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1 Introduction

A seismic shift has occurred in our understanding of symmetries in the past decade, transcend-
ing their conventional application to mere point-like particles. In the contemporary paradigm,
a p-form symmetry in 4 dimensions is linked to operators residing on (3 − p)-dimensional
topological manifolds that act on p-dimensional objects charged under the symmetry. More-
over, over the last couple of years, symmetries have expanded their domain to encompass
operators that defy the conventional notion of inversion. These are known as noninvertible
symmetries. While noninvertible symmetries initially found their roots and applications
in the realm of 2-dimensional QFT, see, e.g., [1, 2], their significance in the context of
4-dimensional QFT sparked a deluge of research endeavors in this area (a non-comprehensive
list is [3–33]. Also, see [34, 35] for reviews.)

It is well known that quantum electrodynamics has a classical U(1)χ axial symmetry
that breaks down because of the Adler-Bell-Jackiw (ABJ) anomaly. However, it was realized
in [10, 11] that the axial symmetry does not completely disappear. Instead, it resurfaces as a
noninvertible symmetry for each fractional element of the classical U(1)χ. This new reinterpre-
tation of symmetries triggered an interest in finding analogous structures in QFT. In [36], one
of the authors established a technique for unveiling noninvertible 0-form symmetries within
SU(N)×U(1) gauge theories in the presence of matter in representation R. This approach
employed the Hamiltonian formalism, where the theory was put on a three-dimensional torus
T3, subjecting it to ZN magnetic twists along all three spatial directions. Taking the matter
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to be a single Dirac fermion, this theory is endowed with invertible Zχ2gcd(TR,dR) 0-form chiral
symmetry, where TR and dR are the Dynkin index and dimension of R, respectively. Yet, it
was shown that the theory also possesses a noninvertible Z̃χ2TR 0-form chiral symmetry.1 Such
symmetry acts on the Hilbert space projectively by selecting special sectors characterized
by certain magnetic numbers. New noninvertible symmetries were also revealed in [37] in
theories with mixed anomalies between Z(1)

2 1-form and 0-form discrete chiral symmetries.
The topological essence of symmetries, encompassing the noninvertible variants, under-

scores their sensitivity to the global structure of the gauge group. Consequently, the inquiry
arises: how do we identify these noninvertible symmetries within a general gauge group,
characterized as either SU(N)/Zp or SU(N)× U(1)/Zp where Zp is a subgroup of the center
symmetry? In this work, we answer this question by devising a general method that applies
to any theory with a direct multiplication of abelian and semi-simple nonabelian gauge groups
quotiented by a discrete center, whether the theory is vector-like or chiral. This is achieved
by putting the theory on T3 and turning on magnetic fluxes in a refined subgroup of ZN ,
depending on the matter content as well as the global structure of the gauge group.

In the context of SU(N) gauge theory, the introduction of matter characterized by an
N -ality n has the effect of breaking the ZN center of the group down to a subgroup Zq,
where q is the greatest common divisor (gcd) of N and n. Our focus is on understanding
the noninvertible 0-form symmetries present in the SU(N)/Zp gauge theories, where Zp is a
subgroup of the remaining center Zq. These theories exhibit both electric Z(1)

q/p and magnetic
Z(1)
p 1-form global symmetries.2 To identify the noninvertible symmetries, we initiate the

process starting from SU(N) theory endowed with a single Dirac fermion in representation R,
which possesses an invertible Zχ2TR chiral symmetry. We then subject this theory to electric
and magnetic twists characterized by elements of Zp. If the theory exhibits a mixed anomaly
between its chiral and electric Z(1)

p 1-form symmetries, the act of gauging Zp effectively
reveals the chiral symmetry as noninvertible. The construction of a gauge-invariant operator
corresponding to the noninvertible symmetry Z̃χ2TR involves several steps. First, we create a
topological operator by integrating the anomalous current conservation law over T3. The
resulting operator is not invariant under Zp gauge transformations. Yet, we can restore gauge
invariance by summing over all possible Zp gauge-transformed operators. This process results
in a noninvertible chiral symmetry operator that projects onto specific sectors in the Hilbert
space, each characterized by certain ’t Hooft lines charged under the magnetic Z(1)

p 1-form
symmetry. Z̃χ2TR can exhibit further anomalies when subjected to twists by the electric Z(1)

q/p

1-form symmetry, implying that states within the Hilbert space of the SU(N)/Zp gauge
theory will display multiple degeneracies.

We employ a similar approach to identify noninvertible symmetries in SU(N)× U(1)/Zp
gauge theories, where Zp is a subgroup of the electric Z(1)

N 1-form center symmetry. Unlike in
SU(N) theories, the introduction of matter does not reduce the ZN center. This is due to the
presence of an abelian U(1) sector, which ensures that all matter representations adhere to

1In this paper, a tilde is used to indicate that a given symmetry or operator is noninvertible.
2There are p distinct theories (SU(N)/Zp)n, where n = 0, 1, . . . , p−1 are the discrete θ-like parameters [38].

These theories differ by the set of compatible line operators (Wilson, ’t Hooft, and dyonic operator). Here, we
restrict our analysis to n = 0.
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the cocycle condition. In addition to the 1-form electric center symmetry, this theory is also
endowed with a magnetic U (1)

m (1) 1-form symmetry. SU(N) gauge theory with matter exhibits
an anomaly between its chiral and U(1) baryon-number symmetries. Gauging the latter
transforms the theory into an SU(N)×U(1) gauge theory and reveals the chiral symmetry
Z̃χ2TR as noninvertible. Placing the theory on T3 enables us to construct the corresponding
noninvertible chiral operator by summing over large U(1) gauge transformations with distinct
winding numbers. Furthermore, since the theory exhibits a 1-form electric center symmetry,
we can decorate the noninvertible operator with ZN magnetic twists. If we choose to further
gauge a Z(1)

p subgroup of the electric Z(1)
N symmetry, thereby resulting in the SU(N)×U(1)/Zp

theory, we must ensure that the noninvertible operator remains invariant under Zp gauge
transformation. This is accomplished by summing over all Zp gauge-transformed chiral
operators. Once again, we discover that the resultant operator projects onto specific sectors
within the Hilbert space, distinguished by the presence of ’t Hooft lines charged under U (1)

m (1).
The noninvertible symmetry also exhibits a mixed anomaly with the remaining electric Z(1)

N/p

global symmetry. The anomaly implies that certain sectors of the theory, designated by
certain Z(1)

N/p electric fluxes, exhibit multi-fold degeneracy.
Placing the theory on T3 offers a distinct advantage: it presents a systematic approach

for computing the ’t Hooft anomalies inherent to a given theory. Simultaneously, it provides a
means to construct the Hilbert space explicitly. In our work, we put a significant emphasis on
this Hilbert space construction, shedding light on the intricate relationship between Wilson’s
lines, ’t Hooft lines, and the noninvertible operator. Specifically, through several illustrative
examples, we showcase how the noninvertible chiral operator, within the framework of the
Hilbert space and Hamiltonian formalism, acts to annihilate the minimal ’t Hooft lines.

We also introduce couplings of gauge theories to axions. The underlying renormalization
group invariance of the noninvertible symmetries, along with their associated anomalies,
guarantees that the infrared (IR) axion physics faithfully inherits all the characteristics of
the theory at the ultraviolet (UV) level. We substantiate this by explicitly constructing
noninvertible chiral operators, commencing from the IR anomalous axion current conservation
law. In our exploration, we offer concrete illustrations of various UV theories and their
corresponding IR axion physics manifestations.

This paper is organized as follows. In section 2, we provide a concise overview of the
essential elements required for the development of noninvertible symmetries. This section
encompasses the introduction of our notation, a review of the path-integral formalism on
the 4-torus (T4), ’t Hooft twists, and the Hamiltonian formalism on T3. Moving on to
section 3, we proceed to construct noninvertible symmetries within the context of SU(N)/Zp
theories while also identifying their associated anomalies. This section concludes with the
presentation of specific examples of noninvertible symmetries in both vector and chiral gauge
theories. In section 4, we replicate the same analysis, this time focusing on SU(N)×U(1)/Zp.
Two examples are discussed, including the Standard Model (SM), and we demonstrate that
the SM lacks noninvertible symmetries within its non-gravitational sector. Finally, our
paper culminates in section 5, where we explore the coupling of gauge theories to axions.
We show that noninvertible symmetry operators can also be constructed using the axion
anomalous current.
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2 Preliminaries

In this section, we review the path integral and the Hamiltonian formalisms of gauge theories
put on a compact manifold with possible ’t Hooft twists, both in space and time directions.
Additionally, we examine the global symmetries and anomalies in both formalisms, providing
an exploration of these key aspects. We base our formalism and notation on [36, 39–41], and
set the stage for constructing the noninvertible operators we carry out in the subsequent
sections. While some results in this section are new, many are a mere review of previous
results. Moreover, some details are avoided, referring the reader to the literature for an
in-depth discussion. Yet, the information encapsulated here is necessary to make this paper
self-contained.

2.1 Twisting in the path integral

Pure SU(N) theory. We begin by reviewing ’t Hooft twists on a compact 4-dimensional
Euclidean manifold with nontrivial 2-cycles. We consider SU(N) pure Yang-Mills (YM)
theory on T4, where T4 is a 4-torus with periods of length Lµ, µ = 1, 2, 3, 4.3 The SU(N)
gauge fields Aµ are taken to obey the boundary conditions

Aν(x+ Lµêµ) = Ωµ ◦Aν(x) ≡ Ωµ(x)Aν(x)Ω−1
µ (x)− iΩµ(x)∂νΩ−1

µ (x) , (2.1)

upon traversing T4 in each direction. The transition functions Ωµ are N ×N unitary matrices
in the defining representation of SU(N), and êν are unit vectors in the xν direction. The
subscript µ in Ωµ means that the function Ωµ does not depend on the coordinate xµ. Then,
the compatibility of (2.1) at the corners of the xµ−xν plane of T4 gives the cocycle condition

Ωµ(x+ êνLν) Ων(x) = ei
2πnµν

N Ων(x+ êµLµ) Ωµ(x) . (2.2)

The exponent ei
2πnµν

N , with anti-symmetric integers nµν = −nνµ, is the ZN center of SU(N).
The freedom to twist by elements of the center stems from the fact that both the transition
function and its inverse appear in (2.1). This is also equivalent to the fact that the Wilson lines
in pure SU(N) gauge theory are charged under the electric Z(1)

N 1-form center symmetry. The
fundamental (defining representation) Wilson lines wind around the 4 cycles and are given by

Wµ = tr□

[
Pe

i
∫ xµ=Lµ

xµ=0 AµΩµ

]
, (2.3)

where □ denotes the defining representation of SU(N) and the insertion of the transition
function Ωµ ensures the gauge invariance of the lines. It will be useful to break nµν into
spatial (magnetic) mi and temporal (electric) ki twists:

ki ≡ ni4 , nij ≡ ϵijkmk , (2.4)
3YM theory on T4 with ZN ’t Hooft twists dates back to the original work by ’t Hooft [39]. The

groundbreaking paper [42] unveiled a novel mixed anomaly, specifically involving the electric Z(1)
N 1-form

symmetry. The background of the 1-form symmetry is a 2-form field that can be implemented via a ’t Hooft
twist. This fact led to a wave of enthusiasm to understand the semi-classical limit of gauge theories on T4 or
T2 × R2 [43–46].
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and i, j = 1, 2, 3 or x, y, z. We also use bold-face letters, e.g., k ≡ (k1, k2, k3), to denote 3-
dimensional vectors. When applied to the gauge fields on T4, the twists induce a background
with fractional topological charge4 [39]:

Q = 1
8π2

∫
T4

tr[F ∧ F ] = − 1
8N ϵµναβnµνnαβ + Z = k · m

N
+ Z , (2.5)

where F is the field strength of A. Notice that the twists (m,k) ∈ (ZModN)6. Adding
multiples of N to m or k leaves the cocycle condition intact. However, this has the effect
of changing the topological charges by integers. Hence, from here on, we shall take the
twists mi, ki ∈ Z, not ModN . The partition function of the SU(N) gauge theory with
given twists (m,k) is

Z[m,k]SU(N) =
∑
ν∈Z

∫
[DAµ](m,k) e

−SY M−i(k·m
N

+ν)θ . (2.6)

Here, SYM is the YM action, and the subscript (m,k) indicates that the path integral
is to be performed with a given set of twisted boundary conditions. Summation over the
integer-valued topological sectors, ν ∈ Z, is necessary so that the theory satisfies locality
(cluster decomposition).

