
Received: 14 August 2023 Revised: 19 January 2024 Accepted: 4 February 2024

DOI: 10.1112/blms.13030

Bulletin of the London
Mathematical SocietyRESEARCH ARTICLE

Some convexity criteria for differentiable
functions on the 2-Wasserstein space

Guy Parker

Department of Mathematical Sciences,
Mathematical Sciences and Computer
Science Building, Durham University,
Upper Mountjoy Campus, County
Durham, UK

Correspondence
Guy Parker, Department of Mathematical
Sciences, Mathematical Sciences and
Computer Science Building, Durham
University, Upper Mountjoy Campus,
Stockton Road, County Durham, UK,
DH1 3LE.
Email: guy.m.parker@durham.ac.uk

Funding information
Engineering and Physical Sciences
Research Council, Grant/Award Number:
EP/W524426/1

Abstract
We show that a differentiable function on the 2-
Wasserstein space is geodesically convex if and only if it
is also convex along a larger class of curves whichwe call
‘acceleration-free’. In particular, the set of acceleration-
free curves includes all generalised geodesics. We also
show that geodesic convexity can be characterised
through first- and second-order inequalities involving
the Wasserstein gradient and the Wasserstein Hes-
sian. Subsequently, such inequalities also characterise
convexity along acceleration-free curves.
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1 INTRODUCTION

1.1 Acceleration-free curves and main result

In the theory developed in the book of Ambrosio, Gigli and Savaré [2], the notion of geodesic semi-
convexity is a key ingredient in establishing the existence and uniqueness of gradient flows in the
2-Wasserstein space (𝒫2(ℝ

𝑑),𝑊2). However, without the stronger notion of semi-convexity along
generalised geodesics, we cannot use the theory developed in [2] to establish several other impor-
tant properties of gradient flows such as stability and optimal error estimates. Despite the strength
of convexity along generalised geodesics over geodesic convexity in this regard, it is shown in [2,
Chapter 9] that, for the three energy functionals introduced by McCann in [15], these two notions
coincide. This manuscript shows that this occurrence is not limited to these energy functionals.
On the contrary, in Section 3, we prove the following theorem.
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1840 PARKER

Theorem1.1. Let𝐹∶ 𝒫2(ℝ
𝑑) → ℝ and let 𝜆 ∈ ℝ. If𝐹 is differentiable on𝒫2(ℝ

𝑑), then the following
statements are equivalent.

1. 𝐹 is 𝜆-geodesically convex.
2. 𝐹 is 𝜆-convex along generalised geodesics.
3. 𝐹 is 𝜆-convex along acceleration-free curves.

As a consequence of Theorem 1.1, not only do we hope to highlight the connection between
geodesic and generalised geodesic convexity on the Wasserstein space, we also hope to draw
attention to the connection between these two concepts and the third notion of convexity along
acceleration-free curves (cf. Definition 3.1).
Heuristically, an acceleration-free curve on the Wasserstein space describes the evolution of a

density of particles for which the path of each particle describes a straight line. For example, any
curve of the form [0, 1] ∋ 𝑡 ↦ 1

𝑛

∑𝑛
𝑖=1 𝛿𝑥𝑖(1−𝑡)+𝑡𝑦𝑖 , whilst not necessarily a geodesic on𝒫2(ℝ

𝑑), is
certainly an acceleration-free curve.
If we are more specific, then given any non-atomic probability space (Ω, ℙ), a curve

[0, 1] ∋ 𝑡 ↦ 𝜇𝑡 ∋ 𝒫2(ℝ
𝑑) is acceleration-free if and only if there exist random variables 𝑋,𝑌 ∈

𝐿2((Ω, ℙ); ℝ𝑑) such that 𝜇𝑡 = 𝐿𝑎𝑤((1 − 𝑡)𝑋 + 𝑡𝑌) for every 𝑡 ∈ [0, 1]. Indeed, this characterisa-
tion of acceleration-free curves is equivalent to Definition 3.1 and, in particular, such a description
reveals a connection between acceleration-free curves and the notion of convexity on the space
𝐿2((Ω, ℙ); ℝ𝑑). Convexity on 𝐿2((Ω, ℙ); ℝ𝑑), often characterised in the form of a displacement
monotonicity or L-convexity condition (introduced by Ahuja (cf. [1, Equation 4.3]) and Carmona
and Delarue (cf. [4, Definition 5.70]), respectively), has been utilised to much success in estab-
lishing various well-posedness results for systems of mean-field games (cf. Gangbo et al. [10];
Mészáros andMou [16]; Gangbo andMészáros [9]), and so, whilst the theory of mean-field games
is beyond the scope of this paper, we briefly discuss this connection whilst referring the more
interested reader to the book of Carmona and Delarue [4] for a more comprehensive theory.
Given a function 𝐹∶ 𝒫2(ℝ

𝑑) → ℝ, we define its lift to 𝐿2((Ω, ℙ); ℝ𝑑) as the function satisfying
�̃�(𝑋) ∶= 𝐹(𝐿𝑎𝑤(𝑋)) (cf. [4, Definition 5.22]). It follows immediately from the above characterisa-
tion of acceleration-free curves that �̃� is convex if and only if 𝐹 is convex along acceleration-free
curves. Moreover, due to the work of Gangbo and Tudorascu (cf. [11, Corollary 3.22]), it is known
that a function is differentiable on𝒫2(ℝ

𝑑) if and only if its lift is differentiable on 𝐿2((Ω, ℙ); ℝ𝑑).
Consequently, when [11, Corollary 3.22] is used in conjunction with Theorem 1.1, it follows that 𝐹
is geodesically convex and differentiable if and only if �̃� is also convex and differentiable.
Since the set of acceleration-free curves includes every generalised geodesic, the notion of con-

vexity along acceleration-free curves is stronger still than the notion of convexity along generalised
geodesics. Consequently, in proving Theorem 1.1, ourmain focus is to show that every geodesically
convex, differentiable function is also convex along acceleration-free curves. As we demonstrate
in Example 3.9, the notions of geodesic convexity and acceleration-free convexity do not gener-
ally coincide, even if we assume our functions to be continuous. Consequently, the assumption of
differentiability forms a part of our analysis.

1.2 Strategy of proof — Theorem 1.1

In order to clearly understand acceleration-free curves and their associated notion of convexity,
our analysis focuses on acceleration-free curves between discretemeasures. Firstly, this is because
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SOME CONVEXITY CRITERIA FOR DIFFERENTIABLE FUNCTIONS ON THE 2-WASSERSTEIN SPACE 1841

such curves may be viewed, at the finite-dimensional level, as a collection of straight-line paths
between a finite collection of points in ℝ𝑑. Secondly, we choose discrete measures because the set
of discrete measures on ℝ𝑑 is dense in (𝒫2(ℝ

𝑑),𝑊2).
Consider [0, 1] ∋ 𝑡 ↦ 𝜇𝑡, an acceleration-free curve between discrete measures. Since the mea-

sure 𝜇𝑠 is also discrete for all 𝑠 ∈ (0, 1), we may envision the curve [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 as a collection
of straight-line paths between a finite collection of points in ℝ𝑑. Moreover, since this collection
of straight-line paths is finite, the number of instances at which particles ‘collide’ (i.e. the num-
ber of instances at which two or more particles occupy the same point in space at the same
point in time) is also finite. Consequently, given any 𝑠 ∈ (0, 1), it is always possible to find two
small windows of time (𝑠, 𝑠 + 𝜀) and (𝑠 − 𝛿, 𝑠) during which no particles collide. As we show
in Lemma 3.4, this behaviour means that, for every 𝑠 ∈ (0, 1), there exist 𝜀, 𝛿 > 0 such that the
curves [𝑠, 𝑠 + 𝜀] ∋ 𝑡 ↦ 𝜇𝑡 and [𝑠 − 𝛿, 𝑠] ∋ 𝑡 ↦ 𝜇𝑡 define geodesics. If a function 𝐹∶ 𝒫2(ℝ

𝑑) → ℝ

is then assumed to be geodesically convex, then themap 𝑡 ↦ 𝐹(𝜇𝑡)must be convex on the intervals
[𝑠, 𝑠 + 𝜀] and [𝑠 − 𝛿, 𝑠].
In general, convexity on the intervals [𝑠, 𝑠 + 𝜀] and [𝑠 − 𝛿, 𝑠] does not mean that the map

𝑡 ↦ 𝐹(𝜇𝑡) is convex on [0,1]. This is because joining the two intervals [𝑠 − 𝜀, 𝑠] and [𝑠, 𝑠 + 𝜀]may
create a non-convex ‘cusp’ at 𝑡 = 𝑠. In order to circumvent the existence of these cusps, we show
in Lemma 3.8 that no cusps can exist when [0, 1] ∋ 𝑡 ↦ 𝐹(𝜇𝑡) is differentiable. We also show, in
Lemma 3.7, that [0, 1] ∋ 𝑡 ↦ 𝐹(𝜇𝑡) is differentiable whenever 𝐹 is differentiable on𝒫2(ℝ

𝑑).
Subsequently, in the proof of Theorem 1.1, we assume that𝐹 is differentiable and 𝜆-geodesically

convex. As a consequence of the Lemmas 3.4, 3.7 and 3.8, it follows that 𝐹 is 𝜆-convex along any
acceleration-free curve between discretemeasures.Moreover, since𝐹 is continuous, the convexity
criterion, Lemma 3.5, states that 𝐹 must also be 𝜆-convex along any acceleration-free curve.

1.3 Higher order convexity criteria

Supplementary to our first result, we present Theorems 1.2 and 1.3. These theorems characterise
geodesic semi-convexity for differentiable and twice differentiable functions on 𝒫2(ℝ

𝑑), respec-
tively. Moreover, as a consequence of Theorem 1.1, these results also characterise semi-convexity
along generalised geodesics and acceleration-free curves. Furthermore, whilst we only address
geodesic semi-convexity in this manuscript, we expect that Theorems 1.2 and 1.3 may be suitably
extended to characterise the notion of geodesic 𝜔-convexity introduced by Craig in [7].

Theorem 1.2. Let 𝐹∶ 𝒫2(ℝ
𝑑) → ℝ and let 𝜆 ∈ ℝ. If 𝐹 is differentiable on 𝒫2(ℝ

𝑑), then 𝐹 is 𝜆-
geodesically convex if and only if, for all 𝜇1, 𝜇2 and all 𝛾 ∈ Γ𝑜(𝜇1, 𝜇2), the following inequality holds.

∫(ℝ𝑑)
2
(∇𝑤𝐹[𝜇2](𝑥2) − ∇𝑤𝐹[𝜇1](𝑥1)) ⋅ (𝑥2 − 𝑥1) 𝑑𝛾(𝑥1, 𝑥2) ⩾ 𝜆𝑊2

2(𝜇1, 𝜇2). (1)

Theorem 1.3. Let 𝐹∶ 𝒫2(ℝ
𝑑) → ℝ and let 𝜆 ∈ ℝ. If 𝐹 is twice differentiable on𝒫2(ℝ

𝑑), then 𝐹 is 𝜆-
geodesically convex if and only if, for all 𝜇 ∈ 𝒫2(ℝ

𝑑) and all 𝜁 ∈ 𝑇𝜇𝒫2(ℝ
𝑑), the following inequality

holds.

𝐻𝑒𝑠𝑠𝐹[𝜇](𝜁, 𝜁) ⩾ 𝜆‖𝜁‖2
𝐿2(𝜇)

. (2)

 14692120, 2024, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.13030 by D

urham
 U

niversity - U
niversity, W

iley O
nline L

ibrary on [22/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1842 PARKER

Theorems 1.2 and 1.3 are proven in Section 4 and may be seen as analogues of the respective
inequalities that characterise semi-convexity for differentiable and twice differentiable functions
on finite-dimensional space. Although the 2-Wasserstein space is not a smooth manifold, the for-
mal Riemannian calculus, proposed by Otto in [17] and further developed by Otto and Villani
in [18], provides a well-established notion of differentiability for functions defined on𝒫2(ℝ

𝑑). In
particular, in this manuscript, we refer to the subsequent work of Gangbo and Chow (see [6]) in
which the authors define a Hessian on the 2-Wasserstein space consistent with the Levi–Civita
connection proposed by Gigli in [12] and Lott in [14].
Whilst the current theory is lacunary in a complete presentation of the first- and second-order

convexity criteria presented above, there are well-established first-order-convexity inequalities
such as the aforementioned notions of L-convexity and displacement monotonicity. Furthermore,
Lanzetti et al. show that when a function 𝐹∶ 𝒫2(ℝ

𝑑) → ℝ is differentiable and geodesically semi-
convex, Equation (1) holds for all 𝜇1, 𝜇2 ∈ 𝒫2(ℝ

𝑑) and all 𝛾 ∈ Γ𝑜(𝜇1, 𝜇2) (cf. [13, Proposition 2.8]).
Comparatively, in Theorem 1.2, we posit that the converse also holds.
In contrast to the first-order convexity criterion, second-order convexity inequalities, such as

(2), are far less well established. In particular, it seems that there is currently no description of
geodesic semi-convexity purely in terms of the Hessian presented in [6, Definition 3.1] (see also
Definition 2.6). In addition, as we explain in the following subsection, the nature of parallel trans-
port on 2-Wasserstein space means that establishing a second-order characterisation of geodesic
convexity requires particular care.

