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A B S T R A C T   

The temporal bisection procedure has been used to assess theories of time perception. A problem with the 
procedure for measuring the perceived midpoint of two durations is that the spacing of probe durations affects 
the length of the bisection point. Linear spacing results in longer bisection points closer to the arithmetic mean of 
the durations than logarithmic spacing. In three experiments, the influence of probe duration distribution was 
avoided by presenting a single probe duration of either the arithmetic or geometric mean of the trained dura-
tions. It was found that the number of participants that categorised the arithmetic mean as long was significantly 
larger than those that categorised it as short. The number of participants that categorised the geometric mean as 
either short or long did not significantly differ. This was true for trained durations of 0.4 s vs. 1.6 s (Experiments 
1–3), 0.2 s vs. 3.2 s (Experiment 2) and 0.4 s vs. 6.4 s (Experiment 3). In Experiment 4, the probe trial distribution 
effect was replicated with logarithmic and linearly distributed probe durations, demonstrating that bisection 
occurs close to the arithmetic mean with linearly spaced probe durations. The results provide evidence against 
bisection at the arithmetic mean when probe spacing bias is avoided and, instead, the results are consistent with 
logarithmic encoding of time, or a comparison rule based on relative rather than absolute differences.   

1. Introduction 

In a typical temporal bisection procedure, subjects are trained to 
discriminate between two durations of a presentation of a stimulus by 
making different responses for when the presentation is a short duration 
and a long duration (see Kopec & Brody, 2010; Penney & Cheng, 2018 
for reviews). In experiments with humans, participants receive feedback 
on their responses. With animals, they receive reinforcement for making 
the correct response on a given trial. After the discrimination is ac-
quired, subjects are presented with probe durations of the stimulus that 
are intermediate to the trained short and long durations and no feedback 
or reinforcement is presented. Categorisation of these probe durations as 
either ‘short’ or ‘long’, as indicated by the appropriate response allows a 
psychometric function to be plotted that shows the transition from 
making mostly ‘short’ responses to mostly ‘long’ responses as a function 
of time (see Fig. 1, panel a). The timepoint at which a subject makes 
equal ‘short’ and ‘long’ responses is the bisection point and may be 
considered as the perceived midpoint of the two trained durations and, 
therefore, the duration that is equally similar to the trained short and 
long durations. 

Identification of the bisection point may allow the relation between 
subjective time and physical time to be identified. If perception of time is 
linear then the perceived midpoint between two durations may be their 
arithmetic mean (see Fig. 1, panel b). This outcome requires that the 
comparison of intervals reflects their difference such that the midpoint is 
the duration that is equally far from the short and long durations. It is 
possible, however, that alternative methods of comparison may lead to 
bisection at durations different from the arithmetic mean. For example, 
scalar expectancy theory proposed that time is perceived linearly, but 
comparison of durations is achieved by their relative rather than abso-
lute differences (Gibbon, 1977, 1981). This results in the bisection point 
being the geometric mean of the durations, i.e., the square root of the 
product of the short and long durations. Thus, the geometric mean is the 
duration that is a ratio of the short duration that is the square root of the 
long-to-short ratio. For example, for short and long durations that have a 
1:4 ratio, the geometric mean is the duration that is twice the short 
duration and half the long duration. If perception of time is logarithmic 
(see Fig. 1, panel c) then the perceived midpoint will be the geometric 
mean when the difference of the log durations is used. Regardless of the 
method for comparing the durations, logarithmic perception of time 
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results in bisection below the arithmetic mean. 
Experiments in animals have typically shown bisection close to the 

geometric mean (e.g., Church & Deluty, 1977; Platt & Davis, 1983). This 
has been taken as evidence for logarithmic perception of time (Church & 
Deluty, 1977) or, instead, evidence of comparison of relative rather than 
absolute differences (Gibbon, 1981). This fits in with other findings that 
suggest that behaviour in animals reflects sensitivity to relative rather 
than absolute durations, such as the time-scale invariance of conditioned 
response timing (Gibbon, 1977) and is in keeping with Weber’s law that 
the discriminability of two stimuli increases as a function of their ratio 
rather than absolute values. The implication of this is that the discrim-
ination between two durations with a fixed difference between the short 
and long duration becomes increasingly difficult as the durations in-
crease (e.g., it is harder to discriminate between 11 s and 12 s than 1 s 
and 2 s despite the difference between the pairs of the durations being 
the same). In this respect, time perception in animals is similar to 
perception in other modalities in which discrimination reflects the 
relative rather than absolute difference between stimuli (Hecht, 1934; 
Moore & Raab, 1975). 

In contrast to animals, in humans, it has typically been found that 
bisection occurs close to the arithmetic mean (e.g., Wearden, 1991; 
Wearden & Ferrara, 1995; Wearden, Rogers, & Thomas, 1997). This 
suggests that temporal perception is linear and discrimination occurs by 
means of comparison of the differences between durations. This result is 
at odds with other findings that have suggested that human time 
perception shows scalar properties conforming to Weber’s law (Haigh, 
Apthorp, & Bizo, 2021; Rakitin et al., 1998). 

