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ABSTRACT

Whilst X-rays and Sunyaev—Zel’dovich observations allow to study the properties of the intra-
cluster medium (ICM) of galaxy clusters, their gravitational potential may be constrained
using strong gravitational lensing. Although being physically related, these two components
are often described with different physical models. Here, we present a unified technique
to derive the ICM properties from strong lensing for clusters in hydrostatic equilibrium. In
order to derive this model, we present a new universal and self-similar polytropic temperature
profile, which we fit using the X-COP sample of clusters. We subsequently derive an analytical
model for the electron density, which we apply to strong lensing clusters MACS J0242.5-2132
and MACS J0949.8+1708. We confront the inferred ICM reconstructions to XMM-Newton
and ACT observations. We contrast our analytical electron density reconstructions with the
best canonical S-model. The ICM reconstructions obtained prove to be compatible with
observations. However they appear to be very sensitive to various dark matter halo parameters
constrained through strong lensing (such as the core radius), and to the halo scale radius (fixed
in the lensing optimizations). With respect to the important baryonic effects, we make the
sensitivity on the scale radius of the reconstruction an asset, and use the inferred potential to
constrain the dark matter density profile using ICM observations. The technique here developed
should allow to take a new, and more holistic path to constrain the content of galaxy clusters.

Key words: gravitational lensing: strong—hydrodynamics — galaxies: clusters: individual:
MACS J0242.5-2132, MACS J0949.841708 —galaxies: clusters: intracluster medium — X-
rays: galaxies: clusters.

1 INTRODUCTION

In the last decades, tremendous progress has been achieved in
gravitational lensing observations (see Kneib & Natarajan 2011 for
areview); from the first mass reconstruction of Abell 370 (Hammer

* E-mail: ajoseph@campus.technion.ac.il

© 2024 The Author(s).

1987; Soucail et al. 1988) all the way to the Hubble Frontier Fields
(HFF; Lotz et al. 2017), the Beyond the Ultra-deep Frontier Fields
and Legacy Observations (BUFFALO; Steinhardt et al. 2020),
and the numerous JWST lensing surveys (see e.g. UNCOVER;
Bezanson et al. 2022). As a result, our understanding of this
indirect observation of dark matter has improved, yet leaving open
problems to discussions, such as the total matter (baryons and dark
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matter) potential distribution in galaxy clusters (Lilley, Evans &
Sanders 2018; Roncadelli & Galanti 2021), in particular in their
outskirts (Trevisan, Mamon & Stalder 2017), or the size of clusters
themselves (see e.g. Chang et al. 2018; Tomooka et al. 2020; Baxter
etal. 2021; Aung et al. 2023).

In parallel, the total matter distribution at large radii is assumed
to be traced by the ionized intergalactic medium, the signature
of which is detectable in the X-rays, and thanks to the Sunyaev—
Zel’dovich (SZ) effect. While the projected lensing gravitational
potential of galaxy clusters can be reconstructed from X-rays and
SZ data through the Richardson-Lucy deprojection algorithm (see
Konrad et al. 2013; Stock et al. 2015; Tchernin et al. 2018), the
reverse path has not been explored yet. Efforts to relate the two
observables range from Bulbul et al. (2010), describing the intra-
cluster medium (ICM; composed of ionized gas) density through
a dark matter (DM) profile and inferring the potential using the
X-ray observation, to CLUMP-3D (see Sereno et al. 2013, 2017),
exploiting the triaxial hypothesis to perform a joint ICM-lensing
optimization of the cluster physics, using disjoint models for the
potential and the ICM thermodynamics.

We propose to predict the ICM thermodynamics using only
the gravitational lensing-inferred potential. This should light our
way towards a more holistic understanding of the dark matter
profile, galaxy clusters thermodynamics, and interplay between
baryons and dark matter. For instance, an offset between the
lensing prediction and the X-ray observations could for instance hint
towards interacting dark matter scenarios. In order to establish such
a comparison, we convert the strong lensing detected gravitational
potential into a predictive ICM model.

