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Negative radiation pressure in Bose-Einstein condensates

Dominik Ciurla ,1,* Péter Forgács,2,3 Árpád Lukács ,4,2 and Tomasz Romańczukiewicz 1
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In two-component nonlinear Schrödinger equations, the force exerted by incident monochromatic plane
waves on an embedded dark soliton and on dark-bright-type solitons is investigated, both perturbatively and
by numerical simulations. When the incoming wave is nonvanishing only in the orthogonal component to that
of the embedded dark soliton, its acceleration is in the opposite direction to that of the incoming wave. This
somewhat surprising phenomenon can be attributed to the well-known negative effective mass of the dark soliton.
When a dark-bright soliton, whose effective mass is also negative, is hit by an incoming wave nonvanishing in
the component corresponding to the dark soliton, the direction of its acceleration coincides with that of the
incoming wave. This implies that the net force acting on it is in the opposite direction to that of the incoming
wave. This rather counterintuitive effect is a yet another manifestation of negative radiation pressure exerted by
the incident wave, observed in other systems. When a dark-bright soliton interacts with an incoming wave in the
component of the bright soliton, it accelerates in the opposite direction; hence the force is pushing it now. We
expect that these remarkable effects, in particular the negative radiation pressure, can be experimentally verified
in Bose-Einstein condensates.
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I. INTRODUCTION

In this paper we consider the interaction of solitons and
the sound waves in a two-component, nonlinear Schrödinger
equation (NLSE) in one dimension. The NLSE is a widely
used model, for example, in nonlinear optics [1], and in
particular it serves to describe Bose-Einstein condensates
(BECs) of neutral atoms. The motivation of our enterprise is
to point out some simple but somewhat surprising physical
phenomena, which are hopefully experimentally observable in
BECs.

Bose-Einstein condensates were realized experimentally
for the first time in [2] and have been produced in numerous
experiments ever since. Many BECs can be described in a
mean-field approximation, leading to the NLSE, for which
classical field-theoretic methods are appropriate. Moreover,
in a number of situations, the dynamics of solitons in a BEC
can be well approximated by restricting the dynamics to one
spatial dimension. Often, the trap used in experiments can
be approximated by a harmonic potential, and choosing its
frequencies in the two chosen dimensions to be much larger
than in the remaining third dimension, an effective, quasi-
1D cigar-shaped condensate is achieved [3]. Bose-Einstein
condensates with two distinguishable components are de-
scribed in a mean-field approximation by coupled nonlinear
Schrödinger equations (CNLSEs) [4,5]. Experimentally, such
two-component BECs can be achieved either by mixing two
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different atomic species, e.g., 41K and 87Rb [6] (m1/m2 ≈
0.47), or by using two different spin states of the same species
[7]. Although different kinds of solitons can be found in this
system (see, e.g., [8,9]), we focus on the so-called dark-bright
(DB) and dark solitons.

Dark solitons have been studied theoretically in the con-
text of BEC [10] and subsequently in the context of optical
fibers [11]. In particular, their dynamics was researched
extensively, including multisoliton interactions [12–14], col-
lisions [15,16], and interactions with perturbations [17–22].
Similarly, dark-bright solitons were a subject of many theo-
retical articles [4,23–27], together with their generalizations
to vortex-bright solitons [28,29], discrete equations [30], and
spinor condensates [31]. Dark and dark-bright solitons were
realized experimentally both in BECs [32–40] and in nonlin-
ear optics [41–43]. Many reviews of the topic can be found,
e.g., [3,44–46].

In the present work we show that in the two-component
CNLSE, the interaction of dark and dark-bright solitons with
incoming small-amplitude plane waves can be reasonably
well described by standard scattering theory. We derive the
force acting on the solitons in terms of scattering data. When
the amplitude of the plane waves is sufficiently small, lin-
earization about the soliton provides a tractable approximation
with good precision. In this case, the waveform is obtained as
a solution of the Bogoliubov–de Gennes equations (BdGEs)
[47]. The force acting on the soliton can be easily found from
momentum conservation. For the case of main interest for
us, when an incoming plane wave of amplitude a and wave
number k1 is nonzero only in one component, say, 1 (dark),
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then the induced force can be written as

F = a2
[
k2

1 (1 + R1 − T1) + (k+
2 )2(R+

2 − T +
2 )

+ (k−
2 )2(R−

2 − T −
2 )

]
, (1)

where Ri and Ti denote the transmission and reflection coeffi-
cients, respectively, for an incoming wave into channel i and
k±

2 are the two possible wave numbers in the bright compo-
nent. In realistic scenarios, for a equal to about 10% of a DB
soliton’s dark component amplitude, the accelerations due to
this force are up to the order of 10−2 m/s2 (see Sec. V D).

We note that the dynamics due to a force acting on dark
and dark-bright solitons is somewhat counterintuitive, since
the direction of the force and that of the resulting acceleration
point in opposite directions because of their effective negative
mass.

The value of the coupling g12 between the two components
of the CNLSE plays an important role, since for g12 = 1
(in suitable units) the system is integrable [48], and in this
special case the net force exerted by incoming waves on soli-
tons is zero. In fact, for the integrable case, exact solutions
corresponding to nonlinear superposition of cnoidal waves
and solitons have been constructed [49]. We find that quite
generally, for g12 �= 1 in two-component CNLS systems, an
incoming plane wave can exert a pulling force on certain
solitons, referred to as the tractor beam effect or negative
radiation pressure. As it has been already demonstrated for a
number of cases in one and two dimensions, in the presence of
two scattering channels with different dispersion relations, an
incoming plane wave can exert a pulling force on the scatterer
[50].

The paper is organized as follows. We review briefly
some of the main properties of two-component CNLSEs in
Sec. II A, exhibit the expressions for the energy and field mo-
mentum in Sec. II B, and present the linearized equations of
motion around a soliton in Sec. II C. In Sec. III we introduce
the general notion of the Newtonian approximation using the
effective mass and force. We apply these ideas to the specific
cases of dark and dark-bright solitons, with a small wave
in each component, in Secs. IV and V, respectively. Most
importantly, we derive the acceleration of the solitons using
an effective model and compare it with numerical simulations
of the full CNLSE. In Sec. V D we verify how well the results
derived from the homogeneous system apply to a dark-bright
soliton in a harmonic trap. We summarize in Sec. VI.

II. MODEL

A. Coupled nonlinear Schrödinger (Gross-Pitaevskii) equation

In the mean-field regime, a one-dimensional two-
component Bose–Einstein condensate can be described by
two coupled nonlinear Schrödinger equations, also called
Gross-Pitaevskii equations, of the form [4,5,35,51–53]

ih̄∂tψ1 =− 1

2m1
∂xxψ1 +(g11|ψ1|2 + g12|ψ2|2)ψ1 + V1(x)ψ1,

ih̄∂tψ2 =− 1

2m2
∂xxψ2 + (g22|ψ2|2 +g12|ψ1|2)ψ2 + V2(x)ψ2,

(2)

where ψi (i = 1, 2) denote the (complex) wave functions of
the two components of the condensate, mi are their masses,
and Vi are the trapping potentials experienced by the ith com-
ponent. If m1 = m2, the couplings can be written as gi j =
2h̄ω⊥ai j [35,51–53], where ai j denote the s-wave scattering
lengths between the two components (or within one com-
ponent in the case of aii) and ω⊥ is the transverse trapping
frequency. The system can be described by the above one-
dimensional equations if the frequencies of trapping potentials
in the x direction, i.e., Vi(x), are much smaller than ω⊥.
Positive values of ai j (and therefore also of gi j) correspond
to repulsive interaction between the components i and j,
whereas a negative value corresponds to the interaction being
attractive.

