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We consider random walks on countable groups. A celebrated result of Kesten says that the spectral
radius of a symmetric walk (whose support generates the group as a semigroup) is equal to one if and
only if the group is amenable. We give an analogue of this result for walks that are not symmetric. We
also conclude a ratio limit theorem for amenable groups.

1 Introduction
Let G be a finitely generated countable group. Let μ be a probability measure on G, that is, a function
μ : G → R

+ such that
∑

g∈G μ(g) = 1. Let Sμ := {g ∈ G: μ(g) > 0}, the support of μ. We say that μ is
non-degenerate if Sμ generates G as a semigroup. (We do not require Sμ to be finite.)

Let | · | be a word metric on G associated to some finite generating set. (We do not assume any
connection between this set and Sμ.) We say that μ has finite first moment if

∑
g∈G

|g|μ(g) < ∞

and that μ has finite exponential moment of order c > 0 if

∑
g∈G

ec|g|μ(g) < ∞.

The measure μ defines a random walk on G with transition probabilities p(s, t) = μ(s−1t). The
convolution μ ∗ ν of two functions μ, ν : G → R

+ is defined by

μ ∗ ν(g) =
∑
s∈G

μ(s)ν(s−1g).
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6210 | R. Dougall and R. Sharp

We will be interested in the spectral radius of this random walk, defined by

λ(G, μ) := lim sup
n→∞

(μ∗n(e))1/n.

Clearly, 0 ≤ λ(G, μ) ≤ 1. A celebrated theorem of Kesten (which does not even require G to be finitely
generated) says that if μ is symmetric then λ(G, μ) = 1 if and only if G is amenable [8]. (We recall that
G is amenable if and only if it admits a Banach mean, that is, a linear functional M : �∞(G) → R such
that M(1) = 1, infg∈G f (g) ≤ M(f ) ≤ supg∈G f (g), and M(fg) = M(f ), where fg(x) = f (gx). See the papers of
Følner [5] and Day [2] for further discussion.) The aim of this note is to generalise Kesten’s criterion to
the non-symmetric case.

To state our generalisation, we need to consider the abelianisation of G. Since G is finitely generated,
this has a finite rank k ≥ 0. Let Gab = G/[G, G] denote the abelianisation of G and let Gab

T denote the
torsion subgroup of Gab. Now set G = Gab/Gab

T
∼= Z

k, for some k ≥ 0, (the torsion-free part of the
abelianisation) and let π : G → G be the natural projection homomorphism. Write μ̄ = π∗(μ), that is,

μ̄(m) =
∑
g∈G

π(g)=m

μ(g).

Theorem 1.1 (Non-symmetric Kesten criterion). Let G be a finitely generated group and let μ be
a non-degenerate probability measure on G. Then

G amenable ⇐⇒ λ(G, μ) = λ(G, μ̄).

The special case where μ has finite support originally appeared in Dougall–Sharp [4], where it is
written in the language of subshifts of finite type and Gibbs measures.

The value of λ(G, μ̄) may be characterised in the following way. Define φμ : Rk → R
+ ∪ {+∞} by

φμ(v) =
∑
g∈G

e〈v,π(g)〉μ(g) =
∑

m∈Zk

e〈v,m〉μ̄(m),

where 〈v, m〉 = v1m1 + · · · + vkmk. By a result of Stone [15], [16], there is a unique ξ ∈ R
k at which φμ(v)

attains its minimum. Then λ(G, μ̄) = φμ(ξ). This is discussed in more detail in Section 2.
A probability measure μ (with finite first moment) is said to be centred if for each homomorphism

χ : G → R, we have

∑
g∈G

χ(g)μ(g) = 0.

Any such homomorphism factors through G so it is easy to see that μ is centred if and only if either
k = 0 or

∑
g∈G

π(g)μ(x) =
∑
m∈Ḡ

mμ̄(m) = 0.

In particular, μ is centred if and only if μ̄ is centred.
If, in addition, μ has a finite exponential moment of some order then we have the following result.

Corollary 1.2. Let G be a finitely generated group and let μ be a non-degenerate probability
measure on G. Provided μ has a finite exponential moment of some order, we have λ(G, μ) = 1
if and only if G is amenable and μ is centred.

Remark 1.3. In fact, the “if” direction above, which G amenable and μ centred implies that
λ(G, μ) = 1, is true if μ (and hence μ̄) has finite first moment; while the “only if” direction
uses the exponential moment condition.
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Theorem 1.1 allows us to prove a ratio limit theorem for amenable groups with an explicit limit. To
avoid any parity issues, it is convenient to restrict to aperiodic walks. We say that (G, μ) is aperiodic if
there exists n0 ≥ 1 such that μ∗n(e) > 0 for all n ≥ n0.

