ∩ F2 is a field and it is generated by the meet

partition Π. Thus, each element of F is a union of elements of each of the partitions Π1

and Π2. As Π is included in F , this statement applies also to elements in Π. We call
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an element of F , a common knowledge event.9 If a non-empty set Ω′ ⊆ Ω is a common

knowledge event, then M ′ = (Ω′, (Π′i)i∈I , [ · ]′) is a knowledge model, where Π′i is the set

of elements in Πi that are contained in Ω′, and [ · ]′ = [ · ] ∩ Ω′.

Common knowledge events can be described also in terms of the accessibility relations,

as follows. A path of length n ≥ 0 from ω to ω′ is a sequence (ωk)nk=0, such that ω0 = ω,

ωn = ω′, and for each k < n, ωk  i ωk+1 for some i. Denote by  the transitive closure

of the accessibility relations  1 and  2. That is, ω  ω′ when there is a path from ω

to ω′. The relation  is reflexive, symmetric, and transitive, i.e., it is an equivalence

relation. We call the common knowledge accessibility relation for the following reason.

Claim 3. The partition of Ω into the equivalence classes of  is the common knowledge

partition, that is the meet partition.

Proof: An event E is a union of equivalence classes of if and only if E is closed under

 . That is, if ω ∈ E and ω  ω′, then ω′ ∈ E. This condition holds if and only if E

is closed with respect to both  1 and  2. This latter condition holds if and only if for

each ω ∈ E and i, Πi(ω) ⊆ E, which means that E is a union of elements of the meet.

Note that the accessibility relation defines a directed graph where the set of vertices

is Ω and (ω, ω′) is an edge if ω  ω′. The meet is the partition of Ω into the maximally

connected subsets of vertices of this graph. We therefore say that the model is connected

when the meet is {Ω}.

Claim 4. The logical implications ϕ ⇒ K1ϕ and ϕ ⇒ K2ϕ hold if and only if [ϕ] is a

common knowledge event in each model.

Proof: Note that by the truth axiom, the two implications hold if and only if ϕ⇔ K1ϕ

and ϕ⇔ K2ϕ. By the definition of the interpretation of sentences Kiψ, [K1ϕ] is a union

of elements of Π1 and [K2ϕ] is a union of elements of Π2 in each model. If ϕ⇔ K1ϕ and

ϕ ⇔ K2ϕ, then [ϕ] is a union of elements of each of the partitions Π1 and Π2 in each

model, and hence it is a common knowledge event in every model. Conversely, if [ϕ] is

a union of elements of each of the partitions Π1 and Π2, then [ϕ] = [K1ϕ] = [K2ϕ]. If

this holds for every model, then ϕ⇔ K1ϕ and ϕ⇔ K2ϕ.

We rephrase Theorem ?? in terms of common knowledge. First, we write the theorem

in contrapositive form. The consequence is replaced by its equivalent form in Claim ??.

Theorem 4’. If ϕ is neither a contradiction nor a theorem, then there exists a model

in which [ϕ] is not a common knowledge event.

We outline the proof plan.

(1) We use  to define a metric on the state space of a model.

9Thus, the empty set is also considered as a common knowledge event.
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(2) It is shown that the truth of a sentence at a given state ω in a model depends

only on the set of states close to ω, in terms of the metric.

(3) We introduce a technique of gluing two models at two elements of the partitions

of the models to create a bigger model.

(4) By gluing a model to its isomorphic image, we show that if ϕ is true in some

state in a model, then there exists a bigger, in terms of the metric, connected

model, where ϕ is true at some state of the model.

(5) Using (3) we take two big connected models M1 and M2, where ϕ is true in some

state in ω1 in M1 and ¬ϕ is true in some ω2 in M2.

(6) We glue M1 and M2 at some partition elements which are far from ω1 and ω2.

By (2), ϕ is still true at ω1 and ¬ϕ is true at ω2. The resulting glued model M is

connected. In M , [ϕ] is a non-empty proper subset of the state space, and since

the state space is the only common knowledge event in M , [ϕ] is not a common

knowledge event.

The metric. We define a metric d on Ω by letting d(ω, ω′) be the length of the shortest

path from ω to ω′. That is, d(ω, ω′) = n if there is a path of length n from ω to

ω′ and the length of any other path from ω to ω′ is at least n; and10 d(ω, ω′) = ∞
if there is no path connecting ω to ω′. The ball of radius n around ω is defined as

B(ω, n) = {ω′ | d(ω, ω′) ≤ n}.