In order to simplify the problem, we reduce the number
of parameters used. First, we consider a condensate made of
two different spin states of the same atomic species; there-
fore, m1 = m2, and we can rescale mi = 1. Second, we set
gii = 1 and keep g12 as a free parameter. The former is
justified, because the ratio of scattering lengths in experi-
ments is often close to one, e.g., in the mixture of the |2, 1〉
and |1,−1〉 states of 87Rb without additional tuning it is
a11/a12/a22 = 1.03/1/0.97 [7], or for |1,−1〉 and |2,−2〉
states a11/a12/a22 = 1.01/1/1 [33]. Scattering lengths can be
manipulated (both their magnitudes and their signs) using
Feshbach resonances [54]. In particular, a12 can be tuned in-
dependently [55–57] and therefore different values of the g12

coefficient are achievable in experiments. Finally, we assume
that Vi = 0, which should be a valid first approximation; we
will verify that later in Sec. V D. Therefore, we assume a11 =
a22 and take m = m1 = m2 as the unit of mass, h̄/2a11mω⊥ as
the length unit, and h̄/4a2

11mω2
⊥ as the unit of time. Then the

set of equations (2) takes the form

i∂tψ1 = − 1
2∂xxψ1 + (|ψ1|2 + g12|ψ2|2)ψ1,

i∂tψ2 = − 1
2∂xxψ2 + (|ψ2|2 + g12|ψ1|2)ψ2. (3)

The system of equations (3) has various types of solitonic
solutions (see the review in [44]). The simplest solutions
correspond to the embedding of a scalar soliton into one of the
components. We consider embedded dark solitons, for which
the probability density has a dip, and dark-bright (DB) soli-
tons, having a dip and a peak of the probability density in the
components ψ1 and ψ2, respectively. When g12 = 1, Eqs. (3)
correspond to the Manakov system [48], which is known to
be integrable (see also Ref. [58]). For the integrable case,
the DB solitons are known analytically, while for values of
g12 �= 1 we have solved Eqs. (3) numerically. For such values
of g12 �= 1, we have shown analytically and also confirmed by
numerical simulations that incoming sound waves (referred to
as radiation) do exert a force on the solitons.

Usually, particlelike objects such as solitons are pushed in
the direction of propagation of an incoming wave. However, in
some cases the wave pulls a soliton in the opposite direction.
We refer to such a situation as negative radiation pressure.
In the case of dark and dark-bright solitons, this definition
needs an additional clarification. Such solitons have negative
effective mass; therefore, their acceleration has an opposite
sign to the effective force. Thus, we define a positive (nega-
tive) radiation pressure [PRP (NRP)] as a setup in which the
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force has the same (opposite) sign as (to) the direction of the
incoming wave. This means that, in terms of an acceleration
of dark and DB solitons, PRP and NRP correspond to a wave
pulling and pushing a soliton, respectively. We remark that in
the literature on NRP [50,59–63], in the systems considered
up to now only positive masses occurred; therefore, the NRP
exerted by incident plane waves has manifested by a pulling
effect.

B. Integrals of motion

The Lagrangian density corresponding to the CNLSEs (3)
is [64]

L = 1

2

∑
i=1,2

[i(ψ∗
i ∂tψi − ψi∂tψ

∗
i ) − |∂xψi|2

− |ψi|4 − g12|ψ1|2|ψ2|2]. (4)

Using the symmetries of the Lagrangian (4) and the Noether
theorem (details in Appendix A), the total energy and momen-
tum are derived as

E = 1

2

∑
i=1,2

∫ ∞

−∞
(|∂xψi|2 + |ψi|4 + g12|ψ1|2|ψ2|2)dx, (5)

P = i

2

∑
i=1,2

∫ ∞

−∞
(ψi∂xψ

∗
i − ψ∗

i ∂xψi )dx, (6)

and it is shown that they obey the equations

∂t E = 1

2

∑
i=1,2

(∂xψ
∗
i ∂tψi + ∂xψi∂tψ

∗
i )|∞−∞, (7)

∂t P = 1

2

∑
i=1,2

[−i(ψ∗
i ∂tψi − ψi∂tψ

∗
i ) − |∂xψi|2 + |ψi|4

+ g12|ψ1|2|ψ2|2]|∞−∞. (8)

It is also worth noting that, due to the U(1) × U(1) symmetry,
the solutions of Eqs. (3) obey the continuity equations (even
if we include the trapping potential)

∂t |ψi|2 + ∂xJi = 0, (9)

where

Ji = i

2
(ψi∂xψ

∗
i − ψ∗

i ∂xψi ). (10)

Note that P = ∑
i=1,2

∫ ∞
−∞ Ji dx. Integrating Eq. (9) over the

whole space and using the Newton-Leibniz theorem, we
obtain

∂t

∫ ∞

−∞
|ψi|2dx = −Ji|∞−∞. (11)

We can choose the normalization as
∫ |ψi(x, t )|2dx = Ni,

where Ni is the number of atoms in the ith component. These
particle numbers are conserved.

C. Linearization around a soliton

We consider stationary solitons of Eqs. (3) of the form
ψi(x, t ) = e−iμit�i(x), where �i(x) are real functions satis-
fying the following equations:

μ1�1 = − 1
2∂xx�1 + (|�1|2 + g12|�2|2)�1,

μ2�2 = − 1
2∂xx�2 + (|�2|2 + g12|�1|2)�2. (12)

If the wave function is normalized to the number of atoms
in each component, then the μi are determined from these
normalization conditions and they are interpreted as chemical
potentials [65].

Let us consider a small perturbation of a soliton solution of
Eqs. (3), of the form

ψi(x, t ) = e−iμit [�i(x) + aξi(x, t )], (13)

where the parameter of the perturbation a � 1. Moreover, let
us make an ansatz

ξi(x, t ) = eiω̃tξ+
i (x) + e−iω̃tξ−

i (x). (14)

After inserting this ansatz into Eqs. (3) and keeping only terms
linear in a, we obtain that ξ−

i and ξ+
i satisfy(− 1

2∂xx + M
)
� = diag(μ1 + ω̃, μ1 − ω̃, μ2

+ ω̃, μ2 − ω̃)�, (15)

where diag means diagonal matrix, � stands for the vector

� = (ξ−
1 , ξ+

1
∗
, ξ−

2 , ξ+
2

∗)T, (16)

and

M =

⎛
⎜⎜⎜⎜⎜⎝

2�2
1 + g12�

2
2 �2

1 g12�1�2 g12�1�2

�2
1 2�2

1 + g12�
2
2 g12�1�2 g12�1�2

g12�1�2 g12�1�2 g12�
2
1 + 2�2

2 �2
2

g12�1�2 g12�1�2 �2
2 g12�

2
1 + 2�2

2

⎞
⎟⎟⎟⎟⎟⎠. (17)

Equation (15) is the generalization of the BdGE [47] to
the two-component CNLSE. Here we consider plane-wave
solutions of Eq. (15), but also note that the existence of
bound-state solutions with complex ω̃ would signal instability
of the soliton. Such stability analyses have been performed,
e.g., in Refs. [4,45] in similar coupled models, and in
Refs. [66–68] for a single-component NLSE. In our case,

the numerical technique used for finding the soliton (gradi-
ent descent) already ensures that unstable solitons are not
found.