Deriving such a model requires to understand the
thermodynamics of galaxy clusters. Making precise measurements
from X-ray observations is limited by a series of assumptions,
about e.g. the halo geometry (Buote & Humphrey 2012; Sereno
et al. 2017), or the dynamical state of the cluster (Nelson et al.
2014; Biffi et al. 2016). Multiple studies have shown the hydrostatic
regime to be an acceptable description of the ICM for cool-core and
relaxing clusters (Ettori et al. 2013, 2019; Biffi et al. 2016; Vazza
et al. 2018). Conversely, recent mergers or dynamically disturbed
systems present strong deviations to the hydrostatic equilibrium
(Mahdavi et al. 2013). Moreover, galaxy clusters have followed a
hierarchical model of formation, made of mergers and gravitational
collapse. For this reason, their thermodynamics scales according
to the cluster mass (Kaiser 1986; Bryan & Norman 1998), which
is confirmed by simulations (Frenk et al. 1999; Borgani et al.
2005; Voit 2005) and observations (Ghirardini et al. 2019a). These
assumptions (hydrostatic equilibrium, self-similarity) are common
in joint X-rays and SZ analyses (cf. Capelo, Coppi & Natarajan
2012; Ghirardini et al. 2019a, b).

Using these assumptions, we adopted an effective polytropic
temperature law in order to describe the thermodynamic model
of the ICM of galaxy clusters (following e.g. Komatsu & Seljak
2001). Capelo, Coppi & Natarajan (2012) predicted a constant
I' ~ 1.2 polytropic index for the ICM in hydrostatic equilibrium
with a NFW density profile, and Ghirardini et al. (2019b)
recovered this value for the outskirts of clusters, but found radiative
cooling to bring this value to I' ~ 0.8 in the centre. In order
to produce precise predictions a priori, we conduct a study of
the polytropic index on the X-COP sample of data (described in
Eckert et al. 2017). X-COP is a sample of 12 massive clusters
selected from the Planck all-sky survey for which a deep X-ray
follow-up with XMM-Newton was conducted (see Ghirardini et al.
2019a; CHEX-MATE Collaboration 2021). The thermodynamic
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properties of the ICM (pressure, temperature, density) were
recovered over a broad radial range, which makes this sample
ideal to derive the relation between the various thermodynamic
quantities.

In Allingham et al. (2023), we analysed two galaxy clusters
and reconstructed their gravitational potential with LENSTOOL (see
Jullo et al. 2007) using strong gravitational lensing. Galaxy clus-
ters MACS J0242.5-2132 and MACS J0949.84-1708, dynamically
relaxed and relaxing respectively, provide the inputs to the ICM
predictions for this work, and allow to justify the hydrostatic
description of the ICM (Biffi et al. 2016). In this paper, we also
test the B-model (see King 1966), commonly used by the X-ray
and SZ communities to describe the ICM density distribution. We
refer to it, and to the family of empirical models introduced in
e.g. Vikhlinin et al. (2006) as canonical, in contrast to our models,
which are derived analytically from the full matter density, using
the Poisson and Euler equations, following the logic of Bulbul et al.
(2010). As our analytical ICM models scale with the gravitational
potential obtained with strong lensing, we directly work with the
parameters of the lensing model.

After establishing the theoretical models, the quantitative ICM
results are confronted to the XMM-Newton and the ACT Data
Release 5 millimetre-wave (see Naess et al. 2020; Mallaby-Kay
etal. 2021). The quality of the reconstruction is tested witha MCMC
on the density parameters, using these ICM data.

This article is structured as follows: the data are presented in Sec-
tion 2; the strong lensing models are summarized in Section 3; the
theoretical possible models for the electron density, the temperature,
the gas fraction, the X-ray surface brightness and the SZ effect are
introduced in Section 4; quantitative results for the density and tem-
perature are presented in Section 5; the method to evaluate the qual-
ity of observational predictions follows up in Section 6; ICM predic-
tions and MCMC optimization results using the ICM observations
are detailed in Section 7; a discussion on the limitations and possibil-
ities of such a model is given in Section 8; and a summary and con-
clusion are provided in Section 9. We assume the ACDM cosmolog-
ical model, with @, = 0.3, @, = 0.7, and Hy = 70 kms~! Mpc~!.