Claim 5. For n ≥ 1, B(ω, n) =
⋃

i=1,2

⋃
ω′∈B(ω,n−1) Πi(ω

′).

Proof: Suppose that ω′ ∈ B(ω, n − 1) and ω̄ ∈ Πi(ω
′). Then, d(ω̄, ω) ≤ d(ω̄, ω′) +

d(ω′, ω) ≤ 1 + (n − 1) = n and hence ω̄ ∈ B(ω, n). Conversely, if ω̄ ∈ B(ω, n), then

there exist i and ω′ such that ω′  i ω̄ and d(ω, ω′) ≤ n − 1. Thus, for the world

ω′ ∈ B(ω, n− 1), ω̄ ∈ Πi(ω
′).

We now formalize the idea expressed in point (2) of the proof plan by showing that the

truth of a sentence ϕ at a world ω depends only on a certain ball centered at ω. First, we

define the restriction of a model to a ball. For a state ω in model M = (Ω, (Πi)i∈I , [ · ])
and n ≥ 0 we define the restriction of M to the ball B(ω, n) to be the model M(ω, n) :=

(B(ω, n), (Π′i)i∈I , [ · ]′), where B(ω, n) is the set of states; for each state ω′ ∈ B(ω, n),

Π′i(ω
′) = Πi(ω

′) ∩B(ω, n); and for each p ∈ A, [p]′ = [p] ∩B(ω, n).

The depth of a sentence is defined recursively as follows: for an atomic sentence p,

depth(p) = 0; for a negation ¬ϕ, depth(¬ϕ) = depth(ϕ); for a conjunction ϕ ∧ ϕ′,
depth(ϕ∧ϕ′) = max(depth(ϕ), depth(ϕ′)); and for the sentence Ki(ϕ), depth(Ki(ϕ)) =

depth(ϕ) + 1. It turns out that the truth of a sentence ϕ at a given world ω in a model

10Conventionally, a metric is defined as a function ranged to the set of real numbers. However, in

this context, the d is allowed to assume the value of ∞. This inclusion simplifies the formulation, while

preserving the fundamental properties characteristic of a symmetric metric.
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M is determined by its truth at the same ω in the model M(ω, n), where n is the depth

of ϕ.

We state this formally in the following proposition.11

Proposition 1. Let ϕ be a sentence of depth n. Then M,ω |= ϕ if and only if

M(ω, n), ω |= ϕ.12

Proof: We prove by induction on n. For n = 0, B(ω, 0) = {ω}. By the definition of

M(ω, 0), for any atomic sentence p, M,ω |= p if and only if M(ω, 0), ω |= p. Since any

sentence ϕ of depth 0 is generated by atomic sentences using propositional connectors,

the proposition holds if and only if M(ω, 0), ω |= ϕ.

Suppose that we proved the claim for n− 1 ≥ 0. Let ϕ be of depth n and fix a state

ω0 in the model M . We need to show that

(1) M,ω0 |= ϕ if and only if M(ω0, n), ω0 |= ϕ.

To evaluate the truth of ϕ at ω0 in M we need to know the truth at ω0 of atomic

sentences and sentences of the form Kiψ for sentences ψ of degree n − 1. For this we

need to know the truth of such ψ’s in states in Πi(ω0). Similarly, for the truth of ϕ at

ω0 in the model M(ω0, n) with Π′i(ω0) instead of Πi(ω0). But by Claim ??, for i = 1, 2,

Πi(ω0) = Π′i(ω0). Thus, it is enough to show that for i = 1, 2, for any state ω ∈ Πi(ω0)

and ψ of depth n− 1,

(2) M,ω |= ψ if and only if M(ω0, n), ω |= ψ.

By the induction hypothesis,

(3) M,ω |= ψ if and only if M(ω, n− 1), ω |= ψ.

Thus, it is enough to show that

(4) M(ω0, n), ω |= ψ if and only if M(ω, n− 1), ω |= ψ.

Since d(ω0, ω) ≤ 1, it follows that B(ω, n − 1) ⊆ B(ω0, n). Let M(ω0, n)(ω, n − 1) =

(B(ω, n− 1), (Π′′i )i∈I , [ · ]′′) be the restriction of M(ω0, n) to M(ω, n− 1).