We consider a setup consisting of a soliton and a wave.
The wave is incoming from −∞ in one of the two compo-
nents of the BEC and is moving to the right. It corresponds
to Eq. (13) with a interpreted as the amplitude (and the
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appropriate boundary conditions discussed later). Using the
linearization described above, the wave can be written as

ae−iμitξi(x, t ) = ae−i(μi−ω̃)tξ+
i (x) + ae−i(μi+ω̃)tξ−

i (x) (18)

and we can define its frequencies as

ω±
i = μi ∓ ω̃, (19)

which correspond to those on the right-hand side of Eq. (15).
Sometimes we loosely refer to ω̃ as the frequency, but the true
frequencies of the wave are given by ω±

i . We assume that
asymptotically these waves have a form of monochromatic
plane waves. We define transmission and reflection coeffi-
cients, separately for each of the examples, as coefficients of
the asymptotic plane-wave modes in a solution.

III. NEWTONIAN MOTION AND THE EFFECTIVE MASS
OF SOLITONS

We expect both the dark and the dark-bright solitons of the
NLSE to behave as Newtonian particles in the first approx-
imation, albeit with unusual dynamics, due to their negative
effective masses. In this present context, we refer the reader
to Ref. [69] for the motion of dark solitons, and for a recent
review of the dynamics of solitons in the vector NLSE see
Ref. [45].

More precisely, we assume that in the presence of pertur-
bations, the solitons do not change their shape and that we can
treat the center of the soliton x0 solely as a function of time,
reducing the problem to one-dimensional classical dynamics.
In this description, x0(t ) is expected to obey the equation

Mẍ0(t ) = F, (20)

where M and F are the effective mass and force, respectively.
These quantities are obtained from the integrals of motion
discussed in Sec. II B. The description of the dynamics of the
dark soliton is complicated by the fact that the wave function
describes the soliton on top of a constant background [69].

The energy E and the momentum P of the dark soliton have
to be defined carefully; they have to be renormalized in order
to subtract the contribution from the background [17,44]. The
renormalized quantities Ps and Es will be given separately for
the dark and dark-bright soliton (see Secs. IV and V).

A useful definition of the effective mass M from the
renormalized total energy Es and momentum Ps for a soliton
moving with velocity v is given as

M = d2Es

dv2

∣∣∣∣
v=0

= dPs

dv

∣∣∣∣
v=0

. (21)

If the soliton is indeed moving according to Newton’s law, M
computed from Es should match that derived from Ps.

The effective force exerted by the sound waves on the
soliton can be obtained as the time derivative of the total
momentum ∂t P. Since the renormalization corrections are
time independent, ∂t P = ∂t Ps. We are interested in the force
averaged over a period of the incoming wave; thus we are led
to define the effective force as

F = 〈∂t P〉T , (22)

where P is the total momentum including the radiation and
〈·〉T is the average over a period. We note that to evaluate

Eq. (8) it is sufficient to know the asymptotic form of the
radiation in order to compute the effective force. In the com-
putation of F , we can only keep the contributions of order a2

since we have the solution up to linear order in the amplitude.
In this linearized approximation (which turns out to be quite
efficient), one can easily obtain the results for any incoming
waveform.

IV. DARK SOLITON

A. Dark soliton solution

A particular solution of Eq. (3) with arbitrary g12 is a
(scalar) dark soliton centered at x0 [4], embedded into the
vector NLSE

ψ1 = e−iμt√μ tanh[
√

μ(x − x0)], ψ2 = 0, (23)

with chemical potential μ1 = μ > 0. Such a soliton can be
understood as a dip in the probability density obtained from
the collective wave function of atoms in the condensate. We
consider two scenarios: In the first case the additional atoms
will be present in the second component in the form of a
plane wave (a system still described by the two-component
model) and in the second case the second component will be
completely absent (a problem reduced to the one-component
NLSE).

In order to examine the effective force exerted by an in-
coming plane wave on a dark soliton, we need to analyze the
linearized equations. The relation between ω̃ (see Sec. II C)
and the wave numbers ki is obtained from the x → ±∞
asymptotic form of Eq. (15). Knowing that �1(x) → ±√

μ

and �′′
1 (x) → 0 as x → ±∞, the asymptotic form of the

matrix from Eq. (17) is

Mx→±∞ = μ

⎛
⎜⎜⎝

2 1 0 0
1 2 0 0
0 0 g12 0
0 0 0 g12

⎞
⎟⎟⎠. (24)

The linearized equations (15) with this M can easily be diag-
onalized and solved, obtaining

ξ−
1 (x) = Aeik1x + Be−ik1x,

ξ+
1 (x) =

⎛
⎝−

k2
1
2 − ω̃

μ
− 1

⎞
⎠(A∗e−ik1x + B∗eik1x ),

(25)

where A and B are arbitrary constants and

k1 =
√

2
√√

μ2 + ω̃2 − μ. (26)

In the above solution we omitted the solutions with imaginary
wave number, since they describe nonpropagating solutions
and therefore do not carry a momentum. Note that for ω̃ �= 0
the wave number k1 is real; thus Eqs. (25) describe propagat-
ing (traveling) waves.

As mentioned earlier, we consider waves coming from the
left and moving to the right. The direction of the traveling
wave is determined by a relative sign of the wave frequency
and its wave vector. Assuming an incoming wave with eik1x

for ω+
1 and (to be consistent with the above solution) e−ik1x for

ω−
1 , the condition for moving to the right is that the frequency
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ω±
1 = μ ∓ ω̃ is positive or negative, respectively [cf. Eqs. (18)

and (19)]. This can be transformed into the following condi-
tions for ω̃: ω̃ < μ for ω+

1 and ω̃ < −μ for ω−
1 . Therefore, for

ω̃ < −μ both waves propagate to the right.
In the second component, the equations are already diago-

nal. Note that in this case μ2 is arbitrary and choosing it can
be interpreted as fixing a reference point for ω̃. For simplicity,
let us set μ2 = 0; then we can interpret ∓ω̃ = ω±

2 simply as
the frequency of the incoming wave in the second sector. Then
the solutions are

ξ−
2 (x) = Ceik−

2 x + De−ik−
2 x,

ξ+
2 (x) = Eeik+

2 x + Fe−ik+
2 x, (27)

where

k±
2 =

√
2
√∓ω̃ − μg12 (28)

and C, D, E , and F are arbitrary constants. These waves prop-
agate when k±

2 is real (and nonzero), that is, when ∓ω̃ > μg12.
This means that for g12 < 0 there exists a range of ω̃ in which
both waves can propagate with the same ω̃ and for g12 � 0
with fixed ω̃ only one (or neither) of the waves can propagate.