A problem with interpretation of the bisection point as the perceived 
midpoint of the durations is that the bisection point is affected by the 
spacing of the probe durations used in the test phase (Brown, McCor-
mack, Smith, & Stewart, 2005; Penney, Brown, & Wong, 2014; Wearden 
et al., 1997; Wearden & Ferrara, 1995; Zhu, Baykan, Muller, & Shi, 
2021). When the probe durations are logarithmically spaced, such that 
there are more probe durations below the arithmetic mean than above, 
the bisection point is a shorter duration than when the probe durations 
are linearly spaced (with an equal number of probe durations above and 
below the arithmetic mean). Although the majority of the evidence for 
the stimulus spacing effect comes from studies in humans, animals are 
also affected by the manipulation (Raslear, 1983, 1985). These findings 
suggest that throughout the course of the test phase subjects are biased 
by the distribution of probe durations such that they come to distribute 
their responses equally below and above the median probe duration. 
Indeed, bisection is influenced by the frequency of individual probe 
durations, not just the spacing of durations, such that bisection points 

will be shorter with higher frequency short than long probe durations 
suggesting that people weight their responses based on the overall sta-
tistics of the probe durations (Zhu et al., 2021). The issue of the distri-
bution of probe durations during the test phase on interpretation of the 
bisection point has led to the conclusion that the bisection point cannot 
be taken as a pure measure of the perceived midpoint of two durations 
(Allan, 2002). 

A way in which the effect of probe duration spacing on the bisection 
point can be avoided is simply to not have a distribution. This can be 
achieved by having a single probe duration trial. For the first probe trial 
of a test phase, there is no expectation of the spacing or frequency of 
probe durations, therefore, the bias to make a ‘short’ or ‘long’ response, 
independent of the perceived temporal midpoint, is zero. Performance 
on the first probe trial is a bias-free measure of temporal categorisation 
in the bisection procedure. The obvious drawback to only considering 
data from the first probe trial is that it would reveal nothing about 
temporal bisection in individuals. In a sample of participants, however, 
it would, at the very least, allow falsification of hypothesised bisection 
points. 

The purpose of the current set of experiments was to test temporal 
bisection using a single probe trial and, thus, avoid the bias of probe 
duration distribution. In Experiments 1–3, participants were trained 
with a short and long duration and then presented with either the geo-
metric or arithmetic mean of the trained durations. A difference in the 
proportion of participants responding ‘short’ or ‘long’ across the two 
means would provide evidence against bisection at either the geometric 
or arithmetic mean. In Experiment 1, participants were trained with 0.4 
s as the short duration and 1.6 s as the long duration. The trained short 
and long durations were 0.2 s and 3.2 s in Experiment 2 and 0.4 s and 
6.4 s in Experiment 3. Experiments 2 and 3 also included a group of 
participants trained with 0.4 s and 1.6 s as a positive control. Experiment 
4 verified the effect of probe trial distribution on the bisection point 
using the same training procedure as Experiments 1–3. All experiments 
were conducted online using Pavlovia. 

2. Experiment 1 

In Experiment 1, participants were trained with a short, 0.4 s and 
long, 1.6 s presentation of a stimulus before receiving a single probe trial 
of the geometric or arithmetic mean of the durations. The short and long 
training durations fall within the range that typically lead to bisection at 
the arithmetic mean (Wearden & Ferrara, 1996) and have been used in 
experiments that have found stimulus spacing effects (Zhu et al., 2021). 
If participants bisect at the arithmetic mean when the effect of probe 

Fig. 1. Illustration of temporal categorisation of durations and the implications of linear and logarithmic perception of time. Panel a shows a hypothetical psy-
chophysical function of proportion of ‘long’ duration categorisations in a bisection task as a function of probe duration. The point at which the sigmoid function 
crosses 0.5 on the Y axis is the bisection point, indicating the duration for which a participant makes an equal number of ‘short’ and ‘long’ categorisation responses. 
Panel b shows perceived time plotted as a linear function of physical time (solid black line). The dotted lines on the X and Y axes indicate the midpoint of perceived 
time and its relation to physical time. Panel c shows perceived time as a logarithmic function of physical time (solid black line). In contrast to linear perception (panel 
b), logarithmic perception of time results in the midpoint of perceived time (dotted line on the Y axis) being a shorter physical duration (dotted line on the X axis). 
When discrimination is based on the difference between subjective durations, the midpoint of two durations on a linear scale is the arithmetic mean and the midpoint 
of two durations on a logarithmic scale is the geometric mean. 
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duration spacing is avoided then there should be a preference for 
responding ‘short’ over ‘long’ when presented with the geometric mean 
and no preference when presented with the arithmetic mean. If partic-
ipants, however, bisect at the geometric mean, there should be a pref-
erence for responding ‘long’ over ‘short’ when presented with the 
arithmetic mean and no preference when presented with the geometric 
mean. 

2.1. Methods 

2.1.1. Participants 
One hundred and twenty-five participants were recruited from the 

Durham University Department of Psychology participant pool and 
received participant pool credit. Eleven were male, 103 were female and 
11 did not report their sex. Of the 115 participants that reported their 
age, the mean age was 20 years (range: 17–25). The sample size for 
Experiment 1 and for the subsequent experiments reflects the number of 
participants that volunteered over an approximate four-to-six-week 
period. All procedures were approved by the Durham University 
Department of Psychology Ethics committee (PSYCH-2021-06- 
23T16_49_56-pggt56). Participants gave their informed consent prior to 
the start of the experiment. 

2.1.2. Apparatus and stimuli 
The discrimination task was created using Psychopy (Peirce et al., 

2019) and made available online using Pavlovia. The visual stimulus 
used for the temporal discrimination was the presentation of a white 
square in the centre of the screen on a grey background. 

2.1.3. Procedure 
Participants received discrimination training trials in which the 

white square was presented for either 0.4 s or 1.6 s. There were ten trials 
of each duration, presented in a random order with the constraint that 
there was one trial of each duration every two trials. Participants were 
instructed that they would be presented with a temporal categorisation 
task in which they would learn by trial and error by receiving feedback 
on their responses. At the termination of the presentation of the white 
square participants were instructed to choose between pressing the ‘Z’ or 
‘M’ key. As soon as they made a response, feedback was provided (either 
“Correct” or “Oops! That was wrong”) for 1 s. The next trial started 
immediately afterwards. Pressing the ‘Z’ key was the correct response 
for the 0.4 s duration and pressing the ‘M’ key was correct for the 1.6 s 
duration. 