SU(N) theory with matter. Next, we add matter fields in a representation R under
SU(N). The matter representation has N -ality n. Then, the full ZN center breaks down to
Zq, q = gcd(N,n), i.e., the Wilson lines are charged under Z(1)

q 1-from center symmetry.5

Putting the matter, which, from now on, will be assumed to be fermions, on T4 modifies the
cocycle conditions. Let ψ be a left-handed Weyl fermion transforming under R of SU(N).
Then, the fermion obeys the boundary conditions

ψ(x+ êµLµ) = R(Ωµ(x))ψ(x) . (2.7)

The matrix R(Ωµ(x)) is built from Ωµ, transforming in the defining representation of SU(N),
with suitable symmetrization or anti-symmetrization over n indices (the N -ality of the
representation) according to the specific representation R. Thus, schematically (ignoring
symmetrization over indices)

R(Ωµ) ∼ Ωµ . . .Ωµ︸ ︷︷ ︸
n

. (2.8)

R(Ωµ) must satisfy the cocycle condition

R(Ωµ(x+ êνLν)) R(Ων(x)) = R(Ων(x+ êµLµ)) R(Ωµ(x)) , (2.9)
4The simplest way to find the topological charge is by activating the electric and magnetic ’t Hooft fluxes

along the Cartan generators of SU(N); see, e.g., [47]. We set F12 = − 2πm3
L1L2

νaHa and F34 = 2πk3
L3L4

νaHa along
the 1-2 and 3-4 planes (and similar expressions in the rest of the planes), where Ha are the Cartan generators,
νa are the weights of the defining representation, a = 1, . . . , N − 1, with summation over repeated indices.
Plugging into Q = 1

8π2

∫
T4 tr[F ∧ F ], and using tr[HaHb] = δab and νaνa = 1 − 1/N , we find Q = k·m

N
+ Z.

5For example, SU(2M) gauge theory with matter in the 2-index (anti)symmetric representation has a Z(1)
2

center symmetry that acts on Wilson lines.
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which, via eq. (2.2), reveals that the allowed values of the twists m and k are N
q ,

2N
q , . . .. Twist-

ing by the center subgroup Zq induces a background field with fractional topological charge

Q = m · k

N
+ Z , m,k ∈ N

q
Z , (2.10)

and the partition function in the presence of matter reads

Z[m,k]SU(N)+matter =
∑
ν∈Z

∫
{[DAµ] [Dmatter]}(m,k)e

−SY M−Smatter−i(k·m
N

+ν)θ ,

mi, ki ∈
N

q
Z , i = 1, 2, 3 . (2.11)

In the presence of matter, the theory is endowed with classical nonabelian and abelian
flavor symmetries. The U(1) baryon-number symmetry survives the quantum corrections.
In contrast, the chiral part of the abelian symmetry, denoted by U(1)χ, will generally break
down to a discrete symmetry because of the Adler-Bell-Jackiw (ABJ) anomaly of U(1)χ in
the background of color instantons (which have integer topological charges). To fix ideas,
we consider a single flavor of a Dirac fermion with classical U(1) baryon number and U(1)χ
chiral symmetries. We take the U(1) baryon charge of the Dirac fermion to be +1. The ABJ
anomaly breaks U(1)χ down to invertible Zχ2TR chiral symmetry, where TR is the Dynkin index
of the representation. Generalizing the theory to include many flavors is straightforward, and
we shall work out examples of this sort later in the paper. In the presence of the twists (m,k),
there can be an anomaly of Zχ2TR in the background of Z(1)

q . The anomaly is a non-trivial
phase acquired by Z[m,k]SU(N)+matter as we apply a transformation by an element of Z2TR :

Z[m,k]SU(N)+matter|ki,mi∈NZ/q −→ ei2πℓ
m·k

N Z[m,k]SU(N)+matter , (2.12)

and ℓ = 0, 1, 2, . . . , TR − 1 are the elements of Zχ2TR . For the smallest twists mj = kj = N
q

in the j-th direction, we obtain [48]

Z[m,k]SU(N)+matter|m3=k3= N
q
−→ e

i2πℓ N
q2 Z[m,k]SU(N)+matter . (2.13)

Bearing in mind that N/q ∈ Z, we can generally absorb the integral part of N/q2 by adding
an integer topological charge, which cannot change the anomaly. Nevertheless, we will retain
the phase as indicated in eq. (2.13). The phase is nontrivial, and hence there is an anomaly,
if and only if ℓN

q2 ̸∈ Z. In the next section, we show how to obtain the same anomaly using
the Hamiltonian formalism.

We can do more regarding turning on fractional fluxes in SU(N) with matter. Instead
of limiting ourselves to Zq twists, we can twist with the full ZN center symmetry or any
subgroup of it provided we also turn on backgrounds of U(1) baryon number symmetry [47, 48].
Let ωµ denote the U(1) transition functions such that for the U(1) gauge field aµ, we have
aν(x+ êµ) = ωµ ◦ aν(x) ≡ aν(x)− iω−1

µ ∂νωµ. Then, Ωµ and ωµ obey the cocycle conditions:

Ωµ(x+ êνLν) Ων(x) = ei
2πnµν

N Ων(x+ êµLµ) Ωµ(x) ,

ωµ(x+ êνLν) ων(x) = e−i
2πnnµν

N ων(x+ êµLµ) ωµ(x) , (2.14)

– 6 –
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where the N -ality of the matter representation is incorporated in the abelian transition func-
tions. The topological charges of both the nonabelian center and abelian backgrounds read6

QSU(N) =
m · k

N
+ Z , Qu =

(
n

N
m + A

)
·
(
n

N
k + B

)
, m,k,A,B ∈ Z3 . (2.15)

Here, A,B are arbitrary integral magnetic and electric quantum numbers that we can always
turn on since they leave the cocycle condition intact.

SU(N) × U(1) theory with matter. We may also choose to make U(1) dynamical,
which entails summing over small and large gauge transformations of U(1), with the latter
implementing integer winding. This results in SU(N) × U(1) gauge theory with a Dirac
fermion in representation R, with N -ality N and baryon-charge +1. In this case, the U(1)
instantons reduce Zχ2TR down to the genuine (invertible) symmetry Zχ2gcd(TR,dR), and dR is
the dimension of R. The easiest way to see that is by recalling the partition function under
a U(1)χ transformation acquires a phase:

exp
[
i2αTR

∫
T4

tr (F ∧ F )
8π2 + i2αdR

∫
T4

f ∧ f
8π2

]
, (2.16)

where f is the field strength of the U(1) field. Recalling that for the dynamical SU(N) and
U(1) fields we have

∫
T4

tr(F∧F )
8π2 ∈ Z,

∫
T4

f∧f
8π2 ∈ Z, we conclude that only Zχ2gcd(TR,dR) survises

the chiral transformation. The theory admits Wilson’s lines:

Wµ ,SU(N) = tr□

[
Pe

i
∫ xµ=Lµ

xµ=0 AµΩµ

]
, Wµ ,U(1) = e

−i
∫ xµ=Lµ

xµ=0 aµ
ωµ , (2.17)

which are charged under an electric Z(1)
N 1-form center symmetry. In addition, the theory

is endowed with a magnetic U (1)
m (1) 1-form symmetry because of the absence of magnetic

monopoles. For the sake of completeness, we also give the partition function of SU(N)×U(1)
theory with matter in the background of given (m,k) fluxes:

Z[m,k]SU(N)×U(1)+matter =
∑

ν,νU(1)∈Z

∫
{[DAµ] [Daµ] [Dmatter]}(m,k)e

−SY M−SU(1)−Smatter ,

mi, ki ∈ Z , i = 1, 2, 3 , (2.18)

and in addition to the SU(N) integer topological charges ν, we included a sum over integer
topological charges νU(1) of the U(1) sector.

2.2 Twisting in the Hamiltonian formalism

Pure SU(N) theory. Let us repeat the above discussion using the Hamiltonian formalism,
starting with pure SU(N) YM theory (we use a hat to distinguish an operator in this section.)
To this end, we put the gauge theory on a spatial 3-torus T3 and apply the magnetic m

twists along the 3-spatial directions. The transition functions in the defining representation
6Here, we use footnote 4 along with abelian field strengths f12 = 2π

L1L2
( n

N
m3+A3) and f34 = 2π

L3L4
( n

N
k3+B3)

in the 1-2 and 3-4 planes, and similar expressions in the rest of the planes. Substituting into Qu =
∫
T4

f∧f
8π2 ,

we obtain the fractional U(1) topological charge.
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along the spatial directions, denoted by Γi, can be chosen to be constant N ×N matrices
obeying the cocycle condition

Γi Γj = ei
2πϵijkmk

N Γj Γi . (2.19)

Then, one can construct the states of the physical Hilbert space using the temporal gauge
condition A0 = 0. The states can be written using the “position” eigenstates of the gauge
fields Aj , j = 1, 2, 3 (or i = x, y, z) as follows:

|ψ⟩m ≡ |A1, A2, A3⟩m , Âj |A1, A2, A3⟩m = Aj |A1, A2, A3⟩m , (2.20)

and the subscript m emphasizes that the Hilbert space is constructed in the background of the
magnetic twists. In writing eq. (2.20), we have put many details under the rug, and the reader
is referred to [39–41] for details. For example, notice that the gauge fields Ai need to respect
the twisted boundary conditions (2.19), i.e., they transform according to (2.1) as we traverse
any spatial direction on T3. The theory admits 3 fundamental Wilson lines wrapping the three
cycles of T3; these are given by (2.3) by restricting µ to the spatial directions. The Wilson
lines are charged under the Z(1)

N 1-form symmetry generated by three symmetry generators
T̂j , the Gukov-Witten operators, supported on co-dimension 2 surfaces. Thus, we have

T̂jŴj = ei
2π
N Ŵj T̂j , (2.21)

and there are Ŵ ej

j distinct Wilson’s lines with N distinct N -alities ej = 0, 1, . . . , N − 1. The
center-symmetry generators T̂i are hard to construct explicitly. However, their explicit form
is not important to us. What is important is that they commute with the YM Hamiltonian
Ĥ, and thus, Ĥ and T̂i can be simultaneously diagonalized. The physical states of the
theory |ψ⟩phy ,m are designated by the eigenvalues of T̂i. It can be shown that the action
of T̂i on |ψ⟩phy ,m is given by

T̂j |ψ⟩phy ,m = ei
2π
N
ej−iθ

mj
N |ψ⟩phy ,m , (2.22)

where ej ,mj ∈ ZN and the θ term ensures that T̂Ni |ψ⟩phy ,m = e−iθmj |ψ⟩phy ,m, and hence,
T̂Ni works as a large gauge transformation. The combination ej − θ

2πmj is the ZN electric flux
in the j-th direction. This is justified as follows. Consider the state Ŵj |ψ⟩phy ,m, obtained
from |ψ⟩phy ,m by the action of Ŵj . Using eqs. (2.21), (2.22), we find T̂jŴj |ψ⟩phy ,m =
ei

2π
N

(ej+1)−iθ
mj
N Ŵj |ψ⟩phy ,m. Therefore, acting with Ŵj on the state |ψ⟩phy ,m increases ej by

one unit in the j-th direction. Since Ŵj inserts an electric flux tube winding in the j-th
direction, the interpretation of ej as electric flux follows. Notice also that because T̂j and Ĥ
can be simultaneously diagonalized, we may label the states by the energy and the electric flux:

|ψ⟩phy ,m ≡ |E, e⟩m , e ∈ Z3
N . (2.23)

It is worth spending some time to explain our notation in eq. (2.23), as we shall use this
notation extensively in our paper. The physical state is labeled by the eigenvalues of a set
of commuting operators, here the energy and the electric flux. The SU(N) theory does not
admit a 1-form magnetic symmetry, and thus, we cannot label the states by magnetic fluxes.
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Yet, we can turn on a background magnetic flux m, indicated as a subscript; all physical
quantities are calculated in this magnetic background. Also, we use the letter m to denote
the set of magnetic fluxes we can consistently turn on. Here, we have m ∈ Z3.