Again, by the induction hypothesis,

(5) M(ω0, n), ω |= ψ if and only if M(ω0, n)(ω, n− 1), ω |= ψ.

We complete the proof by showing that the RHS of (??) holds if and only if the RHS of

(??) holds. We do it by showing that M(ω0, n)(ω, n−1) = M(ω, n−1). Let M(ω, n−1) =

(B(ω, n−1), (Π′′′i )i∈I , [ · ]′′′).13 For every ω′ ∈ B(ω, n−1), Π′′′i (ω′) = Πi(ω
′)∩B(ω, n−1) =

11A similar result for logics with one modality only is stated in ?.
12As defined above, M,ω |= ϕ means that ϕ is true at ω in the model M .
13To avoid confusion, we recall that we use Π,Π′,Π′′ and Π′′′ to denote the partitions in the models

M,M(ω0, n),M(ω0, n)(ω, n− 1) and M(ω, n− 1), respectively.



16 EHUD LEHRER AND DOV SAMET

Πi(ω
′)∩B(ω0, n)∩B(ω, n−1) = Π′i(ω

′)∩B(ω, n−1) = Π′′i (ω′). The proof that [p]′′′ = [p]′′

for any atomic sentence p, is similar.

Constructing big connected models. In the sequel, we create a new model M by

combining two disjoint models, M1 and M2, in a process called gluing. Here is how it

works.

Let M1 = (Ω1, (Π1
i )i∈I , [ · ]1) and M2 = (Ω2, (Π2

i )i∈I , [ · ]2) be two models with Ω1 ∩
Ω2 = ∅. Fix i and let π1 ∈ Π1

i and π2 ∈ Π2
i . The gluing of M1 and M2 at π1 and π2

is the model M = (Ω, (Πi)i∈I , [ · ]) defined as follows: Ω = Ω1 ∪ Ω2; [ · ] = [ · ]1 ∪ [ · ]2; for

j 6= i, Πj = Π1
j ∪Π2

j : and finally, Πi = (Π1
i \ {π1}) ∪ (Π2

i \ {π2}) ∪ {π1 ∪ π2}.
In the following proposition, we state and prove formally that the shortest path in M

from ω1 ∈ Ω1 to ω2 ∈ Ω2 crosses π1 ∪ π2 only once.

Proposition 2. Let ω1 ∈ Ω1, ω2 ∈ Ω2, and let (ωk)nk=0 be a shortest path from ω1 to ω2

in the model M . Then, there exists ` such that (ωk)`k=0 ⊆ Ω1 and (ωk)nk=`+1 ⊆ Ω2, and

thus ω` ∈ π1 and ω`+1 ∈ π2.

Proof: By definition, ω0 = ω1 ∈ Ω1. Thus, `, the largest index such that (ωk)`k=0 ⊆ Ω1

is well defined. Similarly, ωn = ω2 ∈ Ω2. Thus, m, the smallest index such that

(ωk)nk=m ⊆ Ω2 is well defined. Obviously, m > `. By definition, ω`+1 ∈ Ω2. Thus,

ω` ∈ π1 and ω`+1 ∈ π2. Similarly, ωm−1 ∈ Ω1 and therefore ωm−1 ∈ π1 and ωm ∈ π2. It

is impossible that m > ` + 1, because then, the segment of the path, which starts with

ω` and ends at Ωm contains at least three worlds, and can be replaced by (ω`, ωm) which

contains only two worlds, and thus contradicts the assumption that n is the length of a

shortest path from ω1 to ω2. Consequently, ωm = ω`+1.

Next, we consider the gluing of two disjoint models that have the same structure.

Formally, the models M1 and M2 are isomorphic if there is a bijection f : Ω1 → Ω2 that

preserves the partitions and the assignment of parameters to state. That is, for any ω,

f(Π1
i (ω)) = Π2

i (f(ω)), and for any p ∈ A, f([p]1) = [p]2. The isomorphism of the two

glued models guarantees that the truth of a sentence in one of the models is preserved

in the glued model, as stated in the following proposition.

Proposition 3. Let M be the gluing of two isomorphic models M1 and M2, with a

bijection f , at π ∈ Πi and f(π). Then for any ϕ, [ϕ] = [ϕ]1 ∪ [ϕ]2. In other words, ϕ is

true in M at a state ω if and only if it is true at ω in the model M j where ω ∈ Ωj.

