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Abstract

Collective motion, often referred to as flocking, is a prevalent behaviour observed in nature wherein large groups of organisms
move cohesively, guided by simple local interactions, as exemplified by bird flocks and fish schools. Collective motion behaviour
can be achieved by applying virtual physical interaction inspired by elastic materials to determine the required attraction and
repulsion forces between the agents in a swarm robotic system. However, it is necessary to apply virtual interaction efficiently to
prevent undesirable swarm fluctuation, slow alignment, and excessive energy consumption. This paper presents a novel Optimised
Collective Motion (OCM) algorithm, which exerts viscoelastic interaction between robots. Moreover, the algorithm’s parameters
are tuned automatically by Particle Swarm Optimisation (PSO) to achieve: (i) minimum control effort, (ii) fast alignment, and (iii)
robustness against noise. Simulation results establish the proposed algorithm outperforms the previous methods, achieving better
alignment and being more robust in the presence of measurement noise. Furthermore, the effectiveness of the OCM algorithm is
validated by real-robot experiments performed on a swarm of six miniature mobile robots. These experiments demonstrate the
practical capabilities of the proposed algorithm.
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1. Introduction

Collective Motion (CM), is a noticeable phenomenon in na-
ture which is observable in various areas from biological sys-
tems such as birds flocking, insect swarms, and schools of fish
to molecule movement [1]. Such organisms are able to coordi-
nate their motion collectively and improve their performance.
For instance, a school of fish can collectively evade predators
while maintaining the structural integrity of the group [2]. Ad-
ditionally, flocks of birds, especially in energy-efficient forma-
tions such as the V-Shape, can traverse vast areas with con-
siderably less energy consumption per individual [3]. Various
mathematical algorithms are developed inspired by that appeal-
ing natural behaviour to solve real-world challenges in swarm
robotics. Swarm robotics is the study of how large groups of
simple, small, and commonly identical robots can collectively
accomplish complex tasks that would be impossible for an in-
dividual robot to accomplish alone. Swarm robotics offers sub-
stantial advantages in terms of robustness, scalability, and flex-
ibility [4] when real-world applications are considered.

Collective motion behaviour in the swarm robotics field has
been deployed across a broad array of challenges, showing re-
markable results in diverse areas such as precision agriculture [5],
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search and rescue operations in disaster zones [6], and explo-
ration of unknown environments [7]. A self-organised collec-
tive motion can be achieved when a swarm of robots moves
cohesively, leveraging local interactions to exchange crucial in-
formation such as positions, velocities or angles.

The cornerstone for flocking behaviour modelling in artifi-
cial systems was established by Reynolds [8]. In that model,
cohesion is achieved by attraction between the robots and re-
pulsive interaction is considered to prevent the agents from col-
lision. Also, robots’ alignment ensures the entire swarm moves
in a particular direction, maintaining the same speed. This gen-
eral model assumes that the focal robot must be aware of its
neighbours’ headings to facilitate flocking in a noise-free en-
vironment. The Self-Propelled Particles (SPP) approach is an-
other method aiming for robots flocking inspired by statistical
physics properties.

The SPP model exploits the virtual attractive and repulsive
forces between swarm entities to create a self-organised collec-
tive motion swarm [9]. Notably, two distinct approaches for ex-
hibiting flocking behaviour exist, which are the alignment rule
and the position-based rule. The alignment rule involves ex-
plicit sharing of angle information amongst agents to reach a
consensus on their headings [10]. However, robots which use
that approach need more sophisticated measurement and com-
munication instruments to share their orientations reliably.

Therefore, the position-based rule, which allows the focal
agent to detect merely the positions of its neighbours, emerges
as a more cost-effective choice. Swarm cohesiveness and align-
ment are achieved utilising only relative position data [11]. Al-
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though such collective algorithms are cost-efficient, the swarm
cannot reach reasonable robustness and respond very slowly
if it depends on relative position data merely. This paper in-
troduces a novel collective motion control method developed
based on viscoelastic interaction between the agents to miti-
gate the fluctuations much faster and improve the swarm per-
formance considerably. This is accomplished by using the rel-
ative position and velocity among the neighbours to apply the
interactive force based on both spring and damping effect and
reduce the energy level and reach the stable point as fast as pos-
sible. Furthermore, the Particle Swarm Optimisation (PSO) is
applied to obtain the best control parameters according to the
objective function which includes the interactive forces, align-
ment, and response time to obtain a reasonable response re-
garding these three vital criteria. The feasibility of employing
PSO to optimise the performance of collective motion has been
demonstrated previously [12]. That idea is extended to optimise
more parameters and consider measurement noise according to
the proposed control architecture. As a result, the main contri-
butions of this paper are summarised as follows:

• Introducing a novel swarm control framework consider-
ing viscoelastic interaction to enhance the swarm’s stabil-
ity and cohesiveness and diminish the fluctuations much
faster.

• Formulating a multi-objective optimisation problem that
ensures convergence and automates the tunning proce-
dure for the control parameters.

• Proposing a Monte Carlo simulation scheme for robust
performance evaluation in the presence of measurement
noise.

The rest of the paper is structured as follows: Section 2
presents a literature review pertinent to the work under consid-
eration. Section 3 elaborates on the theoretical underpinnings
of the collective motion algorithm. Section 4 illustrates the the-
oretical aspects of Particle Swarm Optimisation (PSO) and de-
tails the design of the cost function. In Section 5, the exper-
iments and implementation in both simulation and real-world
contexts are presented. Section 6 comprises an analysis of the
results obtained from both simulations and real-world imple-
mentations. The implications of altering significant parameters
in the OCM model are discussed in Section 7. Finally, Sec-
tion 8 concludes the research and outlines possible directions
for future work.

2. Related Work

The Self-Propelled Particles (SPP) concept was exploited in
the Standard Vicsek Model (SVM) [10] which is one of the ear-
liest methods in flocking. Although that research was aimed at
investigating the effect of noise and particle size on transition-
ing between the ordered and disordered state, it shows promis-
ing results employing a velocity alignment rule whereby each
particle adjusts its trajectory towards the neighbours’ headings
average and shares its orientation with them. In spite of the

fact that applying velocity alignment demonstrates reasonable
results, Couzin et al. presented another collective behaviour
model in three-dimensional environments. In that study, three
different interactions were considered to emulate the animal
groups’ transitions between various structures. Those three in-
teractions are applied in distinct zones to determine the attrac-
tion, alignment, and repulsion between the members.

The above foundational flocking models inspired many stud-
ies in swarm robotics [13, 14, 15]. For instance, an establish-
ment of how informed agents can direct a uniformed swarm
in a precise direction using the velocity alignment rule is pro-
posed in [16]. The agents’ velocities are updated according
to a Laplacian-based model which regulates each agent’s ve-
locity difference with its neighbours. That study inspired real-
world experiments in [17]. However, such frameworks depend
on exchanging both velocity and alignment data that demands
considerable onboard processing which is a challenge for small
robots with limited power and processing sources.

Accordingly, several studies have been dedicated to imple-
menting collective motion behaviour without relying on orien-
tation information. For instance, velocity alignment is achieved
implicitly by applying pairwise repelling forces to move the
particles in [18]. Furthermore, exploiting other approaches such
as position-based attraction and repulsive force determination [19],
the inelastic collision between isotropic agents [20], and other
collective control strategies [21] investigate different approaches
which are independent of orientation sharing between the agents
and discuss the advantages of such methods.