Theorem 1.4 (Ratio limit theorem). Suppose that G is a finitely generated amenable and that μ is
a non-degenerate probability measure on G. Assume in addition that (G, μ) is aperiodic. Then,
for each g ∈ G,

lim
n→∞

μ∗n(g)

μ∗n(e)
= e−〈ξ ,π(g)〉,

where ξ ∈ R
k is the unique value for which λ(G, μ) = φμ(ξ).

Remark 1.5. One should compare this with a theorem of Avez [1] that says that if G is amenable
and μ is symmetric, non-degenerate, and aperiodic then limn→∞ μ∗n(g)/μ∗n(e) = 1, for all g ∈ G.

Remark 1.6. It should be noted that there is no a priori mechanism to guarantee that the ratios
do indeed have a limit. However, notice that if one has the ratio limits

lim
n→∞

μ∗n(g)

μ∗n(e)
= e−〈ξ ,π(g)〉,

for all g ∈ G, for some ξ then G is necessarily amenable. We give the short demonstration. From
the hypothesis we have for any s ∈ G,

μ∗n(s−1)

μ∗n(e)
= e〈ξ ,π(s)〉.

Now, since

μ∗(n+1)(g) =
∑
s∈G

μ(s)μ∗n(s−1g),

we then have

lim
n→∞

μ∗(n+1)(e)
μ∗n(e)

= lim
n→∞

∑
s∈Sμ

μ(s)
μ∗n(s−1)

μ∗n(e)
≥

∑
s∈Sμ

μ(s)e〈ξ ,π(g)〉 = φμ(ξ). (1.1)

In particular, φμ(ξ) < ∞. We proceed with the proof assuming that ξ = 0 and deduce the general
case after.

Now using that

μ∗n(e)
μ∗1(e)

=
n∏

m=2

μ∗m(e)
μ∗(m−1)(e)

,

we see that (1.1) with φμ(0) = 1 implies that lim supn→∞(μ∗n(e))1/n = 1. This contradicts
Day’s [2] generalisation of Kesten’s criterion to the random walk operator spectral radius—a
consequence of which is that, for any non-degenerate probability, we have that if G is non-
amenable then lim supn→∞(μ∗n(e))1/n < 1.

For the general case ξ �= 0, we have already shown that φμ(ξ) < ∞, and so

μ̂(g) = e〈ξ ,π(g)〉

φμ(ξ)
μ(g)

is a well-defined probability measure on G with ratio limits equal to one, and we again conclude
that G is amenable.
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Let us now outline the contents of the rest of the paper. In Section 2, we recall results of Stone on
random walks on Z

k that are essential to the formulation of our results, and the rather general results
of Gerl. In Section 3, we give a proof of Corollary 1.2 assuming Theorem 1.1. We prove Theorem 1.1 in
Sections 4 and 5. Theorem 1.4 is proved in Section 6, as a consequence of equidistribution results for
countable state shifts.

2 Results of Stone and Gerl
In this section, we recall classic results of Stone concerning random walks on Z

k. Let ω be a non-
degenerate aperiodic probability measure on Z

k and define φω : Rk → R ∪ {+∞} by

φω(v) =
∑

m∈Zk

e〈v,m〉ω(m).

Lemma 2.1 (Stone [15], [16]). If ω is non-degenerate then there is a unique ξ ∈ R
k such that

φω(ξ) = infv∈Rk φω(v). Furthermore, λ(Zk, ω) = 1 if and only if φω(ξ) = 1, that is, if and only if
ξ = 0.

We note that φω(ξ) = 1 if and only if φω(v) ≥ 1 for all v ∈ R
k.

Corollary 2.2. λ(Zk, ω) = φω(ξ).

Proof. Suppose that φω(ξ) < 1. Then we can define a new probability measure ωξ on Z
k by

ωξ (m) = (φω(ξ))−1e〈ξ ,m〉ω(m).

Then ωξ has the same support as ω and

ω∗n
ξ (m) = (φω(ξ))−ne〈ξ ,m〉ω∗n(m).

We have ∑
m∈Zk

e〈v,m〉ωξ (m) = 1
φω(ξ)

∑
m∈Zk

e〈v+ξ ,m〉ω(m) = φω(v + ξ)

φω(ξ)
≥ 1.

Hence, λ(Zk, ωξ ) = 1 and

λ(Zk, ω) = φω(ξ)λ(Zk, ωξ ) = φω(ξ).

�

We now state a ratio limit theorem due to Stone.

Proposition 2.3 (Stone [15]). Suppose that ω is non-degenerate and aperiodic. Then, for each
m ∈ Z

k,

lim
n→∞

ω∗n(m)

ω∗n(0)
= e−〈ξ ,m〉. (2.1)

Ratio limit theorems are intimately related to the existence of harmonic functions. Given a random
walk (G, μ), we define the random walk operator Pμ : �1

μ(G) → �1
μ(G) by

Pμf (g) =
∑
s∈G

p(g, s)f (s) =
∑
s∈G

μ(g−1s)f (s).