On the 21st trial, the white square was presented for a probe duration 
(either the geometric mean of 0.8 s or the arithmetic mean of 1.0 s). The 
probe duration for each participant was randomly selected. No feedback 
was presented. The experiment ended when the participant made a 
response. 

2.1.4. Data analyses 
The exposition of the statistical analyses is included in the Results 

section. Analyses were conducted using SPSS version 29 and JASP 
version 0.17.2.1 (JASP-Team, 2024). 

2.2. Results and discussion 

An inclusion criterion of >50% correct during training was applied 
such that participants that failed to show performance above chance 
level were excluded. This resulted in the exclusion of the data from 17 
participants. The mean performance of the remaining 108 participants 
was 87% correct, SEM = 1.2. 

The distribution of ‘short’ and ‘long’ responses to the geometric and 
arithmetic mean probe durations is shown in Fig. 2. Three quarters of 
participants presented with the arithmetic mean responded ‘long’, 
whereas similar numbers of participants presented with the geometric 
mean responded ‘long’ and ‘short’. A Chi square analysis of the 

distribution of responses was significant, χ2 (108) = 9.31, p = 0.002, φ 
= 0.29. 

Separate binomial tests were conducted for the arithmetic and geo-
metric groups. It was found that a significant proportion of participants 
responded ‘long’ when presented with the arithmetic mean, p < 0.001. 
The proportion of participants that responded ‘long’ when presented 
with the geometric mean was not significant, p = 0.56. 

The results provide evidence against bisection at the arithmetic 
mean. The majority of participants categorised the arithmetic mean as 
long, but there was no significant preference for categorising the geo-
metric mean as short or long. This suggests that the bisection point is 
closer to the geometric mean than the arithmetic mean. The result is in 
contrast to other experiments that have used similar time ranges that 
have found evidence for bisection at the arithmetic mean (Wearden & 
Ferrara, 1996). The difference between results may imply that evidence 
for the arithmetic mean reflects a bias as a result of the effect of the 
distribution of probe trials on temporal categorisation. 

3. Experiment 2 

A possible explanation for why Experiment 1 found evidence against 
bisection at the arithmetic mean may be that that the stimulus range was 
too short and the ratio of the short-to-long durations was too small. 
Although Wearden and Ferrara (1996) found evidence that durations 
with a 1:4 ratio (like the durations used in Experiment 1) or greater led 
to bisection at the arithmetic mean, ratios of 1:2 led to bisection at the 
geometric mean. Furthermore, evidence for the geometric mean with 
small short-to-long duration ratios is found only with short stimulus 
ranges, because longer durations (i.e., 2 s versus 4 s or 4 s versus 8 s) 
have resulted in bisection at the arithmetic mean (Wearden et al., 1997). 

Experiment 2 replicated the procedure of Experiment 1 with the 0.4 s 
and 1.6 s training durations with the addition of another condition in 
which the short and long durations were 0.2 s and 3.2 s. Across the two 
conditions, the geometric mean of the intervals was matched (i.e., 0.8 s 
for each group) but the ratio of long-to-short durations differed four- 
fold. If the bisection point shifts towards the arithmetic mean as the 

Fig. 2. The number of participants that made a ‘short’ or ‘long’ response in the 
probe test of Experiment 1. The percentages reported above white bars in-
dicates the proportion of participants that responded ‘long’. 
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range between the temporal values increases, then it would be predicted 
that there would be a preference for responding ‘short’ to the geometric 
mean for the 0.2 s vs. 3.2 s group. If, however, bisection occurs at the 
geometric mean regardless of stimulus range then both groups should 
show a preference for responding ‘long’ to the arithmetic mean and the 
preference should be greater in the 0.2 s vs. 3.2 s group than 0.4 s vs. 1.6 
s group. 

3.1. Method 

3.1.1. Participants 
132 participants were recruited in the same manner as Experiment 1. 

Thirty were male, 71 were female and one person did not report their 
sex. Of the 131 participants that reported their age, the mean age was 20 
years (range: 18–35). 

3.1.2. Apparatus and stimuli 
The apparatus and stimuli were the same as Experiment 1. 

3.1.3. Procedure 
Participants were randomly allocated to either the 0.4 s vs. 1.6 s 

condition or the 0.2 s vs. 3.2 s condition. In the probe trial, participants 
in the 0.4 s vs. 1.6 s condition were randomly allocated either the geo-
metric mean of 0.8 s or the arithmetic mean of 1.0 s. In the 0.2 s vs. 3.2 s 
condition participants were randomly allocated the geometric mean of 
0.8 s or the arithmetic mean of 1.7 s. All other details were the same as 
Experiment 1 except that for approximately half of the participants, 
pressing ‘Z’ was the correct response for the short duration and pressing 
‘M’ was the correct response for the long duration. The opposite was true 
for the remaining participants. 

3.2. Results and discussion 

Eleven participants were excluded for failing to perform above 50% 
during training. The mean performance of the remaining 121 partici-
pants was 89% correct, SEM = 0.9. 

The distribution of ‘short’ and ‘long’ responses to the geometric and 
arithmetic mean probe durations is shown in Fig. 3. For both the 0.4 s vs. 
1.6 s group and the 0.2 s vs. 3.2 s group, participants predominantly 
responded ‘long’ when presented with the arithmetic mean. This was not 
the case for participants presented with the geometric mean of the 
durations. 