1.4 Strategy of proof — Theorem 1.3

As seen in Definition 2.6, the Wasserstein Hessian is defined via its extension from ∇𝐶∞
𝑐 (ℝ

𝑑) ×

∇𝐶∞
𝑐 (ℝ

𝑑); however, it is also possible to calculate the Hessian directly via the covariant deriva-
tive proposed in [12] and [14]. Whilst it is expected that one could employ this latter method to
derive a second-order geodesic convexity criterion, there are some difficulties in this approach.
In particular, as established in [12, Example 5.20], parallel transport does not exist everywhere
along some Wasserstein geodesics. In recognition of this difficulty, we instead choose to estab-
lish a second-order geodesic convexity criterion via an alternative argument which we describe
as follows.
Firstly, let [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 ∈ 𝒫2(ℝ

𝑑) be a geodesic betweenmeasures 𝜇, 𝜈 ∈ 𝒫2(ℝ
𝑑) and assume

that there exists 𝜑 ∈ 𝐶∞
𝑐 (ℝ

𝑑) such that 𝜇𝑡 = (𝑖𝑑 + 𝑡∇𝜑)#𝜇 for all 𝑡 ∈ [0, 1]. In Lemma 4.1, we
show (under some additional convexity assumption on 𝜑) that the second derivative of the map
𝑡 ↦ 𝐹(𝜇𝑡)may be written explicitly in terms of the Wasserstein Hessian. Consequently, convexity
along any such curve 𝑡 ↦ 𝜇𝑡 may be characterised by Inequality (2).
In order to extend this characterisation to a larger class of geodesics, we subsequently introduce

the set𝒫𝑟𝑐
2
(ℝ𝑑). This is the subset of𝒫2(ℝ

𝑑) containingmeasureswhich are absolutely continuous
with respect to the 𝑑-dimensional Lebesgue measure and have compact support. In particular,
in Lemma 4.2, we show that if 𝜇, 𝜈 ∈ 𝒫𝑟𝑐

2
(ℝ𝑑), then the optimal map between 𝜇 and 𝜈 can be

approximated by a sequence of smooth optimal maps (𝑇𝑛)𝑛∈ℕ for which (𝑇𝑛 − 𝑖𝑑) ∈ ∇𝐶∞
𝑐 (ℝ

𝑑).
The proof of this result is inspired by the mollifying argument used to prove [2, Proposition 8.5.2].
As a consequence of Lemmas 4.1 and 4.2, it follows that Inequality (2) characterises geodesic

convexity on 𝒫𝑟𝑐
2
(ℝ𝑑). Moreover, as a consequence of Lemma 4.5, Inequality (2) characterises

geodesic convexity on the whole space 𝒫2(ℝ
𝑑). Lemma 4.5 states that a continuous function
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SOME CONVEXITY CRITERIA FOR DIFFERENTIABLE FUNCTIONS ON THE 2-WASSERSTEIN SPACE 1843

is 𝜆-geodesically convex if and only if its restriction to 𝒫𝑟𝑐
2
(ℝ𝑑) is 𝜆-geodesically convex and is

inspired by the convexity criterion derived in [2, Proposition 9.1.3].

1.5 A note

After the initial submission of this manuscript to the arXiv, the author was made aware of the
work of Cavagnari, Savaré and Sodini [5] which was developed in parallel with this manuscript.
The results of [5] present several connections with Section 3 of this manuscript. In particular, the
authors introduce the notion of total convexity and this corresponds to our notion of convexity
along acceleration-free curves.
In addition to this, it is shown in [5, Theorem9.1; Remark 9.2] that, if𝑑 ⩾ 2, then the assumption

of differentiability in Theorem 1.1 may be relaxed to the assumption of continuity. To prove this
result, the authors of [5] also find the space of discrete measures crucial to their argument, and
moreover, the findings of Lemma 3.4 may similarly be found in [5, Theorem 6.2].

2 NOTATION AND PRELIMINARIES

2.1 Notation

The notation introduced here is largely consistent with the notation used in [2]. We refer the
reader to [2] for a more detailed description of their properties.
The set 𝒫(ℝ𝑑) denotes the space of Borel probability measures over ℝ𝑑 and the set 𝒫2(ℝ

𝑑)

denotes the set of 𝜇 ∈ 𝒫(ℝ𝑑) with bounded second moment. For 𝜇, 𝜈 ∈ 𝒫2(ℝ
𝑑), the set of trans-

port plans Γ(𝜇, 𝜈) denotes the set of 𝛾 ∈ 𝒫2(ℝ
𝑑 × ℝ𝑑) with first marginal 𝜇 and second marginal

𝜈. Subsequently, we define the 2-Wasserstein distance𝑊2∶ 𝒫2(ℝ
𝑑) ×𝒫2(ℝ

𝑑) → ℝ.

𝑊2(𝜇, 𝜈) ∶= inf

{(
∫(ℝ𝑑)2

|𝑥1 − 𝑥2|2 𝑑𝛾(𝑥1, 𝑥2)) 1
2 |||| 𝛾 ∈ Γ(𝜇, 𝜈)

}
.

The pair (𝒫2(ℝ
𝑑),𝑊2) defines a metric space which we refer to as 2-Wasserstein space and,

throughout this manuscript, we will assume that𝒫2(ℝ
𝑑) is endowed with the𝑊2 distance.

The set of optimal transport plans Γ𝑜(𝜇, 𝜈) is defined as follows.

Γ𝑜(𝜇, 𝜈) ∶=

{
𝛾 ∈ Γ(𝜇, 𝜈)

||||∫(ℝ𝑑)2
|𝑥1 − 𝑥2|2 𝑑𝛾(𝑥1, 𝑥2) = 𝑊2

2(𝜇, 𝜈)

}
.

Given 𝜇 ∈ 𝒫2(ℝ
𝑑), we say that 𝜇 is a discrete measure if there exists 𝑛 ∈ ℕ and 𝑎1, … , 𝑎𝑛 ∈ [0, 1]

such that
∑𝑛

𝑖=1 𝑎𝑖 = 1 and 𝑥1, … , 𝑥𝑛 ∈ ℝ𝑑 such that 𝜇 =
∑𝑛

𝑖=1 𝑎𝑖𝛿𝑥𝑖 . We let 𝒫
𝑑
2
(ℝ𝑑) denote the

set of discrete measures on ℝ𝑑. The set𝒫𝑟
2
(ℝ𝑑) denotes the set of 𝜇 ∈ 𝒫2(ℝ

𝑑) that are absolutely
continuous with respect to the 𝑑-dimensional Lebesguemeasureℒ𝑑 and𝒫𝑟𝑐

2
(ℝ𝑑) denotes the set

of 𝜇 ∈ 𝒫𝑟
2
(ℝ𝑑)with compact support. For 𝜇 ∈ 𝒫(ℝ𝑑), the set 𝐿2(𝜇; ℝ𝑑) denotes the Hilbert space

of Borel vector fields 𝜁 ∶ ℝ𝑑 → ℝ𝑑 satisfying ∫
ℝ𝑑 |𝜁|2 𝑑𝜇 < ∞. We define ∇𝐶∞

𝑐 (ℝ
𝑑) ∶= {∇𝜑 | 𝜑 ∈

𝐶∞
𝑐 (ℝ

𝑑)} and, for 𝜇 ∈ 𝒫2(ℝ
𝑑), the set 𝑇𝜇𝒫2(ℝ

𝑑) denotes the closure of ∇𝐶∞
𝑐 (ℝ

𝑑) in 𝐿2(𝜇; ℝ𝑑).
For 𝑖, 𝑗 ∈ {1, 2, 3} and 𝑘 ∈ {1, 2}, we define the projection operators 𝜋𝑖,𝑗(𝑥1, 𝑥2, 𝑥3) ∶= (𝑥𝑖, 𝑥𝑗) and
𝜋𝑘(𝑥1, 𝑥2) ∶= 𝑥𝑘. Given a set 𝐴 ⊂ ℝ𝑑, its convex hull is denoted as Hull(𝐴). Given a measure
𝜇 ∈ 𝒫(ℝ𝑑), its support is denoted as supp(𝜇) and, given a 𝜇-measurable map 𝑇∶ ℝ𝑑 → ℝ𝑛, the
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1844 PARKER

pushforward of𝜇 through𝑇 is themeasure𝑇#𝜇 ∈ 𝒫(ℝ𝑛) defined by𝑇#𝜇(𝐴) ∶= 𝜇(𝑇−1(𝐴)) for all
Borel sets 𝐴 ⊂ ℝ𝑛. Finally, we let 𝑖𝑑∶ ℝ𝑑 → ℝ𝑑 denote the identity map on ℝ𝑑, whilst 𝐼𝑑 denotes
the 𝑑 × 𝑑 identity matrix.

2.2 Preliminaries

In this subsection, we recall a number of established definitions and results for use throughout the
remainder of the manuscript. In particular, since Theorem 1.1 concerns both geodesic convexity
and convexity along generalised geodesics, we first recall the definitions of such concepts from
[15, Definition 1.1] and [2, Definition 9.2.4], respectively. Furthermore, we recall from [2, Lemma
7.2.1], a useful lemma concerning the properties of Wasserstein geodesics.

Definition 2.1. We say that a curve [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 ∈ 𝒫2(ℝ
𝑑) is a geodesic if there exist

𝜇1, 𝜇2 ∈ 𝒫2(ℝ
𝑑) and 𝛾 ∈ Γ𝑜(𝜇1, 𝜇2) such that 𝜇𝑡 = ((1 − 𝑡)𝜋1 + 𝑡𝜋2)#𝛾 for all 𝑡 ∈ [0, 1]. Given

𝐹∶ 𝒫2(ℝ
𝑑) → ℝ and 𝜆 ∈ ℝ, we say that 𝐹 is 𝜆-geodesically convex if, between every pair of mea-

sures 𝜇1, 𝜇2 ∈ 𝒫2(ℝ
𝑑), there exists a geodesic [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 ∈ 𝒫2(ℝ

𝑑) such that the following
inequality is satisfied for all 𝑡 ∈ [0, 1].

𝐹(𝜇𝑡) ⩽ (1 − 𝑡)𝐹(𝜇1) + 𝑡𝐹(𝜇2) −
𝜆

2
𝑡(1 − 𝑡)𝑊2

2(𝜇1, 𝜇2). (3)

Definition 2.2. Let 𝐹∶ 𝒫2(ℝ
𝑑) → ℝ and let 𝜆 ∈ ℝ. We say that 𝐹 is 𝜆-convex along gener-

alised geodesics if, for every triplet of measures 𝜇1, 𝜇2, 𝜇3 ∈ 𝒫2(ℝ
𝑑), there exists 𝝁 ∈ 𝒫2((ℝ

𝑑)3)

with𝜋1,2
#
𝝁 ∈ Γ𝑜(𝜇1, 𝜇2) and𝜋

1,3
#
𝝁 ∈ Γ𝑜(𝜇1, 𝜇3) such that the curve [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 ∶= ((1 − 𝑡)𝜋2 +

𝑡𝜋3)#𝝁 satisfies the following inequality for all 𝑡 ∈ [0, 1].

𝐹(𝜇𝑡) ⩽ (1 − 𝑡)𝐹(𝜇2) + 𝑡𝐹(𝜇3) −
𝜆

2
𝑡(1 − 𝑡)∫(ℝ𝑑)3

|𝑥2 − 𝑥3|2 𝑑𝝁(𝑥1, 𝑥2, 𝑥3).
Lemma 2.3. Let 𝜇1, 𝜇2 ∈ 𝒫2(ℝ

𝑑), let 𝛾 ∈ Γ𝑜(𝜇1, 𝜇2) and let [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 ∶= ((1 − 𝑡)𝜋1 +

𝑡𝜋2)#𝛾. The set Γ𝑜(𝜇𝑠, 𝜇𝑟) has a unique element for {𝑠, 𝑟} ≠ {0, 1}. In particular, this element is given
by [((1 − 𝑠)𝜋1 + 𝑠𝜋2), ((1 − 𝑟)𝜋1 + 𝑟𝜋2)]#𝛾.

Remark 2.4. If 𝐹∶ 𝒫2(ℝ
𝑑) → ℝ is 𝜆-geodesically convex, then 𝐹 necessarily satisfies Equation (3)

for at least one geodesic between every pair of measures in𝒫2(ℝ
𝑑). However, if 𝐹 is 𝜆-geodesically

convex and continuous, then 𝐹 necessarily satisfies Equation (3) for every geodesic between every
pair of measures in𝒫2(ℝ

𝑑). This is a consequence of Lemma 2.3.

In order to establish Theorems 1.2 and 1.3, we first require notions of differentiability and
twice differentiability on the 2-Wasserstein space. Subsequently, we recall these concepts from
[8, Definition 4.9] and [6, Definition 3.1], respectively.

Definition 2.5. Let 𝐹∶ 𝒫2(ℝ
𝑑) → ℝ. Given 𝜇 ∈ 𝒫2(ℝ

𝑑) and 𝜉 ∈ 𝐿2(𝜇; ℝ𝑑), we say 𝜉 ∈ 𝜕𝐹[𝜇] if

𝐹(𝜈) − 𝐹(𝜇) = ∫(ℝ𝑑)2
𝜉(𝑥1) ⋅ (𝑥2 − 𝑥1) 𝑑𝛾(𝑥1, 𝑥2) + 𝑜(𝑊2(𝜇, 𝜈))
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SOME CONVEXITY CRITERIA FOR DIFFERENTIABLE FUNCTIONS ON THE 2-WASSERSTEIN SPACE 1845

for all 𝜈 ∈ 𝒫2(ℝ
𝑑) and all 𝛾 ∈ Γ𝑜(𝜇, 𝜈). If 𝜕𝐹[𝜇] is non-empty, thenwe say that𝐹 is differentiable at

𝜇 and define the Wasserstein gradient∇𝑤𝐹[𝜇] to be its element of minimal norm. We also define
the differential 𝑑𝐹[𝜇] ∶ 𝐿2(𝜇; ℝ𝑑) → ℝ, 𝑑𝐹[𝜇](𝜁) ∶= 𝜁 ⋅ 𝐹[𝜇] ∶= ⟨𝜁,∇𝑤𝐹[𝜇]⟩𝐿2(𝜇).
Definition 2.6. Let 𝐹 be differentiable in a neighbourhood of 𝜇 and let 𝜈 ↦ 𝜁 ⋅ 𝐹(𝜈) be
differentiable at 𝜇 for all 𝜁 ∈ ∇𝐶∞

𝑐 (ℝ
𝑑). We define �̄�𝑒𝑠𝑠𝐹[𝜇]∶ ∇𝐶∞

𝑐 (ℝ
𝑑) × ∇𝐶∞

𝑐 (ℝ
𝑑) → ℝ as

follows.