Let us analyze how the parameter ω̃ affects the direction of
propagation of the waves in the second component. Using the
same logic as for the first component (assuming an incoming
wave with eik±

2 x), we get the conditions for the range of ω̃ in
which the waves in the second component are moving to the
right, namely, we obtain ω̃ < 0 for ω+

2 and ω̃ > 0 for ω−
2 . This

means that only one of them moves to the right for a given ω̃.
In order to find the effective mass of the soliton, we repeat

the derivation of the renormalized momentum done in [17]
(for additional details see also [70]) and obtain the effective
mass from it following [44]. First, we consider the total mo-
mentum Ps of a scalar dark soliton moving with a constant
velocity v (often called the gray soliton):

ψ1 = e−iμt {iv +
√

μ − v2 tanh[
√

μ − v2(x − x0 − vt )]},
ψ2 = 0. (29)

Note that the moving soliton becomes shallower and shal-
lower as the velocity increases, finally vanishing when v2 =
μ, which defines its maximal velocity. However, the above
wave function describes a dark soliton on top of a background,
and we are interested in the total momentum of the soliton.
Let us note that the solution with constant probability density,
corresponding to the asymptotics of (29), i.e., |ψ1|2 = μ and
|ψ2|2 = 0, is of the form

ψ1 = √
μe−i(μ+q2/2)t eiqx,

ψ2 = 0, (30)

with some real q. Since we are interested in a nonmoving
background, we choose q = 0, yielding the background part
of the dark soliton. However, we have to take into account
the phase change induced by the presence of the soliton (see
[17]). Therefore, we assume that the background (in the first
component) has the form

ψb = √
μe−iμt eik(x)x, (31)

where k is some real function of x, reflecting the phase change
induced by a soliton. It will turn out that the explicit form

of k(x) is not needed. Although the probability density of
the background is constant (equal to μ), the total momentum
contribution also depends on the phase. Inserting Eq. (31) into
Eq. (6) we obtain that the contribution of the background can
be written as

μ�φ ≡ μ

∫ ∞

−∞
[k(x) + xk′(x)]dx = μxk(x)∞−∞. (32)

Comparing with Eq. (31), �φ is readily identified with the
induced phase change of the background. Therefore, the to-
tal momentum of the pure soliton can be expressed as (cf.
[17,44])

Ps = i

2

∫ ∞

−∞
(ψ1∂xψ

∗
1 − ψ∗

1 ∂xψ1)dx − μ�φ. (33)

The phase change �φ can be easily computed from the
asymptotics of Eq. (29):

�φ = −2 arctan

(√
μ − v2

v

)
. (34)

Using this, we obtain from Eq. (33) the momentum corre-
sponding to the soliton

Ps = −2v
√

μ − v2 + 2μ arctan

(√
μ − v2

v

)
, (35)

which allows us to compute its effective mass as (cf. [44])

M = dPs

dv

∣∣∣∣
v→0

= −4
√

μ. (36)

Intuitively, the negative sign is not a surprise, because a dark
soliton is, as mentioned before, a dip in the collective proba-
bility density of atoms. The same mass is obtained using the
renormalized energy [17] (see Sec. III)

Es = 1

2

∫ ∞

−∞
[|∂xψ1|2 + (|ψ1|2 − μ)2]dx. (37)

B. Wave in the second component

Let us now consider the interaction of an embedded dark
soliton in the first component and an incoming wave in the
second one. In this case one can obtain the analytic solutions
of the linearized equations for the waveform in the second
component. Since in the case of an embedded dark soliton
[Eq. (23)] the linearized equations (15) for ξ1 and ξ2 are
decoupled from each other, we may simply set ξ1 = 0. Then
Eq. (15) is reduced to

− 1
2∂xxξ

−
2 (x) + g12μ tanh2(

√
μx)ξ−

2 (x) = ω̃ξ−
2 (x),

− 1
2∂xxξ

+
2 (x) + g12μ tanh2(

√
μx)ξ+

2 (x) = −ω̃ξ+
2 (x). (38)

Regular solutions of Eq. (38) can be expressed in terms of
associated Legendre functions of the first kind

ξ±
2 (x) = AP

ik±
2 /

√
μ

λ [tanh(
√

μx)], (39)

where λ = 1
2 (

√
1 + 8g12 − 1) and A is a normalization factor.

Since our boundary conditions correspond to a wave com-
ing from x = −∞, we impose the following asymptotic
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behavior on ξ2:

ξ±
2 (x) −−−−→

x→−∞ eik±
2 x + r±

2 e−ik±
2 x,

ξ±
2 (x) −−−−→

x→+∞ t±
2 eik±

2 x. (40)

This asymptotic behavior can be ensured by choosing the nor-
malization constant A in Eq. (39) appropriately. The reflection
and transmission coefficients are defined as R±

2 = |r±
2 |2 and

T ±
2 = |t±

2 |2, respectively, and can be written as

R±
2 = 2 sin2(πλ)

cosh
( 2πk±

2√
μ

) − cos(2πλ)
,

T ±
2 =

2 sinh2
(πk±

2√
μ

)
cosh

( 2πk±
2√

μ

) − cos(2πλ)
. (41)

One can check that the following relation is satisfied:

R±
2 + T ±

2 = 1. (42)

Note that the reflection coefficient is zero not only for g12 = 1,
but for any value of g12 such that λ is an integer.

We now investigate the dynamics of a dark soliton embed-
ded in the first component under the influence of an incident
plane wave coming from x = −∞ embedded in the second
component. We stick to the linearized approximation and we
assume the amplitude of the wave a to be sufficiently small.
Let us consider the setup in which ω̃ is such that only one
of the waves ξ±

2 has a real wave number. Then we can omit
the other one (ξ+

2 or ξ−
2 ), since it describes a nonpropagating

solution and does not carry a momentum. In terms of full wave
functions ψi, this setup has the following asymptotics:

ψ1(x, t ) −−−−→
x→−∞ −√

μe−iμt ,

ψ1(x, t ) −−−−→
x→+∞

√
μe−iμt ,

ψ2(x, t ) −−−−→
x→−∞ ae−iω±

2 t (eik±
2 x + r±

2 e−ik±
2 x ),

ψ2(x, t ) −−−−→
x→+∞ ae−iω±

2 t t±
2 eik±

2 x. (43)

In order to approximate the acceleration of the soliton, we
assume Newtonian motion, with the force stemming from the
radiation pressure, averaged over a period of the incoming
wave.

The force is derived from Eq. (8). First, we substitute the
above asymptotic form into this equation. Then we average
it over time for the period T = 2π/ω̃ (which in this case
does not change anything) and omit the terms of the order
higher than a2 (since a is small). Finally, we replace ω̃ with
the appropriate dispersion relation with k±

2 , derived in the
preceding section, obtaining the force

F = 〈∂t P〉T = a2(k±
2 )2(1 + R±

2 − T ±
2 ), (44)

where P is the total momentum and 〈·〉T means the average
over the period. Using the relation (42), the force can be
simplified to F = 2a2(k±

2 )2R±
2 ; therefore, in this case reflec-

tionlessness implies no force (of the assumed order a2).
Let us briefly consider the range of ω̃ for which ξ+

2 and ξ−
2

are both traveling waves. Then the initial wave ξ±
2 can scatter

into both ξ+
2 and ξ−

2 and the analogous derivation leads to the

force

F = a2[(k±
2 )2 + (k+

2 )2(R̃+
2 − T̃ +

2 ) + (k−
2 )2(R̃−

2 − T̃ −
2 )],

(45)
where the incoming wave has a wave number k±

2 . However,
after considering the boundary conditions, R̃±

2 and T̃ ±
2 are

equal to R±
2 and T ±

2 from Eq. (41) only for the incoming
wave and for the other one are equal to zero. Therefore, the
above expression ultimately reduces to Eq. (44). If both are
the incoming waves, only one of them is moving to the right
for given ω̃ (see the discussion in Sec. IV A) and also the
effective force is simply a sum of individual forces, so it is
not interesting at this point.