This may be written as a convolution Pμf = f ∗ μ̌, where μ̌(s) = μ(s−1). A function f : G → R
+ is called

λ-harmonic if Pμf = λf , that is, if ∑
s∈G

μ(g−1s)f (s) = λf (g).
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(Some authors define f to be λ-harmonic if μ ∗ f = λf .) If we write hξ (m) = e−〈ξ ,m〉 for the limit in
Proposition 2.3 then we see that the function ȟξ (m) := hξ (−m) = e〈ξ ,m〉 is λ(Zk, ω)-harmonic (for ω).
Furthermore, λ = λ(Zk, ω) is the smallest value for which there is a λ-harmonic function.

One may ask about ratio limit theorems on more general groups than Z
k. Following earlier work by

Avez [1] and Gerl [6], a rather general ratio limit theorem was proved by Gerl [7], where it is obtained
as a corollary of the following limit theorem. A detailed account and discussion may be found in the
recent note by Woess [18].

Proposition 2.4 (Gerl’s fundamental theorem [7]). Suppose that μ is a non-degenerate probability
measure on G such that (G, μ) is aperiodic. Then we have

lim
n→∞

μ∗(n+1)(e)
μ∗n(e)

= λ(G, μ).

Gerl used this to prove the following conditional ratio limit theorem.

Proposition 2.5 (Gerl’s ratio limit theorem [7]). Suppose that μ is a non-degenerate probability
measure on G such that (G, μ) is aperiodic. Suppose there is a set F ⊂ {f : G → R

+:f (e) = 1}
such that

(1) if f : G → R
+ is defined by

f (g) = lim
j→∞

μ∗nj (g)

μ∗nj (e)
,

for some subsequence (nj)
∞
j=1, then f ∈ F;

(2) there exists a unique h ∈ F satisfying the equation μ ∗ h = λ(G, μ)h.

Then

lim
n→∞

μ∗n(g)

μ∗n(e)
= h(g),

for all g ∈ G.

In particular, if we have uniqueness of a λ(G, μ)-harmonic function for (G, μ) then we know the ratio
limit theorem holds. The advantage of our Theorem 1.4, for amenable groups, is that we don’t consider
arbitrary harmonic functions instead we directly work with functions coming from the abelianisation.

3 Proof of Corollary 1.2
In this section, we prove Corollary 1.2, assuming Theorem 1.1. We note that φμ = φμ̄, so we can use
Lemma 2.1.

Proof of Corollary 1.2. If G is not amenable then Theorem 1.1 tells us that λ(G, μ) < λ(G, μ̄) ≤ 1; so it
suffices to show that, if G is amenable, then λ(G, μ̄) = 1 if and only if μ is centred.

Since μ̄ is non-degenerate, φμ(v) is strictly convex on the set where it is finite. The hypothesis of
a finite exponential moment implies that φμ(v) is finite and differentiable in some neighbourhood of
0 ∈ R

k. Therefore, φμ(v) has its unique minimum at v = 0 if and only if ∇φμ(0) = 0. Suppose that
λ(G, μ̄) = 1; then, by Lemma 2.1, φμ has its minimum at 0 and so

0 = ∇φμ(0) =
∑

m∈Zk

mμ̄(m),

that is, μ is centred. On the other hand, if λ(G, μ̄) < 1 then, again by Lemma 2.1, the unique minimum
of φμ is not at 0 and so

0 �= ∇φμ(0) =
∑

m∈Zk

mμ̄(m),

that is, μ is not centred. �
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4 Proof of Theorem 1.1 ( ⇐� )
In this section, we show that if λ(G, μ) = λ(G, μ̄) then G is amenable. (In Kesten’s original theorem, this
was the harder direction but in our case it is the easier implication.) Noting that φμ = φμ̄, recall from
Section 2 that there is a unique ξ ∈ R

k such that

φμ(ξ) = inf
v∈Rk

φμ(v)

and

φμ(ξ) =
∑
g∈G

μ(g)e〈ξ ,π(g)〉 = λ(G, μ̄).

We define a new probability measure μξ on G (analogous to the measure ωξ on Z
k in the proof of

Corollary 2.2) by

μξ (g) = φμ(ξ)−1e〈ξ ,π(g)〉μ(g).

Proof of Theorem 1.1 ( ⇐� ). Assume that G is non-amenable. By Theorem 1 of Day [2] (see also Theorem
5.4 of Stadlbauer [13]), we see that the probability measure μξ satisfies

lim sup
n→∞

(μ∗n
ξ (e))1/n < 1.