�̄�𝑒𝑠𝑠𝐹[𝜇](𝜁1, 𝜁2) ∶= 𝜁1 ⋅ (𝜁2 ⋅ 𝐹[𝜇]) − (∇𝜁2 𝜁1) ⋅ 𝐹[𝜇].

If �̄�𝑒𝑠𝑠𝐹[𝜇] exists and there exists 𝐶 ∈ ℝ such that �̄�𝑒𝑠𝑠𝐹[𝜇](𝜁1, 𝜁2) ⩽ 𝐶‖𝜁1‖𝐿2(𝜇)‖𝜁2‖𝐿2(𝜇) for
all 𝜁1, 𝜁2 ∈ ∇𝐶∞

𝑐 (ℝ
𝑑), then �̄�𝑒𝑠𝑠𝐹[𝜇] has a unique extension onto 𝑇𝜇𝒫2(ℝ

𝑑) × 𝑇𝜇𝒫2(ℝ
𝑑). In

addition, we denote this extension by𝐻𝑒𝑠𝑠𝐹[𝜇] and say that 𝐹 is twice differentiable at 𝜇.

Throughout this manuscript, we differentiate functions of the form 𝑓∶ [𝑎, 𝑏] → ℝ. When we
say that 𝑓 is differentiable on [𝑎, 𝑏], we mean that 𝑓 is differentiable on (𝑎, 𝑏) and its respective
right- and left-sided derivatives exist at the points 𝑎 and 𝑏. When evaluated at a generic point
on the interval [𝑎, 𝑏], we denote derivatives of 𝑓∶ [𝑎, 𝑏] → ℝ by 𝑓′ or 𝑑𝑓

𝑑𝑥
; however, when evalu-

ated specifically at the endpoints, we utilise the right- and left-sided derivatives which we denote
by 𝑑𝑓

𝑑𝑥 +
and 𝑑𝑓

𝑑𝑥 −
, respectively. Using this definition of differentiability, we derive the following

convexity criterion which we will use to prove Theorem 1.2.

Lemma 2.7. Let 𝑓∶ [𝑎, 𝑏] → ℝ and let 𝜆 ∈ ℝ. If 𝑓 is differentiable on [𝑎, 𝑏], then 𝑓 is 𝜆-convex if
and only if it satisfies (𝑓′(𝑥) − 𝑓′(𝑦)) ⩾ 𝜆(𝑥 − 𝑦) for all 𝑎 ⩽ 𝑥, 𝑦 ⩽ 𝑏.

Proof. Since 𝑥 ↦ 𝑓(𝑥) is 𝜆-convex if and only if 𝑥 ↦ 𝑓(𝑥) − 𝜆

2
𝑥2 is convex, it suffices to show

that 𝑓 is convex if and only if (𝑓′(𝑥) − 𝑓′(𝑦))(𝑥 − 𝑦) ⩾ 0 for all 𝑎 ⩽ 𝑥, 𝑦 ⩽ 𝑏. Furthermore, since
𝑓 is assumed to be differentiable, it is also continuous. Consequently, it suffices to show that 𝑓 is
convex on (𝑎, 𝑏).
It is a well-known result in convex analysis that 𝑓∶ [𝑎, 𝑏] → ℝ is convex on (𝑎, 𝑏) if and only

if 𝑓 satisfies (𝑓′(𝑦) − 𝑓′(𝑥))(𝑦 − 𝑥) ⩾ 0 for all 𝑎 < 𝑥, 𝑦 < 𝑏 (cf. [3, Theorem 12.18]). Furthermore,
it is shown in [19, Appendix C, Theorem 1] that the left- and right-sided derivatives of a convex
function satisfy the following inequality:

(𝑏 − 𝑎)
𝑑𝑓

𝑑𝑥 −

||||𝑥=𝑏 ⩾ 𝑓(𝑏) − 𝑓(𝑎) ⩾ (𝑏 − 𝑎)
𝑑𝑓

𝑑𝑥 +

||||𝑥=𝑎.
Identifying the one-sided derivatives at 𝑏 and 𝑎 with 𝑓′(𝑏) and 𝑓′(𝑎), respectively, the
above inequality implies that (𝑓′(𝑏) − 𝑓′(𝑎))(𝑏 − 𝑎) ⩾ (𝑓(𝑏) − 𝑓(𝑎)) − (𝑓(𝑏) − 𝑓(𝑎)) = 0. Conse-
quently, it follows that 𝑓 is convex on [𝑎, 𝑏] if and only 𝑓 satisfies (𝑓′(𝑥) − 𝑓′(𝑦))(𝑥 − 𝑦) ⩾ 0 for
all 𝑎 ⩽ 𝑥, 𝑦 ⩽ 𝑏. □

3 CONVEXITY ALONG ACCELERATION-FREE CURVES

In this section, our goal is to prove Theorem 1.1. To achieve this, we first introduce acceleration-
free curves and their associated notion of convexity. Subsequently, we examine some properties
of these curves and develop a number of preparatory lemmas concerning the differentiation of
functions along such curves. Finally, we prove Theorem 1.1 and construct an example to show
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1846 PARKER

that, in general, the notions of geodesic convexity and acceleration-free convexity do not coincide,
even if we assume that our functions are continuous.

3.1 Acceleration-free curves

Definition 3.1. We say that a curve [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 ∈ 𝒫2(ℝ
𝑑) is acceleration-free if there exist

𝜇1, 𝜇2 ∈ 𝒫2(ℝ
𝑑) and 𝛾 ∈ Γ(𝜇1, 𝜇2) such that 𝜇𝑡 = ((1 − 𝑡)𝜋1 + 𝑡𝜋2)#𝛾 for all 𝑡 ∈ [0, 1]. Given

𝐹∶ 𝒫2(ℝ
𝑑) → ℝ and 𝜆 ∈ ℝ, we say that 𝐹 is 𝜆-convex along acceleration-free curves if, between

every pair 𝜇1, 𝜇2 ∈ 𝒫2(ℝ
𝑑), Equation (4) is satisfied for all 𝛾 ∈ Γ(𝜇1, 𝜇2) and all 𝑡 ∈ [0, 1].

𝐹(((1 − 𝑡)𝜋1 + 𝑡𝜋2)#𝛾) ⩽ (1 − 𝑡)𝐹(𝜇1) + 𝑡𝐹(𝜇2) −
𝜆

2
𝑡(1 − 𝑡)∫(ℝ𝑑)2

|𝑥1 − 𝑥2|2 𝑑𝛾(𝑥1, 𝑥2). (4)

Remark 3.2. An acceleration-free curvemay be induced by any transport plan; however, aWasser-
stein geodesic is an acceleration-free curve induced by a transport plan which is optimal for the
transport between the initial and final measures.

Remark 3.3. A function 𝐹∶ 𝒫2(ℝ
𝑑) → ℝ is 𝜆-convex along acceleration-free curves (resp. 𝜆-

geodesically convex) if and only if the map 𝒫2(ℝ
𝑑) ∋ 𝜇 ↦ 𝐹(𝜇) − 𝜆

2
∫
ℝ𝑑 |𝑥|2𝑑𝜇 is convex along

acceleration-free curves (resp. geodesically convex).

In the following lemma, we show that an acceleration-free curve between discrete measures
also defines a Wasserstein geodesic when we restrict ourselves to small enough sub-intervals of
[0,1]. This property is key to our further analysis of acceleration-free convexity as it allows us to
study acceleration-free curves using the properties of Wasserstein geodesics.

Lemma 3.4. Let 𝜇1, 𝜇2 ∈ 𝒫𝑑
2
(ℝ𝑑), let 𝛾 ∈ Γ(𝜇1, 𝜇2) and let [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 ∶= ((1 − 𝑡)𝜋1 +

𝑡𝜋2)#𝛾. For every 𝑠 ∈ [0, 1), there exists 𝜀 > 0 such that, up to a time re-scaling, [𝑠, 𝑠 + 𝜀] ∋ 𝑡 ↦ 𝜇𝑡
defines a unit time geodesic between 𝜇𝑠 and 𝜇𝑠+𝜀. Likewise, for every 𝑠 ∈ (0, 1], there exists 𝛿 > 0 such
that, up to a time re-scaling, [𝑠 − 𝛿, 𝑠] ∋ 𝑡 ↦ 𝜇𝑡 defines a unit time geodesic between 𝜇𝑠−𝛿 and 𝜇𝑠 .

Proof. Since 𝜇1, 𝜇2 are discrete measures, we may denote 𝜇1 =
∑𝑛

𝑖=1 𝑎𝑖𝛿𝑥𝑖 and 𝜇2 =
∑𝑚

𝑗=1 𝑏𝑗𝛿𝑦𝑗
in such a way that 𝑥𝑖 ≠ 𝑥𝑘 for 𝑖 ≠ 𝑘 and 𝑦𝑗 ≠ 𝑦𝑙 for 𝑗 ≠ 𝑙. Additionally, since 𝛾 ∈ Γ(𝜇1, 𝜇2), it fol-
lows from the marginal properties of 𝛾 that there exist non-negative coefficients 𝑐𝑖𝑗 satisfying∑𝑛,𝑚

𝑖,𝑗=1
𝑐𝑖𝑗 = 1 and such that 𝜇𝑡 =

∑𝑛,𝑚
𝑖,𝑗=1

𝑐𝑖𝑗𝛿(1−𝑡)𝑥𝑖+𝑡𝑦𝑗 for all 𝑡 ∈ [0, 1]. Define 𝑙 ∶= 𝑛𝑚 and, for
𝑖, 𝑗 ∈ {1, … , 𝑛} × {1, … ,𝑚}, define

𝜃(𝑖−1)𝑚+𝑗 ∶= 𝑐𝑖𝑗, 𝑧(𝑖−1)𝑚+𝑗 ∶= 𝑦𝑗 − 𝑥𝑖, 𝑤(𝑖−1)𝑚+𝑗 ∶= 𝑥𝑖.

It follows that 𝜇𝑡 =
∑𝑛,𝑚

𝑖,𝑗=1
𝑐𝑖𝑗𝛿(1−𝑡)𝑥𝑖+𝑡𝑦𝑗 =

∑𝑙
𝑘=1 𝜃𝑘𝛿𝑧𝑘𝑡+𝑤𝑘

.
Fix 𝑝, 𝑞 ∈ {1, … , 𝑙}. Since the elements of 𝑥1, … , 𝑥𝑛 and 𝑦1, … , 𝑦𝑚 were chosen to be distinct,

there exists at most one 𝑡 ∈ [0, 1] such that 𝑧𝑝𝑡 + 𝑤𝑝 = 𝑧𝑞𝑡 + 𝑤𝑞. Consequently, there exists a
finite set 𝑄 ⊂ [0, 1] such that 𝑧𝑝𝑡 + 𝑤𝑝 ≠ 𝑧𝑞𝑡 + 𝑤𝑞 for all 𝑝, 𝑞 ∈ {1, … , 𝑙} and 𝑡 ∈ [0, 1] ⧵ 𝑄.
Fix 𝑠 ∈ [0, 1), fix 𝑝 ∈ {1, … , 𝑙} and let 𝑃𝑠𝑝 ⊂ {1, … 𝑙} denote the set of integers 𝑞 such that 𝑧𝑝𝑠 +

𝑤𝑝 = 𝑧𝑞𝑠 + 𝑤𝑞. In particular, we remark that, 𝑝 ∈ 𝑃𝑠𝑝 for all 𝑝 ∈ {1, … 𝑙}, and consequently, the set
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SOME CONVEXITY CRITERIA FOR DIFFERENTIABLE FUNCTIONS ON THE 2-WASSERSTEIN SPACE 1847

𝑃𝑠𝑝 is always non-empty. Since the set𝑄 is finite, we may choose 𝜀𝑝 > 0 such that (𝑠, 𝑠 + 𝜀𝑝] ∩ 𝑄 =

∅. Consequently, there exists 𝛿𝑝 > 0 such that |𝑧𝑝𝑠 + 𝑤𝑝 − (𝑧𝑞𝑡 + 𝑤𝑞)| > 𝛿𝑝 for all 𝑞 ∉ 𝑃𝑠𝑝 and all
𝑡 ∈ [𝑠, 𝑠 + 𝜀𝑝]. Additionally, for any 𝑞 ∈ 𝑃𝑠𝑝, it follows that

lim
𝑡→𝑠

|𝑧𝑝𝑠 + 𝑤𝑝 − (𝑧𝑞𝑡 + 𝑤𝑞)| = 0.

Consequently, we may re-choose an even smaller 𝜀𝑝 > 0 such that 𝛿𝑝 > |𝑧𝑝𝑠 + 𝑤𝑝 − (𝑧𝑞𝑡 + 𝑤𝑞)|
for all 𝑡 ∈ [𝑠, 𝑠 + 𝜀𝑝] and all 𝑞 ∈ 𝑃𝑠𝑝. In particular, by re-choosing a smaller 𝜀𝑝, it still holds that|𝑧𝑝𝑠 + 𝑤𝑝 − (𝑧𝑞𝑡 + 𝑤𝑞)| > 𝛿𝑝 for all 𝑞 ∉ 𝑃𝑠𝑝 and all 𝑡 ∈ [𝑠, 𝑠 + 𝜀𝑝]. Moreover, Equation (5) holds
for all 𝑡 ∈ [𝑠, 𝑠 + 𝜀𝑝] and all 𝑞 ∈ 𝑃𝑠𝑝.

inf
𝑞′∉𝑃𝑠𝑝

|𝑧𝑝𝑠 + 𝑤𝑝 − (𝑧𝑞′ 𝑡 + 𝑤𝑞′)| > 𝛿𝑝 > |𝑧𝑝𝑠 + 𝑤𝑝 − (𝑧𝑞𝑡 + 𝑤𝑞)|. (5)

We subsequently define 𝜀 ∶= inf1⩽𝑝⩽𝑙 𝜀𝑝.