How can we make sense of the fractional topological charge (2.10) on T3? We consider
the product of T3 and the time interval [0, L4] and consider the boundary conditions Âi(t =
L4) = C[k] ◦ Âi(t = 0), where C[k] is an “improper gauge” transformation implementing
a twist k ∈ Z3 on the gauge fields by an element of the center.7 In the presence of the
magnetic twists m, it can be shown that an application of C[k] results in the topological
charge (Pontryagin square) [39–41]:

Q[C[k]] =
∫
T3
K(C ◦ Â)−K(Â) = 1

24π2

∫
T3

tr
[
CdC−1

]3
= m · k

N
+ Z , (2.24)

where K(Â) is the topological current density operator K(Â) = 1
8π2 tr

[
Â ∧ F̂ − i

3Â ∧ Â ∧ Â
]
,

or in terms of the components: K̂µ(A) = 1
16π2 ϵ

µνλσ
(
Âaν∂λÂ

a
σ − 1

3f
abcÂaνÂ

b
λÂ

c
σ

)
.

SU(N) theory with matter. Adding fermions of N -ality n changes the center from ZN
to Zq, q = gcd(N,n), and the twists (m,k) are now in (NZ/q)6. Otherwise, all the steps
used to put the theory on T3 and construct the Hilbert space carry over. In particular, T̂i
now are the generators of the Z(1)

q 1-form symmetry, and their action on the physical states
in the Hilbert space is given by8 (now we turn off the θ angle as we can rotate it away via
a chiral transformation acting on the fermion)

T̂j |ψ⟩phy ,m = e
i 2π

q
ej |ψ⟩phy ,m , (2.25)

and the theory has ej = 0, 1, 2, . . . , q − 1 electric flux sectors in each direction j = 1, 2, 3.
The operators T̂j act on the spatial Wilson lines in the defining representation of SU(N) as
T̂jŴj = e

i 2π
q Ŵj T̂j , and there are q distinct Wilson’s lines W ej

j . The physical states |ψ⟩phy ,m

are simultaneous eigenstates of the Hamiltonian and T̂j since both operators commute. Thus,
we can write the physical states in the magnetic flux background m ∈ (NZ/q)3 as

|ψ⟩phy ,m = |E, eN/q⟩m , e = (e1, e2, e3) ∈ Z3
q , (2.26)

and Nej/q is the amount of electric flux carried by the state in direction j. We may also
say that ej is the number of electric fluxes in units of N/q. For matter with N -ality n = 0,
e.g., in the adjoint representation, q = N and we recover what we have said about pure
SU(N) gauge theory.

7In fact, C should be designated by both k and the integral instanton number ν; see [39]. However, ν does
not play a role in this work.

8It is conceivable to introduce an additional label to signify the distinct symmetries generated by different
operators T̂j . For instance, we could designate T̂N,j as the generator of Z(1)

N and T̂q,j as the generator of Z(1)
q .

Nonetheless, this approach may lead to increased complexity in our expressions, and we opt not to pursue it.
Instead, we will explicitly specify the symmetry in question when discussing these distinct operators.
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The partition function (2.11) can be written in the Hamiltonian formalism as a trace
over states in Hilbert space:

Z[m,k]SU(N)+matter = trm

[
e−L4Ĥ(T̂x)kx(T̂y)ky(T̂z)kz

]
=

∑
e∈{0,1,...,q−1}3

e
i 2πe·k

q m⟨E, eN/q|e−L4Ĥ |E, eN/q⟩m , (2.27)

where the subscript m in the trace means that we are considering the states in the background
of the magnetic flux m ∈ (NZ/q)3. We also used eqs. (2.25), (2.26), the fact that the states
are eigenstates of both the energy and the 1-form center operators.

To detect the anomaly between Zχ2TR and Z(1)
q in the Hamiltonian formalism, we first

define the operator that implements the discrete chiral symmetry. To this end, we recall that
under a chiral U(1)A rotation, the presence of the ABJ anomaly indicates non-conservation
of the corresponding symmetry rotation:

∂µĵ
µ
A = 2TR∂µK̂µ(A) . (2.28)

Yet, we can define a conserved current:

ĵµ5 ≡ ĵµA − 2TRK̂µ , (2.29)

and correspondingly a conserved charge:

Q̂5 =
∫
T3
Ĵ0

5 . (2.30)

Therefore, it is natural to define the operator

ÛZ2TR ,ℓ
≡ exp

[
i
2πℓ
2TR

Q̂5

]
= exp

[
i
2πℓ
2TR

∫
T3
(ĵ0
A − 2TRK̂0(Â))

]
, (2.31)

for ℓ = 0, 1, . . . , TR − 1, which implements the action of the Zχ2TR chiral symmetry. ÛZ2TR
is

invariant under both small and large SU(N) gauge transformations (with integer winding).
To find the mixed anomaly between Zχ2TR and Z(1)

q , we compute the commutation between T̂j ,
which implements the action of the electric center symmetry in the j-th direction, and ÛZ2TR

:

T̂jÛZ2TR ,ℓ
T̂−1
j , (2.32)

remembering that the theory is in the background of a magnetic twist mj ∈ NZ
q in the j-th

direction.9 First, T̂j commutes with the current j0
A since the latter is a color singlet operator.

However, K̂0 fails to commute with T̂j ; the commutation between the two operators is found

9Similar to the footnote 8, we could use a label that denotes the specific magnetic flux background when we
are dealing with the operator ÛZ2TR ,ℓ. This background can be taken in sets such as NZ

q
or NZ

p
, among others.

However, adopting this approach may introduce unnecessary complexity to our notation. As a result, we
have chosen to adopt a more transparent approach: we will explicitly mention the magnetic flux background
whenever we discuss this operator.
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by recalling that the action of T̂j is implemented on the gauge fields Âj as Âj = C[kj ] ◦ Âj .
Thus, we find, after making use of (2.24),

T̂j exp
[
i2πℓ

∫
T3
K̂0(Â)

]
T̂−1
j

= exp
[
i2πℓ

∫
T3
K̂0

(
C[kj ] ◦ Â

)
− K̂0(Â)

]
exp

[
i2πℓ

∫
T3
K̂0(Â)

]
= exp

[
i2πℓmjkj

N

]
mj ,kj∈

(
NZ

q

)2
exp

[
i2πℓ

∫
T3
K̂0(Â)

]
, (2.33)

noting the restriction mj , kj ∈
(
NZ
q

)2
due to the presence of matter; otherwise, we would

not satisfy the cocycle condition. Collecting everything and using the minimal twists
mj = kj = N

q we conclude

T̂jÛZ2TR ,ℓ
T̂−1
j = e

i2πℓ N
q2 ÛZ2TR ,ℓ

, (2.34)

which is exactly the mixed anomaly between the Zχ2TR chiral and the Z(1)
q 1-form center

symmetries found in (2.13) from the path integral formalism. The anomaly along with the
commutation relations (remember that both Z(1)

q and Zχ2TR are good symmetries of the theory,
and hence, the corresponding operators commute with the Hamiltonian)

[Ĥ, T̂j ] = 0 , [Ĥ, ÛZ2TR
] = 0 , (2.35)

furnishes a finite-dimensional space with a minimum dimension of q2/gcd(q2, N). This means
that sectors in Hilbert space exhibit a q2/gcd(q2, N)-fold degeneracy.

SU(N) × U(1) theory with matter. Next, we discuss the Hamiltonian quantization of
SU(N) × U(1) gauge theory with matter fields on T3 in the background of twists. In this
case, we may twist with the full ZN center symmetry provided we also turn on a background
of U(1). Thus, we replace the cocycle conditions (2.19) with

Γi Γj = ei
2πϵijkmk

N Γj Γi ,

ωi(x+ êjLj) ωj(x) = e−i
2πnϵijkmk

N ωj(x+ êiLi) ωi(x) , (2.36)

and we included the N -ality of the matter representation n in the cocycle condition of the
abelian field. This guarantees that the combined transition functions satisfy the correct
cocycle conditions in the presence of matter. Here, we can allow background center fluxes
with (m,k) ∈ Z6 for all matter representations, thanks to the U(1) gauge group. We also
introduce the operators T̂j for SU(N) and t̂j for U(1), j = 1, 2, 3. The combinations T̂j t̂j are
the generators of the electric Z(1)

N 1-form global symmetry and act on the spatial Wilson lines
in (2.17) as: T̂jWj,SU(N) = ei

2π
N Wj,SU(N)T̂j and t̂jWj,U(1) = e−i

2π
N Wj,U(1))t̂j . The action of t̂j

is implemented on the gauge fields, as usual, by improper gauge transformations of âj as
âj = c[kj ] ◦ âj , and amounts to applying nkj (Mod N) electric twists (notice the appearance
of the N -ality). Unlike T̂j , the explicit form of t̂j is simple:

t̂j ≡ eiλj(x) , λj(x) =
−2πn
N

xjkj
Lj

. (2.37)
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Since Z(1)
N is a good global symmetry, we can choose the states in Hilbert space to be

eigenstates of the Z(1)
N generators T̂j t̂j :

T̂j t̂j |ψ⟩phy ,m = ei
2πej

N |ψ⟩phy ,m , (2.38)

where ej = 0, 1, . . . , N − 1. Notice that the states are constructed in the “fractional” back-
ground magnetic flux m ∈ Z3 (remember that in principle mi ∈ Z Mod N , and thus, it
implements the fractional magnetic twist. However, we can always add multiples of N to
mi without affecting the cocycle conditions, and hence, we drop the Mod N restriction.)
In addition, the theory has a magnetic U(1)(1)

m 1-form global symmetry, which can be used
to characterize the physical states by an “integer” value of the magnetic flux. Therefore,
a state in the physical Hilbert space can be labeled as

|ψ⟩phy ,m = |E, e,N⟩m , e ∈ Z3
N , (2.39)

and N = (Nx, Ny, Nz) ∈ Z3 (not Mod N) label the integral magnetic fluxes of the U(1)
gauge group. The partition function (2.18) can be written as a trace over states in Hilbert
space in (m,k) backgrounds as follows:

Z[m,k]SU(N)×U(1)+matter = trm

[
e−L4Ĥ(T̂xt̂x)kx(T̂y t̂y)ky(T̂z t̂z)kz

]
=

∑
e∈{0,1,...,N−1}3,N∈Z3

ei
2πe·k

N m⟨E, e,N |e−L4Ĥ |E, e,N⟩m .