2 DATA

2.1 X-ray observations
2.1.1 MACS J0242 and MACS J0949

The ICM is primarily probed with X-ray observations. We used the
XMM-Newton publicly available observations of the MACS J0242
and MACSJ0949 in the 0.7-1.2 keV band (see CHEX-MATE
Collaboration 2021). MACS J0242 was observed for a total of
70 ks (OBSID:0673830101), and MACS J0949 for a total of 36
ks (OBSID:0827340901). We analysed the two observations using
XMMSAS v17.0, and the most up-to-date calibration files. We used
the XMMSAS tools mos-filter and pn-filter to extract
light curves of the observations and filter out periods of enhanced
background, induced by soft proton flares. After flare filtering, the
available clean exposure time is 61 ks (MOS) and 53 ks (PN) for
MACS J0242, and 35 ks (MOS) and 34 ks (PN) for MACS J0949.
The EPIC MOS filter maximizes the signal-to-noise ratio, thus we
used primarily these data. We extract the X-ray data following
the procedure detailed through Ghirardini et al. (2019a), and the
hydrostatic mass through Eckert et al. (2022).

With the NASA tool PIMMS, we get access to the conversion

constants from flux to counts per second C§o™ for both clusters:
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Figure 1. Composite RGB colour images of the two lensing clusters. Left: Composite DES colour image of MACS J0242. Right: Composite colour HST
image of MACS J0949. Green: Hot gas distribution, obtained with XMM-Newton observations. Red: Contours of equal density, inferred from lensing models.

for MACSJ0242 and MACSJ0949, C{™ =2.087 x 10" and

flux
2.084 x 10! counts erg™! cm?, respectively.'

2.1.2 The X-COP clusters

In order to tune our temperature and gas fraction models, we study a
number of comparable clusters. The XMM cluster outskirts project
(X-COP;? described in Eckert et al. 2017) is ideal for this purpose: it
gathers data from 12 massive clusters. These clusters are comparable
to MACSJ0242 and MACS J0949, with 3 x 10 Mg < Msy <
1.2 x 10" M, but are in the redshift range 0.04 < z < 0.1, smaller
than for MACS J0242 and MACS J0949, at redshifts 0.313 and
0.383, respectively.

2.2 SZ observations

It is possible to study the ‘imprint’ of the ICM on the CMB through
the SZ effect, which is seen as a deficit of CMB photons in the
direction of clusters when observed at frequencies less than 217
GHz. With the Atacama Cosmology Telescope (ACT), we use
the f090 and f150 ‘daynight’ DR5 maps,® centred on respective
frequencies 97.8 and 149.6 GHz (see Hilton et al. 2021; Mallaby-
Kay et al. 2021).

The BCG of MACS J0242 is a bright radio source, whose spectral
energy distribution (SED) is detailed by Hogan et al. (2015). At
1 GHz, the source peaks at 1 Jy, making the extraction of the
ICM signal with the SZ effect impossible. We thus only exploit the
MACS J0949 data in this article.

3 STRONG LENSING ANALYSES OF
MACS J0242 AND MACS J0949

If distant background sources happen to be close to the line-of-sight
between a massive galaxy cluster and an observer, the background

IThe temperature of the ICM of both clusters being >3 keV, we can neglect
the influence of temperature on the conversion constant.
Zhttps://dominiqueeckert.wixsite.com/xcop
3https://lambda.gsfc.nasa.gov/product/act/actpol _dr5_coadd_maps_get.html

image can be strongly lensed, to the point multiple images appear
to the observer. Using this gravitational lensing effect in the strong
regime, we can precisely map the gravitational potential of the
cluster, and its total — baryonic and dark matter — mass density.

In Allingham et al. (2023), we performed a reconstruction of the
total matter density, p,,, of the two galaxy clusters MACS J0242
and MACS J0949. These lensing models were obtained thanks to a
combination of imaging with the Hubble Space Telescope (HST) and
DES from the ground, together with spectroscopy obtained with the
MUSE instrument at the Very Large Telescope. Fig. 1 shows colour-
composite images of the two clusters used in this work, together with
the ICM distribution obtained using X-ray observations, and density
contours from the strong-lensing analyses presented in Allingham
et al. (2023).

With spectroscopy, we detected six and two systems of multiply-
lensed images in MACS J0242 and MACS J0949 respectively, for
a total of 18 and 9 images with spectroscopic redshifts. Four
additional systems were detected with imaging HST observations
in cluster MACS J0949, but do not have a redshift measurement.
Using a combination of photometry and spectroscopy, we identified
57 and 170 cluster member galaxies respectively. We performed
the strong lensing optimization with LENSTOOL (Jullo et al. 2007),
using the multiply-imaged systems to invert the lens equation. We
have assumed the potential of a galaxy cluster to be a superposition
of dPIE potentials. We modelled each cluster with a large-scale
dark matter halo (DMH), a brightest cluster galaxy (BCG), and a
L* catalogue of elliptical galaxies, scaled using the Faber—Jackson
relationship (Faber & Jackson 1976). Additionally, we introduced in
MACS J0949 a clump in the south of the halo, to explain multiply-
lensed images in this region.

