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Abstract
We study automorphic Lie algebras using a family of evaluation maps parametrised by the
representations of the associative algebra of functions. This provides a descending chain of
ideals for the automorphic Lie algebra which is used to prove that it is of wild representation
type. We show that the associated quotients of the automorphic Lie algebra are isomorphic
to twisted truncated polynomial current algebras. When a simple Lie algebra is used in the
construction, this allows us to describe the local Lie structure of the automorphic Lie algebra
in terms of affine Kac-Moody algebras.
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1 Introduction

Let Y be a Riemann surface and g a complex finite-dimensional Lie algebra, and suppose �

is a group acting effectively on both Y and g by automorphisms. The space of meromorphic
maps from Y to g becomes a Lie algebra when we define the bracket of two such maps as the
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306 D. D. Duffield et al.

pointwise bracket in g. The Lie subalgebra of �-equivariant maps which are holomorphic
on the complement X of a �-invariant subset S of Y is an automorphic Lie algebra. In this
paper Y will be compact and � finite. We will moreover assume S to be finite and call X a
punctured compact Riemann surface. The best known examples are the genus zero cases with
one and two punctures and with cyclic reduction group: the twisted current algebras1, the
twisted loop algebras and the generalised Onsager algebras. Defined originally in the context
of integrable systems [15–17] where � (more precisely its representation by automorphisms
of the Lie algebra) is called a reduction group [16, 17, 19], automorphic Lie algebras are
also known as equivariant map algebras, following a completely independent development,
see, e.g. [22], these latter being defined in a more general context. Note however that in the
original papers on automorphic Lie algebras, Y was taken to be the Riemann sphere, and
thus this paper works with a more general notion of automorphic Lie algebras than those in
[15–17].

The representation theory of automorphicLie algebras and generalisations thereof has seen
a major milestone with the classification of the finite-dimensional irreducible representations
by Neher, Savage and Senesi [22] and Lau [14]. The aim of this paper is to contribute
to the foundations of the representation theory of automorphic Lie algebras and thereby
guide research in this area beyond the finite-dimensional irreducible representations. The
starting point in the representation theory of finite-dimensional algebras is to understand
the representation type, namely whether the object one is considering is of tame or wild
representation type. In the former case, indecomposablemodules in each dimension occur in a
finite number of one-parameter families, while the latter case ismuchmore difficult, at least as
complicated as the representation theory of all finite-dimensional algebras. Automorphic Lie
algebras are infinite-dimensional, and there the tame-wild dichotomy is less understood (see
[6] for an account), nonetheless answering the type question is of fundamental importance.

We reach the conclusion that automorphic Lie algebras are of wild representation type by
studying the Lie algebra in the vicinity of a point of the Riemann surface and showing that
this local Lie algebra is of wild representation type (Theorem 5.2). This approach leads to
the second main result of this paper: a complete local structure theory of automorphic Lie
algebras in terms of the well-known truncated twisted current algebras (Theorem 6.4 and
Theorem 7.1).

The generalisation from the Riemann sphere in previous studies on automorphic Lie
algebras to compact Riemann surfaces is possible because we are concerned with local
structure theory only, whereas former literature on automorphic Lie algebras is concerned
with global structure theory, with a computational programme on one hand (see e.g. [9]),
and a theoretical programme on the other [10, 11]. Even on the Riemann sphere, the global
structure of automorphic Lie algebras is not yet completely understood.

The setting can be generalised further by a considering schemes [22] or noncompact
Riemann surfaces [12]. The local Lie structure will in either case no longer be confined to
the twisted current algebras. We do not pursue these generalisation in the present paper.

Our first aim is to investigatewhat role the representation theory of the ring of holomorphic
functions on the Riemann surface X has on the structure of the automorphic Lie algebra; in
Section 4, we show that the representations of the ring of holomorphic functions on the
punctured Riemann surface give rise to various ideals and quotients of the automorphic

1 Some authors denote by current algebras a far greater set of Lie algebras. In this paper a current algebra will
always be of the form g ⊗C C[z].
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Lie algebra. In particular, we show that certain composition series of representations in
the category of representations of the space of holomorphic functions on X gives rise to a
descending chain of ideals of the automorphic Lie algebra, and thus also a series of quotients.
In Section 5, we use this chain of ideals to prove that automorphic Lie algebras are wild.
In Section 6 we show that the quotients of the automorphic Lie algebras are isomorphic
to twisted truncated current algebras, using a local coordinate on the Riemann surface that
linearises the group action together with the Riemann-Roch theorem. Section 7 specialises
to the case where g is a simple Lie algebra, and we use root systems of Kac-Moody algebras
to formulate a local structure theory for the automorphic Lie algebras.

The first quotient in the series essentially classifies finite-dimensional irreducible repre-
sentations of automorphic Lie algebras [22]. We hope that the full series will help to provide
the foundations for developing the representation theory of automorphic Lie algebras further,
and so we end the paper with Section 8, where we present some potential further directions
of research.

2 Notation

For an arbitrary (Lie or associative) algebraA, we denote byRepA (resp. finA) the category of
representations (resp. finite-dimensional representations) of A. We will often write an object
in the category Rep A as a pair (V , ρ) where V is a vector space and ρ : A → EndC(V )

is a linear map. For the purposes of readability, we will sometimes refer to a representation
(V , ρ) simply as ρ, provided the context is clear.

We denote by ⊗C the usual tensor product in the category Vect C of C-vector spaces. For
finite matrices X and Y over C, X ⊗C Y is interpreted as the usual Kronecker product.

Throughout, we let Y be a compact Riemann surface, We let g be a complex finite-
dimensional Lie algebra, and we let � be a finite group that acts faithfully on both g and Y

by automorphisms. Moreover we let S be a finite, non-empty, �-invariant subset of Y and X

the punctured compact Riemann surface X = Y \ S. When it is convenient to have a name
for the action of � on g and X we will use

σg : � × g → g,

σX : � × X → X

with σg(γ, A) = γ A and σX(γ, x) = γ x .
We denote by OX the space of meromorphic functions on Y which are holomorphic on

X (a common and safe notation for this space is OY(X) since it depends on the compact
Riemann surface Y. We opt for the shorter notation OX as this space of functions remains
the same throughout the paper). The action of � on X then induces an action on OX by
γ f = f ◦ γ −1 for any γ ∈ � and any rational function f ∈ OX.

We denote by A(g, X, �, σg, σX) the automorphic Lie algebra

(g ⊗C OX)� = {a ∈ g ⊗C OX : γ a = a for any γ ∈ �},
where the action of � on g and X is precisely σg and σX respectively. Quite often, it is
convenient to write the elements of A(g, X, �, σg, σX) as

∑
i∈I Ai ⊗ fi for some Ai ∈ g,

some fi ∈ OX and some index set I .
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3 Preliminaries

3.1 Point-Evaluation Representations

Neher, Savage and Senesi classified the irreducible finite-dimensional representations of
equivariant map algebras in [22] using evaluation representations. In this section, we present
a brief recollection of such representations, which we instead call point-evaluation represen-
tations.

Definition 3.1 ([22]). LetA = A(g, X, �, σg, σX) be an automorphic Lie algebra and X ⊂ X

be a finite subset. For each x ∈ X , let gx denote the Lie subalgebra

gx = {A ∈ g : γ A = A for any γ ∈ �x } ⊆ g,

where �x is the stabiliser subgroup of � with respect to x . The point-evaluation map of the
set X is the map

evX : A →
⊕

x∈X
gx

defined such that evX
(∑

i Ai ⊗ fi
) = (∑

i fi (x)Ai
)
x∈X for any element

∑
i Ai ⊗ fi ∈ A.

The point-evaluation map plays an essential role in the representation theory of A. Not
least because it allows us to define irreducible representations of A in the following way.

Definition 3.2 ([22]). Let A = A(g, X, �, σg, σX) be an automorphic Lie algebra and let
X ⊂ X be a finite subset such that x /∈ Orb(y) for any two distinct points x, y ∈ X . In
addition, let ρx : gx → EndC(Vx ) ∈ fin gx be irreducible for each x ∈ X . A point-evaluation
representation of A with respect to X is a representation of the form

(
⊗

x∈X
ρx

)

◦ evX : A → EndC

(
⊗

x∈X
Vx

)

,

where the tensor product on the left-hand-side is in fin
(⊕

x∈X gx
)
.

3.2 Filtrations of Representations

We make use of terminology in representation theory typically reserved for modules over
rings and associative algebras, butwhich is easily adaptable to representations of Lie algebras.
Let A be an arbitrary (Lie or associative) algebra. Since fin A is an abelian category, one has
a composition series

(V , ρ) = (V0, ρ0) ⊃ (V1, ρ1) ⊃ . . . ⊃ (Vn, ρn) = 0

for any representation (V , ρ) ∈ fin A, where each (Vi , ρi )/(Vi+1, ρi+1) is irreducible. We
define the length of (V , ρ), which we denote by �(V , ρ), to be the least integer n such that
(Vn, ρn) = 0. A composition series of a representation (V , ρ) ∈ fin A is not necessarily
unique, but the length of a representation is well-defined. That is, the integer n depends only
on (V , ρ).