Finally, using the reflection coefficient given by Eq. (41),
the mass derived in the preceding section, and the above F ,
we can derive the explicit form of acceleration exerted on
the scalar dark soliton in the first component by a wave with
frequency ω̃ in the second component. For the incoming wave
with a wave number k±

2 it is

ẍ0 = − a2

√
μ

(k±
2 )2 sin2(πλ)

cosh
( 2πk±

2√
μ

) − cos(2πλ)
, (46)

where x0 is interpreted as the position of the soliton. Note
that although the force (44) is always non-negative, the ac-
celeration is always nonpositive due to the negative effective
mass (36); therefore, we observe either the positive radiation
pressure, i.e., positive force, or no pressure at all.

To verify the above results, we performed numerical sim-
ulations. The initial condition was a dark soliton in the first
sector and a wave propagating from the left end of the inter-
val with a given frequency and an appropriate wave number,
where its amplitude was kept sufficiently small. However, the
initial wave was multiplied by a superposition of hyperbolic
tangents to cut it smoothly, in order to have the initial wave
beginning slightly after the left boundary and ending slightly
before the center of the soliton. This deviation from a plane-
wave shape introduces a short kick exerted on the soliton and
this results in a constant velocity, on top of which we observe
the acceleration compared with Eq. (46). More precisely, the
wave in the second component had the form

ψ2(x, t = 0) = aeik+
2 x�cut(x), (47)

with parameters such that a wave with k+
2 propagates to the

right, i.e., ω̃ < 0 and ω̃ < −μg12. Here �cut is the cutting
function mentioned before,

�cut(x) = 1
2 [tanh(x − xmin − 10) − tanh(x + 10)], (48)

where xmin is the left boundary in space. The center of the soli-
ton was computed as the minimum of the probability density
in the first component. Then the acceleration was computed by
fitting the quadratic function to the position of the center and
compared with Eq. (46) (see Figs. 1–4). It turned out that our
effective linearized model explains the observed accelerations
quite well for a wide range of parameters.

C. Dark soliton and a wave in the same component

Since the linearized equations (15) for ξ1 and ξ2, in the case
of the dark soliton, are independent, we start with a similar
ansatz as before, namely, ξ2 = 0. Now we examine the case
where the wave with small amplitude a comes from −∞ in
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FIG. 1. Acceleration of a dark soliton with μ = 1 under the
influence of the wave in the second component coming from the
left with a frequency ω+

2 = −ω̃ = 1.4 and amplitude a = 0.05 for
different values of g12.

the first component, which [taking into account the solution
(25)] has the asymptotics

ψ1(x, t ) −−−−→
x→−∞ aβ

⎛
⎝−

k2
1
2 − ω̃

μ
− 1

⎞
⎠e−iω+

1 t (eik1x + r1e−ik1x )

+ aβe−iω−
1 t (e−ik1x + r∗

1 eik1x ) − √
μe−iμt ,

ψ1(x, t ) −−−−→
x→+∞ aβ

⎛
⎝−

k2
1
2 − ω̃

μ
− 1

⎞
⎠e−iω+

1 t t1eik1x

+ aβe−iω−
i t t∗

1 e−ik1x + √
μe−iμt ,

ψ2(x, t ) −−−−→
x→±∞ 0, (49)

where

β =
√

2μ√(
k2

1 + 2μ
)[

k1
(√

k2
1 + 4μ + k1

) + 2μ
] (50)

is a normalization constant. The reflection and transmission
coefficients are defined as R1 = |r1|2 and T1 = |t1|2, respec-
tively. The coefficient β was chosen in such a way as to have
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FIG. 2. Acceleration of a dark soliton with μ = 1 under the
influence of the wave in the second component coming from the
left with different frequencies ω+

2 = −ω̃, g12 = 0.8, and amplitude
a = 0.05.
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FIG. 3. Acceleration of a dark soliton with μ = 1 under the influ-
ence of the wave in the second component coming from the left with
a frequency ω+

2 = −ω̃ = 1.4, g12 = 0.8, and different amplitudes.

the simplest form of the force. From the above asymptotics,
the effective force acting on a soliton can be derived analo-
gously as in the previous case, obtaining

F = a2k2
1 (1 + R1 − T1). (51)

The solutions to the linearized equations (15) in this case
with μ = 1 can be found in [71–73]. Assuming the asymp-
totics (49) and transforming them for arbitrary μ, we obtain

ξ±
1 (x) = 2βk1

(k1 ∓ 2i
√

μ)
(
k2

1 + 2ω̃
)[(

k2
1

2
∓ ω̃

)

×
(

1 ± 2i
√

μ

k1
tanh(x

√
μ)

)
+ μ

cosh2(x
√

μ)

]
e±ik1x,

(52)

where β is given in (50). The solutions imply R1 = 0 and
T1 = 1 and thus no force. However, we also solved the equa-
tions numerically, in order to show the more general method
used later in this article. The infinities were approximated by
sufficiently large L; then x ∈ [−L, L] [in general, the grid is
different from the one used in the full partial differential equa-
tion (PDE) simulations of CNLSEs]. We changed the basis
from (ξ−

1 , ξ+
1

∗) to the solutions for which the asymptotic form
of the equations (15) is diagonal. Let us denote the solutions
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FIG. 4. Acceleration of a dark soliton with different values of μ

under the influence of the wave in the second component coming
from the left with a frequency ω+

2 = −ω̃ = 1.4, g12 = 0.8, and am-
plitude a = 0.05.
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in the new basis by (ξ̃−
1 , (ξ̃+

1 )∗). Then the boundary conditions
were imposed as

(ξ̃−′
1 − ik1ξ̃

−
1 )|x=−L = −2ik1eik1L (53)

to have e−ik1x at x = −L and

(ξ̃−′
1 + ik1ξ̃

−
1 )|x=L = 0 (54)

to ensure that there is no eik1x at x = L. This corresponds
to the incoming wave with eik1x for ω+

1 moving from left to
right. Here (ξ̃+

1 )∗ describes the nonpropagating waves and we
imposed analogous boundary conditions on it,

{[(ξ̃+
1 )∗]′ − ikim(ξ̃+

1 )∗} |x=−L = {[(ξ̃+
1 )∗]′ + ikim(ξ̃+

1 )∗}|x=L

= 0, (55)

with imaginary kim = ±√
2i

√√
μ2 + ω̃2 + μ instead of k1.

Then R1 and T1 were computed from the numerical solutions,
using the equations

R1 = |ξ̃−
1 (−L) − e−ik1L|2,

T1 = |ξ̃−
1 (L)|2. (56)

The acceleration, computed from the force (51) with numeri-
cally obtained R1 and T1 and the mass derived in the previous
section, turned out to be close to zero, as expected.

The above result can be compared with the full PDE
simulations of CNLSEs. Before we do that, let us discuss a
particular difficulty present here. In the case of a scalar dark
soliton with a wave in the second component, determining the
center of the soliton from numerical data is relatively easy
since the wave and the soliton are in completely different
components. Then the center is simply given by a minimum of
the probability density in the soliton component. In general,
this is not the case because in many scenarios the waves
scatter into both components of the condensate. Therefore,
developing the strategy of extracting the position of a soliton
from numerical data will be important not only for the waves
initially in the first component, but for most other setups as
well.

When a wave is present in the same component as the
soliton, one can observe oscillations of the minimum (in the
case of a bright soliton, the maximum) of the probability
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FIG. 5. Position of a dark soliton with μ = 1 under the influence
of the wave in the second component coming from the left with a
frequency ω+

2 = −ω̃ = 1.4, g12 = 0.8, and different amplitudes.
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FIG. 6. Acceleration of a dark soliton with μ = 1 under the
influence of the wave in the first component coming from the left
with different frequencies ω±

1 = μ ∓ ω̃ and amplitude a = 0.05.

density. These oscillations are due to the effect of the incident
wave on the soliton (cf. Figs. 5 and 16). This interesting
effect is the analog described by the Quist effect [74] for
vortices. In the present case it complicates the extraction of
the position of the soliton from numerical data. To improve
the determination of the soliton positions, we used filtering
of high frequencies from |ψ (x, t )|2 at each instant t before
computing the minimum. Since the amplitude of these oscil-
lations becomes smaller than the observed trajectories during
the time evolution, it pays off to make the time evolution as
long as feasible.