Four separate Chi square analyses were conducted to compare the 
distribution of ‘short’ and ‘long’ responses amongst the groups. The first 
two comparisons were similar to those conducted for the results of 
Experiment 1, in which responses to geometric and arithmetic means 

were compared within the two groups (group 0.4 s vs. 1.6 s and group 
0.2 s vs. 3.2 s). The third comparison was of the distribution of responses 
for participants tested with the arithmetic mean in groups 0.4 s vs. 1.6 s 
and 0.2 s vs. 3.2 s. The fourth comparison was of the responses to the 
geometric mean across the two groups. The family-wise error rate for the 
four comparisons was reduced by adjusting alpha using the Holm- 
Bonferroni correction. Uncorrected p-values are reported as well as the 
value of alpha of the relevant comparison. 

There was a significant association between responses and mean 
duration for the 0.2 s vs. 3.2 s group, χ2 (63) = 25.98, p < 0.001, alpha =
0.0125, φ = 0.64. For the 0.4 s vs. 1.6 s group, the association failed to be 
significant when corrected for multiple comparisons, χ2 (58) = 4.46, p =
0.035, alpha = 0.025 φ = 0.28. A comparison of the two groups tested 
with the arithmetic mean showed a significant association between 
group and response, χ2 (64) = 6.06, p = 0.014, alpha = 0.017, φ = 0.31. 
There was no significant association of factors for groups tested with the 
geometric mean, χ2 (57) < 1, p = 0.4, alpha = 0.05. 

Binomial tests showed that for both groups, a significant proportion 
of participants responded ‘long’ when presented with the arithmetic 
mean (largest p-value = 0.005). The proportion of participants that 
responded ‘long’ when presented with the geometric mean was not 
significant for either group (smallest p-value = 0.26). 

The analysis of the 0.4 s vs. 1.6 s group, the condition that replicated 
the design of Experiment 1, failed to be significant when corrected for 
multiple comparisons. In order to examine the strength of evidence that 
the results of group 0.4 s vs. 1.6 s replicated the findings of Experiment 
1, a replication Bayes factor (BF) was calculated (Ly, Etz, Marsman, & 
Wagenmakers, 2019) in which the BF for the combined data from group 
0.4 s 1.6 s and those of Experiment 1 (BF10 = 272.42) is expressed as a 
ratio of the BF for the data of Experiment 1 alone (BF10 = 24.39). The 
replication BF10 equalled 11.17, indicating that the evidence of repli-
cation was 11.17 times greater than the evidence for no replication. 

Similar to the findings of Experiment 1, the results of Experiment 2 
were not consistent with bisection at the arithmetic mean and were, 
instead, consistent with bisection at the geometric mean. Both groups 
showed a preference for making ‘long’ responses when presented with 
the arithmetic mean and this preference was significantly greater for the 
0.2 s vs. 3.2 s group than 0.4 s vs. 1.6 s group. This is consistent with the 
hypothesis that bisection occurs at the geometric mean. Because the 
geometric mean was matched across groups, this resulted in the arith-
metic mean of the 0.2 s vs. 3.2 s group being longer than the 0.4 s vs. 1.6 
s group and, therefore, increasing the probability that it would be cat-
egorised as ‘long’. 

4. Experiment 3 

The purpose of Experiment 3 was to test bisection with a greater 
stimulus range than compared to Experiments 1 and 2. Similar to 
Experiment 2, the 0.4 s vs. 1.6 s condition was replicated for a group of 
participants and was included as a positive control. For another group, 
the training durations were 0.4 s vs. 6.4 s. 

4.1. Method 

4.1.1. Participants 
113 participants were recruited in the same manner as Experiments 1 

and 2. Seventeen were male, 95 were female and 1 participant did not 
report their sex. Of the 112 participants that reported their age, the 
mean age was 20 years (range: 18–29). 

4.1.2. Apparatus and stimuli 
The apparatus and stimuli were the same as Experiment 1 and 2 

except that the visual stimulus was a six-pointed purple star. 

4.1.3. Procedure 
Participants were randomly allocated to either the 0.4 s vs. 1.6 s 

Fig. 3. The number of participants that made a ‘short’ or ‘long’ response in the 
probe test of Experiment 2. The left panel shows the results for the 0.4 s vs. 1.6 s 
group. The right panel shows the results for the 0.2 s vs. 3.2 s group. The 
percentages reported above white bars indicates the proportion of participants 
that responded ‘long’. 
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condition or the 0.4 s vs. 6.4 s condition. In the probe trial, participants 
in the 0.4 s vs. 1.6 s condition were randomly allocated either the geo-
metric mean of 0.8 s or the arithmetic mean of 1 s. In the 0.4 s vs. 6.4 s 
condition, participants were randomly allocated the geometric mean of 
1.6 s or the arithmetic mean of 3.4 s. All other details were the same as 
Experiment 2. 

4.2. Results and discussion 

Seventeen participants were excluded for failing to perform above 
50% during training. The mean performance of the remaining 96 par-
ticipants was 89% correct, SEM = 1.2. 

The distribution of ‘short’ and ‘long’ responses to the geometric and 
arithmetic mean probe durations is shown in Fig. 4. For both the 0.4 s vs. 
1.6 s group and the 0.4 s vs. 6.4 s group, participants predominantly 
responded ‘long’ when presented with the arithmetic mean. This was not 
the case for participants presented with the geometric mean of the 
durations. 