Tables 1 and 2 present respectively the summary of the lensing in-
formation available for each cluster, and the best-fitting parameters
of the strong-lensing models obtained for the different potentials of
each galaxy clusters. The average distance between the multiple
images predicted with the lensing models and the observations
is 0.39 arcsec and 0.15 arcsec, and the reduced x2, x2; = 0.86
and 0.67, for clusters MACS J0242 and MACS J0949, respectively,
indicating a good quality reconstruction. The enclosed mass within
200 kpc of the cluster centre were respectively M(R <200 kpc) =
1.677503 x 10 Mg for MACSJ0242, and M(R <200 kpc) =

MNRAS 528, 1711-1736 (2024)
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Table 1. Summary of the lensing reconstruction of galaxy clusters MACS J0242 and MACS J0949.

Galaxy cluster Neal Nim Nipec — 2 rms x4 M(R < 200kpe) [10' M|
MACS J0242 57 18 18 0.39 arcsec 0.86 1671002
MACS J0949 170 20 9 0.15 arcsec 0.67 2.001%

We here list: (i) the galaxy clusters; (ii) number of galaxies in the cluster catalogue; (iii) number of multiply-lensed images detected; (iv)
number of associated spectroscopic redshift measurements; (v) rms deviation of predicted multiply-lensed images positions from their observed
positions in the image plane; (vi) reduced x?; (vii) projected mass enclosed within 200 kpc (in 10 Mg).

Table 2. Best-fitting parameters of the strong lensing mass model for MACS J0242 and MACS J0949.

Ay [arcsec] Ajs [arcsec] e 6 [deg] a [kpc] s [kpc] o [kms™1]
MACS J0242
0.09 0.11 0.04 0.8 6.0 * 29.0
DMH —0.141)% 0.14% )14 0.29%)03 17.9%9% 57.24%% 1500 918.5%3]
* * * 10.8 * 322 58.8
BCG 0.04 —0.09 0.23 155.875% 0.30 177.6%355 524.5130%
* 7.8 30.7
L 0.03* 56178 199.2+3%]
MACS J0949
0.22 0.57 0.40 0.6 24.1 * 59.3
DMH —1.94553 —0.671 027 0.251002 92.4109 116.2131 1500 1236.1135%
BCG 0 0 0.48* 120.1* 0.25* 98.0+13%7 253711963
Clump O3 4.80797 —60.1372% 0.0175:29 128.6134 20.573%6 232.57 1804 323.27102
L 0.15* 23,1511 139.312>8

We here list the central coordinates, A, and A, in arcsec, relative to the centre, the ellipticity, e, the position angle in degrees, 6, the core
radius in kpc, a, the cut radius in kpc, s, and the velocity dispersion in km s~!, o, for each component of the model. The centres are taken to
be respectively («, 8.) = (40.649555, —21.540485) deg and (¢, §.) = (147.4659012, 17.1195939) deg for MACS J0242 and MACS J0949.
The asterisks highlight parameters which are fixed during the optimization. L* represents the cluster member galaxies catalogue, scaled with
the Faber-Jackson scaling relation (Faber & Jackson 1976). MACS J0949 includes a southern dark matter clump O3.

2.00%095 x 10" Mg, for MACSJ0949. Cluster MACS J0242 is
found to be dynamically relaxed, with a peaked central density,
while MACS J0949 presents a flatter density distribution in the core
(R € [10, 100] kpc), and is still relaxing, but not strongly disturbed.

The inferred 3D density profiles were well fit by NFW profiles
(see Section 4.1). For MACS J0242, we found the best-fitting NFW
parameters to be pg = 3.42 x 1072 gcm™2 and rg = 209.9 kpc, for
areduced x? = 1.11. For MACS J0949, the best-fitting parameters
are ps = 1.23 x 1072 gem™3, rg = 405.5 kpc, for a reduced x? =
1.90. In this article, we only use the DMH and BCG potentials to
represent the clusters’ gravitational potential.