Claim. Fix 𝑡 ∈ [𝑠, 𝑠 + 𝜀]. There exists an optimal plan 𝜎 ∈ Γ𝑜(𝜇𝑠, 𝜇𝑡) of the form 𝜎 ∶=∑𝑙
𝑘=1 𝜃𝑘(𝛿𝑧𝑘𝑠+𝑤𝑘

⊗ 𝛿𝑧𝑘𝑡+𝑤𝑘
). □

Proof of Claim. To show that 𝜎 is an optimal plan, it is sufficient to show that the support of 𝜎 is
cyclicallymonotone. This result is a consequence of [2, Theorem 6.1.4]. Moreover, the support of 𝜎
is cyclically monotone if the following inequality is satisfied for any permutation 𝜌 of the integers
{1, … , 𝑙}.

𝑙∑
𝑘=1

|𝑧𝑘𝑠 + 𝑤𝑘 − (𝑧𝜌(𝑘)𝑡 + 𝑤𝜌(𝑘))|2 ⩾ 𝑙∑
𝑘=1

|𝑧𝑘𝑠 + 𝑤𝑘 − (𝑧𝑘𝑡 + 𝑤𝑘)|2.
We firstly assume that 𝜌 is a permutation map such that 𝜌(𝑘) ∈ 𝑃𝑠

𝑘
for all 𝑘 ∈ {1, … , 𝑙}. By the

definition of 𝑃𝑠
𝑘
, it follows that 𝑧𝑘𝑠 + 𝑤𝑘 = 𝑧𝜌(𝑘)𝑠 + 𝑤𝜌(𝑘) for all 𝑘 ∈ {1, … , 𝑙}. Consequently, the

following equality holds.

𝑙∑
𝑘=1

|𝑧𝑘𝑠 + 𝑤𝑘 − (𝑧𝜌(𝑘)𝑡 + 𝑤𝜌(𝑘))|2 = 𝑙∑
𝑘=1

|𝑧𝜌(𝑘)𝑠 + 𝑤𝜌(𝑘) − (𝑧𝜌(𝑘)𝑡 + 𝑤𝜌(𝑘))|2
=

𝑙∑
𝑘=1

|𝑧𝑘𝑠 + 𝑤𝑘 − (𝑧𝑘𝑡 + 𝑤𝑘)|2.
On the other hand, assume that 𝜌 is a permutation map and there exists a set 𝑅 ⊂ {1, … , 𝑙} such
that 𝜌(𝑘) ∉ 𝑃𝑠

𝑘
for all 𝑘 ∈ 𝑅 and such that 𝜌(𝑘) ∈ 𝑃𝑠

𝑘
for all 𝑘 ∈ {1, … , 𝑙} ⧵ 𝑅. As a consequence of

Equation (5), the following system of inequalities holds.

𝑙∑
𝑘=1

|𝑧𝑘𝑠 + 𝑤𝑘 − (𝑧𝜌(𝑘)𝑡 + 𝑤𝜌(𝑘))|2
=

∑
𝑘∈𝑅

|𝑧𝑘𝑠 + 𝑤𝑘 − (𝑧𝜌(𝑘)𝑡 + 𝑤𝜌(𝑘))|2 + ∑
𝑘∉𝑅

|𝑧𝑘𝑠 + 𝑤𝑘 − (𝑧𝜌(𝑘)𝑡 + 𝑤𝜌(𝑘))|2

 14692120, 2024, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.13030 by D

urham
 U

niversity - U
niversity, W

iley O
nline L

ibrary on [22/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1848 PARKER

>
∑
𝑘∈𝑅

𝛿2
𝑘
+

∑
𝑘∉𝑅

|𝑧𝑘𝑠 + 𝑤𝑘 − (𝑧𝜌(𝑘)𝑡 + 𝑤𝜌(𝑘))|2 = ∑
𝑘∈𝑅

𝛿2
𝑘
+

∑
𝑘∉𝑅

|𝑧𝜌(𝑘)𝑠 + 𝑤𝜌(𝑘) − (𝑧𝜌(𝑘)𝑡 + 𝑤𝜌(𝑘))|2
>

𝑙∑
𝑘=1

|𝑧𝜌(𝑘)𝑠 + 𝑤𝜌(𝑘) − (𝑧𝜌(𝑘)𝑡 + 𝑤𝜌(𝑘))|2 = 𝑙∑
𝑘=1

|𝑧𝑘𝑠 + 𝑤𝑘 − (𝑧𝑘𝑡 + 𝑤𝑘)|2.
Since the two cases we have considered include all possible permutations of the integers {1, … , 𝑙},
we conclude that the support of 𝜎 must be cyclically monotone, and hence, the plan 𝜎 must be
optimal between 𝜇𝑠 and 𝜇𝑡.

Since 𝜎 defines an optimal plan, Equation (6) holds.

𝑊2(𝜇𝑠, 𝜇𝑡) =

(
∫(ℝ𝑑)2

|𝑥 − 𝑦|2 𝑑𝜎(𝑥, 𝑦)) 1
2

=

(
𝑙∑

𝑘=1

𝜃𝑘|𝑧𝑘𝑠 + 𝑤𝑘 − (𝑧𝑘𝑡 + 𝑤𝑘)|2)
1
2

= |𝑡 − 𝑠|( 𝑙∑
𝑘=1

𝜃𝑘|𝑧𝑘|2)
1
2

.

(6)

As a consequence of Equation (6), the following equality also holds for all 𝑡 ∈ [𝑠, 𝑠 + 𝜀].

𝑊2(𝜇𝑠, 𝜇𝑡)|𝑡 − 𝑠| =

(
𝑙∑

𝑘=1

𝜃𝑘|𝑧𝑘|2)
1
2

=
𝑊2(𝜇𝑠, 𝜇𝑠+𝜀)

𝜀
.

Moreover, it follows that 𝜀𝑊2(𝜇𝑠, 𝜇𝑡) = |𝑡 − 𝑠|𝑊2(𝜇𝑠, 𝜇𝑠+𝜀) for all 𝑡 ∈ [𝑠, 𝑠 + 𝜀], and so, up to a time
re-scaling of a factor 𝜀, the curve [𝑠, 𝑠 + 𝜀] ∋ 𝑡 ↦ 𝜇𝑡 defines a unit time geodesic between 𝜇𝑠 and
𝜇𝑠+𝜀. By a similar argument, for every 𝑠 ∈ (0, 1], there exists 𝛿 > 0 such that, up to a time re-
scaling, [𝑠 − 𝛿, 𝑠] ∋ 𝑡 ↦ 𝜇𝑡 defines a unit time geodesic between 𝜇𝑠−𝛿 and 𝜇𝑠. □

To furthermotivate the study of acceleration-free curves between discretemeasures, the follow-
ing lemma shows that it is enough, in the context of proving Theorem 1.1, to show that a function
is convex along acceleration-free curves when restricted to the set𝒫𝑑

2
(ℝ𝑑).

Lemma 3.5. Let 𝐹∶ 𝒫2(ℝ
𝑑) → ℝ. If 𝐹 is continuous, then 𝐹 is 𝜆-convex along acceleration-free

curves if and only if its restriction to𝒫𝑑
2
(ℝ𝑑) is 𝜆-convex along acceleration-free curves.

Proof. If [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 defines an acceleration-free curve between two discrete measures, then
𝜇𝑡 is a discrete measure for all 𝑡 ∈ [0, 1]. Consequently, if 𝐹 is 𝜆-convex along acceleration-
free curves, then its restriction to 𝒫𝑑

2
(ℝ𝑑) is 𝜆-convex along acceleration-free curves and

it is left to prove the converse implication. Let 𝜇1, 𝜇2 ∈ 𝒫2(ℝ
𝑑) and let 𝛾 ∈ Γ(𝜇1, 𝜇2). Since

𝒫𝑑
2
(ℝ𝑑 × ℝ𝑑) is dense in 𝒫2(ℝ

𝑑 × ℝ𝑑), there exists a sequence of discrete measures (𝛾𝑛)𝑛∈ℕ
such that lim𝑛→∞𝑊2(𝛾𝑛, 𝛾) = 0. Defining the curves [0, 1] ∋ 𝑡 ↦ 𝜇𝑛𝑡 ∶= ((1 − 𝑡)𝜋1 + 𝑡𝜋2)#𝛾𝑛
and [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 ∶= ((1 − 𝑡)𝜋1 + 𝑡𝜋2)#𝛾, it follows from the convergence of (𝛾𝑛)𝑛∈ℕ that
lim𝑛→∞𝑊2(𝜇

𝑛
𝑡 , 𝜇𝑡) = 0 for all 𝑡 ∈ [0, 1]. Moreover, since 𝛾𝑛 ∈ 𝒫𝑑

2
(ℝ𝑑 × ℝ𝑑), for every 𝑛 ∈ ℕ, the

curve [0, 1] ∋ 𝑡 ↦ 𝜇𝑛𝑡 defines an acceleration-free curve between two discrete measures which
we denote 𝜇1,𝑛 and 𝜇2,𝑛. Consequently, if we assume that 𝐹∶ 𝒫2(ℝ

𝑑) → ℝ is continuous and its
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SOME CONVEXITY CRITERIA FOR DIFFERENTIABLE FUNCTIONS ON THE 2-WASSERSTEIN SPACE 1849

restriction to 𝒫𝑑
2
(ℝ𝑑) is 𝜆-convex along acceleration-free curves, then the following system of

inequalities holds for all 𝑡 ∈ [0, 1].

𝐹(𝜇𝑡) = lim
𝑛→∞

𝐹(𝜇𝑛𝑡 )

⩽ (1 − 𝑡) lim
𝑛→∞

𝐹(𝜇1,𝑛) + 𝑡 lim
𝑛→∞

𝐹(𝜇2,𝑛) − 𝑡(1 − 𝑡)
𝜆

2
lim
𝑛→∞∫(ℝ𝑑)2

|𝑥1 − 𝑥2|2 𝑑𝛾𝑛(𝑥1, 𝑥2)
= (1 − 𝑡)𝐹(𝜇1) + 𝑡𝐹(𝜇2) − 𝑡(1 − 𝑡)

𝜆

2 ∫(ℝ𝑑)2
|𝑥1 − 𝑥2|2 𝑑𝛾(𝑥1, 𝑥2).

Since 𝜇1, 𝜇2 and 𝛾 ∈ Γ(𝜇1, 𝜇2) were chosen arbitrarily, we conclude that 𝐹 is 𝜆-convex along
acceleration-free curves. □

3.2 Differentiation along acceleration-free curves and proof of
Theorem 1.1

Before attempting to calculate the derivative of a function along an acceleration-free curve, it is
firstly useful to establish the following lemma which characterises the derivative of a differen-
tiable function along geodesics. Since acceleration-free curves between discrete measures behave
somewhat like Wasserstein geodesics, we may also use Lemma 3.6 in order to characterise the
derivative of a differentiable function along these curves.

Lemma 3.6. Let 𝐹∶ 𝒫2(ℝ
𝑑) → ℝ and let [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 ∶= ((1 − 𝑡)𝜋1 + 𝑡𝜋2)#𝛾 with 𝜇1, 𝜇2 ∈

𝒫2(ℝ
𝑑), and 𝛾 ∈ Γ𝑜(𝜇1, 𝜇2). If 𝐹 is differentiable, then [0, 1] ∋ 𝑡 ↦ 𝐹(𝜇𝑡) is differentiable on [0,1].

In particular,

𝑑

𝑑𝑡
𝐹(𝜇𝑡) = ∫(ℝ𝑑)2

∇𝑤𝐹[𝜇𝑡]((1 − 𝑡)𝑥1 + 𝑡𝑥2) ⋅ (𝑥2 − 𝑥1) 𝑑𝛾(𝑥1, 𝑥2).

Proof. Let 𝛾ℎ,𝑡 denote the unique element of Γ𝑜(𝜇𝑡, 𝜇𝑡+ℎ) characterised by Lemma 2.3.

𝑑

𝑑𝑡
𝐹(𝜇𝑡) = lim

ℎ→0

1

ℎ
(𝐹(𝜇𝑡+ℎ) − 𝐹(𝜇𝑡))

= lim
ℎ→0

1

ℎ ∫(ℝ𝑑)2
∇𝑤𝐹[𝜇𝑡](𝑦1) ⋅ (𝑦2 − 𝑦1) 𝑑𝛾ℎ,𝑡(𝑦1, 𝑦2) + lim

ℎ→0

𝑜(𝑊2(𝜇𝑡, 𝜇𝑡+ℎ))

ℎ

= lim
ℎ→0

ℎ

ℎ ∫(ℝ𝑑)2
∇𝑤𝐹[𝜇𝑡]((1 − 𝑡)𝑥1 + 𝑡𝑥2) ⋅ (𝑥2 − 𝑥1) 𝑑𝛾(𝑥1, 𝑥2) + 0

= ∫(ℝ𝑑)2
∇𝑤𝐹[𝜇𝑡]((1 − 𝑡)𝑥1 + 𝑡𝑥2) ⋅ (𝑥2 − 𝑥1) 𝑑𝛾(𝑥1, 𝑥2).