Similar to the analyses of Experiment 2, four separate Chi square 
analyses were conducted, using the Holm-Bonferroni correction, to 
compare the distribution of ‘short’ and ‘long’ responses amongst the 
groups. For the 0.4 s vs. 1.6 s group, there was a significant association 
between responses and mean duration, χ2 (46) = 7.16, p = 0.008, alpha 
= 0.017, φ = 0.39. The association was also significant for the 0.4 s vs. 
6.4 s group, χ2 (50) = 7.51, p = 0.006, alpha = 0.0125, φ = 0.39. A 
comparison of the two groups tested with the geometric mean failed to 
find a significant association between factors, χ2 (51) = 3.36, p = 0.07, 
alpha = 0.05. A comparison of the two groups tested with the arithmetic 
mean failed to find a significant association between factors, χ2 (45) =
3.67, p = 0.06, alpha = 0.025. 

Binomial tests showed that for both groups a significant proportion 
of participants responded ‘long’ when presented with the arithmetic 
mean (largest p-value = 0.0015). The proportion of participants that 
responded ‘long’ when presented with the geometric mean was not 
significant for the 0.4 s vs. 1.6 s group (p = 1.0). The proportion of ‘long’ 
responses was significantly greater than short responses for the 0.4 s vs. 
6.4 s group (p = 0.029). 

In order to test the strength of evidence that the results of group 0.4 s 
vs. 1.6 s replicated the results of Experiment 1 and the similar condition 
in Experiment 2, a replication BF was calculated. For the combined re-
sults of Experiments 1–3, the BF10 = 5156. For the combined results of 
Experiments 1 and 2 the BF10 = 24.39. Therefore, the replication BF10 
equalled 18.93, indicating that evidence of replication was 18.93 times 
greater than the evidence for no replication. 

The results of Experiment 3 were very similar to Experiment 2 and 
showed evidence against bisection at the arithmetic mean regardless of 

the stimulus range used. While the results are more consistent with 
bisection at the geometric mean than the arithmetic mean, there was 
some evidence for a preference for responding ‘long’ over ‘short’ to the 
geometric mean for the 0.4 s vs. 6.4 s group. This suggests that at some 
stimulus durations bisection may be below the geometric mean, poten-
tially closer to the harmonic mean. Bisection at the harmonic mean 
would suggest processing of rate information rather than simply dura-
tion. The fact that sub-geometric mean bisection was observed with a 
long-to-short duration ratio of 16:1 is surprising given that it has pre-
viously been observed only with much smaller ratios (Kopec & Brody, 
2010). Although, there was some evidence of a preference for ‘long’ 
responses, the distribution of responses to the geometric mean for the 
0.4 s vs. 6.4 s group, however, did not significantly differ from those of 
the 0.4 s vs. 1.6 s group. Therefore, the evidence for sub-geometric 
bisection should be treated with caution. 

The finding that participants categorised the arithmetic mean as 
‘long’ to a greater extent than the geometric mean in the 0.4 s versus 1.6 
s condition in Experiments 1 and 2 was replicated in the present 
experiment. Therefore, this finding is robust despite there being only a 
small difference between the geometric mean of 0.8 s and the arithmetic 
mean of 1.0 s. In order to determine the effect size for the 0.4 s versus 
1.6 s condition, given all the available data, a pooled analysis of the 
relevant conditions across Experiments 1–3 was conducted. Overall, 79 
out of 102 (77%) participants responded ‘long’ when presented with the 
arithmetic mean and 52 out of 110 (47%) responded ‘long’ when pre-
sented with the geometric mean. It was found that φ = 0.31 (odds ratio 
= 3.8, 95% CI [2.1, 6.9]). A power analysis indicated that samples of N 
= 40 per condition (arithmetic mean and geometric mean) are required 
for 80% power (alpha = 0.05, two-tailed). A pooled analysis of the 
conditions that used a larger 16:1 long-to-short duration ratio (0.2 s 
versus 3.2 s in Experiment 2 and 0.4 s versus 6.4 s in Experiment 3) was 
also carried out. In contrast to the 0.4 s versus 1.6 s condition, for these 
conditions there was a larger difference between the geometric and 
arithmetic means and, therefore, the effect of the probe duration should 
be larger. It was found that that φ = 0.52 (odds ratio = 48, 95% CI [7.7, 
498] and N = 15 per condition is required for 80% power (alpha = 0.05, 
two-tailed). 

5. Experiment 4 

The results of Experiments 1–3 provide evidence against temporal 
bisection at the arithmetic mean and are, instead, consistent with 
bisection at the geometric mean. This is in contrast to the previous 
research that supported bisection at the arithmetic mean but assessed 
bisection with a distribution of probe durations (e.g., Wearden et al., 
1997; Wearden & Ferrara, 1995, 1996). Other than the difference in the 
nature of the probe test, there are potential differences between the 
methods of Experiments 1–3 and those of other studies that have pro-
duced contradictory results. While it is not clear why it would lead to the 
pattern of the results, the most obvious methodological difference is that 
the current experiments were conducted online rather than in a 
controlled, laboratory environment. The purpose of Experiment 4 was to 
verify that the online procedure used in Experiments 1–3 would repli-
cate bisection at the arithmetic mean when tested with linearly spaced 
probe durations. In addition, another group of participants were tested 
with logarithmically spaced probe durations in order to test whether the 
procedure would replicate the spacing effect such that logarithmically 
spaced probe durations would lead to shorter bisection points than lin-
early spaced probe durations. Replication of the spacing effect would 
suggest that the difference between the results of Experiments 1–3 and 
previous research showing bisection at the arithmetic mean likely re-
flects the difference in the probe test procedure rather than other dif-
ferences in methods. 