4 GALAXY CLUSTERS: A THEORETICAL
DESCRIPTION

This Section introduces the observables and models necessary
to describe the physics of the ICM using gravitational lensing.
Section 4.1 introduces the two general full matter density profiles we
use in this work; Section 4.2 presents the canonical description for
the ICM density; Section 4.3 shows the derivation of the analytical
ICM density using a temperature model and total matter density;
Section 4.4 extends the common polytropic temperature density
to the higher electron densities found in the centre of clusters;
Sections 4.5 and 4.6 define the X-ray surface brightness and the SZ
effect temperature contrast respectively, in order to make observable
predictions.

4.1 Galaxy clusters matter density models

The total matter density is modelled parametrically. We here present
two cases, a Navarro—Frenk—White (NFW) density profile, and a
dual Pseudo-Isothermal Elliptical mass distribution (dPIE) density
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profile. The generalized NFW and Einasto profiles are described
in Appendix B. For the discussion and illustration purposes, we
discuss purely radial profiles, but in our reconstruction, we use
the various geometrical parameters of the individual potentials
inferred from lensing (position of the centre, ellipticity, position
angle).

4.1.1 NFW profile

The NFW profile (introduced in Navarro, Frenk & White 1996)
describes the DM density. We here approximate it to the total density
distribution, p,,,

r r 2 -
Pn(r) = ps — (1 + 7) ; (1
rs rs

where pg is the density normalization, and rg, the scale radius.
These are parameters different for each cluster. We assume the
NFW profile to describe the total density with one profile for a
single cluster.

4.1.2 Dual Pseudo-Isothermal Elliptical mass distribution (dPIE)
profile

In Kassiola & Kovner (1993) and Eliasdéttir et al. (2007), the dPIE
profile scales as

pn(r) = 0 { [1 + (g)z] {1 4 (2)2] }1, @)

with the core radius, a, of the order of 100 kpc for the dark matter
halo, and a truncation radius, s > a. Whilst this distribution is
spherically symmetric, we also consider two other parameters: a
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rotation angle, 0, and an ellipticity, e (see Appendix A). This model
is sometimes referred to as pseudo-Jaffe, as in the review of Keeton
(2001).

Contrarily to the NFW density profile, the dPIE profile does not
present any divergence in » — 0, i.e. presents a finite density in the
core. For our lensing reconstruction, we used a large scale DMH
modelled with a dPIE, and superposed it to individual profiles fitting
individual cluster member galaxies. In the case of the analysed
clusters, their (relative) relaxation allows us to discard all individual
(galaxy) potentials but that of the BCG. The DMH and the BCG
respectively govern the large and small radii total matter densities.
This DMH and BCG superposition was well fitted by a NFW profile
for both clusters (see Section 3).

4.2 Electron density

We focus on the electron density 7, because it can be derived from
X-ray observations. However, one could derive the ion or gas density
too. The number density of electrons, n,, is related to the gas volume
density, p, through

pg(r)

My

ne(r) = Fi(r) 3)
where F; is the local ionization fraction which is taken to be 1,
m, = 1 Da is the atomic mass constant, and ., =~ 1.15 is the mean
molecular weight of electron.

A number of models have been proposed to fit the electron density
profile, which we refer to as canonical. One of the most complete
model can be found in Vikhlinin et al. (2006). As this model relies
on a large set of parameters, unnecessary here, we shall focus on
a simplified model, namely the (simple) B-model (see King 1966;
Cavaliere & Fusco-Femiano 1976),

R
- (f) ] , )
rC

with r,, the core radius, n,, o a density normalization, and g8 € [0.5;
0.9], an empirical index. We find this model to fit well both clusters’
ICM distribution (see Sections 7.1.1 and 7.2.1), thus showing a more
complex model to be unnecessary here.

ne(r) =N

4.3 A fully analytical electron density
4.3.1 General case

We consider the total (DM and baryons) mass density as a sum of
densities,

() = pomi fi(r), ©)

which is constrained by the strong lensing analyses. Each potential
can be normalized differently, and the distributions, f;, are assumed
to be of the same type (here NFW or dPIE). Here, we write them as
a sum of radial functions for simplicity. In practice, every profile,
f;» has its own geometric parameters (central position, ellipticity,
rotation angle), which we consider to be fixed from the strong
lensing analysis.
Assuming integrability, we introduce

gi(r) = / " dssfi(s),
0

hi(r) = / dss2g,(s), ©)
0

Strong lensing reconstruction of the ICM 1715

where integration constants are included. Denoting & the New-
tonian potential, integrating the gravitational Poisson equation, it
reads

O(r) = —41G Y _ pomihi(r). (7)

The conservation of momentum in the Lagrangian formalism, i.e.
the momentum Navier—Stokes equation for a perfect fluid (viscosity
neglected, see e.g. Landau & Lifshitz 1959) reads

Dv
Papy, = PslBo+ (@ V)] = —V P+ 0, VO, 8)

with v the velocity field, and P, the gas pressure.