Therefore, it is beneficial to reduce the exchanged infor-
mation between robots to minimise the hardware complexity
and cost of the robots [22]. Moreover, according to the afore-
mentioned studies, it is evident that alignment without explicit
orientation exchange can reduce the entire swarm’s energy con-
sumption. Another similar approach was developed by Ferrante
et al. [11, 23] as a state-of-the-art flocking model known as Ac-
tive Elastic Sheet (AES). That method suggests elastic inter-
action based on relative position to achieve collective motion.
The AES performance is established in several studies from
different perspectives. For instance, the effect of network ar-
chitecture [24], the robustness against measurement noise [25],
and the behaviour in the presence of external force to guide the
swarm in a particular direction [26] are investigated to demon-
strate the AES capability in various scenarios.

Moreover, other papers try to reveal other aspects of the
AES, such as its performance considering obstacle avoidance
feature [27, 28] and scalability while real robots are used for
the experiments [29], [30]. However, the research didn’t con-
sider other performance criteria such as required control ef-
fort, response time, and closed-loop response considering mea-
surement noise. Although the AES-based algorithms present
promising results, using virtual elastic interaction merely pro-
duces fluctuations that can cause the entire swarm to become
unstable and insufficiently robust to maintain the system’s out-
put in a reasonable bound when the measurements include noise.
However, viscoelastic interaction can mitigate such fluctuations
and improve stability and robustness simultaneously. There-
fore, it is anticipated that exploiting the properties of viscoelas-
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tic links could significantly enhance flock motion while concur-
rently preserving the stability of its formation.

In addition to the model’s structure describing the collec-
tive behaviour, the parameters have a vital contribution to the
final results. Those parameters are generally tuned empirically,
although the optimisation techniques can enhance the perfor-
mance significantly. Particle Swarm Optimization (PSO) is a
prevalence evolutionary algorithm that is proposed by Kennedy
and Eberhart [31] and inspired by the flocking behaviour of
birds when they seek a source of food. The PSO algorithm
is popular in the research domain because of its simplicity and
low computational processing requirement. In the robotic field,
it has been extensively used for optimising a variety of prob-
lems. For instance, in [32], PSO is utilised to improve a three-
dimensional path planning algorithm for UAV formation. In
another study [33], the motion stability and efficiency of a fruit-
picking manipulator are optimised by utilising an improved multi-
objective PSO. Despite the simplicity and robustness of PSO,
a significant challenge lies in the potential for a local minima
trap. That issue can be circumvented and the exploration and
exploitation capabilities will be improved by employing several
techniques to evade the local minima trap which are considered
in this paper.

The collective behaviour of swarm systems has been opti-
mised via the PSO algorithm in a number of studies, specifi-
cally through the tuning of motion controller parameters. For
instance, In [34], the PSO algorithm is used to select the proper
control parameters of a quadrotor flock that collectively moves
to seek a targeted zone with and without obstacles. In another
research [35], the PSO algorithm was applied to allocate the
leader task to proper UAVs divided into two clusters. Therefore,
it is evident that the PSO algorithm has a substantial capability
to significantly enhance the collective performance of swarm
systems. In [26], an optimisation algorithm called Tabu Con-
tinuous Ant Colony System (TCACS) [36] is used to tune the
parameters of the AES model by minimising the force amongst
the robots and maximising the alignment of the robots’ head-
ings. The results showed better performance in comparison
with the original parameters in [11]. In another study [12],
the collective motion of the AES model is improved by em-
ploying the PSO algorithm. The cost function is a minimi-
sation problem, which was focused on: i) the virtual forces
between the swarm individuals, ii) the alignment error of the
whole swarm, and iii) the convergence time. The results exhib-
ited a significant performance in terms of collective motion be-
haviour and stability of the swarm shape that outperformed the
original studiy [11] and the study optimised by TCACS [26].
However, those works did not consider the measurement noise
and its impact on the collective motion behaviour.

3. Collective Motion

This section describes the theoretical background of the col-
lective motion algorithm that is proposed in this paper.

3.1. Active Elastic Sheet (AES)

The state-of-the-art AES model utilised the elasticity-based
mechanism, which introduced the elastic interactions between
the swarm members. AES is a position-based approach in which
each robot within the swarm is equipped with a virtual spring-
like connection to its neighbours, thereby sharing only relative
positional information [23]. The overall elastic force F⃗i exerted
by ith robot is originated by its interaction with its neighbours
S i. The rotational speed of the robot is determined by the angle
between this force vector and the robot’s heading direction. If
the force vector is not parallel to the robot’s heading, a rota-
tional motion is induced, while a parallel orientation between
the force and heading results in linear motion.

Figure 1 shows two of the agents in the swarm and the re-
sultant force F⃗i acting on one of the agents determined from
the interaction with all neighbours. According to Figure 1, it is
evident that the resultant force has a component which is per-
pendicular to the robot’s current direction, causing rotation and
eventually resulting in an alignment between the agents.

Figure 1: The schematic description of elastic interaction .

3.2. Optimised Collective Motion (OCM)

As mentioned in the previous section, virtual forces induced
among the robots serve as a primary determinant for collective
movement and swarm shape preservation. Considering a flexi-
ble swarm structure and spring connections to model the robots’
interactive behaviour causes undesirable fluctuations. Such un-
wanted fluctuations can make the system unstable.

To mitigate this issue, a virtual viscoelastic mechanism is
deployed between the swarm individuals. A viscoelastic link
between two robots comprises a spring with a specific stiffness
k and a damper with a coefficient c, arranged in a parallel con-
figuration, as depicted in Figure 2. It is important to note that
the damper coefficient and spring stiffness values remain con-
stant across all the established robot links. Thus, the regulation
of the compression and stretching of the viscoelastic links en-
hances the motion smoothness and stability of the entire swarm.
Furthermore, the Optimised Collective Motion (OCM) model
benefits from the energy dissipation property inherent in the
damper to diminish the fluctuations and reach a stable condi-
tion much faster.

At the beginning of an experiment, a group of N robots
move as a swarm in a two-dimensional arena. The swarm’s in-
dividuals are located in predefined positions as a square shape
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Figure 2: A single spring-damping system.