Fig. 4. The number of participants that made a ‘short’ or ‘long’ response in the 
probe test of Experiment 3. The left panel shows the results for the 0.4 s vs. 1.6 s 
group. The right panel shows the results for the 0.4 s vs. 6.4 s group. The 
percentages reported above white bars indicates the proportion of participants 
that responded ‘long’. 
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5.1. Methods 

5.1.1. Participants 
Thirty-seven participants were recruited in the same manner as Ex-

periments 1–3. Four were male, 31 were female and 2 participants did 
not report their sex. Of the 35 participants that reported their age, the 
mean age was 20 years (range: 17–23). 

5.1.2. Apparatus and stimuli 
The apparatus and stimuli were the same as Experiment 1 and 2. 

5.1.3. Procedure 
Participants were randomly allocated to either the logarithmic or 

linear conditions. The procedure for training was identical to Experi-
ments 1-3. In the test phase, participants continued to receive training 
trials with the 0.4 s and 1.6 s durations and received feedback. Inter-
spersed with the training trials were probe trials that consisted of in-
termediate durations. For the logarithmic spacing group, these probe 
durations were 0.5 s, 0.6 s, 0.8 s, 1.0 s and 1.3 s. For the linear spacing 
group, the probe durations were 0.6 s, 0.8 s, 1.0 s, 1.2 s and 1.4 s. No 
feedback was given on probe duration trials. The test phase consisted of 
70 trials: 10 trials of each of the two training durations and the five 
probe durations. Trials were presented in a random order except that 
each block of seven trials contained one of each duration and the first 
two trials of the block were the training durations. All other details were 
the same as Experiment 1. 

5.2. Results and discussion 

Six participants were excluded for failing to perform above 50% 
during training. The mean performance of the remaining 31 participants 
was 93% correct, SEM = 1.7. 

The proportion of ‘long’ responses for the logarithmic (N = 12) and 
linear (N = 19) spacing groups across probe durations is shown in Fig. 5, 
left panel. The proportion of ‘long’ responses increased as a function of 
time for both groups, but the increase was earlier for the logarithmic 
spacing group compared to the linear spacing group. The bisection point 
for each participant was determined by fitting a slope to the steepest 
point of increase in the proportion of ‘long’ responses over the probe 
durations (see Maricq, Roberts, & Church, 1981; Wearden & Ferrara, 
1996). The steepest point was determined by fitting slopes for the first 
four shortest probe durations (i.e., 0.4 s, 0.5 s, 0.6 s, 0.8 s for the loga-
rithmic group and 0.4 s, 0.6 s, 0.8 s, 1.0 s for the linear group) and then 
for the second to fifth shortest durations and so on. The median bisection 
point for each group is shown in Fig. 5, right panel. The bisection points 
for the logarithmic group were significantly shorter than those of the 
linear group, t(29) = 3.1, p = 0.004, Cohen’s d = 1.14, 95% CI = 0.35, 
1.91. One-sample t-tests for each group comparing bisection points to 

the arithmetic mean showed that whereas the logarithmic group had 
bisection points significantly below the arithmetic mean, t(11) = 4.31, p 
= 0.001, Cohen’s d = 1.25, 95% CI = 0.47, 1.99, the linear group did 
not, t(18) = 1.25, p = 0.11. 

The results replicated the finding that bisection occurs close to the 
arithmetic mean in humans with linearly spaced probe durations and 
that logarithmically spaced probe durations result in a reduction of the 
bisection point. While the result of the logarithmically spaced condition 
is consistent with the findings of Experiments 1–3, the result of the 
linearly spaced condition is not. 

6. General discussion 

Across Experiments 1–3, it was consistently found that the arithmetic 
mean of the training durations was preferentially categorised as long. 
This provides evidence against the hypothesis that the perceived 
midpoint of two durations is the arithmetic mean in humans. The effect 
was repeatedly found with training durations of 0.4 s and 1.6 s. It was 
also found with a much larger 16:1 ratio between the durations in Ex-
periments 2 and 3, regardless of whether the durations were 0.2 s vs. 3.2 
s or 0.4 s vs. 6.4 s. The procedures used in Experiments 1–3 avoided the 
confound of probe duration distribution on test performance. Therefore, 
the results suggest that bisection at the arithmetic mean may be a per-
formance effect reflecting a bias to distribute responding equally over 
the two response options. The results of Experiments 1–3 were not an 
artefact of the procedure because Experiment 4, in which the same 
training procedure was used, replicated the probe duration spacing ef-
fect and demonstrated bisection close to the arithmetic mean with lin-
early spaced probe durations. 

Before considering the implications of the results for hypotheses for 
the bisection point, it is important to, first, consider potential alternative 
interpretations of the data. The use of the temporal bisection procedure 
rests on the assumption that subjects compare an experienced duration, 
in the probe phase, to the memory of both the short and long durations. 
There is the potential, however, that successful discrimination of short 
and long durations may be achieved by memory of the short duration 
alone. Thus, it is possible that participants compare experienced dura-
tions to the short duration and once the experienced duration has passed 
a criterion (e.g., a multiple of the short duration) then the duration is 
categorised as being long. Such a decision process has been used suc-
cessfully to account for the results of temporal generalisation studies in 
animals and humans in which the comparison of durations is limited to 
one trained duration (Church & Gibbon, 1982; Wearden, 1992). It is 
unlikely, however, that this decision process is used in tests of temporal 
bisection, because it is typically found that the range of short and long 
durations affects the bisection point (Wearden & Ferrara, 1996) and, 
thus, manipulation of either the short or long durations while holding 
the other constant affects bisection (Kopec & Brody, 2010). Therefore, 
the bisection point reflects sensitivity to both the short and long dura-
tions. In the present experiments, there was no significant evidence that 
the use of this rule led to the observed results. In Experiment 2, the two 
groups were trained with different short and long durations (either 0.4 s 
versus 1.6 s or 0.2 s versus 3.2 s). The geometric mean of the intervals, 
however, was the same for both groups. If responding was based solely 
on comparison with the short duration, then it would be anticipated that 
the group trained with 0.2 s short duration would show a greater pro-
portion of ‘long’ responses than the group trained with the 0.4 s short 
duration when tested with the geometric mean. This was not the case 
and there was no significant difference between the groups. Similarly, in 
Experiment 3, because both groups were trained with a short duration of 
0.4 s, a response criterion based solely on the short duration would result 
in the group trained with a 6.4 s long duration making a greater pro-
portion of ‘long’ responses than the group trained with the 1.6 s long 
duration. This was not the case and there was no significant effect of 
long duration for either the geometric or arithmetic mean probe 
conditions. 