Definition 3.3 Let A be an abelian category. We say an object ρ ∈ A is uniserial if it has a
unique composition series.
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3.3 Wild Representation Type

A fundamental goal in representation theory is to understand the category finA. An important
step towards a complete understanding of this category is a complete classification of the
indecomposable representations. For many algebras, this is considered to be a wild prob-
lem, which means it contains the problem of classifying pairs of commuting matrices up
to simultaneous similarity (a precise statement is given in the definitions below). This is
considered to be extremely hard — not least because it contains the problem of classifying
the indecomposable representations of all finite-dimensional associative algebras.

Definition 3.4 Let A be an arbitrary (Lie or associative) algebra over an algebraically closed
field K . An additive, full, exact subcategory C ⊆ finA is said to bewild if there exists an exact
K -linear functor F : fin K [x, y] → C that maps indecomposable objects to indecomposable
objects and respects isomorphism classes (that is, F(V , ρ) ∼= F(V ′, ρ′) implies (V , ρ) ∼=
(V ′, ρ′)).

As mentioned above, this definition is equivalent to the following.

Proposition 3.5 ([24], XIX.1.11). An additive, full, exact subcategory C ⊆ fin A is wild if
and only if for any finite-dimensional associative algebra �, there exists an exact K -linear
functor F : fin � → C that maps indecomposable objects to indecomposable objects and
respects isomorphism classes.

We say that an arbitrary (Lie or associative) algebra A is wild if fin A is wild. Usually,
it is easier to prove wildness by investigating the quotients of an algebra, as A is wild if
there exists an ideal I ⊆ A such that A/I is wild. For finite-dimensional Lie algebras, a
classification of wild Lie algebras is known due to Makedonskiı̆.

Theorem 3.6 ([18], Theorem 3). A finite-dimensional Lie algebra over an algebraically
closed field is wild if and only if it is neither semisimple, one-dimensional, nor a direct
sum of a semisimple Lie algebra and a one-dimensional Lie algebra.

Semisimple Lie algebras, one-dimensional Lie algebras, and Lie algebras isomorphic to a
direct sum of a semisimple Lie algebra and a one-dimensional Lie algebra are said to be tame.
Informally, this means that in each dimension m, all but a finite number of indecomposable
representations occur in one-parameter families. For algebras where one hopes to classify
the finite-dimensional indecomposable representations, one would expect the algebra to be
tame.

3.4 The Finitely Generated Representation Theory ofOX whenY is Genus Zero

A special case of the ring OX occurs when Y is genus zero. In this case, Y is the Riemann
sphereC = C∪{∞} ∼= CP

1 andX is a puncturedRiemann sphereC\S by a finite�-invariant
set of points S. It follows that OX is the commutative associative algebra

{
p

q
∈ C(z) : q(ε)

p(ε)
= 0 ⇒ ε ∈ S

}

whose finitely generated representation theory is tame and completely understood.
Explicitly, it is easy to see that if S = {∞, ε1, . . . , εn}, we have

OX
∼= C[z, ẑ1, . . . , ẑn],
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310 D. D. Duffield et al.

where ẑi = (z − εi )
−1 for each 1 ≤ i ≤ n. If we instead have S = {ε1, . . . , εn} such that

∞ /∈ S, then we simply remove z from the generating set of the polynomial algebra. That is,

OX
∼= C[̂z1, . . . , ẑn].

Any algebra of the second form is isomorphic to an algebra of the first form. One may
choose an automorphism h of the Riemann sphere (a Möbius transformation) and construct
a corresponding ring isomorphism ĥ : OX → Oh(X) defined by ĥ( f ) = f ◦ h−1 for any
rational function f ∈ OX. Specifically, if h is defined such that h(x) = (x − εi )

−1 for any
x ∈ X and for some εi ∈ S, then ĥ(̂zi ) = z.

The tameness of the finitely generated representation theory of OX arises from the fact
that OX is isomorphic to the localisation of the polynomial algebra C[z] at the non-zero
multiplicative closed set

Ŝ = {(z − ε)d : ε ∈ S \ {∞}, d ∈ Z≥0}
and is hence a principal ideal domain (PID). Thus, the structure theorem for finitely generated
modules over a PID applies. We will provide a brief summary here.

3.4.1 The indecomposable representations

There is only one finitely generated infinite-dimensional indecomposable representation of
OX. Namely, this is the representation corresponding to the free module OX. The finite-
dimensional indecomposable representations of OX are in bijective correspondence with
the primary ideals of OX. In particular, the m-dimensional indecomposable representations
correspond to the ideals Im , where I is a prime ideal of OX. Since OX is a PID, the prime
ideals are precisely the maximal ideals, and hence in each dimensionm, the indecomposable
representations are in bijective correspondence with the points of the variety X.

Them-dimensional indecomposable representations ofOX are (almost) completely deter-
mined by Jordan blocks

Jx,m =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x 1 0 · · · 0
0 x 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · x 1
0 0 · · · 0 x

⎞

⎟
⎟
⎟
⎟
⎟
⎠

such that x /∈ S. Specifically, if ∞ ∈ S, then an m-dimensional representation ϕ ∈ fin OX

is indecomposable if and only if it is isomorphic to a representation ϕx,m for some x ∈ X,
defined by ϕx,m(z) = Jx,m and ϕx,m (̂zi ) = J−1

x−εi ,m for any i .
The description of indecomposable representations of OX in the case where ∞ /∈ S is

slightly different. However, one may again note that there is a ring isomorphism between
the ∞ ∈ S and ∞ /∈ S cases, and thus the representation theory is equivalent between these
cases. For this reason, we will omit an explicit description of the representation theory in the
∞ /∈ S case.

An indecomposable representation ϕ ∈ fin OX is irreducible precisely when m = 1. That
is, whenever ϕ is a 1-dimensional representation. In later examples, we will use particular
finite-dimensional indecomposable representations of OX when X = C \ S. Thus, we have
the following definition.

Definition 3.7 Let X = C \ S. We define the representation ϕx,m ∈ fin OX to be the inde-
composable representation constructed above.
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Remark 3.8 Note that we have chosen ϕx,m in such a way that

(ϕx,m((z − εi )
−1))−1 + εi idm = Jx,m .

Thus in this sense, ϕx,m respects algebraic manipulation where z is considered as a place-
holder for the matrix Jx,m. Hence given any f ∈ OX, we can consider ϕx,m( f ) as a matrix
rational function f (Jx,m) whenever x �= ∞. A well known consequence of this is that

ϕx,m( f ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

f (x) f ′(x) f ′′(x)
2 · · · f (m−1)(x)

(m−1)!
0 f (x) f ′(x) · · · f (m−2)(x)

(m−2)!
...

...
. . .

. . .
...

0 0 · · · f (x) f ′(x)
0 0 · · · 0 f (x)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where f (i) is the i-th derivative of f with respect to z.

3.4.2 The morphisms of finOX

Every finite-dimensional indecomposable representation ofOX is uniserial. Namely, we have
a unique composition series

(Vx,m, ϕx,m) ⊃ (Vx,m−1, ϕx,m−1) ⊃ . . . ⊃ (Vx,1, ϕx,1) ⊃ 0,

for any indecomposable (Vx,m, ϕx,m) ∈ fin OX. In particular, we have

(Vx,i , ϕx,i )/(Vx,i−1, ϕx,i−1) ∼= (Vx,1, ϕx,1)

for all i . This induces an infinite ascending chain of subrepresentations

0 ⊂ (Vx,1, ϕx,1) ⊂ (Vx,2, ϕx,2) ⊂ . . . ,

There are irreducible monomorphisms (Vx,i , ϕx,i ) → (Vx,i+1, ϕx,i+1) and irreducible epi-
morphisms (Vx,i , ϕx,i ) → (Vx,i−1, ϕx,i−1) in fin OX for all i . In addition, we have

HomOX
((Vx,i , ϕx,i ), (Vx ′, j , ϕx ′, j )) = 0

for any x �= x ′.

3.5 Representations ofOX Arising from Jet Maps

Suppose Y is of arbitrary genus. Since the elements of OX are holomorphic functions on X,
one can consider a homomorphism of commutative associative algebras

Jx0,m : OX → C[z]/(zm+1)

defined by sending a meromorphic function f to its Taylor expansion about x0 ∈ X in the
local coordinate z modulo (zm+1). Such a map is called a jet map.

By the previous subsection, the category fin C[z]/(zm+1) is completely understood— it is
the full abelian subcategory of fin C[z] consisting of representationsϕ0,r with r ≤ m+1. One
can therefore obtain an r -dimensional representation φx,r ∈ fin OX defined by the following
commutative diagram.
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312 D. D. Duffield et al.