(2.40)

We also build the operator that corresponds to the chiral transformation. This construc-
tion was detailed in [36], and we do not repeat it here. Instead, we only give a synopsis of
the derivation, which is needed in this work. The anomaly equation of the chiral current is

∂µĵ
µ
A − 2TR∂µK̂µ(Â)− 2dR

8π2 ϵµνλσ∂
µâν∂λâσ = 0 . (2.41)

Then, the chiral symmetry operator in the background of the mj magnetic flux is given by

ÛZ2TR ,ℓ
= exp

[
i
2πℓ
2TR

Q̂5

]
, (2.42)

where the conserved charge Q̂5 is given by

Q̂5 =
∫
T3
d3x

[
ĵ0
χ − 2TRK0(Â)− 2 dR8π2 ϵ

ijkâi∂j âk

]

+ dR
4π

(
Nz +

n

N
nz

) Ly∫
0

dy

Ly

Lz∫
0

dzâz(x = 0, y, z) +
Lx∫
0

dx

Lx

Lz∫
0

dzâz(x, y = 0, z)


+

∑
cyclic

(x→ y → z → x) . (2.43)

The last term comes from carefully treating the boundary term implied from the transition
functions ωj(x), since, unlike Γj , they depend explicitly on xj , see [36] for details. In addition
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to the background flux nj , which introduces the fractional winding number, we also allow
integer magnetic winding Nj . Under a transformation with t̂j , the integral of the abelian
Chern-Simons term K̂0(â) = ϵijkâi∂j âk in the background of the integral Mj and fractional
mj magnetic fluxes transforms as (recall (2.37))

t̂j exp
[
i

∫
T3
K̂0(â)

]
t−1
j = exp

[
i

∫
T3
K̂0(c ◦ â)− i

∫
T3
K̂0(â)

]
exp

[
i

∫
T3
K̂0(â)

]
=

(
Nj +

nnj
N

)(
nkj
N

)
exp

[
i

∫
T3
K̂0(â)

]
. (2.44)

The reader will notice that we switched from the letter m, which we use to signify
the set of fractional fluxes we can activate, e.g., here we have m ∈ Z3, to the letter n,
which is the actual number of fractional magnetic fluxes we turn on. We shall use the same
labeling throughout the paper.

In the next sections, we use these constructions to argue that SU(N)/Zp, Zp ⊆ Zq as
well as SU(N) × U(1)/Zp, Zp ⊆ ZN enjoy a noninvertible 0-form chiral symmetry, with a
possible mixed anomaly with the 1-form center symmetry.

3 SU(N)/Zp, Zp ⊆ Zq theories, noninvertible symmetries, and their
anomalies

In this section, we direct our attention to YM theories featuring matter fields residing in a
particular representation R and characterized by an N -ality n. Building upon the discussion
in the preceding section, it is established that SU(N) gauge theories, when coupled to matter,
exhibit an electric Z(1)

q 1-form center symmetry (recall q = gcd(N,n)). A notable maneuver
within this framework involves the gauging of Z(1)

q or a subgroup of it, leading to SU(N)/Zp
theory, Zp ⊆ Zq, whose partition function is obtained by summing over integer and fractional
topological charge sectors. Thus, gauge transformations with fractional winding numbers
are part of the gauge structure, and well-defined operators should be invariant under such
gauge transformations. Here, we would like to emphasize that there are p distinct theories:
(SU(N)/Zp)n, n = 0, 1, . . . , p, which differ by the admissible genuine (electric, magnetic, or
dyonic) line operators. In this paper, we limit our treatment to (SU(N)/Zp)n=0, and whenever
we mention SU(N)/Zp, we particularly mean (SU(N)/Zp)0. What happens to the invertible
Zχ2TR discrete chiral symmetry of this theory? As we shall discuss, this symmetry can stay
invertible or become noninvertible, depending on whether it exhibits a mixed anomaly with
Z(1)
p symmetry in the original SU(N) theory.

3.1 SU(N)/Zq

We start by discussing noninvertible 0-form chiral symmetries in SU(N)/Zq theories, i.e.,
theories obtained by gauging the full electric Z(1)

q 1-form center symmetry. Such theories do
not possess global electric 1-form symmetry; hence, there are no genuine Wilson’s lines. This
can be understood as follows. We start with pure SU(N) gauge theory, which has an electric
Z(1)
N 1-form symmetry and admits the full spectrum of Wilson lines, i.e., it admits Wilson’s

lines with all N -alities n = 0, 1, 2, . . . , N − 1. Gauging a Zq subgroup of ZN , we obtain
SU(N)/Zq gauge theory. Now, the spectrum of allowed Wilson lines must be invariant under
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Zq, forcing us to remove those lines with N -alities that are not multiples of q. The remaining
lines in pure SU(N)/Zq theory are charged under an electric Z(1)

N/q 1-form symmetry; these
are W qej

j , with ej = 0, 1, . . . , N/q − 1 and Wj is Wilson’s line in the defining representation
of SU(N). Finally, introducing matter with N -ality q means that those remaining lines can
end on the matter and must also be removed from the spectrum. This deprives SU(N)/Zq
gauge theory with matter from all genuine Wilson’s lines.

Despite that SU(N)/Zq theory with matter does not possess an electric 1-form symmetry,
it is endowed with a magnetic Zm(1)

q 1-form global symmetry. This can be understood,
again, starting from the pure SU(N)/Zq theory. As we discussed above, the pure theory has
an electric Z(1)

N/q 1-form symmetry. The magnetic dual of SU(N)/Zq is SU(N)/ZN/q, which
admits a magnetic Zm(1)

q 1-form symmetry. The pure SU(N)/Zq theory has q distinct magnetic
fluxes (’t Hooft lines) in its spectrum. Let Tj be the ’t Hooft line winding around direction j in
the defining representation of SU(N), i.e., it has N -ality 1. Then, the pure SU(N)/Zq theory
possesses the following set of ’t Hooft lines T njN/q

j , nj = 0, 1, . . . , q−1 for j = 1, 2, 3, which are
mutually local with the set of Wilson’s lines W qej

j , ej = 0, 1, . . . , N/q−1.10 Introducing electric
matter removes all Wilson’s lines (as stated above) but does not alter the magnetic symmetry.
Thus, we conclude that SU(N)/Zq theory with matter possesses a magnetic Zm(1)

q 1-form
global symmetry acting on a set of ’t Hooft lines T njN/q

j , nj = 0, 1, . . . , q − 1 for j = 1, 2, 3.
We can label the states in the physical Hilbert space of SU(N)/Zq theory with matter

by both energy and magnetic fluxes since the Hamiltonian commutes with the generators
of the magnetic Zm(1)

q 1-form symmetry:11

|ψ⟩phy = |E,nN/q⟩ , n = (nx, ny, nz) ∈ (Zq)3 . (3.1)

The partition function of these theories involves summing over sectors with fractional topo-
logical charges NZ/q2 (use eq. (2.10) and set ki = mi = N/q), which can be written in the
path-integral formalism as (we set the vacuum angle θ = 0)

ZSU(N)/Zq+matter =
∑

ν∈Z,(m,k)∈(NZ/q)6

∫
{[DAµ]D [matter]}(m,k)e

−SY M−Smatter ,

(3.2)

or in the Hamiltonian formalism as

ZSU(N)/Zq+matter = tr
[
e−L4Ĥ

]
=

∑
physical states

phy⟨ψ|e−L4Ĥ |ψ⟩phy . (3.3)

Our main task is to build a gauge invariant operator that implements the Zχ2TR chiral
transformation in SU(N)/Zq theory with matter. To this end, we use the Hamiltonian
formalism of section 2.2, dropping the hats from all operators to reduce clutter. We also
use x, y, z to label the three spatial directions. For ℓ ∈ Zχ2TR , the chiral symmetry operator
is given by:

UZ2TR ,ℓ
= e

2πi ℓ
2TR

∫
T3(j0

A−2TRK0(A))
. (3.4)

10This can be easily seen since T nj N/q

j and W
qej

j satisfy the Dirac quantization condition.
11Recall that the allowed magnetic twists in the SU(N) theory with matter are m ∈ (NZ/q)3.
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This operator is invariant under large gauge transformations with integer winding numbers.
We will now gauge the Z(1)

q one-form symmetry. In SU(N)/Zq gauge theory with matter, we
sum over arbitrary Zq twists with fractional topological charges NZ/q2. We consider the
operator UZ2TR ,ℓ

in the presence of magnetic fluxes m ∈ (NZ/q)3 (these are the magnetic
fluxes that label the physical states in eq. (3.1).) Let Tx be the generator of an electric Zq
center twist along the x direction (i.e., a Zq gauge transformation), and we take it to have
the minimal twist of N/q. It acts on UZ2TR ,ℓ

via (recall the discussion around eq. (2.33))

TxUZ2TR ,ℓ
T−1
x = e−2πiℓQUZ2TR ,ℓ

= e
−2πiℓnxN

q2 UZ2TR ,ℓ
, nx ∈ Z . (3.5)

nx counts the magnetic fluxes inserted in the y-z plane in units of N/q. Identical relations
to (3.5) hold in the y and z directions. As we saw in the previous section, if ℓN

q2 ̸∈ Z, there
is a mixed ’t Hooft anomaly between the electric Z(1)

q 1-form center and the discrete chiral
symmetries of SU(N) theory with matter. Eq. (3.5) implies that the operator UZ2TR ,ℓ

is not
gauge invariant under a Zq gauge transformation as we attempt to gauge Z(1)

q . We can remedy
this problem and reconstruct a gauge-invariant operator, denoted by ŨZ2TR

, by summing
over all Zq gauge transformations generated by Tx, Ty and Tz:

ŨZ2TR ,ℓ
≡

∑
px,py ,pz∈Z

(Tx)px(Ty)py(Tz)pzUZ2TR
(Tx)−px(Ty)−py(Tz)−pz

= UZ2TR ,ℓ

∑
px,py ,pz∈Z

e
−2πi ℓN

q2 (pxnx+pyny+pznz) ≡ UZ2TR ,ℓ

∑
p∈Z3

e
−2πi ℓN

q2 p·n

= UZ2TR ,ℓ

∑
lx∈Z

δ

(
nxℓN

q2 − lx

) ∑
ly∈Z

δ

(
nyℓN

q2 − ly

) ∑
lz∈Z

δ

(
nzℓN

q2 − lz

)
. (3.6)

In the first line, we included a sum over arbitrary powers of Tx, Ty, Tz to enforce the gauge
invariance. Then, we used eq. (3.5) in going from the first to the second line and the Poisson
resummation formula in going from the second to the third line. Even though ŨZ2TR ,ℓ

is
gauge invariant, it has no inverse; it is, in general, a noninvertible operator that implements
the action of Z̃χ2TR , and we use a tilde to denote the noninvertible nature of symmetries and
their operators. The noninvertibility stems from the fact that ŨZ2TR

works as a projector:
the insertion of this operator in the path integral of SU(N)/Zq theory with matter projects
onto specific topological charge sectors of SU(N)/Zq, depending on ℓ. This can be seen from
the second line in (3.6), which is a sum over Fourier modes that projects in and out sectors,
depending on their topological charge, upon acting on them. One can see the projective
nature of ŨZ2TR ,ℓ

by inserting it into the partition function (3.3):

⟨ŨZ2TR ,ℓ
⟩ =

∑
physical states

phy⟨ψ|e−L4Ĥ ŨZ2TR ,ℓ
|ψ⟩phy , (3.7)

and then using the physical states defined in eq. (3.1). We find that ŨZ2TR ,ℓ
annihilates

sectors with nxℓN
q2 /∈ Z, etc. We remind that nxN

q2 is the topological charge (see eq. (2.10)),
which we can write as

nxN

q2 = nxN

q︸ ︷︷ ︸
mx

N

q︸︷︷︸
kx

1
N
, (3.8)
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and, as we mentioned earlier and emphasize now, nx is the number of magnetic fluxes in units
of N/q. The same applies to the magnetic sectors in the y and z directions. We conclude
that ŨZ2TR ,ℓ

selects sectors in Hilbert space with certain magnetic fluxes.
We can make the following observations about ŨZ2TR ,ℓ

:

1. If ℓ ∈ qZ, ŨZ2TR ,ℓ
is invertible since in this case nx,y,zℓN

q2 ∈ Z for all values of nx, ny, nz ∈
Z. The invertible subgroup of Z̃χ2TR is Zχ2TR/q.