Unpicking the definitions, μ∗n
ξ (e) = φμ(ξ)−nμ∗n(e). Hence, lim supn→∞(μ∗n(e))1/n < φμ(ξ). �

5 Proof of Theorem 1.1 ( �⇒ )
In this section, we will show the harder implication that if G is amenable then λ(G, μ̄) ≤ λ(G, μ), and
hence that λ(G, μ̄) = λ(G, μ). We remark that the proof given here is significantly easier and more direct
than the one we gave in [4]. Following that proof would introduce a family of measures, indexed by
g ∈ G, on the space SN

μ × G, each describing the paths that visit SN

μ × {g}. These measures (which are also
analysed in [14]) are not required here.

Let us begin by emphasising the following: though we know that μ̄ has a λ(G, μ̄)-harmonic function it
plays no role in this part of proof ! The first element of the proof is the following proposition. Subsequently,
the rest of the section will be devoted to showing its hypothesis is satisfied with λ = λ(G, μ).

Proposition 5.1. If there is a homomorphism h : G → R
>0, the multiplicative group of positive real

numbers, such that, for all n ∈ N, ∑
g∈G

μ∗n(g)h(−π(g)) ≤ λn

then λ(G, μ̄) ≤ λ.

Proof. Suppose such a homomorphism h exists. Since h is positive so we can throw away the terms
where −π(g) �= 0 and obtain ∑

g∈G
π(g)=0

μ∗n(g) ≤ λn.

Hence, for any δ < 1, ∑
n∈N

μ̄∗n(0)(δ−1λ)−n =
∑
n∈N

∑
g∈G

π(g)=0

μ∗n(g)δnλ−n < ∞.

This says that λ(G, μ̄) ≤ λδ−1. Since we can take δ arbitrarily close to 1 we are done. �
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We view λ(G, μ) as a convergence parameter for the series

ζ(t) =
∑
n∈N

μ∗n(e)t−n,

where t > 0, that is,

inf

{
t ∈ R

+ :
∑
n∈N

μ∗n(e)t−n < ∞
}

= lim sup
n→∞

(μ∗n(e))1/n = λ(G, μ).

This formulation is reminiscent of the Poincaré series used in the construction of Patterson–Sullivan
measures on the limit sets of Kleinian groups and more general limit sets and, indeed, we employ ideas
from this theory. The most relevant reference here is Roblin [9], which covers the basic tools of Patterson–
Sullivan theory and the amenability “trick” we will use in the proof of Proposition 5.6.

The series ζ(t) does not necessarily diverge at t = λ(G, μ), but one can modify the series, in a controlled
way, to guarantee divergence at this critical parameter. The following appears as Lemma 3.2 in Denker
and Urbanski [3] (see also [14]).

Lemma 5.2. Let (an)
∞
n=1 be a sequence in R

+ and let ρ = lim supn→∞ a1/n
n . Then there is a sequence

(bn)
∞
n=1 of positive real numbers such that limn→∞ bn+1/bn = 1 for which

∑
n∈N anbnt−n < ∞ for

t > ρ but ∑
n∈N

anbnρ
−n = ∞.

Let (bn)
∞
n=1 be the sequence given by Lemma 5.2 for the series with an = μ∗n(e). We prefer to use

cn = 1/bn, a decreasing sequence. Note that we have limn→∞ cn−r/cn = 1 for all r ∈ N. We will work with
a modified series ζ e

c (t) defined by

ζ e
c (t) =

∑
n∈N

μ∗n(e)
cn

t−n,

and also, for each g ∈ G, the series

ζ
g
c (t) =

∑
n∈N

μ∗n(g)

cn
t−n.

Lemma 5.3. For each g ∈ G,

0 < inf
λ(G,μ)<t≤2

ζ
g
c (t)

ζ e
c (t)

≤ sup
λ(G,μ)<t≤2

ζ
g
c (t)

ζ e
c (t)

< ∞.

Proof. We begin by observing that, for every g, h ∈ G, we have

μ∗(n+k)(g) ≥ μ∗k(gh−1)μ∗n(h)

and we may choose k ≥ 1 for which μ∗k(gh−1) > 0. This gives us the inequality

ζ
g
c (t) =

∑
m≤k

μ∗m(g)

cm
t−m +

∑
n∈N

μ∗(n+k)(g)

cn+k
t−(n+k)

≥
∑
m≤k

μ∗m(g)

cm
t−m + μ∗k(gh−1)t−k

∑
n∈N

μ∗n(h)

cn

cn

cn+k
t−n.
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Since the numbers cn are positive and, for a fixed k, limn→∞ cn/cn+k = 1, we have infn cn/cn+k > 0. Hence,
for λ(G, μ) < t ≤ 2, we have

ζ
g
c (t) ≥ C1(g, k) + C2(g, h, k)

C3(k)
ζ h

c (t),

for positive C1, C2, and C3. We conclude

0 < inf
λ(G,μ)<t≤2

ζ
g
c (t)

ζ h
c (t)

.