Thus for each representation ϕ0,r ∈ fin C[z]/(zm+1), one obtains a representation φx,r

given by precomposition with Jx,m . We call such a representation a jet representation ofOX.
Similarly, given a morphism

ϑ : (V0,r , ϕ0,r ) → (V0,r ′ , ϕ0,r ′) ∈ fin C[z],

one can see that there exists a corresponding morphism

θ : (V0,r , φx,r ) → (V0,r ′ , φx,r ′) ∈ fin OX

defined by θ(v) = ϑ(v) for all v ∈ V0,r . This defines a family of exact functors

Fm : fin C[z]/(zm+1) → fin OX

such that Fm′θ = Fmθ for any

θ ∈ HomOX
((V0,r , φx,r ), (V0,r ′ , φx,r ′))

with r , r ′ ≤ m′ ≤ m. Hence for each representation φx,m , one obtains a composition series

(V0,m, φx,m) ⊃ (V0,m−1, φx,m−1) ⊃ . . . ⊃ (V0,1, φx,1) ⊃ 0,

where for each i , we have

(V0,i , φx,i )/(V0,i−1, φx,i−1) ∼= (V0,1, φx,1),

which is necessarily irreducible. This is precisely the image under Fm of the composition
series in the previous subsection with x = 0.

Remark 3.9 It is worth noting that whilst the category fin C[z]/(zm+1) is tame (actually, of
finite representation-type), we make no such claims for fin OX.

Remark 3.10 Given a function f ∈ OX, the matrix of the linear map φx,r is the same as ϕx,r

in Remark 3.8. This is because we have

ϕx,0 ◦ Jx,r ( f ) = f (x)

⎛

⎜
⎜
⎜
⎜
⎝

1 0 · · · 0
0 1

. . .
...

...
. . .

. . . 0
0 · · · 0 1

⎞

⎟
⎟
⎟
⎟
⎠

+
r−1∑

i=1

f (i)(x)

i !

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0
0 0 1

. . .
...

0 0 0
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

i
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4 Ideals and Quotients of Automorphic Lie Algebras

Recall that the definition of the Lie bracket of an automorphic Lie algebra A = (g⊗C OX)�

is given by ⎡

⎣
∑

i

Ai ⊗ fi ,
∑

j

B j ⊗ g j

⎤

⎦

A

=
∑

i

∑

j

[Ai , Bj ]g ⊗ fi g j .

An interesting feature of this definition is the associative product on the right-hand-side of
the tensor product, which comes from the commutative associative algebra OX. Therefore,
it is perhaps natural to wonder precisely what role the representation theory of OX plays on
the structure of A. The first few results of this section shows that the representation theory
of OX is closely related to the ideals and quotients of A. This applies to any commutative
associative algebra OX, and thus these results apply to equivariant map algebras as well as
automorphic Lie algebras.

Throughout this section, wewill fix a basisBg of the Lie algebra g used in the construction
of a given automorphic Lie algebra A. The first result of this section shows how one can
associate to each (not necessarily finite-dimensional) representation ϕ ∈ Rep OX an ideal
Iϕ of A and a corresponding quotient A/Iϕ .

Proposition 4.1 Let A = A(g, X, �, σg, σX) be an automorphic Lie algebra and ϕ : OX →
EndC(V ) be a representation of OX. The kernel of the linear map

idg ⊗C ϕ : A → g ⊗C EndC(V )

is an ideal Iϕ ⊆ A. Moreover, Im(idg ⊗C ϕ) has the structure of a Lie algebra and idg ⊗C ϕ

induces an epimorphism of Lie algebras

A → Im(idg ⊗C ϕ)

with Im(idg ⊗C ϕ) ∼= A/Iϕ .

Proof Define a bilinear product ∗ on the set g ⊗C EndC(V ) by
∑

A∈Bg

(A ⊗ pA) ∗
∑

B∈Bg

(B ⊗ qB) =
∑

A∈Bg

[A, B]g ⊗ pAqB

for any ∑

A∈Bg

(A ⊗ pA),
∑

B∈Bg

(B ⊗ qB) ∈ g ⊗C EndC(V ).

The map idg ⊗C ϕ is then an algebra homomorphism from the Lie algebra A (with respect
to the Lie bracket of A) to the algebra g ⊗C EndC(V ) (with respect to the non-associative
bilinear product ∗). By the first isomorphism theorem, Ker(idg ⊗C ϕ) = Iϕ is an ideal of
A and Im(idg ⊗C ϕ) ∼= A/Iϕ . Thus, Im(idg ⊗C ϕ) has the structure of a Lie algebra and
idg ⊗C ϕ induces an epimorphism of Lie algebras

A → Im(idg ⊗C ϕ)

as required. ��
Henceforth, wewill denote byIϕ the ideal ofA associated to a representationϕ ∈ RepOX.

That is, Iϕ = Ker(idg⊗Cϕ) as above. It is fairly straightforward to show that ifOX is finitely
generated and reduced with maximal spectrum X (and thus, X has the structure of an affine
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314 D. D. Duffield et al.

variety with coordinate ringOX), then for any 1-dimensional representation ϕx0,1 ∈ RepOX

defined by ϕ( f ) = f (x0) for some x0 ∈ X, the map (idg ⊗C ϕx0,1) coincides with the
point-evaluation map ev{x0}. This motivates the following (general) definition.

Definition 4.2 LetA be an automorphic Lie algebra and let ϕ ∈ RepOX be a representation.
Let

ξ : Im(idg ⊗C ϕ) → A/Iϕ

be the canonical isomorphism of Lie algebras. We call the linear map

evϕ = ξ ◦ (idg ⊗C ϕ) : A → A/Iϕ,

the matrix-evaluation map of A with respect to ϕ.

Wewill now investigate somebasic properties of thesematrix-evaluations. The next lemma
shows that the Hom-spaces in Rep OX induce relations between the ideals of A.

Lemma 4.3 Let ϕ,ψ ∈ Rep OX and θ ∈ HomOX
(ϕ, ψ) be non-zero.

(a) If θ is a monomorphism then Iϕ ⊇ Iψ .
(b) If θ is an epimorphism then Iϕ ⊆ Iψ .
(c) If θ is an isomorphism then Iϕ = Iψ .

Proof (a) First note that θ satisfies the relation θϕ( f ) = ψ( f )θ for any f ∈ OX. Let
∑

A∈Bg

(A ⊗ f A) ∈ Ker(idg ⊗C ψ) = Iψ,

where each f A ∈ OX. Then for any A ∈ Bg, we have θϕ( f A) = ψ( f A)θ = 0. But since θ

is a monomorphism, we have for any A ∈ Bg that

ϕ( f A) = 0 ⇒
∑

A∈Bg

(A ⊗ f A) ∈ Ker(idg ⊗C ϕ) = Iϕ

So Iϕ ⊇ Iψ , as required.
(b) The proof is dual to (a).
(c) This follows directly from (a) and (b). ��
Unfortunately, the converse to the above is not true in general. A counter-example is

presented below.

Example 4.4 Let ζ be a primitive fifth root of unity. Consider the automorphic Lie algebra
A = A(sl2(C), X, �, σsl2(C), σX), where X = C \ {∞},

� = Z/5Z = 〈r〉
and r acts on sl2(C) by conjugation with the matrix

(
ζ 0
0 ζ−1

)

and on C by multiplication with ζ . Then OX
∼= C[z] and A has a basis

{(
z5 j 0
0 −z5 j

)

,

(
0 z5 j+3

0 0

)

,

(
0 0

z5 j+2 0

)

: j ≥ 0

}

.
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Now consider the representations ϕ0,1 ⊂ ϕ0,2 ⊂ ϕ0,3 ∈ fin OX defined in Section 3.4.
Since ϕm

0,m = 0, it is easy to see that

Iϕ0,1 =
〈(

z5( j+1) 0
0 −z5( j+1)

)

,

(
0 z5 j+3

0 0

)

,

(
0 0

z5 j+2 0

)

: j ≥ 0

〉

,

Iϕ0,2 = Iϕ0,1

Iϕ0,3 =
〈(

z5( j+1) 0
0 −z5( j+1)

)

,

(
0 z5 j+3

0 0

)

,

(
0 0

z5( j+1)+2 0

)

: j ≥ 0

〉

,

and yet ϕ0,1 � ϕ0,2.

Any finite-dimensional representation of OX can be written as a finite direct sum of
indecomposable representations. Thus, it is natural to investigate the relations between the
ideals given by a direct sum of representations of OX.

Lemma 4.5 Let ϕ ∈ Rep OX and suppose ϕ = φ ⊕ ψ for some representations φ,ψ ∈
Rep OX. Then Iϕ = Iφ ∩ Iψ .