In the chain of equalities above, we used that 𝑡 ↦ 𝜇𝑡 is a geodesic whichmeant that we could also
utilise the following equality.

lim
ℎ→0

𝑜(𝑊2(𝜇𝑡, 𝜇𝑡+ℎ))

ℎ
= lim

ℎ→0

𝑜(𝑊2(𝜇𝑡, 𝜇𝑡+ℎ))

𝑊2(𝜇𝑡, 𝜇𝑡+ℎ)
⋅ lim
ℎ→0

𝑊2(𝜇𝑡, 𝜇𝑡+ℎ)

ℎ
= 0 ⋅𝑊2(𝜇1, 𝜇2) = 0.

□
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1850 PARKER

Lemma 3.7. Let 𝐹∶ 𝒫2(ℝ
𝑑) → ℝ and let [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 ∶= ((1 − 𝑡)𝜋1 + 𝑡𝜋2)#𝛾 with 𝜇1, 𝜇2 ∈

𝒫𝑑
2
(ℝ𝑑) and 𝛾 ∈ Γ(𝜇1, 𝜇2). If 𝐹 is differentiable on 𝒫2(ℝ

𝑑), then the map [0, 1] ∋ 𝑡 ↦ 𝐹(𝜇𝑡) is
differentiable on [0,1]. In particular,

𝑑

𝑑𝑡
𝐹(𝜇𝑡) = ∫(ℝ𝑑)2

∇𝑤𝐹[𝜇𝑡]((1 − 𝑡)𝑥1 + 𝑡𝑥2) ⋅ (𝑥2 − 𝑥1) 𝑑𝛾(𝑥1, 𝑥2).

Proof. Given 𝑠 ∈ [0, 1), it follows from Lemma 3.4 that there exists 𝜀 > 0 such that
[𝑠, 𝑠 + 𝜀] ∋ 𝑡 ↦ 𝜇𝑡 defines a geodesic. Moreover, by Definition 2.1, there exists an optimal
plan 𝛾𝑠,𝜀 ∈ Γ𝑜(𝜇𝑠, 𝜇𝑠+𝜀) such that 𝜇𝑠+𝑡𝜀 = ((1 − 𝑡)𝜋1 + 𝑡𝜋2)#𝛾𝑠,𝜀 for all 𝑡 ∈ [0, 1]. Consequently, it
follows from Lemma 3.6 that

𝑑

𝑑𝑡 +
𝐹(𝜇𝑡)

||||𝑡=𝑠 = 1

𝜀

𝑑

𝑑𝑡 +
𝐹(𝜇𝑠+𝑡𝜀)

||||𝑡=0 = 1

𝜀 ∫(ℝ𝑑)2
∇𝑤𝐹[𝜇𝑠](𝑦1) ⋅ (𝑦2 − 𝑦1) 𝑑𝛾𝑠,𝜀(𝑦1, 𝑦2).

Since ((1 − (𝑠 + 𝑡𝜀))𝜋1 + (𝑠 + 𝑡𝜀)𝜋2)#𝛾 = 𝜇𝑠+𝑡𝜀 = ((1 − 𝑡)𝜋1 + 𝑡𝜋2)#𝛾𝑠,𝜀 for all 𝑡 ∈ [0, 1], we may
express 𝛾𝑠,𝜀 in terms of 𝛾. In particular, the following equality holds.

((1 − 𝑡)𝜋1 + 𝑡𝜋2)#
(
[(1 − 𝑠)𝜋1 + 𝑠𝜋2, (1 − (𝑠 + 𝜀))𝜋1 + (𝑠 + 𝜀)𝜋2]#𝛾

)
=
(
((1 − 𝑡)𝜋1 + 𝑡𝜋2)◦[(1 − 𝑠)𝜋1 + 𝑠𝜋2, (1 − (𝑠 + 𝜀))𝜋1 + (𝑠 + 𝜀)𝜋2]

)
#𝛾

= ((1 − (𝑠 + 𝑡𝜀))𝜋1 + (𝑠 + 𝑡𝜀)𝜋2)#𝛾 = ((1 − 𝑡)𝜋1 + 𝑡𝜋2)#𝛾𝑠,𝜀.

(7)

From Equation (7), it follows that 𝛾𝑠,𝜀 = [((1 − 𝑠)𝜋1 + 𝑠𝜋2), ((1 − (𝑠 + 𝜀))𝜋1 + (𝑠 + 𝜀)𝜋2)]#𝛾, and
consequently,

𝑑

𝑑𝑡 +
𝐹(𝜇𝑡)

||||𝑡=𝑠 = 1

𝜀 ∫(ℝ𝑑)2
∇𝑤𝐹[𝜇𝑠](𝑦1) ⋅ (𝑦2 − 𝑦1) 𝑑𝛾𝑠,𝜀(𝑦1, 𝑦2)

= ∫(ℝ𝑑)2
∇𝑤𝐹[𝜇𝑠]((1 − 𝑠)𝑥1 + 𝑠𝑥2) ⋅ (𝑥2 − 𝑥1) 𝑑𝛾(𝑥1, 𝑥2).

For 𝑠 ∈ (0, 1], it also follows from Lemma 3.4 that there exists 𝛿 > 0 such that [𝑠 − 𝛿, 𝑠] ∋ 𝑡 ↦ 𝜇𝑡
defines a geodesic. Consequently (and using a similar reasoning to the calculation of the right-
sided derivative), there exists an optimal plan 𝛾𝑠,𝛿 ∈ Γ𝑜(𝜇𝑠, 𝜇𝑠−𝛿) such that ((1 − (𝑠 − 𝑡𝛿))𝜋1 + (𝑠 −

𝑡𝛿)𝜋2)#𝛾 = 𝜇𝑠−𝑡𝛿 = ((1 − 𝑡)𝜋1 + 𝑡𝜋2)#𝛾𝑠,𝛿 for all 𝑡 ∈ [0, 1]. Moreover, it follows from Lemma 3.6
that

𝑑

𝑑𝑡 −
𝐹(𝜇𝑡)

||||𝑡=𝑠 = −
1

𝛿

𝑑

𝑑𝑡 −
𝐹(𝜇𝑠−𝑡𝛿)

||||𝑡=0 = −
1

𝛿 ∫(ℝ𝑑)2
∇𝑤𝐹[𝜇𝑠](𝑦1) ⋅ (𝑦2 − 𝑦1) 𝑑𝛾𝑠,𝛿(𝑦1, 𝑦2).

As established in Equation (7), it follows that 𝛾𝑠,𝜀 = [((1 − 𝑠)𝜋1 + 𝑠𝜋2), ((1 − (𝑠 + 𝜀))𝜋1 + (𝑠 +

𝜀)𝜋2)]#𝛾. By a similar reasoning, we deduce that 𝛾𝑠,𝛿 = [((1 − 𝑠)𝜋1 + 𝑠𝜋2), ((1 − (𝑠 − 𝛿))𝜋1 + (𝑠 −

𝛿)𝜋2)]#𝛾, and consequently,

𝑑

𝑑𝑡 −
𝐹(𝜇𝑡)

||||𝑡=𝑠 = −
1

𝛿 ∫(ℝ𝑑)2
∇𝑤𝐹[𝜇𝑠](𝑦1) ⋅ (𝑦2 − 𝑦1) 𝑑𝛾𝑠,𝛿(𝑦1, 𝑦2)

= ∫(ℝ𝑑)2
∇𝑤𝐹[𝜇𝑠]((1 − 𝑠)𝑥1 + 𝑠𝑥2) ⋅ (𝑥2 − 𝑥1) 𝑑𝛾(𝑥1, 𝑥2).

Since 𝑠was an arbitrary point in the interval (0,1), the left- and right-sided derivatives of 𝑡 ↦ 𝐹(𝜇𝑡)

agree on (0,1). Moreover, we conclude that [0, 1] ∋ 𝑡 ↦ 𝐹(𝜇𝑡) is differentiable on [0,1]. □
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SOME CONVEXITY CRITERIA FOR DIFFERENTIABLE FUNCTIONS ON THE 2-WASSERSTEIN SPACE 1851

Lemma 3.8. Let 𝑓∶ [𝑎, 𝑐] → ℝ. If 𝑓 is differentiable on [𝑎, 𝑐] and there exists 𝑏 ∈ (𝑎, 𝑐) such that
the restriction of 𝑓 to [𝑎, 𝑏] and [𝑏, 𝑐] is convex, then 𝑓 is convex on [𝑎, 𝑐].

Proof. Since 𝑓 is differentiable, it follows that 𝑓 is convex on [𝑎, 𝑐] if and only (𝑓′(𝑥) − 𝑓′(𝑦))(𝑥 −

𝑦) ⩾ 0 for all 𝑎 < 𝑥, 𝑦 < 𝑐 (cf. [3, Theorem 12.18]). Without loss of generality, we fix 𝑎 < 𝑥 ⩽ 𝑦 < 𝑐.
If 𝑥, 𝑦 ⩾ 𝑏 or 𝑥, 𝑦 ⩽ 𝑏, then, since 𝑓 is convex on [𝑎, 𝑏] and [𝑏, 𝑐], it follows as a consequence of
[3, Theorem 12.18] that (𝑓′(𝑥) − 𝑓′(𝑦))(𝑥 − 𝑦) ⩾ 0. Subsequently, we consider the case 𝑥 ⩽ 𝑏 ⩽ 𝑦.
Since𝑓 is convex on [𝑎, 𝑏] and [𝑏, 𝑐], it again follows fromLemma 2.7 that (𝑓′(𝑦) − 𝑓′(𝑏))(𝑦 − 𝑏) ⩾

0 and (𝑓′(𝑏) − 𝑓′(𝑥))(𝑏 − 𝑥) ⩾ 0. Moreover, since 𝑥 ⩽ 𝑏 ⩽ 𝑦, we know that 𝑓′(𝑦) ⩾ 𝑓′(𝑏) ⩾ 𝑓′(𝑥),
and consequently, (𝑓′(𝑦) − 𝑓′(𝑥))(𝑦 − 𝑥) ⩾ 0. We conclude that 𝑓 must be convex on [𝑎, 𝑐]. □

Proof of Theorem 1.1. The set of acceleration-free curves contains every generalised geodesic and
the set of generalised geodesics contains every geodesic. Consequently, if 𝐹 is 𝜆-convex along
acceleration-free curves, it must also be 𝜆-convex along generalised geodesics and, similarly, if𝐹 is
𝜆-convex along generalised geodesics, then 𝐹must also be 𝜆-geodesically convex. It is left to show
that 𝜆-geodesic convexity implies 𝜆-convexity along acceleration-free curves.We first consider the
case in which 𝜆 = 0.
Let [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 be an acceleration-free curve between 𝜇1, 𝜇2 ∈ 𝒫𝑑

2
(ℝ𝑑). Given 𝑠 ∈ (0, 1),

Lemma 3.4 implies that there exist 𝛿, 𝜀 > 0 such that the maps [𝑠 − 𝛿, 𝑠] ∋ 𝑡 ↦ 𝜇𝑡 and [𝑠, 𝑠 + 𝜀] ∋

𝑡 ↦ 𝜇𝑡 define geodesics. Moreover, since we assume 𝐹 to be geodesically convex, the restriction
of [0, 1] ∋ 𝑡 ↦ 𝐹(𝜇𝑡) to the intervals [𝑠 − 𝛿, 𝑠] and [𝑠, 𝑠 + 𝜀] must be convex. By Lemma 3.7, the
map [0, 1] ∋ 𝑡 ↦ 𝐹(𝜇𝑡) is differentiable on [0,1], and consequently, we conclude from Lemma 3.8
that the restriction of the map [0, 1] ∋ 𝑡 ↦ 𝐹(𝜇𝑡) to the interval [𝑠 − 𝛿, 𝑠 + 𝜀] is also convex.
Since the map 𝑡 ↦ 𝐹(𝜇𝑡) is continuous on [0,1] and convex on a neighbourhood of 𝑠 for every
𝑠 ∈ (0, 1), we conclude that the map [0, 1] ∋ 𝑡 ↦ 𝐹(𝜇𝑡) is convex. Now, since 𝑡 ↦ 𝜇𝑡 was an arbi-
trary acceleration-free curve between measures in𝒫𝑑

2
(ℝ𝑑), we conclude that the restriction of 𝐹

to 𝒫𝑑
2
(ℝ𝑑) must be convex along acceleration-free curves. Moreover, since 𝐹 is differentiable, it

must also be continuous, and so, as a consequence of Lemma 3.5, 𝐹 must also be convex along all
acceleration-free curves.
We now assume that 𝐹∶ 𝒫2(ℝ

𝑑) → ℝ is differentiable and 𝜆-geodesically convex for 𝜆 ≠ 0. By
Remark 3.3, themap𝒫2(ℝ

𝑑) ∋ 𝜇 ↦ 𝐹(𝜇) − 𝜆

2
∫
ℝ𝑑 |𝑥|2𝑑𝜇(𝑥) is differentiable and geodesically con-

vex. As we have shown, this implies that themap𝒫2(ℝ
𝑑) ∋ 𝜇 ↦ 𝐹(𝜇) − 𝜆

2
∫
ℝ𝑑 |𝑥|2𝑑𝜇(𝑥) is convex

along acceleration-free curves. and so, we conclude by Remark 3.3 that 𝐹∶ 𝒫2(ℝ
𝑑) → ℝmust be

𝜆-convex along acceleration-free curves. □

In the following example, we construct a function on𝒫2(ℝ) which is both geodesically convex
and continuous but not convex along acceleration-free curves. This demonstrates that, in general,
one cannot hope to relax the assumption of Theorem 1.1 from differentiability to continuity.

Example 3.9. Let 𝜀 > 0. We define𝒲𝜀 ∶ 𝒫2(ℝ) → ℝ,

𝒲𝜀(𝜇) ∶= ∫ℝ ∫ℝ𝑊𝜀(𝑥, 𝑦) 𝑑𝜇(𝑥) 𝑑𝜇(𝑦), 𝑊𝜀(𝑥, 𝑦) ∶=

{
𝜀 − |𝑥 − 𝑦| if |𝑥 − 𝑦| ⩽ 𝜀,

0 otherwise.