Since g, h are arbitrary the lemma follows. (The choice of 2 as an upper bound for t in the lemma is
arbitrary; we could work with λ(G, μ) < t ≤ c for any fixed c > λ(G, μ).) �

By the previous lemma and a standard diagonal argument, there exists a sequence tn → λ(G, μ) for
which the following limits are well-defined

H(g) = lim
n→∞

ζ
g
c (tn)

ζ e
c (tn)

∈ (0, ∞),

for all g ∈ G. A crucial observation is the following.

Lemma 5.4. For any r ∈ N, we have

∑
s∈G

μ∗r(s)H(s−1g) = λrH(g)

with λ = λ(G, μ).

Proof. Fix r ∈ N and let ε > 0. Since limn→∞ cn−r/cn = 1, we can choose n0 such that 1− ε ≤ cn−r/cn ≤ 1+ ε,
for all n > n0. We will also use that

μ∗n(g) =
∑
s∈G

μ∗r(s)μ∗(n−r)(s−1g).

Then, for n > n0,

1 − ε

cn−r

∑
s∈G

μ∗r(s)μ∗(n−r)(s−1g) ≤ μ∗n(g)

cn
≤ (1 + ε)

cn−r

∑
s∈G

μ∗r(s)μ∗(n−r)(s−1g).

Setting

C1(g, t, n0) =
∑
n≤n0

μ∗n(g)

cn
t−n,

we have

tr
∑
n∈N

μ∗n(g)

cn
t−n ≤ C1(g, t, n0) + tr(1 + ε)

∑
s∈G

μ∗r(s)
∑
n>n0

t−n μ∗(n−r)(s−1g)

cn−r

≤ C1(g, t, n0) + (1 + ε)
∑
s∈G

μ∗r(s)H(s−1g)ζ e
c (t),

using that the terms in the series are non-negative. This gives

λrH(g) ≤ lim
m→∞

C1(g, tm, n0)

ζ e
c (tm)

+ (1 + ε)
∑
s∈G

μ∗r(s)H(s−1g) = (1 + ε)
∑
s∈G

μ∗r(s)H(s−1g)
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and, since ε is arbitrary,

λrH(g) ≤
∑
s∈G

μ∗r(s)H(s−1g).

For the lower bound, we have

tr
∑
n∈N

μ∗n(g)

cn
t−n ≥ (1 − ε)

∑
s∈G

μ∗r(s)
∑
n>n0

t−(n−r) μ∗(n−r)(s−1g)

cn−r

= (1 − ε)
∑
s∈G

μ∗r(s)
∑
n∈N

t−n μ∗n(s−1g)

cn
.

This gives

λrH(g) ≥
∑
s∈G

μ∗r(s)H(s−1g).

�

Lemma 5.4 gives us the following corollary.

Corollary 5.5. For any fixed γ ∈ G, we have

0 < inf
g∈G

H(γ g)

H(g)
≤ sup

g∈G

H(γ g)

H(g)
< ∞.

Proof. Given γ ∈ G, we can find x1, . . . , xk ∈ Sμ, for some k ≥ 1, such that x1 · · · xk = γ −1. This gives us

μ(x1) · · · μ(xk)H(γ g) ≤
∑

(s1,...,sk)∈Gk

μ(s1) · · · μ(sk)H((s1 · · · sk)
−1g) = λkH(g),

and so supg∈G H(γ g)/H(g) is finite.
Now we put γ g on the right-hand side and choose y1, . . . , y� ∈ Sμ such that y1 · · · y� = γ to get

μ(y1) · · · μ(y�)H(g) ≤
∑

(s1,...,s�)∈G�

μ(s1) · · · μ(s�)H((s1 · · · s�)
−1γ g) = λ�H(γ g),

and so infg∈G H(γ g)/H(g) is positive. �

We are now ready to use the amenability of G. We use the existence of a Banach mean on �∞(G) to
“average over g” in the last lemma.

Proposition 5.6. There is a homomorphism h : G → R
>0 such that, for all n ∈ N,

∑
s∈G

μ∗n(s)h(−π(s)) ≤ λn,

with λ = λ(G, μ).

Proof. Since any homomorphism h : G → R
>0 factors through G, it suffices to show that there is a

homomorphism h : G → R
>0 such that, for all n ∈ N, we have

∑
s∈G

μ∗n(s)h(s−1) ≤ λn. (5.1)
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Let M be a left G-invariant Banach mean on �∞(G). Jensen’s inequality says that if ϕ is convex then

M(ϕ(f )) ≥ ϕ(M(f )).