The initial condition in the numerical simulations was
ψ2(x, t = 0) = 0 and

ψ1(x, t = 0) = �(x) + aβ

⎡
⎣

⎛
⎝−

k2
1
2 − ω̃

μ
− 1

⎞
⎠eik1x + e−ik1x

⎤
⎦

× �cut(x), (57)

where � is the dark soliton for t = 0, �cut is the same cutting
function as in (48), and β is the normalization given by (50).
We used ω̃ < −μ in order to have both e±ik1x starting a wave
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FIG. 7. Acceleration of a dark soliton with μ = 1 under the in-
fluence of the wave in the first component coming from the left with
frequencies ω+

1 = 2.4 and ω−
1 = −0.4 (i.e., ω̃ = −1.4), g12 = 0.8,

and different amplitudes.
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FIG. 8. Dark-bright solitons for different values of the parameter
g12, calculated using the gradient flow method. The parameters are
μ = 1, κ = 0.9, and μi as given in Eq. (59).

moving to the right. Acceleration computed from Eq. (51)
divided by the appropriate effective mass with numerically
obtained reflection and transmission coefficients has values
close to zero. It was compared with the acceleration from the
full PDE simulations (Figs. 6 and 7), which is also small. This
seems to indicate that the force is indeed approximately zero.

V. DARK-BRIGHT SOLITONS

A. Dark-bright solutions

The CNLSE (3) with g12 = 1 possesses a particular solu-
tion [23]

ψ1 = e−iμt√μ tanh[κ (x − x0)],

ψ2 = e−i(μ−κ2/2)t
√

μ − κ2sech[κ (x − x0)], (58)

which is an example of a dark-bright soliton with

μ1 = μ, μ2 = μ − κ2/2. (59)

Obviously, 0 < κ2 < μ. Assuming ψi(x, t ) = e−iμit�i(x), we
can find DB solitons for other values of the parameter g12.
Their profiles �i are presented in Fig. 8. They can be intu-
itively understood as a dip in the probability density of atoms
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FIG. 9. Effective mass of DB solitons for different values of g12,
obtained using solitons at time t = 60 after pushing it using the exter-
nal impulse (70) with the parameters T = 1 and V0 ∈ [0.005, 0.08].
Velocities were obtained using the linear fit to the position of the
center of the soliton.
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FIG. 10. Acceleration of a dark-bright soliton with μ = 1 and
κ = 0.9 under the influence of the wave in the dark component
coming from the left with frequencies ω+

1 = 2.4 and ω−
1 = −0.4

(i.e., ω̃ = −1.4), a = 0.05, and different values of g12.

of one kind (species or spin state) and a relatively small peak
in the probability density of atoms of the other kind.

Consider scattering on such solitons. It can be easily de-
duced from Eq. (12) that for x → ±∞ DB solitons profiles
�1(x) → ±√

μ, �2(x) → 0, and �′′
i (x) → 0 regardless of

the value of g12. Therefore, the matrix M in Eq. (17) becomes
asymptotically

Mx→±∞ = μ

⎛
⎜⎜⎝

2 1 0 0
1 2 0 0
0 0 g12 0
0 0 0 g12

⎞
⎟⎟⎠. (60)

Note that this asymptotic form is exactly the same as in the
case of scalar dark soliton; therefore, the solutions are the
same as in Sec. IV A, in particular the wave number

k1 =
√

2
√√

μ2 + ω̃2 − μ, (61)

and again the waves in the first component propagate for any
ω̃ �= 0. The only difference is that μ2 is no longer arbitrary

−5 −4 −3 −2 −1
ω̃

1.75

2.00

2.25

2.50

2.75

3.00

ac
ce

le
ra

ti
on

×10−6

approximation from linearized equations

numerical data

FIG. 11. Acceleration of a dark-bright soliton with μ = 1 and
κ = 0.9 under the influence of the wave in the dark component
coming from the left with an amplitude a = 0.05, g12 = 0.7, and
different frequencies ω±

1 = μ ∓ ω̃.
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FIG. 12. Acceleration of a dark-bright soliton with μ = 1 and
κ = 0.9 under the influence of the wave in the dark component
coming from the left with frequencies ω+

1 = 2.4 and ω−
1 = −0.4

(i.e., ω̃ = −1.4), g12 = 0.7, and different amplitudes.

and therefore

k±
2 =

√
2
√

∓ω̃ − μg12 + μ − κ2/2. (62)

Thus, waves in the second component with wave number
k±

2 propagate when ∓ω̃ > μg12 − μ + κ2/2. This means that
for κ2 < 2μ(1 − g12) there exists a range of ω̃ in which
both waves can propagate with the same ω̃; however, we
were unable to find the stable solitons in this range. For
κ2 � 2μ(1 − g12) with fixed ω̃ only one (or neither) of the
waves can propagate. Note that this excludes the possibility
of propagating both types of waves in the second component
for g12 � 1.

Conditions for moving to the right in the first component
are the same as for the scalar dark case. In the second compo-
nent, they are ω̃ < μ − κ2/2 for ω+

2 and ω̃ > −μ + κ2/2 for
ω−

2 . Therefore, for ω̃ ∈ (−μ + κ2/2, μ − κ2/2) both waves
propagate to the right (it is always true because μ − κ2/2 is
positive).

0.7 0.8 0.9 1.0 1.1 1.2 1.3
g12

−5

−4

−3

−2

−1

0

ac
ce

le
ra

ti
on

×10−6

approximation from linearized equations

numerical data

FIG. 13. Acceleration of a dark-bright soliton with μ = 1 and
κ = 0.9 under the influence of the wave in the bright compo-
nent coming from the left with frequencies ω+

2 = 1.995 and ω−
2 =

−0.805 (i.e., ω̃ = −1.4), a = 0.05, and different values of g12.
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FIG. 14. Acceleration of a dark-bright soliton with μ = 1 and
κ = 0.9 under the influence of the wave in the bright component
coming from the left with an amplitude a = 0.05, g12 = 0.7, and
different frequencies ω+

2 = μ − κ2/2 − ω̃.