Fig. 5. Test performance in Experiment 4. The left panel shows the mean 
proportion of ‘long’ responses as a function of time for the logarithmic (log) and 
linear groups. The right panel shows the median, inter-quartile range and 
minimum and maximum bisection points for the two groups. 
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The results suggest that the perceived midpoint of temporal dura-
tions is closer to the geometric mean than it is to the arithmetic mean. 
This is consistent with findings in non-human animals that show 
bisection close to the geometric mean, e.g., in rats (Church & Deluty, 
1977) and pigeons (Platt & Davis, 1983; Stubbs, 1976). Bisection at the 
geometric mean may be evidence of logarithmic perception of time 
(Church & Deluty, 1977; Ren, Allenmark, Muller, & Shi, 2020). Loga-
rithmic encoding has been suggested to account for discrimination ef-
fects in other stimulus domains such as in vision (Mackay, 1963) and fits 
with Weber’s law that the just noticeable difference between stimuli 
reflects the relative rather than absolute properties of the stimuli. Log-
arithmic perception of time results in bisection at the geometric mean if 
people compare the differences between durations. Thus, the point that 
is half-way between two values on a logarithmic scale is the geometric 
mean of the absolute values. Bisection at the geometric mean, however, 
may also occur as a consequence of a linear relationship between 
physical and perceived time. Gibbon (1977) proposed that time is 
encoded linearly but animals compare the ratio of durations. This results 
in bisection between two durations occurring at the duration that is a 
ratio of the short duration that is equal to the square root of the ratio of 
the long and short durations. The present results are not able to differ-
entiate between the two accounts. Gibbon and Church (1981), however, 
favoured an account of linear encoding based on the simultaneous 
comparison of an interval with a partially elapsed interval. In their 
study, rats were trained to respond to one lever that was reinforced after 
60 s and another lever that was reinforced after 30 s. On probe trials, the 
lever that was reinforced after 30 s was presented half-way through the 
presentation of the lever that was reinforced after 60 s. Rats showed 
similar levels of responding to the two levers indicating that the ex-
pected time to reinforcement was the same for both response options. 
This would not be the case if time was perceived logarithmically, as this 
would result in the expected time to reinforcement being shorter for the 
lever reinforced after 60 s rather than the lever reinforced after 30 s. A 
similar study in humans has also favoured a linear encoding account 
(Wearden, 2002). These results are potentially in contrast to the findings 
of ratio setting experiments in which participants were asked to indicate 
the duration that is a particular proportion of another duration, e.g., the 
duration that is either half or double that of 1 s (Allan, 1978; Eisler, 
1976). While these studies were consistent with logarithmic perception 
of time, this property of responding may be caused by biases in the 
subjective proportions used by participants rather than the relation 
between subjective and physical time (Allan, 1978). Regardless of the 
mechanisms by which bisection close to the geometric mean occurs, the 
results demonstrate that humans and animals similarly bisect below the 
arithmetic mean demonstrating that, at the least, time categorisation 
does not reflect the combination of linear encoding and a comparison of 
the difference of the durations. 

A number of approaches for accounting for the difference between 
the animal and human studies have been proposed. These have tended to 
assume that, for humans, the perceived midpoint is the arithmetic mean, 
but that under certain conditions, bisection may occur below the 
arithmetic mean due to potential response biases (e.g., Wearden, 1991). 
The current results do not fit with such models because the results show 
that the opposite is true: the perceived midpoint is closer to the geo-
metric mean than arithmetic mean, but bisection may occur close to the 
arithmetic mean due to a response bias. This difference is clear when 
considering a model proposed by Kopec and Brody (2010) that accounts 
for data from human temporal bisection across 18 papers. The results do 
not fit the model because it assumes that time perception is linear and, 
all other factors being equal, that bisection will occur at the arithmetic 
mean. The model successfully accounts for other data suggesting that, on 
the whole, bisection is close to the arithmetic mean but often sub- 
arithmetic and as the ratio of the durations decreases bisection will 
become closer to the geometric mean and eventually sub-geometric. 
Sub-arithmetic bisection is proposed to occur as a consequence of a se-
ries of processes. First, there is a greater probability of short durations 

being classed as neither the ‘short’ or ‘long’ durations. This occurs 
because the distribution of the probability of classifying a duration as 
the long duration is greater than the distribution of the short duration 
based on the assumption that variance scales with the remembered 
duration (Gibbon, 1977). Therefore, intermediate durations closer to the 
trained short duration are more likely to be determined as being 
ambiguous and, subsequently, responding is determined by how similar 
the probe duration is to the remembered short and long duration. Sec-
ond, ambiguous, intermediate durations are subject to a response bias 
based on the gambler’s fallacy such that the tendency to make a 
particular response decreases as a function of the frequency with which 
it has already been made. Because more short durations than long du-
rations are classified as ambiguous, initially, in the test phase, responses 
to durations classified as ambiguous will be predominantly ‘short’. 
Subsequently, the tendency to respond ‘short’ decreases and more in-
termediate durations are classified as long such that the bisection point 
is reduced below the arithmetic mean. When the long-to-short ratio is 
small, the difference between the arithmetic mean and geometric mean 
is small. Under these circumstances, the response bias can lead to sub- 
geometric bisection. Thus, while the model predicts sub-arithmetic 
bisection, it assumes that it is a consequence only of a response bias. 
Consequently, the theory makes the prediction that on the first trial of 
the probe test phase there is no bias such that the probability of 
responding ‘short’ or ‘long’ to the arithmetic mean will be equal. 