Figure 3: The Nearest-Neighbour network for a part of a swarm of 100 robots.
Each blue circle denotes a robot body with a small black line representing the
heading. Each red dotted line denotes the natural length between the robots.
The green circle shows the sensing range of the focal robot (orange) by consid-
ering the sensing radius Rs.

at t = 0 s. The virtual force F⃗i applied to the ith robot constitutes
the cumulative impact of all viscoelastic links associated with
its neighbours S i. This study applies a Nearest-neighbour (NN)
network for interaction topology, wherein each robot connects
to its nearest neighbours within a specified sensing radius Rs, as
illustrated in Figure 3. Robots in the middle of the NN network
have the highest number of connections (eight links), whereas
robots in the corner have three links and robots on the side have
five links. Therefore, the virtual force F⃗i of the ith robot can be
mathematically formulated as follows:

F⃗i =
∑
j∈S i

−
k
li j

(∥⃗ri j∥ − li j)
r⃗i j

∥⃗ri j∥
− (c v⃗i j) , (1)

r⃗i j = x⃗ j − x⃗i , (2)

v⃗i j = v⃗ j − v⃗i . (3)

where, li j is the natural length that connects robots i and j,
and k

li j
is the spring constant. S i denotes the neighbours of

the ith robot and r⃗i j represents the distance between ith and jth

robots. c is the damper coefficient, where c > 0. The velocity
vector v⃗i of the ith robot can be obtained by multiplying the con-
stant speed v0 by the unit vector n̂i. The variable v⃗i j represents
the difference in the velocity between the current robot i with

respect to its neighbour j. The position x⃗i and heading θi of the
ith robot can be calculated as follows:

˙⃗xi = v0 n̂i + α[(F⃗i + Dr ξ̂r) . n̂i]n̂i , (4)

θ̇i = β[(F⃗i + Dr ξ̂r) . n̂⊥i ] + Dθξθ , (5)

n̂i =

[
cos(θi)
sin(θi)

]
, (6)

n̂⊥i =
[

cos(θi +
π
2 )

sin(θi +
π
2 )

]
. (7)

According to Eq. (4) and Eq. (5), a constant speed v0 is im-
posed on each robot. The parameters α and β are inverse transi-
tional and rotational that control the linear and angular speed of
the ith robot, respectively. n̂i which is determined by Eq. (6), is
a unit vector pointing to the same heading direction of the robot
i, and n̂⊥i is a unit vector pointing perpendicular to it represented
in Eq. (7). In this approach, two types of random processes are
considered. The first, actuation disturbances, denoted as Dθξθ,
embodies the fluctuations of the robot motion by adding it to
the robot’s heading θ̇i. The second type, measurement noise,
expressed as Dr ξ̂r, represents the inaccuracies in force determi-
nation because of position measurement noise. ξθ is a random
variable with normal probability distribution, whereas ξ̂r is a
randomly oriented unit vector. Dθ and Dr are coefficients used
as a scale to control the noise and disturbance level.

Angular alignment among swarm members plays a pivotal
role in maintaining the cohesiveness of collective motion. A
key metric parameter to represent the alignment status of the
robots in this study is the degree of alignment, denoted as ψ. In
scenarios where all robots are aligned in a unified direction, ψ ≈
1. Conversely, in a state of disorder, wherein the robots exhibit
a random orientation, ψ ≈ 0. The mathematical formulation to
compute the degree of alignment is as follows:

ψ =
1
N

∥∥∥∥∥∥∥
N∑

i=1

n̂i

∥∥∥∥∥∥∥ , (8)

where, N is the swarm size and n̂i represents the unit vector
of the ith robot. ψ can be obtained by taking the norm of the
mean value of all the robots’ heading values. The Pseudocode
that represents the mechanism of the proposed OCM model is
shown in Algorithm 1.

4. OCM Parameters Optimisation

This section demonstrates the optimisation process based
on the PSO algorithm.

4.1. Particle Swarm Optimisation (PSO)

PSO is an evolutionary optimisation technique which is ap-
plicable to a wide range of problems. The heuristic search
makes such optimisation algorithms more robust regardless of
the objective function structure. Applying the PSO algorithm
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Algorithm 1 OCM Model
1: Obtain the optimal values of (α, β, k, c) using PSO algo-

rithm.
2: Set swarm size N, arena length L, sensing range Rs, contant

speed v0, and simulation time Tsim.
3: Initialise robots’ positions x in a square shape and random

headings θ.
4: Obtain velocity vector v⃗ for each robot.
5: for step = 1, ...,Tsim do
6: for i = 1, ...,N do
7: Find neighbour list S i of the ith robot.
8: Calculate n̂i and n̂⊥i using Eq. (6) and Eq. (7).
9: for j = 1, ..., S i do

10: Calculate r⃗i j using Eq.( 2).
11: Calculate v⃗i j using Eq.( 3).
12: Calculate F⃗i using Eq.( 1).
13: end for
14: Update new position xi using Eq.( 4).
15: Update new heading θi using Eq.( 5).
16: end for
17: F(step) =

∑N
i=1∥F⃗i∥.

18: ψ(step) is calcluated using Eq.( 8).
19: Dc(step) is calcluated using Eq.( 18).
20: end for
21: return Force F, Alignment ψ and Cohesiveness Dc.

effectively needs to make a well-organised structure which in-
cludes the particles’ population size, parameters’ limits, par-
ticles’ velocity evaluation rule, etc. That structure can affect
the optimisation result substantially. Therefore, it is necessary
to organise the structure according to the aiming optimisation
problem. If the PSO structure is adjusted properly, each parti-
cle systematically seeks its personal best position (Pbest) based
on its individual experience and the global best position (Gbest),
dictated by the collective experience of its neighbour particles,
as illustrated in Figure 4.

The ith particle is composed of three vectors: (i) the x-vector
that stores the current position, (ii) the p-vector that stores the
best position found by the particle, and (iii) the v-vector that

Figure 4: The movement of one particle in the search space of the PSO algo-
rithm.

contains the velocity of the particle. The following equations
are used to calculate the position x and velocity v of the ith par-
ticle:

vi
t+1 = w vi

t + c1 r1 (Pbest − xi
t) + c2 r2 (Gbest − xi

t) , (9)

xi
t+1 = xi

t + vi
t+1 . (10)

Here, t = {1, 2, 3, ..., Imax} corresponds to the iteration count
in which Imax denotes the maximum number of iterations, and i =
{1, 2, 3, ...,N} signifies the individual particles with N marking
the overall size of the particle swarm. r1 and r2 are random
variables ranging between 0 and 1, and w denotes the weight
coefficient. c1 is the cognitive scaling parameter affiliated with
the optimal local position Pbest, while c2 represents the social
scaling parameter associated with the optimal global position
Gbest. Despite the simplicity of the PSO methodology, prema-
ture convergence emerges as a notable pitfall in the exploration
process of the PSO algorithm. This effect essentially impedes
the capability of the algorithm to thoroughly explore the so-
lution space. Accordingly, specific strategies will be adopted
in this study to enable particles to escape from the local mini-
mum traps. Clerc and Kennedy [37] introduced the concept of
constriction coefficients to optimally determine the values of w,
c1, and c2. This approach seeks to maintain an equilibrium be-
tween local and global exploration and is expressed through the
subsequent equations:

χ =
2 kc

|2 − ϕ −
√
ϕ2 − 4 ϕ|

, (11)

ϕ = ϕ1 + ϕ2 . (12)

According to Eq. (11), the value of kc can be selected be-
tween 0 and 1. The values of ϕ1 and ϕ2 can be adjusted in
which their sum is higher than four (ϕ > 4). After preparing
the necessary coefficients, the parameters wmax, c1 and c2 can
be calculated as follows:

wmax = χ , c1 = χ ϕ1 , c2 = χ ϕ2 . (13)

Furthermore, an adaptive inertial weight technique [38] will
be integrated to increase the probability of circumventing the
risk of local minima trap for the PSO algorithm. The strategy
initiates with a large value of wmax by calculating its value using
Eq. (13). Typically, the range of wmax ∈ [0.9, 1.2] is used to
promote (exploration) in the solution space. Subsequently, this
value is iteratively reduced until it attains wmin ∈ [0.4, 0.5] to
refine solutions (exploitation). The adaptive inertial weight can
be calculated as follows:

w = wmax − step
(wmax − wmin)

