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Abstract. We prove the surjectivity part of Goncharov’s depth conjecture. We also show that the

depth conjecture implies that multiple polylogarithms of depth d and weight n can be expressed via
a single function Lin−d+1,1,...,1(a1, a2, . . . , ad), and we prove this latter statement for d = 2.

1. Introduction

Multiple polylogarithms are multivalued functions of variables a1, . . . , ad ∈ C depending on positive
integer parameters n1, . . . , nd ∈ N. In the polydisc |a1|, |a2|, . . . , |ad| < 1 polylogarithms are defined by
power series

Lin1,n2,...,nd
(a1, a2, . . . , ad) =

∑
0<m1<m2<···<md

am1
1 am2

2 . . . amd

d

mn1
1 mn2

2 . . .mnd

d

.

The number n = n1 + · · · + nd is called the weight of the multiple polylogarithm, and the number
d is called its depth. Goncharov suggested an ambitious conjecture, giving a necessary and sufficient
condition for a sum of polylogarithms to have certain depth. In §3 we show that the Goncharov depth
conjecture would have the following remarkable corollary.

Conjecture 1. Any multiple polylogarithm of weight n ≥ 2 and depth d ≥ 2 can be expressed as
a linear combination of multiple polylogarithms Lin−d+1,1,...,1 and products of polylogarithms of lower
weight.

We expect that there exists a presentation where all the arguments are Laurent monomials in
N
√
a1, . . . , N

√
ad for sufficiently large N. We show that Conjecture 1 is true for d = 2.

Theorem 2. For every 0 < k < n ∈ N there exists N ∈ N such that the multiple polylogarithm
Lik,n−k(x, y) can be expressed as a linear combination of functions

Lin−1,1( N
√
x

r N
√
y
s
, N
√
x

t N
√
y
u
) for r, s, t, u ∈ Z

and products of classical polylogarithms, where each appearance of N
√
z denotes any N th root of z.

Here is an example of this type of identity in weight four and depth two

Li2,2(x, y) = −4Li3,1

(
−
√
x

√
y
, y
)
− 4Li3,1

(√x
√
y
, y
)
+ 4Li3,1

(
−
√
y

√
x
, x
)
+ 4Li3,1

(√y
√
x
, x
)

+ Li3,1(x, y)− Li3,1(y, x)− Li3,1

(y
x
, x
)
− 1

2
Li4(xy) + Li1(x) Li3(y) .

In this formula
√
x (resp.

√
y) denotes some fixed square root of x (resp. y). The identity holds for

all |x|, |y| < 1.
In §2 we give an elementary proof of Theorem 2. In §3 we recall the statement of Goncharov’s

depth conjecture and prove a part of it (Theorem 5). Next, we show that the depth conjecture implies
Conjecture 1.
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2. Proof of Theorem 2

We define L(x, y | t1, t2) to be the following generating function

L(x, y | t1, t2) :=
∑
k,l>0

Lik,l(x/y, y)t
k−1
1 tl−1

2 =
∑

m,n>0

xmyn

(m− t1)(m+ n− t2)
.

The key observation used in the proof of Theorem 2 is the following identity.

Proposition 3. For any integers α, β, γ > 0 with γ = α+ β and any x, y with |x|, |y| < 1 we have

(1)
∑

Xα=x,Y β=y

L(X,Y | αβt, 0)−
∑

Zγ=xy,Y β=y

L(Z, Y | γβt, 0) +
∑

Zγ=xy,Xα=x

L(Z,X | −γαt, 0)

= L(xy, x | −αt, βt) +
1

γt

∑
k≥2

Lik(xy)(βt)
k−1 .

Proof. Note that ∑
Xα=x
Y β=y

L(X,Y | t1, t2) =
∑

m,n>0

αβxmyn

(mα− t1)(mα+ nβ − t2)
.