Proof Suppose
a =

∑

A∈Bg

(A ⊗ f A) ∈ Ker(idg ⊗C ϕ) = Iϕ,

where each f A ∈ OX. Recall that
∑

A∈Bg

(A ⊗ ϕ( f A)) = 0 ⇔ ϕ( f A) = 0

for any A ∈ Bg. But since ϕ = φ ⊕ψ , this means that (φ( f A), ψ( f A)) = 0, which is true if
and only if φ( f A) = 0 and ψ( f A) = 0. Thus, a ∈ Iφ and a ∈ Iψ , and hence a ∈ Iφ ∩ Iψ .
The converse argument is similar, and so Iϕ = Iφ ∩ Iψ . ��

Remark 4.6 A consequence of Lemma 4.5 is that

[Iϕ, Iψ ] ⊆ Iϕ⊕ψ ⊆ Iϕ + Iψ.

4.1 Ideals Arising from Jet Representations

In this subsection, we investigate the ideals and quotients of A that arise from the jet rep-
resentations φx,m of OX, as defined in Section 3.5. For the purposes of readability, we will
denote for some x0 ∈ X and m ∈ Z>0 the ideal Ix0,m of A associated to the representation
φx0,m ∈ Rep OX (as defined in Section 3.5).

Proposition 4.7 Given an automorphic Lie algebra A = A(g, X, �, σg, σX), we have
Iγ x0,m = Ix0,m for any γ ∈ �.

Proof Let a = ∑
A∈Bg

A ⊗ f A ∈ Ix0,m . We begin the proof with the claim that

(γ f A)(k)(γ x0) = 0 for any 0 ≤ k < m.
For k = 0, the proof of this claim is straightforward. We simply note that

(γ f A)(γ x0) = f A(γ −1γ x0) = f A(x0) = 0
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for any A ∈ Bg. Now for any k ≥ 1, it follows that

(γ f A)(k) = ( f A ◦ γ −1)(k) =
k∑

i=1

( f (i)
A ◦ γ −1)pi ,

where each pi is some holomorphic function. But byRemark 3.10,we know that f (i)
A (x0) = 0

for all 0 ≤ k < m. So

(γ f A)(k)(γ x0) =
k∑

i=1

f (i)
A (x0)pi (γ x0) = 0

for any 1 ≤ k ≤ m − 1, which completes the proof for our claim above.
A consequence of the above claim is that a ∈ Iγ x0,m , since A is a Lie algebra of fixed

points and γ acts on g by automorphisms. So Ix0,m ⊆ Iγ x0,m for any γ ∈ �, any x0 ∈ X

and any m ∈ Z>0. To show that Ix0,m ⊇ Iγ x0,m and hence that Ix0,m = Iγ x0,m , we simply
note that by an identical argument we have Iγ x0,m ⊆ Iγ −1γ x0,m = Ix0,m . ��

One can construct various chains of ideals of A, and obtain information regarding their
structure. As a result of Section 3.5, an immediate consequence of the Lemma 4.3 is the
following.

Lemma 4.8 Let φx0,1 ∈ fin OX be an irreducible representation as defined in Section 3.5.
Then there exists a weakly descending chain of ideals

A ⊃ Ix0,1 ⊇ Ix0,2 ⊇ Ix0,3 ⊇ . . .

of A.

Proof This follows trivially from the composition series of finite-dimensional representations
of OX given in Section 3.5 (with m sufficiently large), since this induces a sequence of
monomorphisms

φx0,1 → φx0,2 → φx0,3 → · · ·
in fin OX. ��
Lemma 4.9 LetA = A(g, X, �, σg, σX) be an automorphic Lie algebra. Then for any x0 ∈ X

and any m ∈ Z>0, the ideal Ix0,m �= 0,A.

Proof First note that Ix0,1 �= 0 and Ix0,1 �= A, since A/Ix0,1
∼= gx0 , which is a non-trivial

quotient ofA by the results of [22].NowLemma4.8 implies thatIx0,m ⊆ Ix0,1 for anym > 1.
So trivially, we have Ix0,m �= A. It remains to show that Ix0,m �= 0, or equivalently, that
the quotient A/Ix0,m �= A . By Proposition 4.1, the quotient A/Ix0,m

∼= Im(idg ⊗C φx0,m),
which is necessarily finite-dimensional, since both g and φx0,m are finite-dimensional. But
A is infinite-dimensional. Thus, A/Ix0,m �= A and hence, Ix0,m �= 0 as required. ��
Lemma 4.10 Let A = A(g, X, �, σg, σX) be an automorphic Lie algebra. Then for any
x0 ∈ X and any n ∈ Z>0, there exists an integer N > n such that Ix0,N �= Ix0,n.

Proof Let n ∈ Z>0 and consider a non-zero element

a =
∑

A∈Bg

A ⊗ f A ∈ Ix0,n
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whose existence we may assume due to Lemma 4.9. Trivially, we know that a ∈ Ix0,n if and
only if φx0,n( f A) = 0 for all A ∈ Bg. In fact, it follows from the definition of φx0,n and

Remark 3.10 that a ∈ Ix0,n if and only if f (r)
A (x0) = 0 for all A ∈ Bg and all 0 ≤ r < n.

From the fact that f A(x0) = 0 for all A ∈ Bg, it necessarily follows that there exists
B ∈ Bg such that fB is non-constant. To see this, note that if f A were constant for every
A ∈ Bg, then there would necessarily exist B ∈ Bg such that fB �≡ 0 (otherwise we would
contradict the assumption that a �= 0). But if fB is constant non-zero, then fB(x0) �= 0,
which would contradict the assumption that a ∈ Ix0,n .

Finally, since each f A is holomorphic on X, each f A is analytic at x0. But fB is a non-
constant function with f (r)

B (x0) = 0 for all 0 ≤ r < n. Thus, there must exist an integer

N > n such that f (N−1)
B (x0) �= 0. Hence, a /∈ Ix0,N and so Ix0,N �= Ix0,n , as required. ��

Proposition 4.11 Let A = A(g, X, �, σg, σX) be an automorphic Lie algebra. Then for any
x0 ∈ X, there exist strictly positive integers m1 < m2 < m3 < . . . such that we have a
strictly descending chain of ideals

A ⊃ Ix0,m1 ⊃ Ix0,m2 ⊃ Ix0,m3 ⊃ . . .

of A.

Proof This follows immediately from Lemmata 4.8, 4.9 and 4.10. ��

5 TheWildness of Automorphic Lie Algebras

In this section, we show that automorphic Lie algebras are wild, and hence, the problem of
classifying the indecomposable representations may be considered hopeless. The wildness
immediately follows from the representation theory of OX. Interestingly, the wildness of an
automorphic Lie algebraA can arise from the ideals and quotients ofA that exist as a result of
certain representations ofOX given by nilpotent matrices. For example, these exist whenever
we have representations of OX given by Jordan blocks, as is the case for many commutative
algebras (including those that are tame).

Proposition 5.1 Let A = A(g, X, �, σg, σX) be an automorphic Lie algebra, let x0 ∈ X

and let φx0,1 ∈ fin OX be as defined in Section 3.5. Let m be the least integer such that
Ix0,m �= Ix0,1. Then for any n ≥ m, the quotient A/Ix0,n is a finite-dimensional Lie algebra
with a non-zero solvable ideal. Moreover, for any N > 0, there exists an integer n ≥ m such
that A/Ix0,n has a solvable ideal S with dimS > N.

Proof By Lemma 4.8 and the third isomorphism theorem, it follows that K = Ix0,1/Ix0,m is
a non-trivial ideal of A/Ix0,m . LetBg be a basis for g and let

∑

A∈Bg

A ⊗ f A ∈ K.

The unique eigenvalue of φx0,1( f A) is trivially 0 for any A, so by Remark 3.10, the unique
eigenvalue of thematrixφx0,m( f A) is also 0 for any A.Moreover,φx0,m( f A) is a banded upper
triangular matrix. So φx0,m( f A) is nilpotent for any A ∈ Bg. Since m is minimal, the only
non-zero entry of φx0,m( f A) is the (1,m)-th entry, and we have φx0,m( f A)φx0,m(gA) = 0 for
all A for any

a =
∑

A∈Bg

A ⊗ f A, b =
∑

B∈Bg

B ⊗ gB ∈ K.
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Thus, (idg ⊗C φx0,m)([a, b]) = 0. So K is abelian and hence solvable.
By Proposition 4.11, we may choose another integer m′ > m such that Ix0,m′ �= Ix0,m .

Let m′ be minimal. Then a similar argument to the above, shows that K′ = Ix0,m/Ix0,m′ is a
non-trivial abelian ideal of A/Ix0,m′ . In fact, it is easy to show that Ix0,1/Ix0,m′ is solvable,
since every matrix induced by the representation φx0,m′ is nilpotent. Proceeding iteratively, it
follows that one can construct a quotient of A that contains a solvable ideal of an arbitrarily
large dimension. Thus, for any N > 0, there exists an integer n ≥ m such that A/Ix0,n has
a solvable ideal S with dimS > N . ��
Theorem 5.2 Automorphic Lie algebras are wild.