Proof: The claim holds for atomic sentences by definition of [ · ]. If it holds for ϕ then

[¬ϕ] = ¬[ϕ] = ¬[ϕ]1 ∩ ¬[ϕ]2 = (Ω2 ∪ (Ω1 \ [ϕ]1)) ∩ (Ω1 ∪ (Ω2 \ [ϕ]2)) = (Ω1 \ [ϕ]1) ∪
(Ω2 \ [ϕ]2) = [¬ϕ]1 ∪ [¬ϕ2]. If the claim holds for ϕ and η, then [ϕ ∪ η] = [ϕ] ∪ [η] =

([ϕ]1 ∪ [ϕ]2) ∪ ([η]1 ∪ [η]2) = [ϕ ∪ η]1 ∪ [ϕ ∪ η]2. Suppose the claim holds for ϕ and

consider j 6= i. Then [Kjϕ] is the union of all the sets in Πj included in [ϕ]. Since
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Πj = Π1
j ∪ Π2

j , and since [ϕ] = [ϕ]1 ∪ [ϕ]2, it follows that this union is the union of

the elements of Π1
j contained in [ϕ]1 and the elements of Π2

j contained in [ϕ]2. Thus,

[Kjϕ] = [Kjϕ]1 ∪ [Kjϕ]2. Next, [Kiϕ] is a union of the sets in Πi that are contained in

[ϕ]. If π ∪ f(π) is not contained in [ϕ] then [Kiϕ] = [Kiϕ]1 ∪ [Kiϕ]2, as in the case of

Kjϕ. If, otherwise, π ∪ f(π) is contained in [ϕ], then π is contained in [ϕ]1 and f(π) is

contained in [ϕ]2. This implies again that [Kiϕ] = [Kiϕ]1 ∪ [Kiϕ]2.

We now prove the following proposition for the gluing of two isomorphic models.

Proposition 4. Let ϕ be a sentence that is not a contradiction. Then for each n ≥ 0,

there exists a connected model M with states ω and ω′ such that ω ∈ [ϕ], and d(ω, ω′) > n.

Proof: Let M1 be a model with a state ω such that ω ∈ [ϕ]. Since the common

knowledge component that contains ω, Π1(ω), can be considered as a model in which

ϕ is true at ω, we assume, without loss of generality, that Π1 = {Ω1}. If in M1,

B(ω, n) 6= Ω1 for all n, we are done. Otherwise, let B(ω, n) = Ω1 for some n. Let m be

the least number for which this equality holds. We show that we can find a model M

such that B(ω,m) 6= Ω.

Assume first that m ≥ 2. By the definition of m, there exists a state ω̄ ∈ Ω1 such

that d(ω, ω̄) = m. Let π = Πi(ω̄) for some i. Let M2 be a model isomorphic to M1 by

bijection f , and M be a gluing of M1 and M2 at π and f(π). By Proposition ??, in the

model M , ϕ is true at ω.

We show that in M , d(ω, f(ω)) > m. Let (ωk)nk=0 be the shortest path from ω to f(ω).

By proposition ??, there exists ` such that ω` ∈ π and ω`+1 ∈ f(π). Since d is a metric,

d(ω, ω`) ≥ d(ω, ω̄) − d(ω`, ω̄) = m − 1. Symmetrically, d(f(ω), ω`+1) ≥ d(f(ω), f(ω̄)) −
d(ω`+1), f(ω̄)) = m − 1. Thus, d(ω, f(ω)) ≥ d(ω, ω`) + d(ω`, ω`+1) + d(ω`+1, f(ω)) =

(m− 1) + 1 + (m− 1) = 2m− 1 > m.

Obviously, this proof does not work for m = 0 and m = 1. For m = 0, B(ω, 0) = Ω1

and thus Ω1 = {ω}. We define M to be the gluing of M1 and an isomorphic model M2 at,

say, π = Π1(ω) and f(π). Clearly, in M , B(ω, 0) = {ω} 6= Ω. For m = 1, B(ω, 1) = Ω1,

which means that Πi(ω) = Ω1 for at least one agent i. Suppose that Π1(ω) = Ω1, but

Π2(ω) 6= Ω1. Then, there exists ω̄ such that ω /∈ Π2(ω̄). Take a model M2 isomorphic

under f to M1 and let M be the gluing of M1 and M2 at Π2(ω̄) and f(Π2(ω̄)). The

shortest path from ω to f(ω) must include two worlds, ω′ ∈ Π2(ω̄) and ω′′ ∈ f(Π2(ω̄)).