From this we calculate that the LHS of (1) is equal to∑
m,n>0

[ βxmyn

(m− βt)(mα+ nβ)
− βxmym+n

(m− βt)(mα+ (m+ n)β)
+

αxm+nym

(m+ αt)((m+ n)α+mβ)

]
=

∑
m≥n>0

βxmyn

(m− βt)(mα+ nβ)
+

∑
m>n>0

αxmyn

(n+ αt)(mα+ nβ)

=
1

γt

∑
m=n>0

[ (xy)n
n− βt

− (xy)n

n

]
+

∑
m>n>0

xmyn

(m− βt)(n+ αt)

=
1

γt

∑
k≥2

Lik(xy)(βt)
k−1 + L(xy, x | −αt, βt) . □

Proof of Theorem 2. Expanding both sides of (1) as a power series in t and comparing the coefficients
of tn−2 we see that for any integers α, β > 0 the function

Uα,β
n (x, y) :=

∑
k+l=n,
k,l>0

Lik,l(y, x)(−α)k−1βl−1

is expressible in terms of Lin−1,1 and Lin. Since the matrix ((−i)k−1(n − i)n−d−1)n−1
i,k=1 is invertible

(its determinant is of Vandermonde type), each individual function Lik,l(y, x) for k + l = n can be
written as a rational linear combination of the functions U1,n−1

n (x, y), U2,n−2
n (x, y), . . . , Un−1,1

n (x, y),
and hence it also can be expressed in terms of Lin−1,1 and Lin, as claimed. □

3. Surjectivity part of the Goncharov depth conjecture

To state the Goncharov depth conjecture we recall the definition of the Lie coalgebra L•(F) of
(formal) polylogarithms with values in a field F ([1], see also [4, §2.1]). The Lie coalgebra L•(F)
is positively graded by weight; the component of weight n is generated over Q by formal symbols
LiLn0 ;n1,...,nd

(a1, . . . , ad) for n0 ∈ Z≥0, n1, . . . , nd ∈ N with n0 + n1 + · · · + nd = n and a1, . . . , ad ∈
F×, which are subject to (mostly unknown) functional equations for polylogarithms. The cobracket

∆: L•(F) −→
∧2 L•(F) was discovered by Goncharov ([1], [2], [3]); the definition was inspired by

properties of mixed Hodge structures related to multiple polylogarithms. The Lie coalgebra L•(F) is
filtered by depth; denote by DdL•(F) the subspace spanned by polylogarithms of depth not greater
than d; let grDd L•(F) be the associated graded space. The subspace D1L•(F) spanned by classical

polylogarithms LiLn(a) is denoted by Bn(F).
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Assume that ∆ =
∑

1≤i≤j ∆ij for ∆ij : Li+j(F) −→ Li(F) ∧ Lj(F). The truncated cobracket is a

map ∆: L(F) −→
∧2 L(F) defined by the formula ∆ =

∑
2≤i≤j ∆ij . In other words, ∆ is obtained

from ∆ by omitting the component L1(F) ∧ Ln−1(F) from the cobracket. Denote by coLie•(V ) the
cofree graded Lie coalgebra cogenerated by a graded vector space V .

By [4, Proposition 4.1], the iterated truncated cobracket ∆
[d−1]

vanishes on Dd−1L•(F) and defines
a map

∆
[d−1]

: grDd L≥2(F) −→ coLied

(⊕
n≥2

Bn(F)

)
.(2)

Conjecture 4 (Goncharov, [3, Conjecture 7.6]). A linear combination of multiple polylogarithms has
depth less than or equal to d if and only if its d-th iterated truncated cobracket vanishes. Moreover,

the map ∆
[d−1]

for d ≥ 1 is an isomorphism.

We prove the surjectivity part of Conjecture 4.

Theorem 5. Assume that the field F is quadratically closed. Then the map

∆
[d−1]

: grDd L≥2(F) −→ coLied

(⊕
n≥2

Bn(F)

)
is surjective.

Proof. It is easy to see that

∆
[d−1]

(
LiLn−d ; 1,...,1(a1, . . . , ad)

)
=

∑
n1+n2+···+nd=n

ni≥2

LiLn1
(a1)⊗ · · · ⊗ LiLnd

(ad).

Recall that if F contains all degree r roots of unity then classical polylogarithms Lin(a) satisfy the
following distribution relations:

LiLn(a
r) = rn−1

∑
ζr=1

LiLn(ζa) .