Imax
, (14)

where, wmax represents the maximum value of the inertia weight
and wmin denote the minimum value of the inertia weight. step
is the current iteration number in the loop, and Imax is the max-
imum number of iterations in the PSO algorithm.
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Within the scope of this study, the implementation of the
PSO algorithm incorporates two termination conditions. The
first condition is associated with the iteration count reaching its
maximum permitted value, which is frequently encountered in
numerous research studies. The second condition relates to the
convergence of the particles toward the optimal solution. This
is achieved by scrutinising the coefficient of variation (CV) of
the most recent optimal cost values computed. During the ex-
ecution of the PSO algorithm, the absolute difference between
the mean of Pbest values of all particles and the global best Gbest

is archived in an array denoted as (GBC). The CV is charac-
terised as the ratio of the standard deviation to the mean. In the
context of the PSO algorithm, if the CV of the GBC over the
last 20 iterations falls below a threshold (< 0.05), it signifies
a stagnation in the improvement of the particle swarm, thereby
implying probable convergence towards the optimal solution.
This termination criterion enhances efficiency by enabling early
termination of the algorithm if significant progress is no longer
discernible, thereby optimising computational time.

4.2. Cost Function
The definition of an appropriate cost function, also known

as a fitness function, is a critical step in the optimisation proce-
dure. In this paper, a multi-objective cost function is proposed
which includes the vital characteristics of a swarm robotic sys-
tem. The OCM model is optimised by minimising three main
objectives: i) the alignment error ψerror of the swarm, i) the time
required for alignment convergence, and iii) the virtual forces
invoked by the individuals of the swarm. The formula of the
cost function is as follows:

J =
Tmax∑
t=0

w1 ψerror + w2 t2
rise + w3

N∑
i=1

Fi

 . (15)

In Eq. (15), N denotes the size of the swarm incorporated in
the OCM model, and Tmax represents the maximum permissi-
ble simulation time. One of the objectives is to increase the
alignment ψ to its maximum value of ’1’, signifying the robots
are moving in near-identical directions. However, the designed
cost function aims to minimise and therefore the alignment er-
ror which is computed as ψerror = (1 − ψ)2 is used in the ob-
jective function to ensure that ψerror reaches the minimal pos-
sible value. trise indicates the time at which 60% of the robots
have achieved alignment. F⃗i denotes the induced force on the
ith robot, generated by the viscoelastic links. Moreover, three
weighting parameters, w1,w2, and w3, are introduced into the
cost function as tuning parameters to adjust the importance level
for each part of the objective function. These weights allow for
the balancing of objectives in the multi-objective optimisation
function, providing flexibility in emphasising certain objectives
over others based on specific requirements or constraints.

5. Implementation and Experiment

This section presents the experimental structure of the OCM
model used in the conducted research. The experiments were
designed to manifest the evolution of OCM performance when

compared with two preceding studies [23, 12]. The system’s
robustness against different noise levels has been investigated in
this research as well. Two categories of experiments have been
conducted: i) numerical simulations and ii) real-world robotic
experiments.

5.1. Numerical Simulation

5.1.1. Simulation Setup
The numerical simulations have been executed on MAT-

LAB, aiming to study the feasibility and performance of the
proposed OCM model. A Mobile Robotics Simulation Toolbox
was utilised to perform the OCM model simulations. In these
simulations, each robot is graphically represented as a blue cir-
cle (denoting the body) and a small black line (indicating the
heading), as visualised in Figure 3. The robots are preposi-
tioned at specific locations, with random orientations within a
two-dimensional arena of size L × L. It should be noted that
all conducted simulations maintain a square configuration for
the swarm shape. Adhering to the Nearest-neighbour topology
for the OCM model experiments, all robots are fully intercon-
nected with their adjacent robots, as illustrated in Figure 3. The
longest link between two adjacent robots is the diagonal link,
which has been defined as the sensing radius Rs. At the out-
set of the experiments, the natural length li j is computed using
the Euclidean distance formula, taking into account the initial
inter-robot distances. At t = 0 s, no force generation occurs
amongst the robots. However, as the experiment progresses,
various attractive and repulsive forces are invoked due to the
dynamic behaviour of the OCM model.

The Monte Carlo method has been implemented by con-
ducting 80 simulations to ensure the proposed system’s validity
with the presence of measurement noise. The primary parame-
ters of the experiments, such as the maximum simulation time
Tmax = 300 s, swarm size N = 100 robots, arena size L = 100
m, and sensing range Rs = 7.1 m, were initialized. A constant
robot velocity of v0 = 0.075 m/s was set. A comprehensive
list of the utilized variables in the experiments is provided in
Table 1.

5.1.2. PSO and Cost Function
The PSO algorithm is employed to optimise the control pa-

rameters of the OCM model: α, β, k, and c. Several parameters
are required to ensure the PSO algorithm’s efficient operation:
the maximum iteration number is set as Imax = 100, and the par-
ticle size is designated as npop = 200. Furthermore, maximum
and minimum bounds are established for the particles’ veloci-
ties and decision variables to ensure that the ith particle values
are contained within a prescribed range. Guided by Eq.(11)
and Eq.(12), the parameters are set as kc = 1, ϕ1 = ϕ2 = 2.05,
which aid in determining appropriate values for wmax, c1, and
c2 for use in Eq. (9) and Eq. (14).

The cost function considers three input variables: the align-
ment degree, convergence time, and virtual force. Each particle
in the PSO algorithm implements the cost function at every po-
sition within the search space. Subsequently, the PSO algorithm
assesses the output values of the cost function, selecting the
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minimum value as the optimal solution. It is worth highlight-
ing that the optimisation process is conducted in the absence of
noise, reflecting an idealised environment for the implementa-
tion of the OCM model. The weight parameters w1,w2, and w3
in the cost function, as illustrated in Eq. (15), are empirically
tuned to ensure a uniform data range across all three terms.

5.1.3. Noise and Disturbance
The OCM model considers two types of noise: (i) Dr, which

is associated with positions, and (ii) Dθ, associated with orien-
tations, as elaborated in Eq.(4) and Eq.(5). Since both noises
originate almost similar outputs [39], the same noise levels are
assigned for both Dr and Dθ. Four noise intensity levels, de-
noted as η, are utilised to examine the OCM model’s perfor-
mance, with η ∈ {0, 0.1, 0.2, 0.3}. Note that η = 0 is used to
assess the performance of the proposed model in the absence
of noise. In this paper, we assume that the last level η = 0.3 is
considered the highest noise value. The process of introducing
noise into the system involves initially selecting the noise inten-
sity η. Then, at each iteration, two uniformly distributed ran-
dom values within the range [0, η] are generated and assigned
to both Dr and Dθ.

Table 1: List of simulation parameters used in this paper.