2. If gcd(ℓN/q, q) = 1, then we must have nx, ny, nz ∈ qZ. In other words, ŨZ2TR ,ℓ
projects

onto untwisted flux sectors. In particular, in the sector given by nx, ny, nz ∈ qZ, the
symmetry operator ŨZ2TR ,ℓ

act invertibly for all elements of the chiral symmetry
ℓ = 1, 2, . . . , TR.

3. If gcd(ℓN/q, q) = a ̸= 1 and ℓ < q, then let q = aq′, and we must have nx,y,z ∈ q′Z.
ŨZ2TR ,ℓ

projects onto background fluxes with topological charge Q ∈ Z/q′, i.e. sectors
that have Zq′ twists.

4. The noninvertibility of ŨZ2TR ,ℓ
can be seen by multiplying the operator by its “potential

inverse” ŨZ2TR ,ℓ
to find

ŨZ2TR ,ℓ
× ŨZ2TR ,ℓ

∼
∑

p∈Z3

e
−2πi ℓN

q2 p·n ≡ C . (3.9)

C is known as the condensation operator, which can be thought of as a sum over
topological surface operators exp[−i

∮
T2⊂T3 B(2)] = exp[−i2πZ/q] wrapping the three

2-cycles of T3, and B(2) is the 2-form field of the Z(1)
q 1-form symmetry.

We use the fact that SU(N)/Zq theory possesses a magnetic Zm(1)
q 1-form global symmetry

to make one more observation. Let Tj be ’t Hooft line of N -ality 1 in direction j. Then, the
minimal ’t Hooft line in SU(N)/Zq theory is T N/q

j , i.e., it has N -ality N/q. The minimal
line acts on a physical state by increasing its magnetic flux by one in units of N/q.12 Now,
let us take a theory with gcd(N/q, q) = 1 so that ŨZ2TR ,ℓ=1 acts projectively on certain
states. Then, |E, (nx = q, ny = q, nz = q)N/q⟩ is one of the physical states that survive
under the action of ŨZ2TR ,ℓ=1. We have T N/q

x |E, (q, q, q)N/q⟩ = |E, (q + 1, q, q)N/q⟩. Thus,
we immediately see from eq. (3.6) that

ŨZ2TR ,ℓ=1T N/q
x |E, (q, q, q)N/q⟩ = ŨZ2TR ,ℓ=1|E, (q + 1, q, q)N/q⟩⟩ = 0 . (3.10)

We write this result as

ŨZ2TR ,ℓ=1T
N/q
j = 0 , j = x, y, z . (3.11)

In other words, the operator ŨZ2TR ,ℓ=1 annihilates the minimal ’t Hooft lines in this theory.
It also annihilates all ’t Hooft lines T njN/q

j , nj ̸= 0 Mod q. This is an alternative way to
see the projective nature of this operator.

12Similar to the discussion we had after eq. (2.22), we can also consider the generators of the magnetic
1-form symmetry and argue that T N/q

j inserts a magnetic flux N/q, as measured by the action of the magnetic
1-form symmetry on the state T N/q

j |ψ⟩phy.
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3.2 SU(N)/Zp

Next, we discuss SU(N)/Zp theory with matter with N -ality n, and Zp ⊆ Zq = Zgcd(N,n).
The partition function of this theory is given by the path integral in eq. (3.2), now restricting
the sum over the electric and magnetic twists (m,k) ∈ (NZ/p)6. The theory possess an
electric Z(1)

q/p 1-form global symmetry. As before, Tx is taken to be the generator of the electric
Z(1)
q symmetry. Then, the electric Z(1)

q/p 1-form global symmetry is generated by T px (as well
as T py and T pz ). The theory has q/p distinct Wilson’s lines W ejp

j , with ej = 0, 1, 2, . . . , q/p− 1.
These lines are invariant under Zp, as they should be since Zp is gauged. The minimal
admissible Wilson’s line W p

j carries one electric flux in units of pN/q. In the limiting case
p = q, the line W p=q

j coincides with the matter content and must be removed from the
spectrum of line operators. Therefore, in this case, the theory does not possess a 1-form
electric symmetry, as discussed in the previous section.

In addition, the theory has a magnetic Zm(1)
p 1-form symmetry. If Tj is the ’t Hooft

line with N -ality 1, then the minimal admissible ’t Hooft line in the theory is T N/p
j , which

carries one magnetic flux in units of N/p. There are p distinct ’t Hooft lines in the theory
T njN/p
j , nj = 0, 1, . . . , p − 1, which are mutually local with Wilson’s lines W

ejp
j . The

Hamiltonian, Wilson’s lines generators, and the ’t Hooft lines generators of this theory can
be simultaneously diagonalized. Therefore, the energies and eigenvalues of the set of Wilson
and ’t Hooft operators can be used to label the physical states of Hilbert space:

|ψ⟩phy = |E, epN/q,nN/p⟩ , e ∈ (Zq/p)3 ,n ∈ (Zp)3 . (3.12)

Next, we need to build a gauge invariant chiral symmetry operator. Our starting point,
as usual, is the operator

UZ2TR ,ℓ
= e

2πi ℓ
2TR

∫
T3(j0

A−2TRK0(A)) (3.13)

taken in the presence of the fractional magnetic fluxes m ∈ (NZ/p)3, which label the Hilbert
space in eq. (3.12). The operator T q/px generates the electric Z(1)

p 1-form symmetry, which is
gauged. In other words, T q/px implements the twists k ∈ (NZ/p)3. In analogy with SU(N)/Zq
theories, we need to build gauge invariants of the chiral symmetry operator using the building
block T

q/p
x UZ2TR ,ℓ

T
−q/p
x . To compute this block, we use the discussion around eq. (2.33),

taking the minimal twist N/p generated by T
q/p
x , to obtain

T q/px UZ2TR ,ℓ
T−q/p
x = e

−2πiℓnxN

p2 UZ2TR ,ℓ
, nx ∈ Z , (3.14)

and nx counts the magnetic fluxes in units of N/p. If ℓN
p2 ̸∈ Z, there is a mixed anomaly

between Zχ2TR
and the electric Z(1)

p symmetries in SU(N) theory with matter, and we expect
the chiral symmetry becomes noninvertible upon gauging Z(1)

p . The corresponding gauge
invariant operator of the Z̃χ2TR symmetry is then given by the summations

ŨZ2TR ,ℓ
=

∑
px,py ,pz∈Z

(Tx)qpx/p(Ty)qpy/p(Tz)qpz/pUZ2TR ,ℓ
(Tx)−qpx/p(Ty)−qpy/p(Tz)−qpz/p

= UZ2TR ,ℓ

∑
px,py ,pz∈Z

e
−2πi ℓN

p2 (pxnx+pyny+pznz)

= UZ2TR ,ℓ

∑
lx∈Z

δ

(
nxℓN

p2 − lx

) ∑
ly∈Z

δ

(
nyℓN

p2 − ly

) ∑
lz∈Z

δ

(
nzℓN

p2 − lz

)
. (3.15)
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This noninvertible operator generalizes (3.6) to any Zp ⊆ Zq, and it projects onto sectors
with finer topological charges than the sectors admissible by (3.6). This means there exist
sectors where ŨZ2TR ,ℓ

act invertibly for all ℓ = 1, 2, . . . , TR if and only if

lx = nxN

p2 ∈ Z , (3.16)

with similar conditions in the y and z directions. As special cases, we may first set p = q to
readily cover (3.6). Also, setting p = 1, the operator ŨZ2TR ,ℓ

becomes invertible, as can be
easily seen from the second line in (3.15). Notice that ŨZ2TR ,ℓ

does not act on Wilson’s lines in
this theory, as the noninvertible operator is built from (Tj)qpj/p and its inverse; thus, one can
push a Wilson line through ŨZ2TR ,ℓ

without being affected.13 We can write this observation as

ŨZ2TR ,ℓ
W

ejp
j =W

ejp
j ŨZ2TR ,ℓ

, ej = 0, 1, 2, . . . , q/p− 1 , j = x, y, z . (3.17)

This is very different from the action of ŨZ2TR ,ℓ
on ’t Hooft lines, as we discussed before.

The procedure employed to construct the noninvertible operator ŨZ2TR ,ℓ
contains an

additional layer of underlying physics. It is essential to keep in mind that this operator
is constructed in SU(N)/Zp theory, where its creation involved a sum over magnetic m ∈
(NZ/p)3 and electric k ∈ (NZ/p)3 twists. These twists do not encompass the entire range
of permissible twists that can be applied. Recall that the theory encompasses a global Z(1)

q/p

symmetry, which affords us the opportunity to introduce the electric twists k ∈ (pNZ/q)3.
Moreover, we can turn on magnetic twists m ∈ (pNZ/q)3, compatible with the cocycle
condition.14 This broader scope of twists provides a richer set of possibilities within the
theory. We recall that T px is the generator of Z(1)

q/p symmetry that implements the twists
kx ∈ pNZ/q. Then, one can write the partition function of SU(N)/Zp theory in these
background twists as

ZSU(N)/Zp+matter[m,k] = trm∈(pNZ/q)3

[
e−L4HT kxp

x T kyp
y T kzp

z

]
=

∑
e∈(Zq/p)3

e
−i2π pk·e

q phy⟨ψ|e−L4H |ψ⟩phy|m∈(pNZ/q)3 , (3.18)

and we used eq. (3.12) along with T
kjp
j |ψ⟩phy = e

−i2π
pkj ej

q |ψ⟩phy; see the discussion around
eqs. (3.21), (3.22) below.

Next, consider the commutation relation between T px and ŨZ2TR ,ℓ
, the latter operator

is being in the background of the magnetic twist m ∈ (pNZ/q)3. Using the discussion and
procedure around eq. (2.33), we obtain

T px ŨZ2TR ,ℓ
T−p
x = e

−2πiℓnx
p2N

q2 ŨZ2TR ,ℓ
. (3.19)

13Although we do not give the explicit form of Tj , it can be thought of as an exponential of an integral of
the chromoelectric field over a 2-dimensional submanifold; see [49]. A Wilson line would acquire a phase as we
push it past T q/p

j (we use [Aa
j (x, t), Eb

k(y, t)] = iδjkδ(x − y)δab, where a, b are the color indices, along with
the Baker-Campbell-Hausdorff formula). It also acquires the negative of the same phase as it is pushed past
T

−q/p
j . Therefore, the phases cancel out, and hence, the result in eq. (3.17).