It follows that for any s ∈ N

∆
[d−1]

 ∑
x2s=ad

LiLn−d ; 1,...,1,1(a1, . . . , ad−1, x)


=

∑
n1+n2+···+nd=n

ni≥2

2−s(nd−1) LiLn1
(a1)⊗ · · · ⊗ LiLnd

(ad)

=
∑

2≤nd≤n−2d+2

( ∑
n1+n2+···+nd−1=n−nd

ni≥2

LiLn1
(a1)⊗ · · · ⊗ LiLnd−1

(ad−1)

)
⊗ 2−s(nd−1) LiLnd

(ad) .

From the properties of the Vandermonde determinant it follows that for every nd ≥ 2 the element( ∑
n1+n2+···+nd−1=n−nd

ni≥2

LiLn1
(a1)⊗ · · · ⊗ LiLnd−1

(ad−1)

)
⊗ LiLnd

(ad)

lies in the image of ∆
[d−1]

. Continuing in a similar fashion, we conclude that for every n1, . . . , nd ∈ N
the element

LiLn1
(a1)⊗ · · · ⊗ LiLnd

(ad)

lies in the image of ∆
[d−1]

. From here the statement follows. □
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Assume that Goncharov’s depth conjecture holds. It follows from the proof of Theorem 5 that
L•(F) is generated by functions Lin−d ; 1,...,1(a1, . . . , ad). The shuffle antipode and stuffle antipode for
multiple polylogarithms [4] (cf. also [3]), respectively, imply that

LiLn−d ; 1,...,1(a1, . . . , ad)

≡ (−1)n+1 LiL0 ; 1,...,1,n−d+1(a
−1
d−1, . . . , a

−1
2 , a−1

1 , a1 · · · ad) (mod products)

≡ (−1)n−d LiL0 ;n−d+1,1,...,1(a1 · · · ad, a−1
1 , a−1

2 , . . . , a−1
d−1) (mod products, depth < d) ,

where LiL0 ;n−d+1,1,...,1 corresponds to the function Lin−d+1,1,...,1, so Conjecture 4 implies Conjecture 1.
Theorem 5 has the following striking corollary.

Corollary 6. Let F be a quadratically closed field. Assume that Conjecture 4 holds for d = 1. Then it
holds for all d ≥ 1 and the Lie coalgebra L≥2(F) with cobracket ∆ is cofree.

Proof. First, we assume that (2) is an isomorphism. Our goal is to show that L≥2(F) is cofree, or,
equivalently, that the Chevalley-Eilenberg complex

∧•
(L≥2(F)) is exact in degree at least two. The

depth filtration on L≥2(F) induces a filtration on the complex
∧•

(L≥2(F)) . Consider the spectral
sequence of this filtered complex; its first page is the cohomology of the associated graded complex,
which coincides with the Chevalley-Eilenberg complex of the Lie coalgebra grD• L≥2(F). By (2), the
latter coalgebra is cofree, so the spectral sequence collapses at the first page. This implies the statement.

Now, our goal is to prove that (2) is an isomorphism. We argue by induction on d; the base case

d = 1 is a tautology. Suppose that for k ≤ d−1 the map ∆
[k−1]

is an isomorphism. By Theorem 5, it is

sufficient to show that ∆
[d−1]

is injective. Consider an element x ∈ DdL≥2(F) such that ∆
[d−1]

(x) = 0.
The map

∆
[•]

: grDL≥2(F) −→ coLie

(⊕
n≥2

Bn(F)

)
is a morphism of Lie coalgebras, so∑

i+j=d

∆
[i−1] ∧∆

[j−1]
(∆(x)) = 0.(3)

By the induction assumption, (3) implies that ∆(x) vanishes in
∧2

grDL≥2(F) = grD
(∧2 L≥2(F)

)
so

∆(x) ∈ Dd−1

(∧2 L≥2(F)
)
. The same spectral sequence argument as above shows that Lie coalgebra

Dd−1L≥2(F) with cobracket ∆ is cofree. Thus there exists y ∈ Dd−1L≥2(F) such that ∆(x − y) = 0,
so x − y ∈ D1L≥2(F) by the assumption that Conjecture 4 holds for d = 1. It follows that x ∈
Dd−1L≥2(F). □
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