As the pressure in galaxy clusters is of the order of 10'° Pa, the
plasma is thermalized, and therefore the temperature of the ions is
equal to that of the electrons. With equation (3), we can write the
number density of the electron n, as being directly proportional to
the gas density p,, as u, and JF; are assumed to be constant in a
given cluster. Using the ideal gas law, we rewrite equation (8) in the
purely radial case,

kiBM + 0vy + v, 0,0, = —4nG Zpo,m‘ir_zgi(r)v (9)
ugmu ne i

where T, is the electron temperature, p, ~ 0.60 mean molecular
weight of the gas, and kg the Boltzmann constant. As the galaxy
clusters used in our study are not strongly perturbed, we work
under the hypothesis of hydrostatic equilibrium. Assuming we could
decompose the velocity in its radial and temporal dependencies,
one could then integrate numerically. As we do not have access
to the ICM velocity resolution, we here assume a polytropic
temperature distribution and the stream to be hydrostatic, i.e.
of constant velocity both in time and in all spatial directions
(see e.g. Zaroubi et al. 2001). Thus, with d,v, = 9d,v, = 0,
we get

9y (n.Te) -
T = 2 ot i), (10)
1
where € = —4n Gum,/kp.
In order to reduce this expression, we define a general J function
which contains information on the temperature profile as

T(ne) = / w (11
0 on

where Ty is a temperature normalization (see Section 4.4). More
details on the definition of J are given in Section 5.1, given a
precise temperature model.

Separating variables and integrating equation (10), we obtain

Mg
o(r), 12
kT ) 12

T = 1% pomihi(r) =

where the right-handed term stems from equation (7). If we
assume J to be bijective* (which is justified given a temperature
model in Section 5.1), then inverting this equation simply provides
ne(r)

ugma

ne(ry=J" (ﬁ@r)) . 13)
B0

4A bijective function f : X — ) associates to each element of a set X an
image of set ), and reciprocally. Therefore, a function is invertible if and
only if it is bijective.

MNRAS 528, 1711-1736 (2024)
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Under reasonable physical hypotheses, we have provided a
general, completely analytical description of the electron density
using only the gravitational potentials characterized with strong
lensing observations. To allow this reconstruction to be independent
from other observations, we need to pair this analytical model with
an electron temperature model.

4.3.2 Case of a dPIE density

In the case of a dPIE profile, we give

=+ @O

a’s? r r
g(r) = - [a arctan — — s arctan 7] ,
a* — a s
a’s? s r o a r 1 r? 452
h(r)= —— |—arctan— — —arctan— + —In [ —— | |,
a?—s%|r s r a 2 r2 +a?

(14)

where a and s represent the core 7o and scale r radii of the i-th
dPIE potential, respectively. Indices were avoided for clarity. To
avoid confusion, we write 1dPIE the n, distribution with /4; given
by a dPIE.

4.3.3 Case of a NFW density

In the case of a NFW potential (see equation 1), we can rewrite the
different integrals given equation (14) for the dPIE,

o= {0

m=rin(1+2) -~
8 s rg r+rs ’

h(ry=——In(14—|. (15)
r

rs

Here pg, , ; of equation (12) is ps, ,,. In case of a NFW profile, we
assume the total density to be represented by a single profile. We
shall write the resulting n, distribution 1NFW.

4.4 Temperature

In order to derive the ICM density and thermodynamic profiles
using strong lensing constraints only, we need to adopt a general
temperature model, independent of the specific observations of one
cluster. We shall consider polytropic models (for example in Capelo,
Coppi & Natarajan 2012) of the form

ne(r)\" !
T.r =T (T) 5 (16)

with ny the central electronic density, 7 the temperature in the
centre, and I' &~ 1.2, the polytropic index.