14Recall that twists in NZ/q are compatible with the cocycle conditions. Therefore, twists in pNZ/q are a
subset of the allowed twists. Notice that the twists m ∈ (pNZ/q)3 provide background magnetic fluxes and
do not label the physical states in Hilbert space, eq. (3.12).
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The failure of the commutation between T px and ŨZ2TR ,ℓ
by the phase e−2πiℓnx

p2N

q2 , assuming
ℓnx

p2N
q2 /∈ Z, signals a mixed anomaly between the noninvertible Z̃χ2TR chiral symmetry and

the electric Z(1)
q/p 1-form global symmetry. This anomaly means that certain sectors in Hilbert

space exhibit degeneracy. Let us analyze this situation more closely. We assume there
exists a sector with nx, ny, nz that satisfies eq. (3.16), and thus, in this sector, the symmetry
operator ŨZ2TR ,ℓ

acts invertibly for all elements ℓ = 1, 2, . . . , TR. Now, ŨZ2TR ,ℓ
, being a global

symmetry operator, commutes with the Hamiltonian:

[ŨZ2TR ,ℓ
, H] = 0 . (3.20)

Likewise, since Z(1)
q/p is a global symmetry, its generators T pj commute with the Hamiltonian:

[T pj , H] = 0 . (3.21)

This commutation relation, along with eq. (2.25), implies that T pj acts on physical states in
Hilbert space as (the label l = (lx, ly, lz) emphasizes that such states satisfy condition (3.16),
such that ŨZ2TR ,ℓ

acts invertibly on such states. Also, we suppressed the detailed dependence
on the different quantum numbers to reduce clutter)

T pj |E, ej⟩l = e
i 2πp

q
ej |E, ej⟩l , (3.22)

and that the states are labeled by their energies as well as ej = 1, 2, . . . , q/p distinct labels;
these are the eigenvalues (fluxes) of the Z(1)

q/p symmetry operator. The algebra defined by
the commutation relations eqs. (3.20), (3.21), along with the mixed anomaly represented as
eq. (3.19), under the assumption of a nontrivial phase, furnishes a finite-dimensional space
with a minimum dimension of q2/gcd(nxp2N, q2) (we take nx = ny = nz). The Hilbert space
of physical states, which are labeled by q/p distinct fluxes, sit in q2/gcd(nxp2N, q2) orbits, and
a rotation by ŨZ2TR ,ℓ=1 links a state with a flux ej to a state with a flux ej+gcd(njp2N,q2)/(qp) as:

ŨZ2TR ,ℓ=1|E, ej⟩l = |E, ej + gcd(njp2N, q2)/(qp)⟩l . (3.23)

Using the commutation relation (3.20), one immediately sees that the states |E, ej⟩l and
|E, ej + gcd(njp2N, q2)/(qp)⟩l have the same energy.15

In the following subsections, we apply our formalism to examples of theories with
fermions in specific representations.

3.3 Examples

3.3.1 SU(4n + 2)/Z2 and SU(4n)/Z2 with a Dirac fermion in the 2-index
anti-symmetric representation

The SU(4n + 2)/Z2 gauge theory with a 2-index anti-symmetric Dirac fermion (N -ality
2) has a Zχ8n chiral symmetry. The SU(4n + 2) theory possesses an electric Z(1)

2 one-form
15It is helpful to give a numerical example. Take N = 1000, q = 500, and p = 20. Such numbers are

contrived and do not necessarily correspond to any realistic theory. Condition (3.16) is satisfied if we take
nx = 2. Then, the phase in the anomaly eq. (3.19) is e−i2π/5, implying a 5-fold degeneracy. The theory has
an electric Z(1)

25 1-form symmetry, and thus, 25 distinct flux states. These states set in 5 different orbits such
that the states labeled with e1, e6, e11, e16, e21 have the same energy, and the states e2,e7,. . . ,e22, have the
same energy, etc.
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symmetry. In [37], the authors argued that upon gauging Z(1)
2 , the odd rotations of Zχ8n

become non-invertible. We can show this is the case on T3 using our construction. Setting
N = 4n + 2 in (3.6), we obtain

ŨZ8n,ℓ = UZ8n,ℓ

∑
lx∈Z

δ

(
nxℓ

2 − lx

) ∑
ly∈Z

δ

(
nyℓ

2 − ly

) ∑
lz∈Z

δ

(
nzℓ

2 − lz

)
. (3.24)

For ℓ odd, ŨZ8n,ℓ projects onto untwisted gauge sectors and becomes non-invertible.
The SU(4n)/Z2 theory with a 2-index anti-symmetric Dirac fermion has a Zχ8n−4 chiral

symmetry. The cocycle conditions, say in the x-direction, must satisfy (see eq. (2.9))

e2πi 2nyz
4n = 1 . (3.25)

Therefore we must have nyz ∈ 2nZ. There is no mixed anomaly between Zχ8n−4 and the
electric Z(1)

2 symmetries in the SU(4n) theory since the anomaly phase nyz

2 ∈ nZ is trivial.
Thus, the full chiral symmetry Zχ8n−4 is invertible. This is also in agreement with [37].

3.3.2 SU(6)/Z3 with a Dirac fermion in the 3-index anti-symmetric
representation

This theory has a Zχ6 chiral symmetry. What is special about this theory is that its bilinear
fermion operator vanishes identically because of Fermi statistics. Moreover, the SU(6) theory
exhibits a mixed anomaly between its electric Z(1)

3 1-form center and chiral symmetries [50, 51].
Assuming confinement, then the chiral symmetry must be broken in the infrared. Yet, this
breaking has to be accomplished via higher-order condensate. Using (3.6), we find that the
operator corresponding to a chiral transformation in SU(6)/Z3 theory is

ŨZ6,ℓ = UZ6,ℓ

∑
lx∈Z

δ

(2nxℓ
3 − lx

) ∑
ly∈Z

δ

(2nyℓ
3 − ly

) ∑
lz∈Z

δ

(2nzℓ
3 − lz

)
. (3.26)

Hence, for ℓ ∈ {1, 2, 4, 5}, the operator ŨZ6,ℓ projects onto untwisted gauge sectors, and the
chiral symmetry operator becomes noninvertible.

3.3.3 2-index SU(6) chiral gauge theory

Our next example is a chiral gauge theory. This is SU(6) YM theory with a single left-handed
Weyl fermion ψ in the 2-index symmetric representation and 5 flavors of left-handed Weyl
fermions χ in the complex conjugate 2-index anti-symmetric representation. The fermion
budget ensures the theory is free from gauge anomalies. The theory encompasses continuous
global symmetry SU(5)χ ×U(1)A, where SU(5)χ acts on χ. The charges of ψ and χ under
U(1)A are qψ = −5 , qχ = 2. The theory is also endowed with a Zχ4 chiral symmetry, which is
taken to act on χ with a unit charge. It can be checked that this is a genuine symmetry since
neither Z4 nor a subgroup of it can be absorbed in rotations in the centers of SU(6)× SU(5)χ.
It turns out, see [52] for details (also see [53]), that we must divide the global symmetry by
Z3 × Z5 to remove redundancies. Putting everything together and remembering that the
theory possesses an electric Z(1)

2 1-form center symmetry (since all fermions have N -ality
n = 2), we write the faithful global group as:

Gg = SU(5)χ ×U(1)A
Z3 × Z5

× Zχ4 × Z(1)
2 . (3.27)
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This theory has an anomaly between its Z(1)
2 center symmetry and Zχ4 chiral symmetry. To see

the anomaly, we recall that we can turn on the magnetic and electric twists (m,k) ∈ (3Z)6.
This gives the topological charge Q ∈ Z/2. Thus, under a chiral transformation, the partition
function acquires a phase

Z[m,k] −→ exp
[
i
2πℓNχTχQ

4

]
Z[m,k] = exp [i2πℓ/2]Z[m,k] , (3.28)

where Nχ = 5 is the number of the χ flavors and Tχ = 4 is the Dynkin index of χ. Therefore,
we expect that Zχ4 becomes noninvertible in the SU(6)/Z2 chiral theory. Using (3.6), the
noninvertible operator corresponding to a chiral transformation in SU(6)/Z2 theory is

ŨZ4,ℓ = UZ4,ℓ

∑
lx∈Z

δ

(
nxℓ

2 − lx

) ∑
ly∈Z

δ

(
nyℓ

2 − ly

) ∑
lz∈Z

δ

(
nzℓ

2 − lz

)
. (3.29)

Hence, for ℓ ∈ {1, 3}, the operator ŨZ4,ℓ projects onto untwisted gauge sectors, and the chiral
symmetry operator becomes noninvertible.

4 SU(N) × U(1)/Zp, Zp ⊆ ZN theories, noninvertible symmetries, and
their anomalies

In this section, we also gauge the U(1) baryon number symmetry. Thus, we are discussing
SU(N) × U(1) gauge theory with a Dirac fermion in a representation R, N -ality n, and
U(1) charge +1. This theory, as we discussed in section 2, is endowed with an invertible
Zχ2gcd(TR,dR) chiral symmetry as well as an electric Z(1)

N center symmetry acting on its Wilson’s
lines; see eqs. (2.17). However, in [36], it was shown that SU(N)×U(1) theories also have
noninvertible Z̃χ2TR chiral symmetry. In the following, we first review the construction of the
noninvertible Z̃χ2TR operator in SU(N)× U(1) theories, and next, we discuss this operator
in SU(N) × U(1)/Zp, Zp ⊆ ZN , theories.

4.1 SU(N) × U(1)

Our starting point is the SU(N)×U(1) theory and its Zχ2TR operator UZ2TR ,ℓ
= e

i 2πℓ
2TR

Q5 , where
Q5 is the conserved chiral charge defined in eq. (2.43) in the background of the fractional
nx,y,z and integer Nx,y,z magnetic fluxes in the x, y, z directions. We remind that we can
turn on fractional fluxes in ZN irrespective of the N -ality of the matter content since we
use U(1) transition functions to impose the cocycle condition; see eq. (2.36). No nontrivial
electric twists are applied at this stage, i.e., we take k ∈ (NZ)3, since our nonabelian gauge
group is SU(N) rather than SU(N)/Zp. The operator UZ2TR ,ℓ

is invariant under SU(N).
To see that, we apply a large SU(N) gauge transformation, recalling eq. (2.24) and setting
k ∈ (NZ)3, which immediately gives the change in the nonabelian winding number by Q ∈ Z.
In addition, UZ2TR ,ℓ

must be invariant under U(1) gauge symmetry. The photon gauge field
ai transforms under U(1) gauge symmetry as aj(x + êkLk) = aj − ∂kξ(x), and ξ(x) is a
periodic gauge function: ξ(x + êkLk) = ξ(x) + 2πp, p ∈ Z. Applying a large U(1) gauge
transformation to Q5, we find (see [36] for the derivation)

UZ2TR ,ℓ
−→ UZ2TR ,ℓ

e
−2πiℓ

(
px

dR
TR

(Nx+ nnx
N )+py

dR
TR

(Ny+ nny
N )+pz

dR
TR

(Nz+ nnz
N )

)
, (4.1)
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where px,y,z are arbitrary integers corresponding to the U(1) gauge transformation. Eq. (4.1)
shows that the operator UZ2TR ,ℓ

fails to be gauge invariant under U(1) gauge symmetry.
To remedy this problem, we follow the procedure of the previous section and define a new
operator ŨZ2TR ,ℓ

by summing over all gauge-transformations of UZ2TR ,ℓ
:

ŨZ2TR ,ℓ
= UZ2TR ,ℓ

∑
px,py ,pz∈Z

e
−2πiℓ

(
px

dR
TR

(Nx+ nnx
N )+py

dR
TR

(Ny+ nny
N )+pz

dR
TR

(Nz+ nnz
N )

)

= UZ2TR ,ℓ

∑
lx∈Z

δ

(
ℓ
dR
TR

(
Nx +

nnx
N

)
− lx

)∑
ly∈Z

. . .

∑
lz∈Z

. . .