The moving dark-bright soliton in the Manakov (g12 = 1)
case with velocity v is [23]

ψ1 = e−iμt√μ{cos α tanh[κ̃ (x − x0 − vt )] + i sin α},

ψ2 = e−i[μ−κ̃2(1−tan2 α)/2]t eivx

√
(μ − κ2)

κ̃

κ
sech

× [κ̃ (x − x0 − vt )], (63)

where

κ̃ = κ2 − μ +
√

2κ2μ cos(2α) + κ4 + μ2

2κ
, (64)

v = κ̃ tan α. (65)

We compute the renormalized total energy (analogously to the
renormalized energy of a dark soliton)

Es = 1

2

∫ ∞

−∞
[|∂xψ1|2 + |∂xψ2|2 + (|ψ1|2 − μ)2 + |ψ2|4

+ 2|ψ1|2|ψ2|2]dx, (66)
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FIG. 15. Acceleration of a dark-bright soliton with μ = 1 and
κ = 0.9 under the influence of the wave in the bright component
coming from the left with frequency ω+

2 = 1.995 (i.e., ω̃ = −1.4),
g12 = 0.7, and different amplitudes.
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FIG. 16. Position of a dark-bright soliton with μ = 1 and κ =
0.9 under the influence of the wave in the bright component coming
from the left with frequency ω+

2 = 1.995 (i.e., ω̃ = −1.4), a = 0.05,
and different values of g12.

and from that we get the effective mass

M = d2Es

dv2

∣∣∣∣
v=0

=
(

dv

dα

)−2(d2Es

dα2
− d2v

dα2

dv

dα

dEs

dα

)∣∣∣∣∣
α=0

= −2(κ2 + μ)

κ
. (67)

For κ → √
μ we reproduce the result for the scalar dark

soliton M = −4
√

μ. Using the renormalized total momentum

Ps = i

2

∫ ∞

−∞
(ψ1∂xψ

∗
1 − ψ∗

1 ∂xψ1 + ψ2∂xψ
∗
2

− ψ∗
2 ∂xψ2)dx − μ�φ, (68)

where �φ = 2α − π is the phase change between −∞ and
+∞ in the dark (first) component, we obtain the same effec-
tive mass

M = dPs

dv

∣∣∣∣
v=0

=
(

dv

dα

)−1 dPs

dα

∣∣∣∣∣
α=0

= −2(κ2 + μ)

κ
. (69)

This indicates that the motion of the dark-bright solitons in
the Manakov case is indeed Newtonian and that we used the
correct renormalization.

In the non-Manakov (g12 �= 1) case we push the soliton
using the short and localized external impulse

V1(x) = V0t (T − t )θ (t )θ (T − t )
tanh(x)

cosh(x)
, V2(x) = 0 (70)

and obtain the velocity and moving soliton profile after a suf-
ficiently long time, from which we calculate Es and compute
M = d2Es

dv2 |v=0 and M = dPs
dv

|v=0 by fitting a quadratic function

to Es(v) and a linear function to Ps(v), respectively (Fig. 9).
Henceforth, we will use the mass obtained from the momen-
tum, because it is more accurate.

B. Wave in the dark component

Let us consider a DB soliton with a wave in the first
component with a wave number k1 and a small amplitude a
coming from the left (provided adequate conditions, discussed
in the preceding section, are met). The asymptotics are then

ψ1(x, t ) −−−−→
x→−∞ aβ

⎛
⎝−

k2
1
2 − ω̃

μ
− 1

⎞
⎠e−iω+

1 t (eik1x + r1e−ik1x )

+ aβe−iω−
1 t (e−ik1x + r∗

1 eik1x ) − √
μe−iμt ,

ψ1(x, t ) −−−−→
x→+∞ aβ

⎛
⎝−

k2
1
2 − ω̃

μ
− 1

⎞
⎠e−iω+

1 t t1eik1x

+ aβe−iω−
i t t∗

1 e−ik1x + √
μe−iμt ,

ψ2(x, t ) −−−−→
x→−∞ ae−iω+

2 t r+
2 e−ik+

2 x + ae−iω−
2 t r−

2 e−ik−
2 x,

ψ2(x, t ) −−−−→
x→+∞ ae−iω+

2 t t+
2 eik+

2 x + ae−iω−
2 t t−

2 eik−
2 x, (71)

where β is the same as in Eq. (50). Using an analogous
approach as before, we derive that the force exerted on the
soliton by such a wave is

F = a2
[
k2

1 (1 + R1 − T1) + (k+
2 )2(R+

2 − T +
2 )

+ (k−
2 )2(R−

2 − T −
2 )

]
, (72)

where R1 = |r1|2, T1 = |t1|2, R±
2 = |r±

2 |2, and T ±
2 = |t±

2 |2.
The setup (71) corresponds to the eigenwave (25) with

A = 0; let us call it the first eigenwave. The other eigenwave
(B = 0), i.e., Eq. (71) with k1 → −k1, gives the same ex-
pression for the effective force, but with different values of
reflection and transmission coefficients. Let us focus on the
first eigenwave (note that the conditions for propagation to
the right are derived above for the first eigenwave). Using an
approach similar to that for the scalar soliton, we can com-
pute values of these coefficients and (using the effective mass
computed above) compare the resulting acceleration with full
PDE simulations (with initial field configurations constructed
analogously as for the scalar dark soliton). It turns out that
we always get the negative radiation pressure, described well
by our linear model for relatively small amplitudes and fre-
quencies (Figs. 10–12). The nonlinear behavior for larger
amplitudes is expected, since linear approach relies on the
fact that the amplitude is small. However, the discrepancy for
larger frequencies is surprising and requires further study.

C. Wave in the bright component

If we consider a DB soliton with a wave in the second component with a wave number k±
2 (and a small amplitude a) coming

from the left, the asymptotics are

ψ1(x, t ) −−−−→
x→−∞ aβ

⎛
⎝−

k2
1
2 − ω̃

μ
− 1

⎞
⎠e−iω+

1 t r1e−ik1x + aβe−iω−
1 t r∗

1 eik1x − √
μe−iμt ,
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FIG. 17. Evolution of the dark-bright soliton with μ = 1, κ = 0.9, and g12 = 0.7, interacting with a wave in the (a) and (c) dark and (b) and
(d) bright component coming from the left with frequencies corresponding to ω̃ = −1.4 and amplitude a = 0.2. The probability densities of
[(a) and (b)] the dark and [(c) and (d)] the bright components are presented.

ψ1(x, t ) −−−−→
x→+∞ aβ

⎛
⎝−

k2
1
2 − ω̃

μ
− 1

⎞
⎠e−iω+

1 t t1eik1x + aβe−iω−
i t t∗

1 e−ik1x + √
μe−iμt ,

ψ2(x, t ) −−−−→
x→−∞ ae−iω±

2 t eik±
2 x + ae−iω+

2 t r+
2 e−ik+

2 x + ae−iω−
2 t r−

2 e−ik−
2 x,

ψ2(x, t ) −−−−→
x→+∞ ae−iω+

2 t t+
2 eik+

2 x + ae−iω−
2 t t−

2 eik−
2 x, (73)

with β the same as in Eq. (50). Similarly to before, we can
derive the force exerted on the soliton

F = a2
[
k2

1 (R1 − T1) + (k+
2 )2(R+

2 − T +
2 ) + (k−

2 )2(R−
2 − T −

2 )

+ (k±
2 )2

]
, (74)

where R1 = |r1|2, T1 = |t1|2, R±
2 = |r±

2 |2, and T ±
2 = |t±

2 |2.
Again, we compute the values of the reflection and trans-

mission coefficients numerically and compare the resulting
acceleration with the full PDE simulations. In this case we
observe the positive radiation pressure for all the values
of parameters considered, and everything is described well
by the linearized model provided the amplitude is small
(Figs. 13–16). Examples of the evolution for waves in the both
components are presented in Fig. 17.