Proof LetA be an automorphic Lie algebra. By Proposition 5.1, for any N > 1, there exists a
finite-dimensional quotientQ ofA such thatQ contains a solvable idealSwith dimS > N .
Thus, Q is neither semisimple nor a 1-dimensional extension of a semisimple Lie algebra.
By Makedonskiı̆’s Theorem (Theorem 3.6), Q is wild. Thus, A is wild. ��

6 Twisted Truncated Current Algebras as Quotients of Automorphic
Lie Algebras

Wecontinue to investigate the quotientsA/Ix0,m of an automorphic Lie algebra defined by the
jet representations of Section 3.5. A careful choice of the local coordinate z near x0 together
with the Riemann-Roch theorem allows us to prove that these quotients are isomorphic to
twisted truncated current algebras.

The careful choice of z is the one that linearises the action of � locally in the following
sense. Throughout, we fix a point x0 ∈ X, which defines a stabiliser subgroup �x0 generated
by an element γ0 ∈ � of order ν0 ∈ N. We then fix a coordinate z on X in a neighbourhood
of x0 and a root of unity ζ such that

z(x0) = 0, γ0 · z(x) = z(γ −1
0 x) = ζ−1z(x) (6.1)

for all x in the domain of z. A proof of the fact that �x0 is cyclic (and finite), and of the
existence of the coordinate z, can be found in [20]2.

The Lie structure will not be used until the end of the section, so we will replace g with a
complex finite-dimensional vector space V , and write the chain of subspaces

(V ⊗C OX)� = Ix0,0 ⊃ Ix0,1 ⊃ Ix0,2 ⊃ Ix0,3 . . . (6.2)

where Ix0,m consists precisely of those vectors in (V ⊗C OX)� with derivatives of order
0, 1, . . . ,m − 1 vanishing at x0.

We denote the eigenspace decomposition of V with respect to �x0 by

V =
⊕

m̄∈Z/ν0Z

Vm̄, Vm̄ = {v ∈ V | γ0v = ζmv}

where V is a finite-dimensional �-module.

2 In the genus zero case we can construct the coordinate as follows. An automorphism γ0 = [g] ∈ PSL(2, C)

fixes a point [x0 : 1] if and only if (x0, 1)t is a right eigenvector of g ∈ SL(2, C). This is the case if and
only if (1, −x0) is a left eigenvector of g−1 (using that SL(2, C) = Sp(2, C) with respect to the standard
symplectic form). Because g has finite order, there is a left eigenvector (a, b) of g−1 independent of (1, −x0).
The coordinate z(x) = x−x0

ax+b satisfies the two conditions.
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For the study of the quotients Ix0,m/Ix0,m+1 it is useful to notice that Ix0,m+1 is the kernel
of the restriction of id ⊗ Jx0,m to Ix0,m . Thus the first isomorphism theorem gives

Ix0,m/Ix0,m+1 ∼= id ⊗ Jx0,m(Ix0,m) ⊂ Vm̄ ⊗ zm + (zm+1) (6.3)

and the last inclusion follows from invariance under �x0 and the transformation (6.1) of z.
We will see that the inclusion is in fact an equality. To this end we will use the following
application of the Riemann-Roch theorem.

Lemma 6.1 (holomorphic interpolation). Let Z = {z1, . . . , zd} be a subset of X and
{c1, . . . , cd} a subset of C. For any integerm ≥ 0 there exists f ∈ OX such that f (m)(zi ) = ci
and f ( j)(zi ) = 0 if j < m.

Proof For a divisor D on a Riemann surface Y one defines a vector space L(D) of meromor-
phic functions on Y by

L(D) = { f meromorphic on Y | div( f ) + D ≥ 0}.
If a point p ∈ Y has a positive coefficient n in D then f ∈ L(D) is allowed a pole at

p of order at most n. If a point p ∈ Y has a negative coefficient −n in D then f ∈ L(D)

has a zero at p of order at least n. If f is any meromorphic function on a compact Riemann
surface then deg(div( f )) = 0. Consequently L(D) = {0} if deg(D) < 0 and Y compact.

The Riemann-Roch theorem for compact Riemann surfaces states

dimL(D) − dimL(K − D) = deg(D) + 1 − g. (6.4)

Here K is a canonical divisor: a divisor of a 1-form onY, and g is the genus of the Riemann
surface.

With the notation DS = ∑
s∈S s we define the divisors

Dm
n = nDS − mDZ ,

D̃m
n = nDS − mDZ\{z1} − (m − 1)z1.

Notice that

L(Dm
n ) ⊂ L(D̃m

n ) ⊂ OX

for all m ∈ Z>0 and n ∈ Z.
Because the order of poles is irrelevant for our current purposes, we can choose n ∈ N

large enough so that deg(K − Dm
n ) < 0 and consequently dimL(K − Dm

n ) = 0. Doing the
same for D̃m

n reduces the Riemann-Roch equation (6.4) to

dimL(Dm
n ) = n|S| − m|Z | + 1 − g

dimL(D̃m
n ) = n|S| − m(|Z | − 1) − (m − 1) + 1 − g

and dimL(D̃m
n )−dimL(Dm

n ) = 1. This shows that there exists a function f1 ∈ OX such that

f ( j)
1 (zi ) = 0 if j < m and f (m)

1 (z1) = c1 and f (m)
1 (zi ) = 0 for i �= 1.

The argument can be repeated with z1 replaced by zk to obtain fk with the analogous
properties. Then f = ∑

k fk satisfies the requirements of the lemma. ��

Using holomorphic interpolation we can describe a basis for each of the factors of (6.2).
We let O(zi ) denote terms divisible by zi .

123



320 D. D. Duffield et al.

Theorem 6.2 Let m ≥ 0 and let {vm̄1 , . . . , vm̄km̄ } be a basis of Vm̄ . Then there exists a set

{am̄1 , . . . , am̄km̄ } contained in Ix0,m with Taylor expansion

am̄i = vm̄i ⊗ zm + O(zm+1)

such that {am̄1 + Ix0,m+1, . . . , am̄km̄ + Ix0,m+1} is a basis of Ix0,m/Ix0,m+1.

Proof Suppose the statement holds for the regular representation V = C�. Since � is finite,
C� decomposes into a direct sum containing any irreducible of � as a summand. Let Vi be
an irreducible �-module. Then the equivariant vectors with values in Vi form a summand of
the equivariant vectors with values in C�, and therefore the statement also holds for each
irreducible. But then it holds for any �-module V .

We will prove the statements for the regular representation V = C�. Fix a vector

v =
∑

γ∈�

cγ γ ∈ (C�)m̄ .

This means that γ0
∑

γ∈� cγ γ = ∑
γ∈� cγ γ0γ = ζm ∑

γ∈� cγ γ or that

c
γ −1
0 γ

= ζmcγ . (6.5)

We will show existence of an element F of Ix0,m with v as first coefficient in the Taylor
expansion. That is

F = v ⊗C (x − x0)
m + O((x − x0)

m+1) ∈ Ix0,m . (6.6)

From any function f ∈ OX one can construct an invariant vector

F =
∑

γ∈�

γ ⊗ f ◦ γ −1 ∈ (C� ⊗C OX)�.

To investigate its Taylor expansion about x0 we compute derivatives ( f ◦ γ −1)( j)(x0) for
j ≤ m. It is now convenient to write the action of � on X in terms of a representation
σ : � → Aut(X).

( f ◦ γ −1)( j)(x0) = ( f ( j) ◦ γ −1)(x0)(σ (γ −1)′(x0)) j

+ terms with factor ( f ( j ′) ◦ γ −1)(x0) with j ′ < j .

This expression leads us to define a new set of constants

cγ = m! (σ (γ −1)′(x0))−m cγ . (6.7)

We aim to interpolate the data (γ −1x0, cγ ) using Lemma 6.1 to show existence of f ∈ OX

with
f (m)(γ −1x0) = cγ , f ( j)(γ −1x0) = 0, j < m. (6.8)

To do so we need to confirm that if γ −1x0 = γ̃ −1x0 then cγ = cγ̃ . But γ −1x0 = γ̃ −1x0 if
and only if γ̃ γ −1 ∈ �x0 = 〈γ0〉 so it is sufficient to show that γ → cγ is constant on the
classes �/�x0 . We compute

cγ −1
0 γ = m! (σ ((γ −1

0 γ )−1)′(x0))−m c
γ −1
0 γ

= m! ((σ (γ −1)σ (γ0))
′(x0))−m c

γ −1
0 γ

= m! (σ (γ −1)′(σ (γ0)(x0))σ (γ0)
′(x0))−m c

γ −1
0 γ

= m! (σ (γ −1)′(x0)ζ )−m ζmcγ = cγ
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using (6.1) and (6.5) in the last line. We conclude that f exists. Now F = ∑
γ∈� γ ⊗ f ◦γ −1

satisfies (6.6).
We have shown that Ix0,m/Ix0,m+1 contains a subset B = {am̄1 + Ix0,m+1, . . . , am̄km̄ +

Ix0,m+1} of elements whose set of first Taylor coefficients corresponds to any choice of
basis of Vm̄ . Elements of B are linearly independent, since their first Taylor coefficients are.
Moreover, from (6.3) we know that the dimension of Ix0,m/Ix0,m+1 is at most km̄ . Hence B
is a basis. ��

Theorem 6.2 and Gaussian elimination results in the following reformulation.