 . (4.2)

The operator ŨZ2TR ,ℓ
implements the chiral transformation of the now-noninvertible Z̃χ2TR

symmetry, as it acts projectively by selecting certain nonvanishing sectors in Hilbert space
labeled by the integers lx,y,z, such that for ℓ = 1 we must have

lx = dR
TR

(
Nx +

nnx
N

)
∈ Z , (4.3)

with identical expressions for ly and lz. Condition (4.3) ensures that all the symmetry elements
ℓ = 1, 2, . . . , TR act invertibly on the same admissible sector. To explicitly see the projective
nature of ŨZ2TR ,ℓ

on states in Hilbert space, we use the partition function of the SU(N)×U(1)
theory given by eq. (2.40) (we set the electric flux background k=0 and, as usual, we use n to
label a specific fractional magnetic flux background: n = (nx, ny, nz)) to compute ⟨ŨZ2TR ,ℓ

⟩:16

⟨ŨZ2TR ,ℓ
⟩ =

∑
e∈Z3

N ,N∈Z3
n⟨E, e,N |e−L4Ĥ ŨZ2TR ,ℓ

|E, e,N⟩n . (4.4)

We immediately see from the Kronecker deltas in eq. (4.2) that only those sectors with N

satisfying eq. (4.3) are selected.
Turning off the fractional magnetic flux background (i.e., setting n = 0), the operator

ŨZ2TR ,ℓ
becomes invertible for ℓ ∈ TRZ/gcd(TR, dR). We recognize that we have just

recovered the invertible Zχ2gcd(TR,dR) subgroup of Z̃χ2TR . Furthermore, setting n = 0, the
operator ŨZ2TR ,ℓ=1 annihilates all Hilbert space sectors characterized with integral magnetic
fluxes N /∈ TRZ3/gcd(TR, dR). This noninvertible nature of the chiral operator should have
been anticipated. When we start with the SU(N) theory with matter, we find an ’t Hooft
anomaly between its invertible Zχ2TR chiral symmetry and U(1) baryon symmetry. This
anomaly is valued in ZTR/gcd(TR,dR). Upon gauging U(1), this anomaly becomes of the ABJ
type, and the chiral symmetry becomes noninvertible. Now, If we take the Euclidean version
of our theory in the infinite volume limit and apply a π/2 rotation to ŨZ2TR ,ℓ=1, the operator
becomes a defect. Alternatively, we may also use the half-gauging procedure to construct this
defect, which was done in [36]. Inserting this defect at some position will generally create a
domain wall (since it enforces a chiral transformation) dressed with a TQFT that accounts for
the noninvertible nature of the defect. It will be interesting to analyze what happens to the
domain walls when we turn on an external magnetic field with flux N /∈ TRZ3/gcd(TR, dR).

16Recall from our earlier analysis that the theory is endowed with electric Z(1)
N and magnetic U (1)

m (1) symme-
tries, and the states of the theory are labeled by the eigenstates of these symmetries, e and N , respectively.
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SU(N)× U(1) gauge theory has an electric Z(1)
N 1-form global center symmetry, and the

immediate exercise would be checking whether there is a mixed anomaly between the center
and the noninvertible chiral symmetries. To this end, we turn on both electric and magnetic
twists17 (m,k) ∈ Z6, giving rise to nonabelian fractional topological charge QSU(N) ∈ Z/N
as well as abelian topological charge Qu =

(
n
N

)2; see eq. (2.15). Using eqs. (2.24), (2.44),
setting k = (1, 0, 0), we find

TxtxŨZ2TR ,ℓ
(Txtx)−1 = ŨZ2TR ,ℓ

e
−2πiℓ

(
nx
N

− n
N

dR
TR

(Nx+ nnx
N )

)
= ŨZ2TR ,ℓ

e−i2πℓ(
nx−nlx

N ) , (4.5)

and we used Condition (4.3) to go from the first to the second line. If the phase is non-
trivial, then there is a mixed anomaly between the electric Z(1)

N 1-form center and the
0-form noninvertible Z̃χ2TR symmetries, leading to spectral degeneracy of states (those that
already selected by the operator ŨZ2TR ,ℓ

). The algebra defined by the commutation relations
[H,Tjtj ] = [H, ŨZ2TR ,ℓ

] = 0 along with the mixed anomaly (4.5), under the assumption of a
nontrivial phase, furnishes a finite-dimensional space with dimension N/gcd(N,nx− nlx) (we
take nx = ny = nz). The Hilbert space of physical states, which are labeled by N different
electric fluxes e, sit in N/gcd(N,nx − nlx) orbits, and a rotation by ŨZ2TR ,ℓ=1 links a state
with a flux ej to a state with a flux ej + gcd(N,nj − nlj), i.e., they have the same energy.

4.2 SU(N) × U(1)/Zp, Zp ⊆ ZN

Next, we study the noninvertible operators in SU(N) × U(1)/Zp gauge theory, where Zp
is a subgroup of the ZN center symmetry. This theory has an electric Z(1)

N/p 1-form global
symmetry acting on the p-th power of the spatial components of the abelian and nonabelian
Wilson’s lines defined in eq. (2.17):

W
ejp
j, SU(N) ,W

ejp
j,U(1) , ej = 1, 2, . . . , N/p, j = 1, 2, 3 . (4.6)

These Wilson’s lines are invariant under Zp, as they should be, as this symmetry is gauged.
Notice that the allowed abelian probe charges q need to satisfy q = ze, where ze = ejp is
the N -ality of the nonabelian line. Thus, we can represent the lines in eq. (4.6) by the pair
(ze, q = ze). The theory also possesses a magnetic U (1)

m (1) 1-form symmetry acting on ’t
Hooft lines. Let zm = 0, 1, . . . , p − 1, and g be the N -ality of the nonabelian ’t Hooft line
and the abelian magnetic charge, respectively. Then, the pairs (ze, q = ze) and (zm, g) must
satisfy the Dirac quantization condition ei2π(−qg+zezm/p) = 1 or zezm − pqg ∈ pZ, which gives
a constraint on the magnetic charges: g = zm

p + Z, i.e., the abelian magnetic charges can be
fractional [54]. Another way of putting it is that the presence of the Abelian Wilson’s lines
W

ejp
j,U(1) demand that the Abelian ’t Hooft lines are T Nj+nj/p

j,U(1) , nj ∈ Zp, Nj ∈ Z, such that
the electric and magnetic lines are mutually local. The physical states in Hilbert space are
taken to be eigenstates of the commuting set of the Hamiltonian, the generators of electric

17Notice that these electric twists k ∈ Z3 are e that label the physical states in Hilbert space: |E, e,N⟩n .
In principle, kj should be in Z Mod N , but, as usual, we drop the modding as this does not affect the
cocycle conditions.
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symmetry, and the generators of magnetic symmetry:

|ψ⟩phy ,m = |E, pe,n/p+ N⟩m , ej = 0, 1, . . . , N/p− 1 , Nj ∈ Z nj = 0, 1, . . . , p− 1 ,
j = 1, 2, 3 , (4.7)

and m ∈ Z3 is the fractional magnetic flux background (or background magnetic twist).
Remember that, in principle, m ∈ (ZModN)3; however, we drop the modding by N since
this cannot affect the cocycle condition. Notice that we can always activate a ZN magnetic
twist since, as emphasized several times, we use a combination of nonabelian and abelian
transition functions. Also, in the special case p = N , we should remove the subscript m

since, in this case, the Hilbert space is spanned by eigenstates of the full magnetic ZN
fluxes, i.e., nj = 0, 1, . . . , N − 1.

The operator ŨZ2TR ,ℓ
defined in eq. (4.2) is invariant under both SU(N) and U(1) gauge

transformations. However, because we are now gauging Zp, the operator must also be
invariant under Zp gauge transformations. Let us recall that Tjtj is the generator of the
electric Z(1)

N symmetry, and therefore, (Tjtj)N/p generates the Zp symmetry, which must be
gauged. The action of (Tjtj)N/p on ŨZ2TR ,ℓ

can be read from the first line in eq. (4.5) by
applying the operation N/p times:

(Tjtj)N/p ŨZ2TR ,ℓ
(Tjtj)−N/p = ŨZ2TR ,ℓ

e
−2πiℓ

(
nx
p
−n

p

dR
TR

(Nx+ nnx
N )

)
. (4.8)

This relation shows that for a general ℓ, ŨZ2TR ,ℓ
fails to be gauge invariant under a

Zp gauge transformation.18 Being acquainted with the remedy of this problem, we use
(Tjtj)N/p ŨZ2TR ,ℓ

(Tjtj)−N/p as a building block of a gauge invariant operator by summing
over gauge transformations of the block. The noninvertible operator is then given by

ŨZ2TR ,ℓ
=

∑
px,py ,pz∈Z

(Txtx)
Npx

p (Tyty)
Npy

p (Tztz)
Npz

p UZ2TR ,ℓ
(Txtx)−

Npx
p (Tyty)−

Npy
p (Tztz)−

Npz
p

= UZ2TR ,ℓ

∑
px,py ,pz∈Z

e
−2πiℓ

(
nx
p
−n

p

dR
TR

(Nx+ nnx
N )

)
+(x→y)+(x→z)

= UZ2TR ,ℓ

∑
lx∈Z

δ

(
ℓnx
p

− ℓn

p

dR
TR

(
Nx +

nnx
N

)
− lx

)∑
ly∈Z

. . .

∑
lz∈Z

. . .

 . (4.9)

The operator ŨZ2TR ,ℓ
acts invertibly on sectors in Hilbert space that, for ℓ = 1, satisy

the condition

lx = nx
p

− n

p

dR
TR

(
Nx +

nnx
N

)
∈ Z , (4.10)

with identical expressions in the y and z directions. The operator ŨZ2TR ,ℓ
, as introduced

in eq. (4.9), within the context of SU(N) × U(1)/Zp gauge theory, is a generalization of
the operator defined in eq. (4.2) for the conventional SU(N) × U(1) theory. Furthermore,

18In the special case p = 1, the phase becomes e2πiℓn
dR
TR

(Nx+ nnx
N ), and using Condition (4.3), the phase

trivializes. This shows that this operator is gauge invariant in SU(N) × U(1) theory, as expected.
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Condition (4.10) represents a broader generalization of Condition (4.3). In the specific
scenario where p = N holds, corresponding to the SU(N)×U(1)/ZN theory, Condition (4.10)
precisely mirrors the criterion for the absence of a mixed anomaly between the electric Z(1)

N

1-form global symmetry and the noninvertible chiral symmetry inherent to the SU(N)×U(1)
theory. This correspondence is clear from the first line of eq. (4.5).

The SU(N)×U(1)/Zp theory exhibits an electric Z(1)
N/p one-form global symmetry, which

is generated by the operators (Tjtj)p. When introducing a background for this symmetry,
we uncover a mixed anomaly between the noninvertible chiral symmetry and the Z(1)

N/p

symmetry. Sandwiching ŨZ2TR ,ℓ
, defined in eq. (4.9), between (Txtx)p and (Txtx)−p and

using eqs. (2.24), (2.44), we find

(Txtx)pŨZ2TR ,ℓ
(Txtx)−p = ŨZ2TR ,ℓ

e
−2πiℓ

(
pnx
N

− pn
N

dR
TR

(Nx+ nnx
N )

)
= ŨZ2TR ,ℓ

e−i2πlxℓ
p2
N , (4.11)

where we used lx defined in eq. (4.10) in going from the first to the second line. When the
phase e−i2πlxℓ

p2
N is nontrivial, it signifies the presence of a degeneracy within the spectrum.

Notice that the anomaly phase coincides with the phase in eq. (3.19) if we set q = N in
the latter. This should not surprise us since, in this section, we employ the full ZN center
symmetry, thanks to gauging U(1). The anomaly in (4.11) is valued in ZN/gcd(N,p2lx) (we
take nx = ny = nz) indicating a N/gcd(N, p2lx)-fold degeneracy. The Hilbert space of
physical states, which are labeled by N/p distinct electric fluxes, sit in N/gcd(N, p2lx) orbits,
and a rotation by ŨZ2TR ,ℓ=1 maps a state with an electric flux pej to a state with a flux
p(ej + gcd(N, p2lj)/p), i.e., they have the same energy.