We also recall the definition of the sets Δ+ and Δ− from [20, Proposition 7.25].

Δ+ ∶= {(𝑥, 𝑦) ∈ ℝ2, 𝑦 ⩾ 𝑥}, Δ− ∶= {(𝑥, 𝑦) ∈ ℝ2, 𝑦 ⩽ 𝑥}.
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1852 PARKER

Since𝑊𝜀 is continuous and bounded, it follows from [20, Proposition 7.2], that𝒲𝜀 is continuous
on (𝒫2(ℝ),𝑊2). In addition, since the restriction of𝑊𝜀 to the sets Δ+ and Δ− is convex, it follows
from [20, Proposition 7.25], that 𝒲𝜀 geodesically convex. However, as we now show, the func-
tion𝒲𝜀 is not convex along acceleration-free curves. Consider the measures 𝜇 ∶= 1

2
𝛿𝑥 +

1

2
𝛿𝑥′ and

𝜈 ∶= 1

2
𝛿𝑦 +

1

2
𝛿𝑦′ and let 𝛾 ∈ Γ(𝜇, 𝜈) be the plan such that supp(𝛾) = {(𝑥, 𝑦), (𝑥′, 𝑦′)}. Furthermore,

define [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 ∶= ((1 − 𝑡)𝜋1 + 𝑡𝜋2)#𝛾.

𝒲𝜀(𝜇𝑡) =
1

2
𝑊𝜀((1 − 𝑡)𝑥 + 𝑡𝑦, (1 − 𝑡)𝑥′ + 𝑡𝑦′)

+
1

4
𝑊𝜀((1 − 𝑡)𝑥 + 𝑡𝑦, (1 − 𝑡)𝑥 + 𝑡𝑦) +

1

4
𝑊𝜀((1 − 𝑡)𝑥′ + 𝑡𝑦′, (1 − 𝑡)𝑥′ + 𝑡𝑦′)

=
1

2
(𝑊𝜀((1 − 𝑡)𝑥 + 𝑡𝑦, (1 − 𝑡)𝑥′ + 𝑡𝑦′) + 𝜀).

In particular, if we choose (𝑥, 𝑥′) and (𝑦, 𝑦′) such that 𝑥 − 𝑥′ = 𝐶 ⩾ 𝜀 and 𝑦 − 𝑦′ = −𝐶 ⩽ −𝜀,
then𝒲𝜀(𝜇) = 𝒲𝜀(𝜈) =

1

2
𝜀. However, it also follows that

𝒲𝜀(𝜇 1
2

) =
1

2

(
𝜀 −

1

2
|(𝑥 − 𝑥′) + (𝑦 − 𝑦′)| + 𝜀

)
=
1

2
(𝜀 + 𝜀) = 𝜀.

Since 𝒲𝜀(𝜇 1
2

) > 1

2
(𝒲𝜀(𝜇) +𝒲𝜀(𝜈)), we conclude that 𝒲𝜀 is not convex along acceleration-

free curves.
To emphasise that the function 𝒲𝜀 is not differentiable, we pick 𝑥, 𝑥′, 𝑦, 𝑦′ ∈ ℝ such that

𝑥 < 𝑥′ and 𝑦 < 𝑦′ and, subsequently, consider the geodesic [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 ∶=
1

2
(𝛿(1−𝑡)𝑥+𝑡𝑦 +

𝛿(1−𝑡)𝑥′+𝑡𝑦′ ). If𝒲𝜀 was differentiable on𝒫2(ℝ), then, by Lemma 3.6, the map [0, 1] ∋ 𝑡 ↦ 𝒲𝜀(𝜇𝑡)

would also be differentiable. However, if we choose 𝑥′ = 𝑥 + 𝜀

2
and 𝑦′ = 𝑦 + 2𝜀, it follows

that

𝒲𝜀(𝜇𝑡) =
1

2
(𝑊𝜀((1 − 𝑡)𝑥 + 𝑡𝑦, (1 − 𝑡)𝑥′ + 𝑡𝑦′) + 𝜀)

=
1

2

(
𝑊𝜀

(
(1 − 𝑡)𝑥 + 𝑡𝑦, (1 − 𝑡)𝑥 + 𝑡𝑦 +

1 + 3𝑡

2
𝜀
)
+ 𝜀

)
=

⎧⎪⎨⎪⎩
3(1 − 𝑡)

4
𝜀 if 𝑡 ⩽ 1

3
,

1

2
𝜀 otherwise.

Moreover, since [0, 1] ∋ 𝑡 ↦ 𝒲𝜀(𝜇𝑡) is not differentiable, we conclude that𝒲𝜀 is not differentiable
on𝒫2(ℝ) either.

4 FIRST- AND SECOND-ORDER CONVEXITY CRITERIA

In this section, we prove Theorems 1.2 and 1.3. Whilst the proof of Theorem 1.2 is relatively self-
contained, in contrast, and, as we outlined in Subsection 1.4, the proof of Theorem 1.3 requires us
to first establish a number of helpful lemmas.
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SOME CONVEXITY CRITERIA FOR DIFFERENTIABLE FUNCTIONS ON THE 2-WASSERSTEIN SPACE 1853

4.1 First-order convexity criterion

Proof of Theorem 1.2. Firstly, we assume that 𝐹 is differentiable and 𝜆-geodesically convex and
show that Equation (1) holds. If 𝐹 is differentiable and 𝜆-geodesically convex, then, for any
geodesic [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 with endpoints 𝜇1, 𝜇2 ∈ 𝒫2(ℝ

𝑑), the map [0, 1] ∋ 𝑡 ↦ 𝐹(𝜇𝑡) is differen-
tiable by Lemma 3.6 and 𝜆𝑊2

2
(𝜇1, 𝜇2)-convex by Remark 2.4. Using the convexity characterisation

of Lemma 2.7, the following inequality holds.

𝑑

𝑑𝑡 −
𝐹(𝜇𝑡)

||||𝑡=1 − 𝑑

𝑑𝑡 +
𝐹(𝜇𝑡)

||||𝑡=0 ⩾ 𝜆𝑊2
2(𝜇1, 𝜇2). (8)

Furthermore, using Lemma 3.6 to characterise the one-sided derivatives of 𝑡 ↦ 𝐹(𝜇𝑡), we con-
clude that Equations (8) and (1) are equivalent and, since the choice of geodesic was arbitrary, we
conclude that (1) must hold for all 𝜇1, 𝜇2 and all 𝛾 ∈ Γ𝑜(𝜇1, 𝜇2).
We now assume that 𝐹 is differentiable and that Equation (1) holds for all 𝜇1, 𝜇2 and all 𝛾 ∈

Γ𝑜(𝜇1, 𝜇2) and show that 𝐹 is also 𝜆-geodesically convex. Let [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 be a geodesic with
endpoints 𝜇1, 𝜇2 ∈ 𝒫2(ℝ

𝑑). By Lemma 2.3, the curve [0, 1] ∋ 𝑡 ↦ 𝜇𝑟,𝑠𝑡 ∶= 𝜇◦((𝑟 − 𝑠)𝑡 + 𝑠)must be
the unique geodesic between 𝜇𝑠 and 𝜇𝑟. Moreover, since Equations (8) and (1) are equivalent, the
following inequality must hold for all 0 ⩽ 𝑠 < 𝑟 ⩽ 1.

𝑑

𝑑𝑡 −
𝐹(𝜇𝑟,𝑠𝑡 )

||||𝑡=1 − 𝑑

𝑑𝑡 +
𝐹(𝜇𝑟,𝑠𝑡 )

||||𝑡=0 ⩾ 𝜆𝑊2
2(𝜇𝑟, 𝜇𝑠). (9)

Subsequently, the following inequality must hold for any 0 ⩽ 𝑠 < 𝑟 ⩽ 1.

𝑑

𝑑𝑡
𝐹(𝜇𝑡)

||||𝑡=𝑟 − 𝑑

𝑑𝑡
𝐹(𝜇𝑡)

||||𝑡=𝑠 = 1

𝑟 − 𝑠

(
𝑑

𝑑𝑡 −
𝐹(𝜇𝑟,𝑠𝑡 )

||||𝑡=1 − 𝑑

𝑑𝑡 +
𝐹(𝜇𝑟,𝑠𝑡 )

||||𝑡=0
)

⩾ 𝜆
𝑟 − 𝑠

(𝑟 − 𝑠)2
𝑊2

2(𝜇𝑟, 𝜇𝑠) = 𝜆𝑊2
2(𝜇1, 𝜇2)(𝑟 − 𝑠).

Since the choice of geodesic was arbitrary, we conclude that there exists a geodesic [0, 1] ∋ 𝑡 ↦

𝜇𝑡 between any pair of measures 𝜇1, 𝜇2 ∈ 𝒫2(ℝ
𝑑) such that the function [0, 1] ∋ 𝑡 ↦ 𝐹(𝜇𝑡) is

𝜆𝑊2
2
(𝜇1, 𝜇2) convex. Subsequently, we conclude that 𝐹 is 𝜆-geodesically convex. □

4.2 Second-order convexity criterion

To begin this subsection, we first calculate the second derivative of the map 𝑡 ↦ 𝐹(𝜇𝑡) when 𝐹 is
twice differentiable and [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 defines a suitably ‘smooth’ geodesic.

Lemma 4.1. Let 𝐹∶ 𝒫2(ℝ
𝑑) → ℝ be twice differentiable on 𝒫2(ℝ

𝑑) and let 𝜇1, 𝜇2 ∈ 𝒫2(ℝ
𝑑) be

measures for which there exists an optimal map 𝑇 between 𝜇1 and 𝜇2. Let [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 ∶= ((1 −

𝑡)𝑖𝑑 + 𝑡𝑇)#𝜇1 and let 𝑇𝑡 denote the optimal map between 𝜇𝑡 and 𝜇2. If there exists 𝜑 ∈ 𝐶∞
𝑐 (ℝ

𝑑) and
𝑈, a convex neighbourhood of Hull(supp(𝜇1)), such that the restriction of 𝜑 to𝑈 is (−1)-convex and
such that𝑇 − 𝑖𝑑 = ∇𝜑, then themap [0, 1] ∋ 𝑡 ↦ 𝐹(𝜇𝑡) is twice differentiable on [0,1). In particular,

𝑑2

𝑑𝑡2
𝐹(𝜇𝑡) =

1

(1 − 𝑡)2
𝐻𝑒𝑠𝑠𝐹[𝜇𝑡](𝑇𝑡 − 𝑖𝑑, 𝑇𝑡 − 𝑖𝑑).
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1854 PARKER

Proof. For 𝑡 ∈ [0, 1), we define g𝑡 ∶ 𝑈 → ℝ𝑑, g𝑡(𝑥) ∶= ∇(1
2
|𝑥|2 + 𝑡𝜑(𝑥)). Since g𝑡 is the gradient of

a smooth strictly convex function, g𝑡 is invertible and its inverse, whichwe denote ĝ𝑡 ∶ g𝑡(𝑈) → 𝑈,
is smooth. In particular, using the inverse function theorem, the following system of equalities
holds.

∇
(
𝑡

2
|∇𝜑◦ĝ𝑡|2 + 𝜑◦ĝ𝑡

)
= ∇(ĝ𝑡)(𝑡(∇

2𝜑◦ĝ𝑡)∇𝜑◦ĝ𝑡 + ∇𝜑◦ĝ𝑡)

= ((∇g𝑡)
−1◦ĝ𝑡)((𝑡∇

2𝜑◦ĝ𝑡 + 𝐼𝑑)∇𝜑◦ĝ𝑡)

= ((∇(𝑡∇𝜑 + 𝑖𝑑))−1◦ĝ𝑡)((𝑡∇
2𝜑◦ĝ𝑡 + 𝐼𝑑)∇𝜑◦ĝ𝑡)

= (𝑡∇2𝜑◦ĝ𝑡 + 𝐼𝑑)
−1(𝑡∇2𝜑◦ĝ𝑡 + 𝐼𝑑)(∇𝜑◦ĝ𝑡) = ∇𝜑◦ĝ𝑡.

(10)

From Equation (10), it follows that ∇𝜑◦ĝ𝑡 ∈ ∇𝐶∞
𝑐 (g𝑡(𝑈)). Moreover, there exists 𝑓𝑡 ∈ 𝐶∞

𝑐 (ℝ
𝑑)

such that ∇𝑓𝑡|g𝑡(𝑈) = ∇𝜑◦ĝ𝑡. It also follows from Lemma 2.3 that there is a unique opti-
mal plan between 𝜇𝑡 and 𝜇𝑠 for all 𝑠 ∈ [0, 1] and 𝑡 ∈ [0, 1). In the following system of
equalities, we show that this optimal plan is induced by an optimal map of the form
𝑖𝑑 + (𝑠 − 𝑡)(∇𝜑◦ĝ𝑡).

∫ℝ𝑑
|𝑖𝑑−(𝑖𝑑 + (𝑠 − 𝑡)(∇𝜑◦ĝ𝑡))|2 𝑑𝜇𝑡 = (𝑠 − 𝑡)2 ∫ℝ𝑑

|∇𝜑◦ĝ𝑡|2 𝑑𝜇𝑡
= (𝑠 − 𝑡)2 ∫ℝ𝑑

|(𝑇 − 𝑖𝑑)◦[(𝑖𝑑 + 𝑡(𝑇 − 𝑖𝑑))−1]|2 𝑑𝜇𝑡
= (𝑠 − 𝑡)2 ∫ℝ𝑑

|(𝑇 − 𝑖𝑑)◦[(𝑖𝑑 + 𝑡(𝑇 − 𝑖𝑑))−1]|2 𝑑(𝑖𝑑 + 𝑡(𝑇 − 𝑖𝑑))#𝜇1

= (𝑠 − 𝑡)2 ∫ℝ𝑑
|𝑇 − 𝑖𝑑|2 𝑑𝜇1 = (𝑠 − 𝑡)2𝑊2

2(𝜇1, 𝜇2) = 𝑊2
2(𝜇𝑡, 𝜇𝑠).