Corollary 6.3 (V ⊗C OX)�/Ix0,m ∼= (V ⊗ C[z]/(zm))γ0 ∼= (V ⊗ C[z])γ0 /(zm).

We reintroduce a complex finite-dimensional Lie algebra g in place of V and use Proposition
4.1 to see that the linear isomorphism becomes an isomorphism of Lie algebras. Thus we get

Theorem 6.4 The quotient of an automorphic Lie algebraAonapunctured compactRiemann
surface X by the ideal Ix0,m has the form

A/Ix0,m
∼= (

g ⊗ C[z]/(zm)
)γ0 ∼= (g ⊗ C[z])γ0 /(zm).

In particular, if Ak̄
1, . . . , A

k̄
dk̄

is a basis of gk̄ for k̄ ∈ Z/ν0Z, then a basis for the twisted
truncated current algebra is given by

Ak̄
j ⊗ zk + (zm), k = 0, . . . ,m − 1, j = 1, . . . , dk̄ .

The power of z defines a Z-grading

A/Ix0,m =
∞⊕

i=0

Ai , [Ai ,A j ] ⊂ Ai+ j , Ai = {0} if i ≥ m.

The case m = ν0 is special because the dimension of A/Ix0,ν0 equals that of g. We can in
fact see that A/Ix0,ν0 is a contraction

3 of g.
For all but finitely many x0 ∈ X the automorphism γ0 is trivial. The corresponding

quotients g ⊗ C[z]/(zm) of the automorphic Lie algebras are known as twisted truncated
current algebras. Their representation theory has seen great developments in recent years [1,
5, 13, 25, 26].

We end this section with an example of an automorphic Lie algebra of genus 1 illustrating
Theorems 6.2 and 6.4.

Example 6.5 Let L = Zl1 ⊕ Zl2 be a lattice in C and T = C/L the associated torus
with complex structure. It is well known that the field of meromorphic functions on T is
C(℘) ⊕ C(℘)℘′ where ℘ is the Weierstrass p function

℘(z) = 1

z2
+

∑

0 �=l∈L

1

(z + l)2
− 1

l2

which satisfies the equation (℘′)2 = 4℘3 − g2℘ − g3 where g2 = 60
∑

0 �=l∈L 1
l4

and

g3 = 140
∑

0 �=l∈L 1
l6

(in this example we will identify functions on T with L-invariant

3 For z ∈ (0, 1], the map Uz : Ak̄j �→ Ak̄j z
k , k = 0, . . . , ν0 − 1, j = 1, . . . , dk̄ is a linear isomorphism of

g which sends the Lie structure to an equivalent one. The limit [A, B]0 = limz �→0 Uz [U−1
z A,U−1

z B] exists
for all A, B ∈ g and defines a new Lie structure on g. The quotient A/Ix0,ν0 is isomorphic to (g, [·, ·]0).
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functions on C). The only poles of ℘ are at the lattice L. Hence if we choose X = T \ {L}
then

OX = C[℘] ⊕ C[℘]℘′, S = {L}
It is easy to see that ℘(−z) = ℘(z) and ℘′(−z) = −℘′(z) which makes it also easy to

construct an automorphic Lie algebra with reduction group � = C2 = 〈γ 〉 on the torus.
Define σX : � �→ Aut X and σsl2( C) : � �→ Aut sl2 (C) by

σX(γ )z = −z, σsl2(C)(γ )

(
a b
c −a

)

=
(

a −b
−c −a

)

.

Then we can write down a basis for the automorphic Lie algebra. Superscripts± indicate
the ±1 eigenspaces of γ .

A = (sl2(C) ⊗ OX)�

= sl2(C)+ ⊗ O+
X

⊕ sl2(C)− ⊗ O−
X

= C

(
1 0
0 −1

)

⊗ C[℘] ⊕ C

〈(
0 1
0 0

)

,

(
0 0
1 0

)〉

⊗ C[℘]℘′

= C

〈(
1 0
0 −1

)

⊗ ℘ j ,

(
0 1
0 0

)

⊗ ℘ j℘′,
(
0 0
1 0

)

⊗ ℘ j℘′ : j ≥ 0

〉

We pick a point x0 = l1/2 with nontrivial stabiliser. Define ℘̃ = ℘ − ℘(l1/2). The
displayed formula above remains true if ℘ is replaced by ℘̃. Now ℘′ has a zero at x0 of order
1 (due to antisymmetry) and therefore ℘̃ has a zero at x0 of order 2. From this point it is easy
to see that, for j ≥ 0,

Ix0,2 j/Ix0,2 j+1 = C

〈(
1 0
0 −1

)

⊗ ℘̃ j + Ix0,2 j+1

〉

,

Ix0,2 j+1/Ix0,2 j+2 = C

〈(
0 1
0 0

)

⊗ ℘̃ j℘′ + Ix0,2 j+2,

(
0 0
1 0

)

⊗ ℘̃ j℘′ + Ix0,2 j+2

〉

,

which exemplifies Theorem 6.2. In particular, the quotient A/Ix0,m of the automorphic Lie
algebra has basis

h j =
(
1 0
0 −1

)

⊗ ℘̃ j + Ix0,m, 2 j < m

e j =
(
0 1
0 0

)

⊗ ℘̃ j℘′ + Ix0,m, 2 j + 1 < m

f j =
(
0 0
1 0

)

⊗ ℘̃ j℘′ + Ix0,m, 2 j + 1 < m

and structure constants

[hi , e j ] =
{
2ei+ j if i + j + 1 < m
0 otherwise

[hi , f j ] =
{
2 f i+ j if i + j + 1 < m
0 otherwise

[ei , f j ] =
{

(4℘3 − g2℘ − g3)hi+ j if i + j + 2 < m
0 otherwise.
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This exemplifies Theorem 6.4, where one can make the isomorphism to the twisted trun-
cated current algebra explicit by sending ℘̃ to z20 and ℘′ to z0 and carrying the group action
to γ z0 = −z0.

7 The Local Structure of Automorphic Lie Algebras

In this section we specialise the Lie algebra g to be simple and root systems will enter the
discussion. The twisted truncated current algebras can be described in root cohomological
terms [11] using the theory of automorphisms of finite order (a.k.a. torsions) of simple Lie
algebras.

Assume that g is a simple Lie algebra of type XN . The eigenspace decomposition g =⊕
m̄∈Z/ν0Z

gm̄ with respect a torsion γ0 can be described using Kac coordinates, which
we briefly explain here. For a more complete treatment we refer to [7] where torsions are
described in order to realise the affine Kac-Moody algebras concretely, and to [23] where the
classification of torsions [8] is achieved using only finite-dimensional methods extending the
reasoning of Cartan used to classify inner torsions.

Any torsion is of the form γ0 = μg with μ an automorphism of g induced by an auto-
morphism of its Dynkin diagram of order r , defining a second grading

g =
⊕

l̄∈Z/rZ

gl̄

and g an inner torsion of the form exp ad(x) with x in a CSA of g0̄ [7, Prop. 8.1]. This
is explained by the following construction (see also Example 7.2). The space gγ0 contains
a regular element x ′. It can be scaled so that ad(x ′) has integer eigenvalues. Choose the
centraliser of x ′ in g as Cartan subalgebra of g. This also fixes roots of g. Define a root α

to be positive when α(x ′) is positive. Then we have simple roots and corresponding weight
vectors E ′

1, . . . , E
′
N ∈ g.

Since ad(x ′)γ0 = γ0ad(x ′), the eigenspaces of ad(x ′), and in particular the CSA, are γ0-
invariant. Therefore γ0 sends one weight space gα to another g

α◦γ −1
0
. In that way it induces

an automorphism of the root system preserving the positive roots, hence the simple roots,
and hence a diagram automorphism μ̄, and an associated automorphism μ of g. Say

γ0E
′
i = ζ si E ′

μ̄(i).