4.3 Examples

4.3.1 SU(4k + 2) × U(1)/Zp with 2-index antisymmetric fermions

SU(4k + 2)×U(1) theory with a single 2-index anti-symmetric Dirac fermion was considered
in [36]. Here, we study this theory when we gauge a Zp ⊆ ZN subgroup of the center.
Numerical scans reveal that condition (4.10) is always satisfied for specific values of nx and
Nx. Also, the anomaly (4.11) is trivial unless both p and lx are odd; then, the anomaly is
valued in Z2. The Hilbert space is spanned by the physical states

|ψ⟩phy ,m = |E, pe,n/p+ N⟩m ,

ej = 0, 1, . . . , (4k + 2)/p− 1 , Nj ∈ Z , nj = 0, 1, . . . , p− 1 , j = 1, 2, 3 ,
(4.12)

and the anomaly means that the states live in two orbits such that |E, pe,n/p + N⟩m,
|E, p(e + gcd(N, p2l)/p),n/p + N⟩m, |E, p(e + 2gcd(N, p2l)/p),n/p + N⟩m, etc. have the
same energy (we take nx = ny = nz).

4.3.2 The Standard Model

The methods presented in this paper provide a systematic means to find noninvertible
symmetries in any given gauge theory. As an important application, we employ our approach
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field SU(3) SU(2) U(1) U(1)B U(1)L
qL □ □ 1 1

3 0

lL 1 □ −3 0 1

ẽR 1 1 6 0 −1

ũR □ 1 −4 −1
3 0

d̃R □ 1 2 −1
3 0

h 1 □ 3 0 0

Table 1. Matter content and charges of SM: qL and lL are the quark and lepton doublets, ẽR, ũR, d̃R

are the electron and up and down quarks singlets, while h is the Higgs doublet. Notice that we take
the hyper U(1) charges to be integers, while the matter content has the standard charges under the
baryon number U(1)B and lepton number U(1)L symmetries.

to search for noninvertible symmetries in the nongravitational sector of the Standard Model
(SM). SM is based on su(3)× su(2)× u(1) Lie algebra. Yet, the faithful gauge group, i.e.,
the global structure of the group, is to be uncovered. The matter content and charges under
the gauge and global symmetries are displayed in table 1, and all fermions are taken to be
left-handed Weyls. The anomalies associated with the U(1)B and U(1)L symmetries are given
by: U(1)B × [SU(2)]2 = U(1)L × [SU(2)]2 = 1, U(1)B × [SU(3)]2 = U(1)L × [SU(3)]2 = 0,
U(1)B × [U(1)]2 = U(1)L× [U(1)]2 = −18 . Thus, we see that U(1)B−L symmetry is anomaly-
free symmetry (we neglect gravity in this context). Under a U(1)B+L rotation, the path
integral picks up an ABJ phase

exp (iα ·Nf (2c2(F )− 36c2(f))) , (4.13)

where Nf is the number of families, c2(F ) is the second Chern class for SU(2) and c2(f)
is the second Chern class for U(1). The ABJ anomaly breaks the U(1)B+L down to a
ZB+L

gcd(2,36)Nf
= ZB+L

2Nf
symmetry. Notice that SU(3) does not play a role in the ABJ anomaly.

The matter content is consistent with the existence of an electric Z(1)
6 1-form global

symmetry [54, 55]. The cocycle conditions satisfied by SM on T4 with a gauged Z(1)
6 are

given by [55]:

Ω(3)µ(xν = Lν)Ω(3)ν(xµ = 0) = e2πi
n

(3)
µν
3 Ω(3)ν(xµ = Lµ)Ω(3)µ(xν = 0) ,

Ω(2)µ(xν = Lν)Ω(2)ν(xµ = 0) = e2πi
n

(2)
µν
2 Ω(2)ν(xµ = Lµ)Ω(2)µ(xν = 0) , (4.14)

ω(1)µ(xν = Lν)ω(1)ν(xµ = 0) = e
−2πi

(
n

(3)
µν
3 +

n
(2)
µν
2

)
ω(1)ν(xµ = Lµ)ω(1)µ(xν = 0) .

Ω(i), i = 2, 3, and ω(1) are the transition functions of the gauge bundles, n(i)
µν are the ’t

Hooft twists, and the superscript/subscript (i) = (3), (2), (1) denote the condition for the
SU(3), SU(2),U(1) gauge groups respectively. The electric Z(1)

6 symmetry is generated by a
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combinations of the SU(3) center, T (3)
j , the SU(2) center, T (2)

j , and the U(1) center tj , such
that the full Z(1)

6 symmetry generator is given by T
(3)
j T

(2)
j tj , j = x, y, z.

The anomalous U(1)B+L current conservation law is given by

∂µj
µ
B+L − 2Nf∂µK

µ
SU(2)(A) +

36Nf

8π2 ϵµνλσ∂
µaν∂λaσ = 0 , (4.15)

where Kµ
SU(2) is the SU(2) topological current. The corresponding unbroken ZB+L

2Nf
symmetry

operator on T3 is given by:

UZ2Nf
,ℓ = exp

[
i
2πℓ
2Nf

Q5

]
, (4.16)

where the conserved charge Q5 is given by (here we turn on a Z6 magnetic twist)

Q5 =
∫
T3
d3x

[
j0
B+L − 2NfK

0
SU(2)(A) +

36Nf

8π2 ϵijkai∂jak

]

− 18Nf

4π

(
Nz +

1
6nz

) Ly∫
0

dy

Ly

Lz∫
0

dzaz(x = 0, y, z) +
Lx∫
0

dx

Lx

Lz∫
0

dzaz(x, y = 0, z)


+

∑
cyclic

(x→ y → z → x) . (4.17)

Under a U(1) gauge transformation, UZ2Nf
,ℓ transforms as

UZ2Nf
,ℓ −→ UZ2Nf

,ℓe
−i2π

(
18ℓNf

Nf
(Nx+ nx

6 )
)

+(x→y)+(x→z)
= UZ2Nf

,ℓ . (4.18)

Therefore, UZ2Nf
,ℓ is U(1) gauge invariant, as required. Further, we examine UZ2Nf

,ℓ after

gauging the electric Z(1)
6 1-form center by sandwiching UZ2Nf

,ℓ between its generators (this
is a generalization of eq. (4.5)):

T (3)
x T (2)

x txUZ2Nf
,ℓ

(
T (3)
x T (2)

x tx
)−1

= e
−i

2πℓ(2Nf )
2Nf

n
(2)
x
2︸ ︷︷ ︸

fromK0
SU(2)(A)

e
i2πℓ

36Nf
2Nf

( 1
6)
(
Nx+ n

(2)
x
2 + n

(3)
x
3

)
︸ ︷︷ ︸

from ϵijkai∂jak

UZ2Nf
,ℓ

= UZ2Nf
,ℓ . (4.19)

We used eq. (2.33), setting kx = mx = 1, to find the first exponent. The second exponent
is found by applying eq. (2.44) and using n = 1, N = 6. Here, n(2)

x , n(3)
x , and Nx are the

SU(2) and SU(3) fractional twists and U(1) integral magnetic flux, respectively. This analysis
shows that SM does not possess noninvertible symmetries in its nongravitational sectors.
Our findings are consistent with [31].

5 Coupling gauge theories to axions and noninvertible symmetries

In this section, we introduce axions into the game, taking T4 to be larger than any scale in the
theory. To be specific, we take SU(N)/Zp or SU(N)×U(1)/Zp gauge theories of the previous
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sections and follow the setup of [56] by adding a complex scalar Φ that is neutral under the
gauge groups but couples to the fermions. Thus, we add the following terms to the Lagrangian:

L ⊃ |∂µΦ|2 + V (Φ) + yΦψ̃ψ + h.c. , (5.1)

where ψ, ψ̃ are two left-handed Weyl fermions in representations R and its complex conjugate
R̄, respectively, and y is a Yukawa coupling. The potential of the complex field is V (Φ) =
λ(|Φ|2 − v2)2, where λ is O(1) dimensionless parameter. We take the scalar field v.e.v.
v ≫ Λ, where Λ the strong scale of the gauge sector. We shall pretend that we did not
know about the noninvertible symmetries or how to construct them, and let us see if we
can reproduce them in the IR.

Let us first consider the SU(N) gauge theory before gauging U(1) and the electric Z(1)
p

symmetry. Under Zχ2TR and U(1) baryon number, the different fields transform as

Zχ2TR : Φ −→ e
i−2π

TR Φ , ψ −→ e
i 2π

2TR ψ , ψ̃ −→ e
i 2π

2TR ψ̃ ,

U(1) : Φ −→ Φ , ψ −→ eiαψ , ψ̃ −→ e−iαψ̃ , α ∈ [0, 2π) . (5.2)

If we write Φ as Φ = ρeiφ, where φ is the axion, then φ transforms under Zχ2TR as

φ −→ φ− 2π
TR

(5.3)

and notice that the axion is inert under the ZF2 fermion number subgroup of Zχ2TR .
Next, we consider SU(N)/Zp or SU(N)×U(1)/Zp gauge theories with axions. Flowing

to an energy scale below v, the radial degree of freedom ρ freezes in, i.e., we set ρ = v,
and the fermions acquire a mass ∼ yv and decouple. What remains is the light degree of
freedom, the axion φ. However, the axion should reproduce all the UV anomalies. Thus,
we can write the following IR effective Lagrangian of φ:

Lφ = v2 (∂µφ)2 + TRφ
tr(F ∧ F )

8π2 + dRφ
f ∧ f
8π2 . (5.4)

Variation of Lφ w.r.t φ produces the anomalous current conservation law:

∂µj
µ
(φ) − TR∂µK

µ(A)− dR
8π2 ϵµνλσ∂

µaν∂λaσ = 0 , (5.5)

where jµ(φ) = v2∂µφ. This is exactly the anomalous current conservation law we had previously,
now written down for the axion current. Therefore, everything we said in the previous sections
applies here. In particular, we can define an operator of the Zχ2TR symmetry as:

UZ2TR ,ℓ = exp
[
i
2πℓ
TR

∫
T3
(j0

(φ) − TRK
0(A)) + . . .

]
, (5.6)

where the dots denote the contribution from the U(1) gauge field (see eq. (2.43)). We used a
calligraphic letter for the operator to emphasize that it is constructed in the IR. Yet, all the
anomalies and failure of invariance under gauge symmetries that lead to the noninvertibility
of the UV operators apply here as well. Thus, similar to what we did before, we can construct
the noninvertible operator ŨZ2TR ,ℓ, which implements the noninvertible symmetry Z̃χ2TR in
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the IR. Such operators shall project onto magnetic sectors and also exhibit mixed anomalies
with the global 1-form electric center symmetry, exactly as we discussed previously.

It was pointed out in [57] that SU(N)/Zp theories with axions have noninvertible
symmetries. However, our construction shows that such a conclusion is not general and
depends on the UV completion. Consider two theories SU(4k)/Z2 and SU(4k + 2)/Z2 with a
Dirac fermion in the 2-index antisymmetric representation and coupled to a complex scalar
field Φ as above. As we flow to the IR, we can construct the operators corresponding to the
chiral symmetries. We discussed in section 3.3.1 that SU(4k)/Z2 theory does not exhibit an
anomaly between its chiral symmetry and the 1-form symmetry of the corresponding SU(4k)
theory, and hence, the chiral symmetry operator is invertible. Therefore, an axion domain
wall (DW), implemented by the action of ŨZ8k−4 ,ℓ, will not be dressed with TQFT degrees of
freedom. On the contrary, SU(4k + 2)/Z2 exhibits an anomaly between its chiral symmetry
and the 1-form center of the corresponding SU(4k + 2) theory, and thus, the minimal chiral
symmetry operator ŨZ8k ,ℓ=1 is noninvertible. The axion DW implemented by ŨZ8k ,ℓ=1 must
be dressed with a fractional quantum Hall TQFT.

We may also consider axions in SU(N)× U(1)/Zp theory of section 4. Everything we
said there is transcendent to the IR axion domain walls. In particular, for p = 1, the operator
ŨZ2TR ,ℓ=1 annihilates the Hilbert space sectors characterized by vanishing fractional n = 0
and integral magnetic fluxes N /∈ TRZ3/gcd(TR, dR). It will be interesting to examine what
happens to the axion domain walls of this theory as we place them in such an external
magnetic field.
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