(This is more familiar when the linear functional is integration with respect to a probability measure.
One can check that we only need monotonicity, finite additivity, and the unit normalisation M(1) = 1.)
We apply this to the function g �→ (H(γ g)/H(g)) in �∞(G). (Note we have used Corollary 5.5 to know that
g �→ log(H(γ g)/H(g)) is in �∞(G).) Thus, we obtain

M
(

g �→ H(γ g)

H(g)

)
= M

(
g �→ exp log

H(γ g)

H(g)

)

≥ exp M
(

g �→ log
H(γ g)

H(g)

)
.

Now set

h(γ ) = exp M
(

g �→ log
H(γ g)

H(g)

)
.

We will show that h satisfies (5.1), recalling that M is only finitely additive. Let {gk}∞k=1 be an enumeration
of G and, for N ≥ 1, let GN = {g1, . . . , gN}. Lemma 5.4 gives us that, for any n ≥ 1 and any N ≥ 1, we have

λn = M

(
g �→

∑
s∈G

μ∗n(s)
H(s−1g)

H(g)

)
≥ M

⎛
⎝g �→

∑
s∈GN

μ∗n(s)
H(s−1g)

H(g)

⎞
⎠

=
∑
s∈GN

μ∗n(s)M
(

g �→ H(s−1g)

H(g)

)
≥

∑
s∈GN

μ∗n(s) exp M
(

g �→ log
H(s−1g)

H(g)

)

=
∑
s∈GN

μ∗n(s)h(s−1).

Taking the supremum over N gives (5.1).
It remains to show that h is a homomorphism. Notice that

log h(ab) = M
(

g �→ log
H(abg)

H(g)

)

= M
(

g �→ log
H(abg)

H(bg)

)
+ M

(
g �→ log

H(bg)

H(g)

)

= log h(a) + log h(b)

and

log h(γ −1) = M
(

g �→ log
H(γ −1g)

H(g)

)
= M

(
g �→ log

H(g)

H(γ g)

)

= M
(

g �→ − log
H(γ g)

H(g)

)
= − log h(γ ),

using translation invariance of M. The conclusion follows. �

Remark 5.7. In the above proof, any positive λ(G, μ)-harmonic function H : G → R
>0 could be used

to construct the desired homomorphism. If μ has finite support then it is known that such a
function exists, see Lemma 7.6 of [17].

Combining Proposition 5.1 and Proposition 5.6 shows that if G is amenable then λ(G, μ̄) ≤ λ(G, μ).
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6 Equidistribution and Proof of the Ratio Limit Theorem
In this section, we use Theorem 1.1 to prove a ratio limit theorem for amenable groups, Theorem 1.4.
Our arguments will also give a new proof of Proposition 2.4 in this setting. Our approach is based on
weighted equidistribution results for countable state shift spaces. Suppose that G is amenable, that μ

is non-degenerate, and that (G, μ) is aperiodic. We let λ denote the common value

λ = φμ(ξ) = λ(G, μ̄) = λ(G, μ),

given by Theorem 1.1. As above, μξ (g) = λ−1h(g)μ(g), where h(g) = e〈ξ ,π(g)〉.
We consider the sequence space � = SN

μ and let σ : � → � be the shift map: σ((si)
∞
i=1) = (si+1)

∞
i=1. If

s = (s1, . . . , sn) ∈ Sn
μ, we write [s] = [s1, . . . , sn] for the cylinder set

[s1, . . . , sn] := {(xi)
∞
i=1 ∈ �:xi = si ∀i = 1, . . . , n}.

We give � the topology generated by cylinder sets (which are both open and closed).
We denote by νξ the Bernoulli measure on � given by

νξ ([s1, . . . , sn]) = μξ (s1) · · · μξ (sn).

Let

�n = {s = (s1, . . . , sn) ∈ Sn
μ: s1 · · · sn = e}

and define a sequence of probability measures mn on � by

mn := 1
μ∗n

ξ (e)

∑
s=(s1,...,sn)∈�n

μξ (s1) · · · μξ (sn)δs∞ = 1
μ∗n

ξ (e)

∑
s=(s1,...,sn)∈�n

νξ ([s])δs∞ ,

where we use the notation s∞ ∈ � to mean the one-sided infinite concatenation of s = (s1, . . . , sn) and
δs∞ denotes the Dirac measure at this point. We remark that we also have

mn = 1
μ∗n(e)

∑
s=(s1,...,sn)∈�n

μ(s1) · · · μ(sn)δs∞

but we do not use this formula. We will need to explicitly evaluate the measures mn on cylinder sets.

Lemma 6.1. For a cylinder set [u1, . . . , uk] we have that, for n > k,

mn([u1, . . . , uk]) = μξ (u1) · · · μξ (uk)

μ∗n
ξ (e)

μ
∗(n−k)
ξ (u−1),

where u = u1 · · · uk.