Then g = μ−1γ0 sends E ′
i to ζ si E ′

i and is therefore of the form g = exp ad(x) with x
in the CSA of g. But we have more than that. The equation γ0g−1E ′

i = E ′
μ̄(i) shows that

si ≡ sμ̄(i) modulo ν0. Therefore gμ = μg and g = exp ad(x) with x in the CSA of g0̄.
Since the inner factor g of γ0 commutes with the diagram automorphismμ induced by γ0,

and with the action of the CSA of g0̄, there is a basis diagonalising all three. As demonstrated
in [7, §8.3], such a basis is found by averaging the elements E ′

1, . . . , E
′
N over the action of

μ, and adding one more element to obtain a set of generators E0, . . . , E� of the Lie algebra
g (where � is the rank of g0̄). If Ei has μ-eigenvalue (ζ

ν0
r )l and g-eigenvalue ζm , we define

si to be the residue of ν0
r l + m modulo ν0 (the exponent of the γ0-eigenvalue). It turns out
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that the orbit of the base (E0, . . . , E�) under the action of the affine Weyl group contains a
set of generators for which the integers (s0, . . . , s�) satisfy

ν0 = r
�∑

i=0

ai si . (7.1)

Kac showed that automorphisms of simple Lie algebras of orderm, up to conjugacy, are in
one-to-one correspondencewith sequences (s0, . . . , s�)of relative primenonnegative integers
satisfying (7.1), up to automorphisms of the Dynkin diagram of type X (r)

N [8]. Nowadays
such (s0, . . . , s�) are known as Kac coordinates (associated to γ0).

We will formulate our main result in terms of Kac coordinates and a quotient of the root
system of an affine Kac-Moody algebra. Let P be the weight lattice of g0̄. The nonzero
weights of the g0̄-representation gl̄ will be denoted �l̄ . We define two subsets of the group
P × Z/rZ, namely

�̄re =
⋃

l̄∈Z/rZ

�l̄ × {l̄}, �̄im = {0} × Z/rZ

corresponding to the real and imaginary roots of the affine Kac-Moody algebra (united with
zero). We endow their union �̄ = �̄re ∪ �̄im with the groupoid structure inherited from
P × Z/rZ. Then we have an isomorphism of groupoids

�̄ ∼= (�(X (r)
N ) ∪ {0})/rZδ

where �(X (r)
N ) is the root system of the affine Kac-Moody algebra of type X (r)

N and δ the

unique positive root δ = ∑�
i=0 aiαi with coefficient vector (a0, . . . , a�) in the kernel of the

Cartanmatrix of type X (r)
N . The coefficients ai are written in theDynkin diagrams in [7, Chap.

4]. Notice that the special case of an inner automorphism corresponds to r = 1, g0̄ = g and
�̄ ∼= �(XN ) ∪ {0}, the root system of g united with zero.

The root systems �(X (r)
N ) and corresponding weight spaces are well understood. The

weight spaces corresponding to �̄re are one-dimensional, the weight space of weight (0, 0̄)
is �-dimensional, and weight spaces corresponding to �̄im \{(0, 0̄)} are N−�

r−1 -dimensional [7,

Cor. 8.3]. There is a set of simpleweights� = {α0, . . . , α�} in�(X (r)
N )with defining property

that any positive element of�(X (r)
N ) is a linear combination of theαi with nonnegative integer

coefficients. Let �̄ denote its image in �̄. We have �̄ ⊂ �̄re.
We extend the Kac coordinates si = ω1(α) additively to a function on �̄

ω̄1 : �̄ → Z/ν0Z.

We denote its residue by ω1 : α �→ resω̄(α) ∈ {0, 1, . . . , ν0 −1}. Moreover, for α, β, α +
β ∈ �̄ we define

ω2(α, β) = ν−1
0 (ω1(β) − ω1(α + β) + ω1(α)) (7.2)

and notice that ω2(α, β) ∈ {0, 1}.
Whenwe combine the discussion of this sectionwith Theorem 6.4we obtain the following

local structure theorem.

Theorem 7.1 (Local structure theorem). LetA be an automorphic Lie algebra on a punctured
compact Riemann surface, where g is a simple Lie algebra of type XN . Then there is a basis
{A(α,u) : α ∈ �̄, u = 1, . . . , dα} of g diagonalisingμ, g, and adh0̄, with structure constants
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C (α+β,w)

(α,u),(β,v) known from the affine Lie algebra g(X (r)
N ). Hence the quotient A/Ix0,m of the

automorphic Lie algebra is isomorphic to the truncated twisted current algebra with basis

ai(α,u) = A(α,u) ⊗ ziν0+ω1(α) + (zm)

for α ∈ �̄, u ∈ {1, . . . , dα}, and 0 ≤ iν0 + ω1(α) < m. The Lie structure is given by

[ai(α,u), a
j
(β,v)] = δ

dα+β∑

w=1

C (α+β,w)

(α,u),(β,v) a
i+ j+ω2(α,β)

(α+β,w)

where δ = 1 if (i + j + ω2(α, β))ν0 + ω1(α + β) < m and δ = 0 otherwise.

If � acts on g by inner automorphisms then the local Lie structure is easier to write down.
The basis of A/Ix0,m becomes hi1, . . . , h

i
N with 0 ≤ iν0 < m, and xiα with α ranging in

the root system � of g and 0 ≤ iν0 + ω1(α) < m. The Lie brackets are [hii ′ , h j
j ′ ] = 0,

[hii ′ , a j
α] = α(Hi ′) a

i+ j
α and

[aiα, a j
β ] = δ ε(α, β) ai+ j+ω2(α,β)

α+β

where δ = 1 if (i + j + ω2(α, β))ν0 + ω1(α + β) < m and δ = 0 otherwise. Here ε(α, β)

is the usual structure constant of a Chevalley basis of g.
We end this section with an elaborate example of a dihedral group action on a simple Lie

algebra involving inner automorphisms, diagram automorphisms, and a product of such. We
discuss the associated 1-cochain ω1 and 2-cocycle ω2 that define the Lie algebra structure of
automorphic Lie algebras with this group action in the way described by Theorem 7.1.

Example 7.2 (� = D6, g = sl3). Consider the Lie algebra g = sl3 and its standard concreti-
sation with Chevalley basis

E ′
0 =

⎛

⎝
0 0 0
0 0 0
1 0 0

⎞

⎠ E ′
1 =

⎛

⎝
0 1 0
0 0 0
0 0 0

⎞

⎠ E ′
2 =

⎛

⎝
0 0 0
0 0 1
0 0 0

⎞

⎠

F ′
0 = [E ′

1, E
′
2], F ′

1 = [E ′
2, E

′
0], F ′

2 = [E ′
0, E

′
1],

H ′
1 = [E ′

1, F
′
1], H ′

2 = [E ′
2, F

′
2].

The group of automorphisms of the root system of sl3 is a dihedral group � = 〈a, b, c | a6 =
b2 = c2 = abc = 1〉 with 12 elements. It is generated by a reflection in an arbitrary
root and the nontrivial automorphism corresponding to the symmetry of the Dynkin diagram
(interchanging the two simple roots). We pick the reflection in the simple root α1 and denote
the associated automorphism of sl3 by b:

bE ′
0 = F ′

2, bE ′
1 = F ′

1, bE ′
2 = F ′

0.

The automorphism of sl3 corresponding to the symmetry of the Dynkin diagram will be
denoted by c:

cE ′
0 = −E ′

0, cE ′
1 = E ′

2, cE ′
2 = E ′

1.

We set a = cb. Then a6 = b2 = c2 = abc = 1.
If � acts faithfully on C, then each nontrivial stabiliser subgroup is conjugate to either

〈a〉, 〈b〉 or 〈c〉. Theorem 7.1 tells us that, near a point x0 with such nontrivial stabiliser, the
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automorphic Lie algebra associated to � is locally described by the eigenspace decomposi-
tions g = ⊕

m∈Z/ν0Z
gm̄ with respect to 〈a〉, 〈b〉 or 〈c〉. We will discuss the inner generator

b first, the Dynkin automorphism c second, and the mixed automorphism a at the end.
An example of a regular element of gb = g0̄ is

H0 =
⎛

⎝

1
2

1
2 0

1
2

1
2 0

0 0 −1

⎞

⎠ ,

which has eigenvalues 0 and ±1. The centraliser of h0 in g equals h = CC ⊕ CH0 with

C =
⎛

⎝

1
3 −1 0

−1 1
3 0

0 0 − 2
3

⎞

⎠ .

This Cartan subalgebra defines six root spaces. For the roots that are simple in the affine
system we take

E0 =
⎛

⎝
0 0 1
0 0 1
0 0 0

⎞

⎠ , E1 =
⎛

⎝

1
2

1
2 0

− 1
2 − 1

2 0
0 0 0

⎞

⎠ , E2 =
⎛

⎝
0 0 0
0 0 0

− 1
2

1
2 0

⎞

⎠ .

These generate the remaining basis elements Fi Mod 3 = [Ei+1Mod 3, Ei+2Mod 3] and we set
Hi = [Ei , Fi ], i = 0, 1, 2. The scaling factors of Ei are chosen such that the structure
constants of the basis {Ei , Hi , Fi } correspond to those of the standard basis {E ′

i , H
′
i , F

′
i }.

We have

g0̄ = CE0 ⊕ h ⊕ CF0, g1̄ = CE1 ⊕ CE2 ⊕ CF1 ⊕ CF2.