Parameters Description Values

N Number of robots 100
v0 Constant speed 0.075 [m/s]
L Side length of the arena 100 [m]
Rs Sensing radius of a robot 7.1 [m]
Tsim Time of a simulation run 300 [s]
npop Number of particles in PSO 200 particles
Imax Max iteration of PSO 100
wmin Min value of inertia weight 0.4
wmax Max value of inertia weight 1
ϕ1, ϕ2 Constriction coefficients 2.05
w1 Weight for alignment degree 0.006
w2 Weight for convergence time 6
w3 Weight for virtual force 0.07
η Noise levels {0,0.1,0.2,0.3}

5.2. Real-world robots experiments

5.2.1. Swarm Robotics Platform: MONA
The open-source miniature robot MONA, as depicted in

Figure 5, was developed for effective robotics application [40].
It serves as an affordable, user-friendly mobile robot for both
educational and research purposes. The robot has a System-on-
a-Chip (SoC) ESP32-WROVER-B, operating at up to 240 MHz
with a 4 MB flash memory and 8 MB PSRAM. The motion of
the robot is powered by two DC motors, providing a top speed
of 1.5 cm/s. For proximity detection, MONA is fitted with five
evenly distributed infrared (IR) sensors on its front, each spaced
35◦ apart. Furthermore, MONA hosts a Wi-Fi module facilitat-
ing wireless communication with other robots in the swarm.
The onboard lithium battery offers an operational time between

Figure 5: The MONA mobile robot utilised in the real-world experiments.

Figure 6: Setup of the experiment displaying the main components: (a) camera,
(b) master PC, (c) wireless router, and (d) Arena.

1.2 and 2.3 hours, with battery status continuously monitored
via an inbuilt power management module. Each motor, in-
dependently controlled by an H-bridge DC motor driver, con-
sumes electrical power in the range between 100 mW and 200
mW, contingent on the load and speed.

5.2.2. Experimental Arena Configuration
In order to evaluate the applicability of the proposed col-

lective motion model, an experiment is designed wherein six
robots are located within a 2 × 1 m2 arena. For all experimen-
tal runs, robots are positioned at predefined positions with ran-
domly oriented angles, ensuring that each trial begins from a
disordered state. A high-resolution camera is installed approx-
imately two meters above the arena and connected to a master
PC to oversee the robot swarm. The robots’ movements during
the experiment are tracked via the WhyCon vision-based local-
isation system [41]. This system provides precise estimations
of the robots’ positions using a low-cost webcam. Distinctive
fiducial circular tags are placed on the top of each robot, en-
abling the WhyCon system to identify each robot’s position,
orientation, and ID, as presented in Figure 6.

As depicted in Figure 6(a), the camera captures the posi-
tions and orientations of all swarm individuals, which are then
transmitted via Robotic Operating System (ROS) communica-
tion to the OCM flocking controller in the master PC. In Fig-
ure 6(b), each ith robot computes the force based on its neigh-
bours’ information, leading to the determination of new posi-
tions, ˙⃗xi, and orientations, θ̇i. By implementing a simple p-
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controller, these variables are converted into right and left mo-
tor speeds, vr = V + kp W and vl = V − kp W, respectively. The
linear velocity V is defined as a constant value V = 100 m/s,
representing the minimum value that ensures the DC motors of
all the robots can move. w denotes the angular velocity that is
defined as W = θ̇i which represents the heading error. kp is
the p-controller coefficient. In Figure 6(c), the calculated left
and right speeds are transmitted to the MONA robots through a
wireless router. Each MONA robot is equipped with an ESP32
WiFi module to receive data from the master PC via the wire-
less router. Finally, Figure 6(d) provides a view of the arena
where all robots are placed in a predefined formation and ran-
domly oriented. Additionally, the fiducial circular tags can be
seen atop each robot.

Every experiment includes a set number of iterations to achieve
the desired flocking behaviour. During each iteration, the OCM
algorithm generates a new set [x, y, θ]T for each robot. Sequen-
tially, each MONA robot updates its position and angle based
on these values. The updating of the last robot means the com-
pletion of one iteration, after which the OCM algorithm is com-
puted again to obtain the next set of positions and angles. Each
iteration, on average, lasts for 7 s, resulting in a total approxi-
mate experiment duration of 392 s. Two criteria are established
to terminate the experiment. The experiment concludes when
either of these conditions is met: the first condition is reaching
the maximum number of steps, denoted as sim num = 56, and
the second condition is activated when any robot exceeds the
specified boundaries of the arena. It is crucial to note that cer-
tain iterations may not require all robots to update their [x, y, θ]T

information. This could happen when part of the swarm at-
tempts to steer to the new heading while the rest of the robots
are in the correct heading. Therefore, the time required to up-
date the positions and orientations of each iteration is not con-
stant throughout the experiment.

Although the real-world experiments conducted in this re-
search could theoretically employ a decentralised approach, where
the relative positions are derived from the onboard sensors, a
centralised methodology was deliberately chosen. This deci-
sion was substantially influenced by the specific attributes of
the MONA robot. Given that MONA features relatively limited
sensing capabilities, the accuracy of the data obtained from its
immediate environment could be potentially compromised if a
decentralised method were adopted. Consequently, the choice
of a centralised approach serves to mitigate these inaccuracies
and ensure the robustness of the experimental data.

5.3. Performance Metrics
The OCM model is applied to performing a flocking be-

haviour. Two significant factors are defined: i) degree of align-
ment ψ, and ii) swarm’s cohesiveness Dc to evaluate the collec-
tive motion behaviour of the swarm. The Degree of Alignment
ψ demonstrates how agents are aligning closely, thereby reflect-
ing the overall directionality of the swarm. This factor is exten-
sively analysed in the next sections by implementing Eq. (8).

On the other hand, the swarm’s cohesiveness Dc estimates
how well the swarm maintains the consistency of its shape. Co-
hesiveness can be determined based on the distance between

the robots and it is commonly employed in several related stud-
ies [42] [43] [44]. In this section, the distances between the
robots and the swarm’s centre of mass are obtained. Then, the
coefficient of variation is calculated by dividing the standard
deviation of the distances by the average of the distances. This
is mathematically expressed in the following equation:

µc =

∑N
i=1∥ri − rc∥

N
(16)

σc =

√∑N
i=1(∥ri − rc∥ − µc)2

N − 1
(17)

Dc =
σc

µc
(18)

Here, N represents the number of robots in the swarm. rc

and ri signifies the centre position of the swarm and the posi-
tion of the ith robot, respectively. ∥ri − rc∥ to find the Euclidean
distances from each robot to the centre of mass. µc is the aver-
age distance of the robots from the centre, and σc denotes the
standard deviation of the Euclidean distances. Dc is the ratio
of the standard deviation of the Euclidean distances to the av-
erage distance, which represents the coefficient of variation. In
order to ensure that the overall swarm preserves a stable form
throughout the experiment, it is essential that the value of Dc re-
mains consistent during the simulation run. Fluctuations in the
value of Dc imply lower cohesiveness, and the swarm is more
dispersed.

6. Results

6.1. Numerical Results

A comprehensive set of experiments was carried out to in-
vestigate the performance of the proposed OCM model utilising
the PSO algorithm. In this research, we took into account three
primary objectives: (i) reduction of the resultant force exerted
by the interaction of the robots, (ii) expedited swarm conver-
gence, and (iii) maximisation of the agreement amongst robots’
angles towards a common direction. The results presented in
this section correspond to a swarm size of N = 100 robots. As
mentioned previously, the OCM model was subjected to vari-
ous levels of noise. However, for the purpose of performance
evaluation, two noise levels are applied: i) without noise (η = 0)
and ii) high noise (η = 0.3). The effects of other noise levels
will be explored in the discussion section.