Proof. This is a straightforward calculation. For n > k,

mn([u1, . . . , uk]) = 1
μ∗n

ξ (e)

∑
(s1,...,sn)∈�n

μξ (s1) · · · μξ (sn) δ(s1,...,sn)∞ ([u1, . . . , uk])

= 1
μ∗n

ξ (e)

∑
(s1,...,sn)∈�n

s1=u1,··· ,sk=uk

μξ (s1) · · · μξ (sn)

= μξ (u1) · · · μξ (uk)

μ∗n
ξ (e)

∑
(sk+1,...,sn)∈Sn−k

μ

sk+1 ···sn=u−1

μξ (sk+1) · · · μξ (sn)

= μξ (u1) · · · μξ (uk)

μ∗n
ξ (e)

μ
∗(n−k)
ξ (u−1).

�
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We will show that, for each cylinder set [u1, . . . , uk], mn([u1, . . . , uk]) converges to νξ ([u1, . . . , uk]), as
n → ∞. In order to have convergence (as opposed to an accumulation point) we need μ∗n

ξ (e)1/n to have a
limit. This is a consequence of aperiodicity, as the next lemma shows.

Lemma 6.2. We have

lim
n→∞(μ∗n

ξ (e)1/n) = 1.

Proof. We know that lim supn→∞(μ∗n
ξ (e))1/n = 1. Since μ is aperiodic, we have μ∗n(e) > 0 for all sufficiently

large n. Recall also that μ
∗(n+m)
ξ (e) ≥ μ∗n

ξ (e)μ∗m
ξ (e). This tells us that − log μ∗n

ξ (e) is sub-additive. Hence, by
Fekete’s lemma,

lim
n→∞

− log μ∗n(e)
n

= inf
n≥1

− log μ∗n(e)
n

,

in particular the limit exists and is equal to the limsup. �

In order to show the required convergence for the mn, we introduce some ideas and terminology
from thermodynamic formalism and large deviation theory. A function ϕ : � → R is called locally
Hölder continuous if

sup
s∈Sn

μ

sup
x,y∈[s]

|ϕ(x) − ϕ(y)| ≤ Cθn, (6.1)

for some C > 0 and 0 < θ < 1, for all n ≥ 1. For a locally Hölder continuous function ϕ : � → R, we
define the Gurevič pressure PG(ϕ) by

PG(ϕ) = lim
n→∞

1
n

log
∑
s∈Sn

μ

exp
n−1∑
j=0

ϕ(σ js∞) ∈ R ∪ {+∞}.

(The original definition given by Sarig in [10] is somewhat different, and only requires, (6.1) to hold for
n ≥ 2, but, by Corollary 1 of [11], the above formula gives the Gurevič pressure in our setting.) We now fix

ϕ((si)
∞
i=1) := log μξ (s1) = log νξ ([s1]),

so that, in particular, PG(ϕ) = 0. Let χ be the indicator function of some cylinder. We can easily calculate
from the definition that, for t ∈ R, PG(ϕ + tχ) ≤ max{0, |t|} for all t ∈ R. Hence, by Corollary 4 of [11],
t �→ PG(ϕ + tχ) is real analytic for t ∈ R and, by Theorems 6.12 and 6.5 of [12],

dP(ϕ + tχ)

dt

∣∣∣∣
t=0

=
∫

χ dνξ . (6.2)

(The same discussion remains true if χ is replaced with any bounded locally Hölder function but indicator
functions of cylinders are sufficient for our purposes.)

For s ∈ Sn
ν , let τs,n denote the orbital measure

τs,n := 1
n

n−1∑
j=0

δσ j(s∞).

Following, Theorem 7.4 of [12], we have the following large deviations bound.
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Proposition 6.3. Given ε > 0, there exists C > 0 and η(ε) > 0 such that∑
s∈Sn

μ|∫ χ dτs,n−∫
χdνξ |>ε

νξ ([s]) ≤ Ce−η(ε)n.

Proof. The proof is standard but we include it for completeness. We consider s ∈ Sn
μ such that

∫
χ dτs,n >∫

χ dνξ + ε and
∫

χ dτs,n <
∫

χ dνξ − ε separately. For t > 0, we have∑
s∈Sn

μ∫
χ dτs,n>

∫
χdνξ +ε

νξ ([s]) ≤
∑
s∈Sn

μ

eϕn(s∞)+tχn(s∞)−nt
∫

χ dνξ −ntε ,

so that,

lim sup
n→∞

1
n

log
∑
s∈Sn

μ∫
χ dτs,n>

∫
χdνξ +ε

νξ ([s]) ≤ PG(ϕ + tχ) − t
∫

χ dνξ − tε.