Now, since 𝑈 is a neighbourhood of Hull(supp(𝜇1)) and 𝜇𝑡 = (g𝑡)#𝜇1, it follows that supp(𝜇𝑡) is
a subset of g𝑡(𝑈). Moreover, since the optimal map 𝑖𝑑 + (𝑠 − 𝑡)(∇𝜑◦ĝ𝑡) is only uniquely defined
𝜇𝑡-almost everywhere and since ∇𝑓𝑡|g𝑡(𝑈) = ∇𝜑◦ĝ𝑡, we may identify the optimal map with 𝑖𝑑 +
(𝑠 − 𝑡)∇𝑓𝑡. In particular, this means that 𝑇𝑡 = 𝑖𝑑 + (1 − 𝑡)∇𝑓𝑡.
Utilising Definition 2.5, we calculate the first derivative of 𝐹◦𝜇𝑡 as follows.

𝑑

𝑑𝑡
𝐹(𝜇𝑡) = lim

ℎ→0

1

ℎ
(𝐹(𝜇𝑡+ℎ) − 𝐹(𝜇𝑡)) = lim

ℎ→0

ℎ

ℎ ∫ℝ𝑑
∇𝑤𝐹[𝜇𝑡] ⋅∇𝑓𝑡 𝑑𝜇𝑡 + lim

ℎ→0

𝑜(𝑊2(𝜇𝑡+ℎ, 𝜇𝑡))

ℎ

= ∫ℝ𝑑
∇𝑤𝐹[𝜇𝑡] ⋅∇𝑓𝑡 𝑑𝜇𝑡 = ∇𝑓𝑡 ⋅ 𝐹[𝜇𝑡] =

1

1 − 𝑡
(𝑇𝑡 − 𝑖𝑑) ⋅ 𝐹[𝜇𝑡].

Since 𝐹 is twice differentiable, it follows from Definition 2.6 that the map 𝑡 ↦ 𝜁 ⋅ 𝐹[𝜇𝑡] is
differentiable for all 𝜁 ∈ ∇𝐶∞

𝑐 (ℝ
𝑑). In particular, for 𝑠, 𝑟 ∈ [0, 1),

𝑑

𝑑𝑡
∇𝑓𝑠 ⋅ 𝐹[𝜇𝑡]

||||𝑡=𝑟 = ∇𝑓𝑟 ⋅ (∇𝑓𝑠 ⋅ 𝐹[𝜇𝑟]).
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SOME CONVEXITY CRITERIA FOR DIFFERENTIABLE FUNCTIONS ON THE 2-WASSERSTEIN SPACE 1855

We calculate the second derivative as follows.

𝑑2

𝑑𝑡2
𝐹(𝜇𝑡) = lim

ℎ→0

1

ℎ
(∇𝑓𝑡+ℎ ⋅ 𝐹[𝜇𝑡+ℎ] − ∇𝑓𝑡 ⋅ 𝐹[𝜇𝑡])

= lim
ℎ→0

1

ℎ
(∇𝑓𝑡+ℎ ⋅ 𝐹[𝜇𝑡+ℎ] − ∇𝑓𝑡+ℎ ⋅ 𝐹[𝜇𝑡]) + lim

ℎ→0

1

ℎ
(∇𝑓𝑡+ℎ ⋅ 𝐹[𝜇𝑡] − ∇𝑓𝑡 ⋅ 𝐹[𝜇𝑡])

= lim
𝑠→𝑡

𝑑

𝑑𝑡
(∇𝑓𝑠 ⋅ 𝐹[𝜇𝑡]) + (𝜕𝑡∇𝑓𝑡) ⋅ 𝐹[𝜇𝑡] = ∇𝑓𝑡 ⋅ (∇𝑓𝑡 ⋅ 𝐹[𝜇𝑡]) + (𝜕𝑡∇𝑓𝑡) ⋅ 𝐹[𝜇𝑡].

Since ∇𝑓𝑡|g𝑡(𝑈) = ∇𝜑◦ĝ𝑡 and via the application of the chain rule, the following system of
equalities holds 𝜇𝑡-almost everywhere.

𝜕𝑡∇𝑓𝑡 + ∇2𝑓𝑡∇𝑓𝑡 = 𝜕𝑡(∇𝜑◦ĝ𝑡) + ∇(∇𝜑◦ĝ𝑡)∇𝜑◦ĝ𝑡

= (∇2𝜑◦ĝ𝑡)(𝜕𝑡(ĝ𝑡) + ∇(ĝ𝑡)(∇𝜑◦ĝ𝑡)) = (∇2𝜑◦ĝ𝑡)(𝜕𝑡(ĝ𝑡) + ∇(ĝ𝑡)(𝜕𝑡g𝑡◦ĝ𝑡)).
(11)

Via the application of the chain rule, we also derive Equation (12).

0 = 0◦ĝ𝑡 = 𝜕𝑡𝑖𝑑◦ĝ𝑡 = 𝜕𝑡(ĝ𝑡◦g𝑡)◦ĝ𝑡

= (𝜕𝑡 ĝ𝑡)◦g𝑡◦ĝ𝑡 + (∇(ĝ𝑡)◦g𝑡◦ĝ𝑡)(𝜕𝑡g𝑡)◦ĝ𝑡 = 𝜕𝑡(ĝ𝑡) + ∇ĝ𝑡(𝜕𝑡g𝑡◦ĝ𝑡).
(12)

By substituting Equation (12) into Equation (11), it follows that 𝜕𝑡∇𝑓𝑡 + ∇2𝑓𝑡∇𝑓𝑡 = 0, 𝜇𝑡-almost
everywhere. We conclude as follows.

𝑑2

𝑑𝑡2
𝐹(𝜇𝑡) = ∇𝑓𝑡 ⋅ (∇𝑓𝑡 ⋅ 𝐹[𝜇𝑡]) + (𝜕𝑡∇𝑓𝑡) ⋅ 𝐹[𝜇𝑡] = ∇𝑓𝑡 ⋅ (∇𝑓𝑡 ⋅ 𝐹[𝜇𝑡]) − ∇2𝑓𝑡∇𝑓𝑡 ⋅ 𝐹[𝜇𝑡]

= �̄�𝑒𝑠𝑠𝐹[𝜇𝑡](∇𝑓𝑡, ∇𝑓𝑡) =
1

(1 − 𝑡)2
𝐻𝑒𝑠𝑠𝐹[𝜇𝑡](𝑇𝑡 − 𝑖𝑑, 𝑇𝑡 − 𝑖𝑑).

□

Lemma 4.2. Let 𝜇, 𝜈 ∈ 𝒫𝑟𝑐
2
(ℝ𝑑) and let 𝑇 denote the optimal map between 𝜇 and 𝜈. There exists a

sequence of 𝐶∞
𝑐 (ℝ

𝑑) functions (𝜑𝑛)𝑛∈ℕ and𝑈𝑛, a convex neighbourhood of Hull(supp(𝜇)), such that
each 𝜑𝑛 is (−1)-convex on𝑈𝑛 and (∇𝜑𝑛 + 𝑖𝑑) → 𝑇 in 𝐿2(𝜇; ℝ𝑑) as 𝑛 → ∞.

Proof. In [2], Theorem 6.2.10, it is shown that, for 𝜇 ∈ 𝒫𝑟
2
(ℝ𝑑), there exists a convex function 𝜙

such that ∇𝜙 = 𝑇 in 𝐿2(𝜇; ℝ𝑑). It is also shown that if 𝜈 is compactly supported, then 𝜙 is locally
Lipschitz. Since 𝜈 and 𝜇 are compactly supported, it also follows that 𝑇 is bounded 𝜇-almost
everywhere. Let𝜒𝜀 be a positivemollifier and let (𝜅𝑛)𝑛∈ℕ be a sequence of smooth cutoff functions
such that 𝜅𝑛 = 1 and∇𝜅𝑛 = 0 on 𝐵𝑛(0). Since 𝜇 has compact support, there exists𝑁 ∈ ℕ such that
Hull(supp(𝜇)) ⊂ 𝐵𝑛(0) for all 𝑛 ⩾ 𝑁. We fix such an 𝑁, we define 𝜑𝑛 ∶= 𝜅𝑛+𝑁(𝜒 1

𝑛

∗ 𝜙 − 1

2
|𝑖𝑑|2)

and we let 𝑈𝑛 = 𝐵𝑛+𝑁(0). Since mollification preserves convexity and 𝜅𝑛+𝑁(𝑥) = 1 for 𝑥 ∈ 𝑈𝑛,
each 𝜑𝑛 is (−1)-convex on 𝑈𝑛 for all 𝑛 ∈ ℕ. Now, using the convergence properties of a mollifier,
the gradient ∇𝜑𝑛(𝑥) converges to 𝑇(𝑥) − 𝑥 for ℒ𝑑 almost every 𝑥 ∈ Hull(supp(𝜇)). Moreover,
since 𝜇 is absolutely continuous with respect toℒ𝑑, it follows that∇𝜑𝑛(𝑥) converges to 𝑇(𝑥) − 𝑥

for 𝜇-almost every 𝑥 ∈ ℝ𝑑. Using this convergence and the boundedness of 𝑇, it follows that there
exists 𝐶 ∈ ℝ such that |∇𝜑𝑛| ⩽ 𝐶 𝜇-almost everywhere. Moreover, by applying the dominated
convergence theorem to the sequence∇𝜑𝑛, it follows that (∇𝜑𝑛 + 𝑖𝑑) converges to 𝑇 in 𝐿2(𝜇; ℝ𝑑)

as 𝑛 → ∞. □
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1856 PARKER

The following results, Lemmas 4.3 and 4.4, are not used directly in the Proof of Theorem 1.3;
however, they are necessary in the proof of Lemma 4.5 which, in turn, is utilised in our proof of
the main result. Lemma 4.3 can be seen as an immediate consequence of the combination of [2,
Propositions 7.1.3] and [2, Propositions 7.1.5], whilst Lemma 4.4 follows as a consequence of [15,
Proposition 1.3].

Lemma 4.3. Let (𝜇1,𝑛)𝑛∈ℕ and (𝜇2,𝑛)𝑛∈ℕ be sequences in𝒫2(ℝ
𝑑) and let (𝛾𝑛)𝑛∈ℕ be a sequence such

that 𝛾𝑛 ∈ Γ𝑜(𝜇1,𝑛, 𝜇2,𝑛) for all𝑛 ∈ ℕ. If there exist𝜇1, 𝜇2 ∈ 𝒫2(ℝ
𝑑) such that lim𝑛→∞𝑊2(𝜇1, 𝜇1,𝑛) =

0 and lim𝑛→∞𝑊2(𝜇2, 𝜇2,𝑛) = 0, then there exists 𝛾 ∈ Γ𝑜(𝜇1, 𝜇2) such that, up to a subsequence,
(𝛾𝑛)𝑛∈ℕ narrowly converges to 𝛾.

Lemma 4.4. The space𝒫𝑟𝑐
2
(ℝ𝑑) is geodesically convex.

Lemma 4.5. If 𝐹∶ 𝒫2(ℝ
𝑑) → ℝ is continuous, then 𝐹 is 𝜆-geodesically convex if and only if the

restriction of 𝐹 to𝒫𝑟𝑐
2
(ℝ𝑑) is 𝜆-geodesically convex.

Proof. By Proposition 4.4, the set 𝒫𝑟𝑐
2
(ℝ𝑑) is geodesically convex. Consequently, if 𝐹 is 𝜆-

geodesically convex, then the restriction of 𝐹 to 𝒫𝑟𝑐
2
(ℝ𝑑) is 𝜆-geodesically convex and it is left

to prove the converse implication. Let 𝜇1, 𝜇2 ∈ 𝒫2(ℝ
𝑑). Since 𝒫𝑟𝑐

2
(ℝ𝑑) is dense in 𝒫2(ℝ

𝑑), there
exists at least a pair of sequences in𝒫𝑟𝑐

2
(ℝ𝑑)which converge in (𝒫2(ℝ

𝑑),𝑊2) to 𝜇1 and 𝜇2, respec-
tively. We fix one such pair, denoting the sequences (𝜇1,𝑛)𝑛∈ℕ and (𝜇2,𝑛)𝑛∈ℕ. Additionally, we let
(𝛾𝑛)𝑛∈ℕ be the unique sequence of optimal plans satisfying 𝛾𝑛 ∈ Γ𝑜(𝜇1,𝑛, 𝜇2,𝑛) for all 𝑛 ∈ ℕ. Using
Lemma 4.3, we extract a subsequence of (𝛾𝑛)𝑛∈ℕ which narrowly converges to 𝛾 ∈ Γ𝑜(𝜇1, 𝜇2).
We denote this subsequence (𝛾𝑛)𝑛∈ℕ and denote its marginals (𝜇1,𝑛)𝑛∈ℕ and (𝜇2,𝑛)𝑛∈ℕ to avoid
relabelling. Now, for 𝑡 ∈ [0, 1], let 𝜇𝑛𝑡 ∶= ((1 − 𝑡)𝜋1 + 𝑡𝜋2)#𝛾𝑛 and let 𝜇𝑡 ∶= ((1 − 𝑡)𝜋1 + 𝑡𝜋2)#𝛾.
Since 𝛾𝑛 converges narrowly to 𝛾, it follows that 𝜇𝑛𝑡 converges narrowly to 𝜇𝑡 for all 𝑡 ∈ [0, 1].
Moreover, since the sequence ∫

ℝ𝑑 |𝑥|2𝜇𝑛𝑡 (𝑥) is uniformly bounded, it follows from [2, Proposi-
tion 7.1.5] that lim𝑛→∞𝑊2(𝜇

𝑛
𝑡 , 𝜇𝑡) = 0 for all 𝑡 ∈ [0, 1]. If we now assume that 𝐹∶ 𝒫2(ℝ

𝑑) → ℝ is
continuous and its restriction to 𝒫𝑟𝑐

2
(ℝ𝑑) is 𝜆-geodesically convex, then the following system of

inequalities holds for all 𝑡 ∈ [0, 1].