Since ω 6= ω′, it follows that d(ω, ω′) = 1. Symmetrically, d(f(ω), ω′′) = 1. Thus,

d(ω, f(ω)) = 3.

If Π1(ω) = Π2(ω) = Ω1, we glue Ω1 with an isomorphic Ω2 at Π1(ω) and f(Π1(ω)). In

this model still B(ω, 1) = Ω, but Π2(ω) 6= Ω, and this is the case we dealt with above.

Note that since each of M1 and M2 is connected, so is M .
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Proof of Theorem 4’: Let ϕ be a sentence of depth n. Suppose that there exists a

model M1 = (Ω1, (Π1
i )i∈I , [ · ]1) and ω1 ∈ Ω1 such that M1, ω1 |= ϕ. Suppose further,

that there exists a model M2 = (Ω2, (Π2
i )i∈I , [ · ]2) and ω2 ∈ Ω2 such that M2, ω2 |= ¬ϕ.

By Proposition ??, we can assume that M1 and M2 are connected, and for i = 1, 2 there

is a state ω̂i ∈ Ωi, such that di(ωi, ω̂i) ≥ n+ 2, where di is the metric in the model M i.

We can further assume that Ω1 ∩ Ω2 = ∅.
Let M be the model obtained by gluing M1 and M2 at π1 = Π1

i (ω̂
1) and π2 = Π2

i (ω̂
2).

Since M1 and M2 are connected, M is also connected. We show now that in M , [ϕ] is

not a common knowledge event, completing the proof of the theorem.

We denote by Bi balls in the model M i. For any ω′ ∈ π1, d1(ω1, ω′) ≥ d1(ω1, ω̂1) −
d1(ω′, ω̂1) ≥ (n + 2) − 1 = n + 1. If ω ∈ B1(ω1, n − 1) and ω′ ∈ π1, then d1(ω′, ω) ≥
d1(ω′, ω1) − d1(ω, ω1) ≥ (n + 1) − (n − 1) = 2. Since this is true for every ω′ ∈ π1, it

follows that Π1
i (ω) 6= π1 for every ω ∈ B1(ω1, n− 1).

By the definition of the partitions Πi in M and Claim ??, B(ω1, n) = B1(ω1, n).

Furthermore, M(ω1, n), the restriction of M to B(ω1, n), and M1(ω1, n), the restriction

of M1 to B1(ω1, n), are the same model. As M1, ω1 |= ϕ, Proposition ?? implies that

M1(ω1, n), ω1 |= ϕ, and thus M(ω1, n), ω1 |= ϕ. By the same proposition, M,ω1 |= ϕ.

By similar arguments we conclude that M,ω2 |= ¬ϕ. Therefore, ∅ ( [ϕ] ( Ω in M .

Since M is connected, Ω does not contain a proper subset which is common knowledge,

implying that [ϕ] is not a common knowledge event in M , as desired.

6. summary

The independence of knowledge and beliefs for two different agents might seem self-

evident. However, the question of independence still arises due to (a) There are non-

trivial sentences ϕ1 ∈ SK1 and ϕ2 ∈ SK2 such that one learns from the truth value of

the former about that of the latter. This suggests that, after all, the knowledge of two

agents are not independent; and (b) Belief and knowledge exhibit two different types

of independence. Indeed, unlike knowledge, one cannot learn from the truth value of

ϕ1 ∈ SK1 about that of ϕ2 ∈ SK2 , whenever both are non-trivial.

We introduce two types of independence and show that while one may learn from the

truth value of ϕ1 ∈ SK1 about that of ϕ2 ∈ SK2 , there are no non-trivial such sentences

that are equivalent. In this sense knowledge of two agents are independent. The belief

of an agent does not require the truth axiom. This enables the beliefs of two agents

to be independent in a stronger sense: there is no way to learn from the truth value of

ϕ1 ∈ SB1 about that of ϕ2 ∈ SB2 , whenever they are non-trivial.

These observations raise the question of what other kinds of independence other modal

operators might exhibit.
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