Using PG(ϕ) = 0 and (6.2), we see that, for sufficiently small t > 0, we have

PG(ϕ + tχ) − t
∫

χ dνξ − tε < 0.

Similarly, for t < 0,

lim sup
n→∞

1
n

log
∑
s∈Sn

μ∫
χ dτs,n<

∫
χdνξ −ε

νξ ([s]) ≤ PG(ϕ + tχ) − t
∫

χ dνξ + tε.

and, for sufficiently small t < 0, this upper bound is negative. Combing these estimates gives
the result. �

Since �n ⊂ Sn
μ, we have the following immediate corollary.

Corollary 6.4. For ε > 0, we have ∑
s∈�n|∫ χ dτs,n−∫

χdνξ |>ε

νξ ([s]) ≤ Ce−η(ε)n.

The following equidistribution result is now an easy consequence.

Proposition 6.5. For any cylinder set [u1, . . . , uk], we have that

lim
n→∞ mn([u1, . . . , uk]) = μξ (u1) · · · μξ (uk).

Proof. Let χ : � → R be the indicator function of [u1, . . . , uk], then we need to show

lim
n→∞

∫
χ dmn =

∫
χ dνξ .

We have ∫
χ dmn −

∫
χ dνξ = 1

μ∗n
ξ (e)

∑
s∈�n|∫ χ dτs,n−∫

χdνξ |>ε

νξ ([s])
∫

χ dτs,n

+ 1
μ∗n

ξ (e)

∑
s∈�n|∫ χ dτs,n−∫

χdνξ |≤ε

νξ ([s])
∫

χ dτs,n −
∫

χ dνξ .
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By Lemma 6.2 and Corollary 6.4, the first term on the right-hand side tends to zero exponentially fast.
Also, ∣∣∣∣∣∣∣∣

1
μ∗n

ξ (e)

∑
s∈�n|∫ χ dτs,n−∫

χdνξ |≤ε

νξ ([s])
∫

χ dτs,n −
∫

χ dνξ

∣∣∣∣∣∣∣∣
≤ ε +

∣∣∫ χ dνξ

∣∣
μ∗n

ξ (e)

∑
s∈�n|∫ χ dτs,n−∫

χdνξ |>ε

νξ ([s]) ≤ ε + Ce−η(ε)n,

which, since ε is arbitrary, gives the result. �

Combining Proposition 6.5 with Lemma 6.1, we see that for u = u1 · · · uk we have

lim
n→∞

μ
∗(n−k)
ξ (u−1)

μ∗n
ξ (e)

= 1. (6.3)

Most of the work is done. We prove Proposition 2.4 for amenable groups.

Proof of Proposition 2.4. It suffices to show that

lim
n→∞

μ
∗(n+1)
ξ (e)

μ∗n
ξ (e)

= 1.

By the aperiodicity of μ, there exists k0 such that μ∗k(e) > 0 for all k ≥ k0. In particular, for all k ≥ k0, we
can choose (u1, . . . , uk) ∈ Sk

μ with u1 · · · uk = e. Then equation (6.3) gives that limn→∞ μ
∗(n−k)
ξ (e)/μ∗n

ξ (e) = 1,
so that

lim
n→∞ μ

∗(n+k)
ξ (e)/μ∗n

ξ (e) = 1,

for all k ≥ k0. Applying this with k = k0 and k = k0 + 1, we have that both

μ
∗(n+k0)
ξ (e)

μ∗n(e)
= μ

∗(n+k0)
ξ (e)

μ
∗(n+k0−1)
ξ (e)

· · · μ
∗(n+1)
ξ (e)

μ∗n
ξ (e)

and

μ
∗(n+k0+1)
ξ (e)

μ∗n(e)
= μ

∗(n+k0+1)
ξ (e)

μ
∗(n+k0)
ξ (e)

· · · μ
∗(n+1)
ξ (e)

μ∗n
ξ (e)

converge to 1, as n → ∞. Dividing the second expression by the first, we conclude that

lim
n→∞

μ
∗(n+k0+1)
ξ (e)

μ
∗(n+k0)
ξ (e)

= 1,

which is equivalent to the required limit. �

We can now establish the ratio limit theorem for amenable groups.

Proof of Theorem 1.4. Let g ∈ G be arbitrary. Choosing (u1, . . . , uk) with u1 · · · uk = g−1 and applying (6.3)
gives that limn→∞ μ

∗(n−k)
ξ (g)/μ∗n

ξ (e) = 1 and hence that

lim
n→∞

μ∗(n−k)(g)

μ∗n(e)
= λ−k

h(g)
.
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Now, applying Proposition 2.4,

μ∗n(g)

μ∗n(e)
= μ∗n(g)

μ∗(n+k)(e)
μ∗(n+k)(e)

μ∗n(e)
→ e−〈ξ ,π(g)〉,

as n → ∞. �
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