The optimised control parameters for the OCM model were
determined as follows: α = 0.0262, β = 0.5627, k = 1.0, and
c = 1.7503. The PSO algorithm seeks the optimal solution until
one of the termination conditions is met. The average value of
running the cost function for 150 simulations to examine the op-
timisation accuracy and demonstrate the progressive improve-
ment of the PSO algorithm is depicted in Figure 7. This op-
timisation result was achieved with 200 particles in the search
domain. The shaded plot reveals that the optimisation of each
simulation tends to converge approximately after 60 iterations.
Moreover, the bounds around the average line remain narrow
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Figure 7: Monte-Carlo simulations of PSO algorithm repeated 150 times.

Table 2: The values of the control parameters that are used for comparison in
this work.

Model α β k V0 c

Original [23] 0.01 0.12 5 0.075 -
AESPSO [12] 0.18082 0.81649 1.0 0.075 -
OCM 0.0262 0.5627 1.0 0.075 1.7503

through the maximum iterations, which demonstrates the ro-
bustness of the optimisation algorithm used in this study. This
evidence highlights the critical role of the PSO in bolstering
collective motion behaviour. The weight coefficients w1, w2,
and w3 were empirically tuned to produce satisfactory outputs
in terms of cohesiveness, quick swarm alignment convergence,
and minimum control effort.

The proposed OCM algorithm utilising the optimised con-
trol parameters in this paper has exhibited a significant im-
provement in the collective motion of the swarm compared to
the results obtained in previous works presented in [23, 12]. Ta-
ble 2 displays the control values of the OCM model and the col-
lective motion frameworks used to examine the performance of
the proposed work. It is noteworthy that only the OCM model
utilises a damper with an optimised value of the corresponding
parameter c.

In order to evaluate the OCM algorithm’s performance, four
cases are examined: (1) OCM-NN, (2) OCM-HN, (3) AESPSO-
HN, and (4) original-HN. (NN) implies that the implementation
was executed without noise η = 0, while (HN) suggests that a
high noise value η = 0.3 was used. Figure 8 illustrates four
instances at different time intervals t = {0, 50, 150, 300} s of the
four cases. Note that these instances were randomly selected
from 80 simulations. Moreover, the constant speed v0 of each
individual in the swarm is unified across all four cases to ensure
a fair comparison, as reflected in Table2.

Figure 8(a) reveals that a high level of noise, η = 0.3, was
used with the original AES algorithm. The robots exhibit sub-

Table 3: The median values of the force and alignment of the four investigated
scenarios at t = 300 s.

Scenario Force (F) Alignment (ψ)

Original-HN 138.41 0.390
AESPSO-HN 14.49 0.705
OCM-HN 8.25 0.996
OCM-NN 4.75 0.999

optimal collective motion behaviour throughout the simulation
time, struggling within the arena. Despite the robots’ attempts
to maintain proximity, the shape of the swarm is deformed due
to the high values of attraction and repulsive forces, leading to
a low degree of alignment, particularly visible at t = 300 s. In
Figure 8(b), a high level of noise, η = 0.3 is applied in conjunc-
tion with AESPSO parameters from previous work. Fluctua-
tions due to the induced forces among the robots are observable
at t = 50 s. By t = 150 s, the robots are striving to align and
counteract the noise presence, causing a slight deformation in
the swarm shape. However, by t = 300 s, approximately 90%
of the swarm’s individuals have aligned. Despite AESPSO con-
trol parameters demonstrating acceptable performance in the
presence of noise, the convergence time for swarm alignment
is slow. Furthermore, the degree of alignment in the AESPSO-
HN case is not consistent across the 80 simulations, as can be
seen in Figure 10.

In Figure 8(c), the proposed OCM model is introduced in
the presence of high noise levels, η = 0.3, to assess system ro-
bustness. Interestingly, by t = 50 s, almost the entire swarm
exhibits alignment, signifying rapid swarm convergence. The
degree of alignment remains stable throughout the simulation.
It should be noted that although the robots maintain an ordered
state, the swarm frequently changes direction due to the noise,
indicating a versatile change in the collective motion direction.
Lastly, Figure 8(d) represents the implementation of the OCM
model under ideal conditions, without noise η = 0. Here, the
rapid convergence and stability of the swarm are quite evident.
Furthermore, the swarm maintains a consistent direction through-
out the simulation. The OCM algorithm with optimised param-
eters demonstrates similar performance in the two last cases.
Accordingly, it is evident that the proposed framework estab-
lishes considerable robustness in the presence of measurement
noise. Furthermore, comparing the two last cases with the for-
mer algorithms’ performance substantiates a notable improve-
ment regarding the rise time for the alignment.

The Monte Carlo simulation is exploited to investigate the
robust performance of the algorithm in comparison with for-
mer methods in more detail. In each of Figures 9 and 10, four
shaded plots represent the four previously mentioned cases. In
these plots, the middle line denotes the median value, while the
upper and lower lines signify the third quartile and first quartile,
respectively. The black plot signifies the original-HN, the green
plot represents AESPSO-HN, the red plot represents OCM-HN,
and the blue plot depicts OCM-NN. Table 3 shows the median
values of the four investigated cases at t = 300 s to observe the
collective motion performance based on Figures 9 and 10.
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Figure 8: Simulations of N = 100 robots where each row represents one of the four different cases: (a) Original-HN, (b) AESPSO-HN, (c) OCM-HN, and (d)
OCM-NN. Snapshots are taken for each case at four different time intervals t = {0, 50, 150, 300} s.

Upon examination of the two figures, it is clear that the orig-
inal AES performance is corrupted by the measurement noise,
and although the system remains bounded and stable, the final
result is far from the optimal solution for both control effort and
alignment. Those results imply that the application of the orig-
inal AES parameters in noisy conditions leads to outcomes far
from the optimal point, suggesting that a re-evaluation or ad-
justment of these parameters could be beneficial in improving
swarm behaviour.

Figure 9 presents the results for the average force vector

magnitude within the swarm as a measure of control effort re-
quired to keep the swarm stable and cohesive. The AESPSO-
HN demonstrates a satisfactory performance, as evidenced by
a reasonably narrow variation bound. Furthermore, the OCM-
HN performance is quite close to the result obtained for the
OCM-NN which means the control effort required for stabilisa-
tion and cohesiveness doesn’t increase significantly to regulate
the effect of noise.

Figure 10 reflects the comparison results for the alignment
of the four investigated cases. According to the presented re-
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Figure 9: Total virtual force of N=100 robots for the four designed cases re-
peated 80 times.