𝐹(𝜇𝑡) = lim
𝑛→∞

𝐹(𝜇𝑛𝑡 ) ⩽ (1 − 𝑡) lim
𝑛→∞

𝐹(𝜇1,𝑛) + 𝑡 lim
𝑛→∞

𝐹(𝜇2,𝑛) − 𝑡(1 − 𝑡)
𝜆

2
lim
𝑛→∞

𝑊2
2(𝜇1,𝑛, 𝜇2,𝑛)

= (1 − 𝑡)𝐹(𝜇1) + 𝑡𝐹(𝜇2) − 𝑡(1 − 𝑡)
𝜆

2
𝑊2

2(𝜇1, 𝜇2).

Since 𝜇1 and 𝜇2 were chosen arbitrarily, we conclude that 𝐹 is 𝜆-geodesically convex. □

Proof of Theorem 1.3. We first assume that 𝐹 is 𝜆-geodesically convex and prove that Equation (2)
holds for all 𝜇 ∈ 𝒫2(ℝ

𝑑) and all 𝜁 ∈ 𝑇𝜇𝒫2(ℝ
𝑑). Choose 𝜇 ∈ 𝒫2(ℝ

𝑑) and 𝜑 ∈ 𝐶∞
𝑐 (ℝ

𝑑). Since 𝜑 has
bounded derivatives of every order, there exists 𝑐 ∈ ℝ such that 1

𝑐
𝜑 + 1

2
|𝑥|2 is convex. It is shown in

[20, Theorem 1.48] that, if 𝜉 is the gradient of a convex, differentiable function and 𝜉 ∈ 𝐿2(𝜇; ℝ𝑑),
then 𝜉 defines an optimal map between 𝜇 and 𝜉#𝜇. Consequently, ∇(

1

𝑐
𝜑 + 1

2
|𝑥|2) defines an

optimal map between 𝜇 and ( 1
𝑐
∇𝜑 + 𝑖𝑑)#𝜇. We let [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 ∈ 𝒫2(ℝ

𝑑) denote the geodesic
induced by this transport. By Lemma 4.1, the one-sided second derivative of [0, 1] ∋ 𝑡 ↦ 𝐹(𝜇𝑡)
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SOME CONVEXITY CRITERIA FOR DIFFERENTIABLE FUNCTIONS ON THE 2-WASSERSTEIN SPACE 1857

exists at 𝑡 = 0 and the following equality holds.

𝑐2
𝑑2

𝑑𝑡2 +
𝐹(𝜇𝑡)

||||𝑡=0 = 𝐻𝑒𝑠𝑠𝐹[𝜇](∇𝜑,∇𝜑).

Furthermore, since we have assumed that 𝐹 is 𝜆-geodesically convex, the second derivative of
𝑡 ↦ 𝐹(𝜇𝑡) is bounded below by 𝜆𝑊2

2
(𝜇, ( 1

𝑐
∇𝜑 + 𝑖𝑑)#𝜇). Consequently, the following inequality

holds.

𝐻𝑒𝑠𝑠𝐹[𝜇](∇𝜑,∇𝜑) = 𝑐2
𝑑2

𝑑𝑡2 +
𝐹(𝜇𝑡)

||||𝑡=0 ⩾ 𝑐2𝜆𝑊2
2

(
𝜇,

(
1

𝑐
∇𝜑 + 𝑖𝑑

)
#
𝜇
)
= 𝜆‖∇𝜑‖2

𝐿2(𝜇)
.

As𝜇 and𝜑were arbitrary, Equation (2)must hold for all𝜇 ∈ 𝒫2(ℝ
𝑑) and 𝜁 ∈ ∇𝐶∞

𝑐 (ℝ
𝑑).Moreover,

by Definition 2.6,𝐻𝑒𝑠𝑠𝐹[𝜇] is continuous, and consequently, Equation (2) must also hold for any
𝜇 ∈ 𝒫2(ℝ

𝑑) and 𝜁 ∈ 𝑇𝜇𝒫2(ℝ
𝑑) since ∇𝐶∞

𝑐 (ℝ
𝑑) is dense in 𝑇𝜇𝒫2(ℝ

𝑑).
We now suppose that Equation (2) holds for all 𝜇 ∈ 𝒫2(ℝ

𝑑) and 𝜁 ∈ 𝑇𝜇𝒫2(ℝ
𝑑) and prove that

𝐹 is 𝜆-geodesically convex. We let 𝜇, 𝜈 ∈ 𝒫𝑟𝑐
2
(ℝ𝑑), we let 𝑇 be the optimal map between 𝜇 and 𝜈

and we let [0, 1] ∋ 𝑡 ↦ 𝜇𝑡 be the geodesic induced by this transport. By Lemma 4.2, there exists a
sequence of 𝐶∞

𝑐 (ℝ
𝑑) functions (𝜑𝑛)𝑛∈ℕ and 𝑈𝑛, a convex neighbourhood of Hull(supp(𝜇)), such

that each 𝜑𝑛 is (−1)-convex on 𝑈𝑛 and ∇𝜑𝑛 → (𝑇 − 𝑖𝑑) in 𝐿2(𝜇; ℝ𝑑) as 𝑛 → ∞. Since ∇𝜑𝑛 + 𝑖𝑑

is the gradient of a function whose restriction to 𝑈𝑛 is convex, it follows, again from [20, The-
orem 1.48], that ∇𝜑𝑛 + 𝑖𝑑 must be the unique optimal map between 𝜇 and (∇𝜑𝑛 + 𝑖𝑑)#𝜇. We
let 𝑇𝑛 ∶= ∇𝜑𝑛 + 𝑖𝑑, we let [0, 1] ∋ 𝑡 ↦ 𝜇𝑛𝑡 ∶= ((1 − 𝑡)𝑖𝑑 + 𝑡𝑇𝑛)#𝜇 and we let 𝑇𝑡,𝑛 denote the
unique optimal map between 𝜇𝑛𝑡 and (𝑇𝑛)#𝜇. By Lemma 4.1, the map [0, 1] ∋ 𝑡 ↦ 𝐹(𝜇𝑛𝑡 ) is
twice differentiable on [0,1) and, in particular, the following system of inequalities holds for all
𝑡 ∈ [0, 1).

𝑑2

𝑑𝑡2
𝐹(𝜇𝑛𝑡 ) =

1

(1 − 𝑡)2
𝐻𝑒𝑠𝑠𝐹[𝜇𝑛𝑡 ](𝑇𝑡,𝑛 − 𝑖𝑑, 𝑇𝑡,𝑛 − 𝑖𝑑) ⩾

1

(1 − 𝑡)2
𝜆‖𝑇𝑡,𝑛 − 𝑖𝑑‖2

𝐿2(𝜇𝑛𝑡 )

=
1

(1 − 𝑡)2
𝜆𝑊2

2(𝜇
𝑛
𝑡 , 𝑇𝑛#𝜇) = 𝜆𝑊2

2(𝜇, 𝑇𝑛#𝜇).

The above inequality implies that [0, 1] ∋ 𝑡 ↦ 𝐹(𝜇𝑛𝑡 ) is 𝜆𝑊
2
2
(𝜇, 𝑇𝑛#𝜇)-convex. Furthermore, as

𝑇𝑛 converges to 𝑇 in 𝐿2(𝜇; ℝ𝑑), it follows that lim𝑛→∞𝑊2(𝜇
𝑛
𝑡 , 𝜇𝑡) = 0 for all 𝑡 ∈ [0, 1]. Since 𝐹

is continuous, this means that [0, 1] ∋ 𝑡 ↦ 𝐹(𝜇𝑡) is 𝜆𝑊2
2
(𝜇, 𝜈)-convex. Moreover, since 𝜇 and 𝜈

were arbitrary measures in𝒫𝑟𝑐
2
(ℝ𝑑), the restriction of 𝐹 to𝒫𝑟𝑐

2
(ℝ𝑑) is 𝜆-geodesically convex. We

subsequently conclude, by Lemma 4.5, that 𝐹 must be 𝜆-geodesically convex on𝒫2(ℝ
𝑑). □

ACKNOWLEDGEMENTS
The author would like to thank A. R. Mészáros for his valuable advice and stimulating discus-
sions, for many useful comments, and for his direction toward numerous references used in this
manuscript. The author also wishes to thank F. Santambrogio and W. Gangbo for their help-
ful comments and constructive feedback on an earlier version of this manuscript and extends
their thanks to G. E. Sodini for pointing out the connections between this manuscript and [5].
Finally, the author thanks the anonymous referees for their helpful critique towards improving
this manuscript. This work was supported by the Engineering and Physical Sciences Research
Council [Grant Number EP/W524426/1].

 14692120, 2024, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.13030 by D

urham
 U

niversity - U
niversity, W

iley O
nline L

ibrary on [22/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1858 PARKER

DATA AVAILAB IL ITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the
current study.

JOURNAL INFORMATION
The Bulletin of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

ORCID
GuyParker https://orcid.org/0009-0007-2023-7987

REFERENCES
1. S. Ahuja,Wellposedness of mean field games with common noise under a weak monotonicity condition, SIAM J.

Control Optim. 54 (2016), no. 1, 30–48.
2. L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows: in metric spaces and in the space of probability measures,

2nd ed., Birkhäuser, Basel, 2008.
3. K. G. Binmore, Mathematical analysis: a straightforward approach, 2nd ed., Cambridge University Press,

Cambridge, 1982. ISBN: 978-1-107-52623-5.
4. R. Carmona and F. Delarue, Probabilistic theory of mean field games with applications I, Springer, Cham,

Switzerland, 2018. ISBN: 978-3-319-58920-6.
5. G. Cavagnari, G. Savaré, and G. E. Sodini,A lagrangian approach to totally dissipative evolutions inWasserstein

spaces, arXiv:2305.05211, 2023.
6. Y. T. Chow and W. Gangbo, A partial Laplacian as an infinitesimal generator on the Wasserstein space, J.

Differential Equations 267 (2019), no. 10, 6065–6117.
7. K. Craig, Nonconvex gradient flow in the Wasserstein metric and applications to constrained nonlocal

interactions, Proc. London Math. Soc. 114 (2017), no. 1, 60–102.
8. W. Gangbo, H. K. Kim, and T. Pacini, Differential forms on Wasserstein space and infinite-dimensional

hamiltonian systems, Mem. Amer. Math. Soc. 211 (2011), no. 993.
9. W. Gangbo andA. R.Mészáros,Global well-posedness ofmaster equations for deterministic displacement convex

potential mean field games, Comm. Pure Appl. Math. 75 (2022), no. 12, 2685–2801.
10. W. Gangbo, A. R. Mészáros, C. Mou, and J. Zhang, Mean field games master equations with nonseparable

hamiltonians and displacement monotonicity, Ann. Probab. 50 (2022), no. 6, 2178–2217.
11. W. Gangbo and A. Tudorascu, On differentiability in the Wasserstein space and well-posedness for Hamilton–

Jacobi equations, J. Math. Pures Appl. 125 (2019), 119–174.
12. N. Gigli, Second order analysis in (𝒫2(𝑚), 𝑤2), Mem. Amer. Math. Soc. 216 (2012), no. 1018.
13. N. Lanzetti, S. Bolognani, and F. Dörfler, First-order conditions for optimization in the Wasserstein space,

Version 1. arXiv:2209.12197v1.
14. J. Lott, Some geometric calculations on Wasserstein space, Commun. Math. Phys. 277 (2008), no. 2, 423–437.
15. R. J. McCann, A convexity principle for interacting gases, Adv. Math. 128 (1997), no. 1, 153–179.
16. A. R. Mészáros and C. Mou,Mean field games systems under displacement monotonicity, SIAM J. Math. Anal.

56 (2024), no. 1, 529–553.
17. F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial

Differential Equations 26 (2001), no. 1–2, 101–174.
18. F. Otto and C. Villani, Generalization of an inequality by talagrand and links with the logarithmic Sobolev

inequality, J. Funct. Anal. 173 (2000), no. 2, 361–400.
19. D. Pollard,Auser’s guide tomeasure theoretic probability, Cambridge University Press, Cambridge, 2001. ISBN:

978-0-511-81155-5.
20. F. Santambrogio, Optimal transport for applied mathematicians, Birkhäuser, Cham, 2015. ISBN: 978-3-319-

20828-2.

 14692120, 2024, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.13030 by D

urham
 U

niversity - U
niversity, W

iley O
nline L

ibrary on [22/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0009-0007-2023-7987
https://orcid.org/0009-0007-2023-7987

	Some convexity criteria for differentiable functions on the 2-Wasserstein space
	Abstract
	1 | INTRODUCTION
	1.1 | Acceleration-free curves and main result
	1.2 | Strategy of proof - Theorem 1.1
	1.3 | Higher order convexity criteria
	1.4 | Strategy of proof - Theorem 1.3
	1.5 | A note

	2 | NOTATION AND PRELIMINARIES
	2.1 | Notation
	2.2 | Preliminaries

	3 | CONVEXITY ALONG ACCELERATION-FREE CURVES
	3.1 | Acceleration-free curves
	3.2 | Differentiation along acceleration-free curves and proof of Theorem 1.1

	4 | FIRST- AND SECOND-ORDER CONVEXITY CRITERIA
	4.1 | First-order convexity criterion
	4.2 | Second-order convexity criterion

	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT

	JOURNAL INFORMATION
	ORCID
	REFERENCES