This shows that b has Kac coordinates (s0, s1, s2) = (0, 1, 1) (only determined up to sym-
metry of the affine Dynkin diagram). These Kac coordinates define the one-form ω1 on
�̄ ∼= �(A2) ∪ {0}

ω1(0) = 0, ω1(±α0) = 0, ω1(±α1) = 1, ω1(±α2) = 1.

Its boundary ω2 can be presented as a graph with vertices �̄ and undirected edges {α, β}
for ω2(α, β) �= 0

which gives a concise description of the bracket relations in A/Ix0,m given in Theorem 7.1,
an edge indicating one is added to the superindex, and no edge indicating nothing is added
to the superindex.

Next we consider the automorphism c. Since it is induced by the symmetry of the Dynkin
diagram, this case is also described in detail in [7, §8.3]. In the general construction we have
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μ = c, g = 1, so we can immediately proceed to the simultaneous diagonalisation of a CSA
of g0 and c. The root system �(A(2)

2 ) has a base �̄ = {α0, α1}

�̄re = {α0, α1, α0 + α1, 3α0 + α1, 4α0 + α1, 3α0 + 2α1},
�̄im = {0, δ = 2α0 + α1}

We choose H0 = 2(H ′
1 + H ′

2) to span the CSA, thereby fixing the simple root spaces to
be the respective spans of E0 = E ′

1 + E ′
2 and E1 = E ′

0. The other basis elements are
brackets of these two. From cE0 = E0 and cE1 = −E1 we see that c has Kac coordinates
(s0, s1) = (0, 1). Since c = μ, their gradings coincide and we simply get ω̄1((α, i)) = i , and
from that follows ω2((α, i), (β, j)) = 1 if i = j = 1 and ω2((α, i), (β, j)) = 0 otherwise.

We can present �̄ graphically by making α the horizontal coordinate of (α, i) and i the
vertical4 (in this example α lives in the root lattice sl2 and i inZ/2Z). We will write the value
of ω1 above the weight.

Lastly we turn to a. The algebra ga is one-dimensional, spanned by the regular element

H0 = i
√
3

3

⎛

⎝
0 1 1

−1 0 −1
−1 1 0

⎞

⎠ .

Its centraliser is a CSA defining simple weight spaces spanned by

E ′′
0 =

⎛

⎝
− 1

216 i
√
3 − 1

216
1
216 i

√
3 − 1

216 − 1
108

1
216 i

√
3 − 1

216
1
108

1
216 i

√
3 + 1

216
− 1

108
1
216 i

√
3 + 1

216
1

216 i
√
3 − 1

216

⎞

⎠ ,

E ′′
1 =

⎛

⎝

√
3 − i

√
3 − i −√

3 + i
2i 2i −2i√

3 + i
√
3 + i −√

3 − i

⎞

⎠ ,

E ′′
2 =

⎛

⎝
−√

3 + i −2i −√
3 − i

−√
3 + i −2i −√

3 − i√
3 − i 2i

√
3 + i

⎞

⎠ .

We find that

aE ′′
0 = ζ E ′′

0 , aE ′′
1 = ζ 4E ′′

2 , aE ′′
2 = ζ 4E ′′

1 .

4 This picture needs a warning: it is only a representation of the groupoid structure of the root system. Not of
the usual bilinear form defined on the dual of the Cartan subalgebra of the Kac-Moody algebra. This bilinear
form is not positive definite ((δ, δ) = 0).
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From there we readily see the factorisation in a diagram automorphism and an inner auto-
morphism:

μE ′′
0 = −E ′′

0 , μE ′′
1 = E ′′

2 , μE ′′
2 = E ′′

1 .

gE ′′
0 = ζ 4E ′′

0 , gE ′′
1 = ζ 4E ′′

1 , gE ′′
2 = ζ 4E ′′

2 .

We diagonalise μ and obtain the generators E ′′′
0 = E ′′

1 + E ′′
2 and E ′′′

1 = E ′′
0 for the simple

root spaces. Then γ0E ′′′
0 = ζ 4E ′′′

0 and γ0E ′′′
1 = ζ E ′′′

1 and ω1 generated by (s′
0, s

′
1) = (4, 1)

is

This is sufficient to construct the structure constants ofA/Ix0,m using Theorem 7.1. However,
(s′

0, s
′
1) = (4, 1) are no Kac coordinates since they do not satisfy (7.1). We can apply an

element of the Weyl group W (A(2)
2 ) = 〈σ0, σ1〉 in order to obtain Kac coordinates. In this

case we find that σ1σ0 takes ω1 to

with Kac coordinates (s0, s1) = (1, 1). The associated Lie algebra generators are

E0 =
⎛

⎝
−6

√
3 + 6i −3

√
3 − 3i −6i

−3
√
3 − 3i −12i −3

√
3 + 3i

−6i −3
√
3 + 3i 6

√
3 + 6i

⎞

⎠ ,

E1 =

⎛

⎜
⎜
⎜
⎝

− 1
648

√
3
(√

3 + 3i
)

− 1
648

√
3
(√

3 − 3i
)

− 1
108

− 1
648

√
3
(√

3 − 3i
)

1
108

1
648

√
3
(√

3 + 3i
)

− 1
108

1
648

√
3
(√

3 + 3i
)

− 1
648

√
3
(√

3 − 3i
)

⎞

⎟
⎟
⎟
⎠

.

All dihedral groups can be realized as automorphisms of the Riemann sphere and also
as automorphisms of any complex torus. Consequently there are automorphic Lie algebras
on punctured spheres and tori whose local Lie structure is described by the 2-cocycles ω2

obtained in this example in the sense of Theorem 7.1.

8 Further Directions

Aswe have seen, the representation theory of automorphic Lie algebras is incredibly rich and
complicated. Due to the wild representation type of automorphic Lie algebras, one cannot

123



Wild Local Structures of Automorphic Lie Algebras 329

hope to gain a complete understanding of their representation theory. However as a result of
the description of the local structure theory of automorphic Lie algebras, there is promise to
gain a much greater (albeit incomplete) understanding of their representation theory. There
are numerous directions which one can pursue in this regard.

The finite-dimensional irreducible representations of automorphic Lie algebras have been
classified in the general context of equivariant map algebras. However since the category
fin A of an automorphic Lie algebra A is not semisimple, this is very far from being the
complete picture. Normally, one would look to the next largest class of representations that
could be used to classify objects in finA—namely, the indecomposable representations. But
as we have seen, a classification of indecomposable representations of fin A is largely hope-
less. Thus, it makes sense to restrict ones attention to special subclasses of indecomposable
representations.

8.1 Bricks

An example of a special class of indecomposable representations one may want to study is
the class of bricks. These are representations with a trivial endomorphism algebra. Bricks
are incredibly important examples of representations. As well as being fundamental objects
in the category of representations they have many applications. Irreducible representations
are an obvious example of bricks, but it is possible for there to exist many other bricks in
an algebra that are not irreducible, and thus these form a wider class of representations to
consider. Indeed, automorphic Lie algebras contain bricks that are not irreducible.

Example 8.1 Let A = A(sl2(C), X, �, σsl2(C), σX) as in Example 4.4. Consider the wild
quotient Lie algebra

A′ = A/I0,3 ∼=
〈(

1 0
0 −1

)

,

(
0 0
z2 0

)〉

.

Consider the representation ρ = adA′ ◦ evϕ0,3 ∈ fin A. Explicitly with respect to the basis
given in Example 4.4, we have

ρ

((
1 0
0 −1

))

=
(
0 0
0 −2

)

, ρ

((
0 0
z2 0

))

=
(
0 0
2 0

)

and ρ(a) = 0 for any other basis element a of A. It is easy to see that ρ is not isomorphic to
a point-evaluation representation (nor is it isomorphic to a point-evaluation representation
tensored with a 1-dimensional representation of A), and thus ρ is not irreducible. However,
a short calculation shows that EndC(ρ) ∼= C. Thus, ρ is a brick.

There are many examples of wild structures where the bricks are well-understood (see for
example, [2] and references within), and thus it would be interesting to investigate what can
be said about the bricks in automorphic Lie algebras.

8.2 Uniserial Representations

Uniserials are another important class of indecomposable representations. In some cases,
it is possible to classify uniserial representations in a wild algebra – an example being the
particular solvable Lie algebras considered in [3]. One can obtain many examples of uniserial
representations of automorphic Lie algebras by evaluating with Jordan blocks.
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A potential step in investigating the uniserial representations of automorphic Lie alge-
bras is in understanding the space of extensions between representations. Formulas for the
space of extensions between finite-dimensional irreducible representations of equivariant
map algebras have been calculated in [21]. Of particular interest is when the space of exten-
sions between irreducible representations is 1-dimensional, as this information can be used
to construct uniserial representations and uniserial length subcategories of fin A (see for
example [4]).
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