Figure 10: Degree of alignment of N=100 robots for the four designed cases
repeated 80 times.

sults, the original AES cannot stand against the noise in the
system, and the alignment even decreases after an initial rise,
although it remains bounded. The AESPSO-HN shows a more
appropriate alignment regarding the steady increase in the me-
dian line. However, the variation bound is substantially wide
with respect to the median signal. It clearly signifies that the
AESPSO doesn’t show a reasonably robust performance for the
alignment. Moreover, that algorithm couldn’t have reached an
alignment better than 90% in all simulations. On the other
hand, the proposed OCM algorithm demonstrates remarkable
performance in alignment with or without noise. The varia-
tion bound for the alignment is quite small with respect to the
median line, which means the proposed framework keeps all
the agents aligned regardless of the noise in the system with
minimum control effort. Furthermore, the swarm reaches al-
most complete alignment, ψ ≃ 1, outperforming former meth-
ods substantially. Although alignment can establish how the
algorithm can make the agents move in the same direction, it
cannot show if the algorithm can keep the agents in a struc-
ture effectively. Therefore, cohesiveness is another criterion
that evaluates the collective motion performance and demon-
strates the algorithm’s capability to maintain the swarm struc-
ture uniform. Figure 11 presents the cohesiveness results for
all the cases investigated in this paper. The obtained results are
consistent with the results obtained for the alignment, which
means that the proposed OCM framework outperforms former
algorithms with respect to cohesiveness as well. Furthermore,
the narrow variation bound establishes the robustness in keep-
ing the swarm shape regardless of measurement noise presence.

6.2. Hardware Results
Hardware experiments serve as an essential validation step

for the performance of the Optimised Collective Motion (OCM)
model, utilising a group of six MONA robots. Throughout
the experiments, the robots maintain full connectivity via the
Nearest-neighbour network. Similar methodologies and theo-
retical perspectives have been previously addressed in [25]. As
mentioned earlier, two pre-defined conditions to terminate the
hardware experiment: (1) the instance wherein a MONA robot
exceeds the boundary of the arena, and (2) the moment the ex-
periment reaches the predetermined maximum number of steps,
denoted as sim num = 56. Figure 12 illustrates four snapshots
of the OCM experiments at four distinct moments: (a) t = 0 s,
(b) t = 50 s, (c) t = 150 s, and (d) t = 250 s. The heading
of each robot is determined with a small red triangle for clar-
ity. Figure 12(a) shows the initial positions and random orien-
tations of six MONA robots at t = 0 s, at which the swarm is in
a disordered state. Each robot during the experiment received
the speeds of the right and left motors via wireless communi-
cation. MONA robots struggled to align and maintain the rect-
angle shape because of the high attractive and repulsive forces
at t = 50 s as evidenced by Figure 12(b). Moreover, a minor
perturbation is observed due to the noise effect from the local-
isation system. Interestingly, at t = 150 s, the swarm’s internal
fluctuations are decreased, and the robots attempt to share the
same direction as presented in Figure 12(C). From t = 250 s on-
wards, as shown in Figure 12(d), the robots are approximately
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Figure 11: The cohesiveness of N=100 robots for the four designed cases: (a) Original-HN, (b) AESPSO-HN, (c) OCM-HN, and (d) OCM-NN.

fully aligned, and the rectangle shape of the whole swarm is ad-
justed, which indicates the improvement in the order state of the
swarm. Furthermore, it is evident that the swarm shifts slowly
towards the left side of the arena. The direction of the swarm’s
movement is intrinsically random, resulting from the interplay
of induced virtual forces and the swarm’s consensus on head-
ing. The successful achievement of collective motion thereby
validates the feasibility and practicality of the proposed OCM
model in real-world experiments.

Figure 13 presents the degree of alignment derived from
experimental results obtained through the repetition of the ex-
periment 27 times, as depicted in Figure 12(a) - (d). From an
analysis of Figure 13, it can be observed that all the robots ini-
tially showed a state of disorder in their orientations across the
repeated experiments, approximately ψ = 0.149. The broad
shaded area across the period t = 60 s to t = 190 s signi-
fies the hard efforts of the robots to align and attain stability
in their movement trajectories. An analysis of the quantitative
data from these 27 experiments indicates that the robots strug-
gled to be aligned in approximately 20% of the experiments.
From t = 200 s onwards in Figure13, both the rise in the me-
dian of the alignment and the reduction in the shaded area are
noticeable. These graphical representations suggest a satisfac-
tory convergence towards alignment that is consistent with the
outcomes derived from simulation experiments.

7. Discussion

This study proposes an Optimised Collective Motion (OCM)
model, which fundamentally incorporates viscoelastic links among

the robots. These viscoelastic connections, comprised of spring-
damper models, are designed to mitigate fluctuations between
robots, thereby minimising the control effort. The proposed
OCM framework establishes robust performance in the pres-
ence of noise, considering both numerical simulations and real-
robot experiments. To gain a deeper understanding of swarm
performance using the OCM model, an extensive series of tests
were conducted to explore the influence of various critical fac-
tors. These factors included the noise intensity (η), the constant
velocity (v0), the size of the swarm (N), the presence or absence
of the damper, and the swarm shape. The collective motion be-
haviour is evaluated according to the variations applied to these
factors, considering the alignment as the performance criteria.
A Monte Carlo method, executing 50 simulations, is employed
to examine the robustness of the system. All the experiments
in the following sections were conducted by applying the high-
est noise value in this paper (η = 0.3) except the tests in Sec-
tion 7.1. The statistical results are presented with box plots,
which include mean value, first and third quartiles, and exclu-
sive variation bounds. The median values from these boxplots
are utilised in subsequent sections to compare the performance
of the OCM model under different conditions. In addition, the
y-axis of the alignment metric (ψ) is adjusted based on the re-
sults to visually clarify the performance.

7.1. Impact of noise intensity (η)

A series of tests were conducted to assess the robustness
of the Optimised Collective Motion (OCM) model in relation
to variations in measurement noise intensity. As mentioned in
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Figure 12: Hardware experiment of six MONA robots on 2 × 1 m2 arena. A
localisation system is used to detect the positions and angles of the robots. (a)
Initial position and random orientations at t = 0 s; (b) Robots attempt to align
at t = 50 s; (c) The robots gradually share the desired angles at t = 150 s, and
(d) At t = 250 s onwards, the robots reach the consensus level of alignment.

Figure 13: Degree of alignment for a swarm of six MONA robots through 27
experimental runs. The duration of each experiment is from t = 0 s to t = 392 s.
The middle line denotes the median value. The upper and lower lines represent
the third and first quartiles, respectively.

Section 5.1.3, diverse noise values are implemented, specifi-
cally η ∈ {0, 0.1, 0.2, 0.3}, to observe their respective impacts

Figure 14: The degree of alignment of different noise intensity values.

on the behaviour of the swarm. Throughout these tests, the size
of the swarm was maintained at N = 100 robots, the constant
velocity was set at v0 = 0.075 m/s, and the remaining parame-
ters were kept fixed as well. Despite being subjected to a range
of noise intensities, the performance of the OCM model exhib-
ited a degree of resilience, with the variations in performance
being gradual and not significantly divergent, as is evident in
Figure 14. It is distinctly noticeable that at a noise intensity
of η = 0, the system delivers optimal alignment, achieving
ψ = 0.9888. However, as the noise intensity increases, the
degree of alignment experiences a marginal decline, reaching
ψ = 0.9868, ψ = 0.9706, and ψ = 0.9564 for η = 0.1, η = 0.2,
and η = 0.3. These findings substantiate the robustness of the
OCM model in the face of increasing noise intensity, highlight-
ing its practical applicability in environments where noise vari-
ation is a considerable factor.