Another way in which the results do not fit the Kopec and Brody 
(2010) model is that it attempts to account for the observation that the 
bisection point moves closer to the arithmetic mean as the ratio of long- 
to-short durations gets larger in standard tests of bisection that use a 
distribution of probe durations. In Experiment 2, the opposite effect was 
observed. Participants that were trained with 0.2 s and 3.2 s (long-to- 
short ratio of 16) were more likely to respond ‘long’ than participants 
trained with 0.4 s and 1.6 s (long-to-short ratio of 4) when presented 
with the arithmetic mean. Because both pairs of short and long durations 
share the same geometric mean of 0.8 s, it would be expected, if bisec-
tion occurs close to the geometric mean, that the arithmetic mean of 0.2 
s and 3.2 s (1.7 s) would lead to a more extreme rating of ‘long’ than the 
arithmetic mean of 0.4 s and 1.6 s (1.0 s). Therefore, the results are 
unlikely to fit with any model that assumes that bisection moves away 
from the geometric mean towards the arithmetic mean as the ratio of the 
durations increases. 

A recent account of variation in human temporal bisection is that it 
reflects sensitivity to the ensemble statistics of the experienced durations 
(Zhu et al., 2021). People represent the mean and distribution of the 
experience durations. Probe durations are compared to these statistics 
rather than directly with the trained short and long durations. This ac-
count, however, made no specific assumptions about whether the mean 
of the distribution is arithmetic or geometric. Zhu et al. (2021) 
concluded that the assumption of the geometric mean or arithmetic 
made little difference in the ability of the model to account for the data. 
While this may be true across a distribution of probe duration trials, the 
assumptions about the nature of the represented mean of the distribu-
tion will have a large effect on the first probe trial when the mean is 
based on only the trained durations, the extreme values of the sample 
distribution. Based on the current experiments, it must be concluded 
that the ensemble mean is not the arithmetic mean. 

Differences in human and non-human animal bisection have also 
been suggested to reflect differences in the degree of temporal dis-
counting (Kopec & Brody, 2018). The assumption is that the underlying 
representation of time across species is linear, but animals show greater 
temporal discounting of rewards resulting in sub-arithmetic temporal 
bisection. The current results suggest that humans, like animals, show 
sub-arithmetic bisection when response biases are avoided in the test 
phase. Therefore, the differences between species can be reconciled 
without appealing to differences in sensitivity to temporal discounting. 
Bisection above the geometric mean is the result of a bias to distribute 
responding across the two response options. This may be due to a 
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central-tendency effect that reflects sampling of the probe duration 
distribution (Lejeune & Wearden, 2009). Alternatively, it may reflect 
learning of the distribution of responses to the two response options 
during the learning phase that affects performance in the test phase 
when the distribution of probe durations results in a change in the 
proportion of ‘short’ and ‘long’ responses over trials (Cambraia, Vas-
concelos, Jozefowiez, & Machado, 2021; Jozefowiez, Polack, Machado, 
& Miller, 2014). 

While Experiments 1–3 removed the influence of the distribution of 
probe trial durations, it is likely that participants recalled the trained 
durations with a certain amount variance in the estimates of time such 
that probe durations were always compared to a distribution of dura-
tions that was greater than just the trained durations. The results of the 
experiments indicate that, at the very least, a difference comparison was 
not used in conjunction with internal representations of time linearly 
distributed between short and long durations. It is also possible that 
people form an internal reference duration when asked to make tem-
poral categorisation judgements (Bausenhart, Bratzke, & Ulrich, 2016), 
reflecting a internal estimate of the average of the durations that have 
been experienced. This would suggest the bisection point is not simply 
the point of subjective equality, but the point that matches the internal 
representation of the average. The results of Experiments 1–3 suggest 
that the internal reference duration is not the arithmetic mean, which, 
once again, rules out the possibility that temporal discrimination reflects 
comparison of the differences of linearly represented durations. 

Although the temporal bisection procedure may be used to assess 
time perception, the nature of the procedure means that it relies on 
memory and requires the comparison of elapsed time and stored mne-
monic representations of time. This issue has been recognised by the-
ories of time perception that identify multiple cognitive factors that 
contribute to temporal perception (e.g., Gibbon, 1977; Killeen & Gron-
din, 2022; Staddon & Higa, 1999). Furthermore, it is a challenge, for the 
investigation of impaired timing, to identify the precise cause of the 
impairment (Allman & Meck, 2012) considering it may arise from a 
number of different cognitive processes. While the current results may 
be limited to falsifying the hypothesis that the bisection point is the 
arithmetic mean, they reconcile the human temporal bisection literature 
with other literature consistent with scalar properties of timing (Haigh 
et al., 2021; Rakitin et al., 1998) suggesting that memory for time and 
the decision processes involved in temporal discrimination result in a 
seemingly non-linear relation between subjective and physical time. 
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