D. Dark-bright solitons in a harmonic trap

To verify how well the above results apply in realistic
situations, let us include a harmonic trapping potential

V1(x) = V2(x) = 1
2ω2

x x2 (75)

in Eq. (3), solve it numerically, and compare with the
linearized approximations obtained without a trap. In this
section we use physical units, unless we specifically refer to
our units, defined in Sec. II A. In order for the parameters to
be possible to achieve in experiments, we choose the trapping
frequencies used in [36], i.e., ωx = 2π × 14 Hz and ω⊥ =
2π × 425 Hz. Similarly, we normalize ψi to the numbers of
atoms N1 ≈ 152 500 and N2 ≈ 1700 in the dark and bright
components, respectively. Again, N1 was inspired by [36],
while the proportion N2 ≈ 0.01N1 is similar to that in [33]. We
choose a11 = a22 ≈ 100a0 and a12 ≈ 110a0, where a0 is the
Bohr radius. With these parameters, we use the gradient flow
method and find a dark-bright soliton, presented in Fig. 18.
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FIG. 18. Dark-bright soliton in a harmonic trap with a frequency
ωx = 2π × 14 Hz and ω⊥ = 2π × 425 Hz in a CNLSE with a12 ≈
110a0 (in our units g12 = 1.1). The numbers of atoms are about N1 ≈
152 500 and N2 ≈ 1700 in the dark [blue (darker) line] and bright
[orange (lighter) line] components, respectively, which correspond
to μ = 35 000 and κ = 20 in our units.

We simulated collisions of the DB soliton with monochro-
matic waves of several frequencies, incoming from both the
dark and the bright component. The amplitudes of these waves
were equal to about 10% of the amplitude of the DB soli-
ton’s dark component, corresponding to a = 20 in our units.
Despite the fact that the linearized approximation does not
include a trap, the measured accelerations followed somewhat
similar curves (Fig. 19). The accelerations were measured
only in the short time interval (about first 4 ms), since for
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FIG. 19. Acceleration of the dark-bright soliton (Fig. 18) in
a harmonic trap under the influence of waves in the (a) dark
and (b) bright components, coming from the left with different
frequencies and amplitude a ≈ 0.1

√
μ, compared with a linear ap-

proximation without a trapping potential.

longer times the force gets affected more by the harmonic
potential (see an example of trajectories in Fig. 20).

VI. CONCLUSION

Using the Newtonian approximation and staying in the
linear regime, we have successfully described the acceleration
of the scatterer due to the action of the radiation pressure of
a wave scattering on a dark and a dark-bright soliton. This
simple model agrees with numerical simulations for a wide
range of parameters. We have shown that a collision of a
scalar dark soliton with a wave in the second component of
the condensate always results in a positive radiation pressure.
For dark-bright solitons, however, we found that the radia-
tion pressure is negative if the wave is incoming from the
dark component and positive otherwise. Our results provide a
quantitative description for idealized homogenous BECs and
a qualitative model for more realistic trapped condensates.

The mechanism responsible for NRP in this model relies
on the fact that the soliton is present in both components.
Otherwise, the equations separate, and from the conservation
of energy it follows that the reflection and transmission co-
efficients sum to one. This implies that the force is always
non-negative, as we have seen explicitly for the scalar soliton
case. If the soliton is a vector soliton, then the constraints from
the energy conservation allow for both positive and negative
signs of the force. Furthermore, the dispersion relations (i.e.,
the wave numbers k1 and k±

2 ) play an important role in deter-
mining this sign (see Table I).

The discrepancies between our effective linear model and
the full PDE simulations are completely expected for the
larger amplitudes of the incoming wave, since the lineariza-
tion relies on it being small. However, the disagreement for
large frequencies of the wave incoming from the dark compo-
nent and hitting the dark-bright soliton is currently not well
understood within the scope of this paper. This could be an
opportunity for further research, especially combined with a
detailed study of the nonlinear effects, which can play a role
here. Another interesting possibility would be to investigate
NRP on other solitons in a two-component BEC, such as
bright-bright and dark-dark solitons.

It is also worth mentioning that there is a correspondence
between dark (dark-bright) solitons and Néel (Bloch) walls
in the parametrically driven nonlinear Schrödinger equa-
tion [75–82], although with different dynamics. Moreover,
the problem described in this paper shows some similarities
to the wall-on-wall scattering described in [82], which is an
interesting topic for further study.

The described setups can in principle be reproduced exper-
imentally. Hopefully, in the future, this article could help to
promote NRP from being a purely theoretical concept to an
observable physical phenomenon.
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APPENDIX A: DERIVATION OF TOTAL ENERGY
AND MOMENTUM

Using the Lagrangian density (4), we can derive the
energy-momentum tensor

T μ
ν =

∑
i=1,2

(
∂L

∂ (∂μψi )
∂νψi + ∂L

∂ (∂μψ∗
i )

∂νψ
∗
i

)
− Lδμ

ν , (A1)

where μ, ν = 0, 1; ∂0 = ∂t ; and ∂1 = ∂x. Since we consider
CNLSEs without the trapping potential, the Lagrangian den-
sity (4) is invariant under translations, and then from the
Noether theorem it follows that such a tensor is a conserved
current, meaning that it obeys

∑
μ=1,2

∂μT μ
ν = 0. (A2)

The total energy and momentum are defined

E =
∫ ∞

−∞
T 0

0dx, P = −
∫ ∞

−∞
T 0

1dx, (A3)

respectively. Computing the energy-momentum tensor and
integrating, we obtain their explicit form (5) and (6). Then
Eqs. (7) and (8) follow from (A2).

APPENDIX B: NUMERICAL METHODS

In all of the simulations of soliton dynamics in the full
PDE, we have used the second-order split-step method [83].

TABLE I. Example of reflection and transmission coefficients
(derived from linearized equations) and the formulas present in the
effective forces (72) and (74). Kronecker deltas are such that we set
i = 1 for the wave incoming from the dark component and i = 2
for the bright. The parameters of the soliton and the scattered wave
are μ = 1, κ = 0.9, g12 = 0.7, and ω̃ = −1.4. Note that the wave
numbers change the sign of the total force.

Coefficient Wave from dark Wave from bright

R1 1.511 × 10−6 4.792 × 10−6

T1 9.930 × 10−1 9.325 × 10−3

R+
2 2.666 × 10−6 1.601 × 10−4

T +
2 5.188 × 10−3 9.929 × 10−1

δi1 + R1 − T1 6.962 × 10−3 −9.321 × 10−3

δi2 + R+
2 − T +

2 −5.185 × 10−3 7.279 × 10−3

k2
1 (δi1 + R1 − T1) 1.003 × 10−2 −1.343 × 10−2

(k+
2 )2(δi2 + R+

2 − T +
2 ) −1.343 × 10−2 1.885 × 10−2
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This method requires periodic boundary conditions; therefore,
at large x the dark soliton (and the dark part of the dark bright
soliton) was glued to the antisoliton to achieve ψ1 = −√

μ

at the right boundary. The spatial step was �x = 0.1, while
the temporal step was in the range from �t = 0.0001 to �t =
0.0003, depending on a particular simulated configuration. We
used x ∈ [−500, 1000] or x ∈ [−1000, 2000]. Other methods
with other boundary conditions are possible to implement in
CNLSEs (see, e.g., [84]).

Linearized equations were solved using sparse matrices.
The derivatives were discretized using the five-point stencil.
The grid was x ∈ [−20, 20] with the step �x = 0.01. The
size of the grid in this problem does not need to match
the size of the spatial grid used in solving the full PDE.
In fact, we verified that the solutions to linearized equa-
tions do not depend on the grid size, provided it is sufficiently
large, such that the solutions achieve the expected asymptotic
form.
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diation pressure exerted on kinks, Phys. Rev. D 77, 125012
(2008).

[62] P. Dorey, K. Mersh, T. Romanczukiewicz, and Y. Shnir, Kink-
antikink collisions in the φ6 model, Phys. Rev. Lett. 107,
091602 (2011).
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