7.2. Impact of constant velocity (v0)

An analysis was conducted using various constant veloc-
ity (v0) values in Eq. (4) to study its influence on the speed of
alignment convergence. The simulations were carried out for
v0 ∈ {0.002, 0.01, 0.075, 0.2} m/s, while keeping the other prin-
cipal parameters fixed. The results of the simulations demon-
strated that the highest velocity value of v0 = 0.2 m/s exhibited
the worst performance alignment, with the degree of alignment
being ψ = 0.31. This can be attributed to the fact that a high
velocity value resulted in an increase in fluctuations among the
robots, thereby adversely affecting the stability of the swarm.
However, the other three constant velocity values demonstrated
a progressive improvement in performance, as depicted in Fig-
ure 15. The lowest velocity v0 = 0.002 m/s makes the swarm
converge slowly. The next increment in velocity, v0 = 0.01 m/s,
displays a notable increase in the degree of alignment, achiev-
ing ψ = 0.88. This indicates that the swarm can reach a consen-
sus on their directional orientation. Interestingly, v0 = 0.075 m/s,
which is the selected velocity value in this paper, presented the
most efficient performance with a high degree of alignment of
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Figure 15: The degree of alignment for different velocities values.

ψ = 0.96. These results show the influence of the constant ve-
locity parameter on the performance of the OCM framework in
achieving efficient swarm behaviour.

7.3. Impact of swarm size (N)

A series of simulations were conducted with different swarm
sizes N ∈ {100, 400, 900} robots to investigate the influence of
swarm size on the performance of the OCM framework. As
illustrated in Figure 16(a), despite N = 100 robots demonstrat-
ing the optimal performance, the degree of alignment values for
all swarm sizes are close, which emphasises the scalability of
the algorithm. Upon observation of the median values of each
boxplot, the alignment values are ψ = 0.958, ψ = 0.944, and
ψ = 0.941 for swarm sizes N = 100, N = 400, and N = 900 re-
spectively. This reveals a minor robot alignment decrease as the
swarm size increases. These results clearly confirm the scala-
bility feature of the OCM model and the stable performance in
different swarm sizes.

Figure 16: The degree of alignment for different swarm sizes.

7.4. Impact of Damper

The implementation of damper links between the robots
serves to mitigate the fluctuations that arise due to the interplay
of attractive and repulsive forces. In the context of a swarm
size of N = 100 robots and a fixed velocity v0 = 0.075m/s, two
distinct experiments are performed: i) employing the optimised
damper coefficient c, and ii) eliminating the damper coefficient
where c = 0. The resultant influence of the damper on the
degree of alignment is depicted in Figure17, with the results
demonstrating a considerable enhancement when the damper
is incorporated into the system, thereby emphasizing a signif-
icant contribution of this work. Figure 17 shows that integrat-
ing damper links between the robots has substantively demon-
strated superior performance. The cohesiveness and stability of
the swarm are significantly amplified, leading to a maximisa-
tion of the degree of alignment of the swarm, with ψ = 0.965.
On the other hand, eliminating damper links causes a deterio-
ration of the collective motion behaviour. The robots struggle
to establish alignment throughout the simulation, with a sub-
stantially reduced alignment degree of ψ = 0.416.Therefore,
as implemented in this study, the damper emerges as a crucial
element in enhancing the performance of the OCM model.

Figure 17: The degree of alignment with and without the presence of a damper.

7.5. Impact of Swarm Shapes

The Optimised Collective Motion (OCM) framework has
demonstrated its robustness and stability in prior experiments,
where robots were initially positioned in a square formation
with random orientations. In this section, the performance of
the OCM algorithm is investigated under two different initial
configurations: i) a hexagonal shape and ii) a triangular shape.
The parameters for the OCM are held constant across all tests,
as shown in Table 1. According to Figure 18, it is noteworthy
that the performance metrics associated with the collective mo-
tion across all distinct shapes are almost similar. The degrees
of alignment are recorded as ψ = 0.9841, ψ = 0.9845, and
ψ = 0.9827 for the square, hexagonal, and triangular forma-
tions, respectively.
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Figure 18: The degree of alignment of different swarm shapes.

Figure 19: Snapshots of four different swarm shapes: a) square, b) hexagonal,
c) triangle, and d) ring. The images of (a, b and c) are captured when 99% of
the robots are aligned. Whereas the image of (d) is captured when 89% of the
robots are aligned.

This observation is further clarified in Figure 19, which
presents a snapshot of the three different shapes (a), (b), and
(c) at a specific time. The capturing time is chosen to be the in-
stance at which approximately 99% of the robots in the swarm
are fully aligned to examine the rapid convergence. Upon visual
inspection, it is apparent that the hexagonal shape demonstrates
improved performance when compared to the square shape in
terms of fast heading alignment. In Figure 19(a) and (b), 99%
of the swarm in the square shape aligned at t = 19 s compared
to t = 13 s in the case of the hexagonal shape. Conversely,
the triangular shape exhibited much slower convergence with
99% of the swarm aligned at t = 45 s as shown in Figure 19(c).
These findings demonstrate the influence of initial shape on the
behaviour of the swarm and the OCM method.

Figure 19(d) depicts the movement of N = 100 robots in
a ring shape where each robot is connected to only two near-
est neighbours. The natural length li j = 3.2 and the rest of
the parameters are fixed. The robots are placed in a circular
configuration and randomly oriented. Initially, the robots at-
tempted to align with their neighbours. Since each robot com-
municates with only two neighbours, the ring shape is divided
into subgroups where each group points in a different direc-
tion. As shown in Figure 19(d), nearly 89% of the robots are
aligned at t = 90 s. However, the swarm lost its stability, and
the ring shape was deformed, as stated in [11]. This percentage
value 89% of the aligned robots is the maximum value recorded
throughout the repeated simulations.

8. Conclusion

This paper proposes a novel Optimised Collective Motion
(OCM) control method by incorporating viscoelastic links be-
tween the robotic swarm individuals. These links substantially
mitigate the undesirable swarm fluctuations among the robots,
contributing significantly to fast alignment and preservation of
the swarm’s structure under measurement noise. The PSO al-
gorithm was employed to fine-tune the control parameters of
the proposed OCM algorithm. This optimisation process pri-
oritised minimising virtual forces and alignment errors within
the robotic swarm. The numerical results indicate a noteworthy
improvement in the model’s performance, particularly in terms
of faster alignment and enhanced robustness in the presence
of diverse noise intensities. Accordingly, the proposed method
outperforms former algorithms significantly. Moreover, the im-
pact of key factors, such as the robot’s velocity, swarm size,
swarm shape, presence of damper, and measurement noise, on
the optimised model was extensively analysed, shedding light
on the capabilities of the OCM control algorithm. Real-world
experiments were conducted using a group of six mobile robots.
Those experiments further confirmed the feasibility and effec-
tiveness of the OCM model. While the proposed method show-
cases promising outcomes, it is essential to acknowledge its
limitations. The algorithm is designed based on a particular
neighbourhood strategy and it might increase the risk of isola-
tion in large-scale workspaces. Furthermore, communication
issues or other failures may cause unpredictable conditions re-
sulting in instabilities. Future research directions could address
these limitations and extend the algorithm’s capabilities. Intro-
ducing additional virtual forces for navigation through complex
and multi-target environments, extending the algorithm to cover
three-dimensional applications, and obstacle avoidance would
enhance swarm versatility.
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