Following Ghirardini et al. (2019b), we can extend this definition
to a self-similar polytropic temperature model, with a varying
polytropic index, I'(n,):

P, (neE(z)z)”"“
=nNp\ ——— ,

Psoo,¢ Nn
_ ne)—1
T, neE@ 2\
— =1r <7 , (17)
Ts00,c N
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where E(z) = H(z)/H is the normalized Hubble factor assuming a
ACDM cosmology with 2, = 0.3 and Q24 = 0.7. np and ny are
dimensionless proportionality constants, and 7, the volume number
density normalization. We write To(z) = n7Ts00(z) and no(z) =
nn.E(z)%. Section 5.1.2 presents a new model for the index I'(n,),
and also provides the quantitative values for the different constants
presented here.

4.5 X-ray surface brightness

In order to compare our results to observations, and therefore to
evaluate the quality of our ICM reconstruction, we introduce the
X-ray surface brightness Sy (see Bohringer & Werner 2010, for a
review). In a band of wavelength (such as the [0.7, 1.2] keV band
for XMM-Newton) integrated over the line-of-sight, it reads

Sy(AE) = ! He /OO n*(r)A(AE, T,, Z)dl. (18)

dr(l 42 wy Jo
where gy = 1.35 is the mean molecular weight of hydrogen, A(AE,
T,, Z) is the X-ray spectral emissivity (or cooling curve), as a
function of the X-ray energy band, AE, the electron temperature
of the gas, T,, and the metallicity of the gas, Z. In this article, the
metallicity is assumed to be constant for a given cluster.

4.6 SZ effect

Another observable, depending on the electron density and temper-
ature is the SZ effect. Given an observable frequency, v, we use the
reduced frequency, x,

hv

=—, 19
i, (19)

X

with A, the Planck constant, and 7, >~ 2.726 K, the temperature of
the CMB. We define the Compton parameter (see Rephaeli 1995):

kgor

V) = / L, 20)
0

mec?

with o7, the Thomson cross-section, and m,, the mass of the
electron. The thermal SZ contrast then reads

O (r) = ATT - [x coth (%) - 4] Y(r). 1)

r

5 QUANTITATIVE MODELS

We have presented in the previous section a completely different
manner to use the lensing study of galaxy clusters to predict their
baryonic distributions. Assuming the hydrostatic equilibrium and a
given temperature distribution, equation (13) presents an analytical
ICM density prediction using lensing. Moreover, in Appendix D1,
we present an alternative method, reducing the gas fraction to
an analytical model, and using knowledge of p,,, constrained by
lensing analysis. Although the general profile of the gas fraction is
retrieved, this study is however not completely generalizable, and
we do not use it here.

In this section, we provide the electron temperature models
needed for the analytical method. We make quantitative estimates
in order to yield quantitative predictions for ICM density profile
from lensing data only.
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Figure 2. Calibration of the variable I'(n,) polytropic model (equation 24) on X-COP data. Left: Relation between self-similar scaled ICM pressure and
electron density for the 12 X-COP clusters. The solid line and the shaded area show the best-fitting model and the intrinsic scatter around the model, respectively.
Right: Polytropic index I' = dln P./dInn, as a function of electron density. The solid line and shaded area shows the best-fitting model with equation (24),
whereas the data points show the result of a piece-wise fit with constant polytropic index over several ranges in electron density.

5.1 Polytropic index scaling

5.1.1 Constant polytropic index

As shown in Section 4.3, one can reconstruct the ICM profile
using equation (13) and an analytical expression for the function
J which contains the information about the electron temperature
profile. Here, we assume the following form for 7, based on a self-
similar polytropic temperature law with a constant index y > 1 (see
equation 17):

y—1
n
T.(ne) = —— < : ) : 22)
7y — 1 \no(2)
We can write the electron density from equation (12),
y—1 € 1/(y=1

n, =no(z) | —— ih;(r . 23

. o(){ y TO(Z)lZpo,m,, ()} (23)

However, we find such a description to fail to describe the higher
electron densities (17, > 1072cm™3), which is consistent with a
constant y index fixed with the largest radii of clusters, i.e. the
least dense regions. We notice the specific case of a polytropic
temperature density associated to a NFW profile has already been
studied in Bulbul et al. (2010), where a self-normalization in the
centre is utilized.

5.1.2 Polytropic index model

To describe the relation between ICM thermodynamic quantities
(n,, P,, T,), it is common practice to describe the stratification
of the ICM using a polytropic equation of state P(n,) o nl (e.g.
Bulbul et al. 2010; Capelo, Coppi & Natarajan 2012; Tchernin et al.
2018; Ghirardini et al. 2019b). Analytic models assuming the ICM
to be in hydrostatic equilibrium within a NFW potential predict that
the polytropic index I" should be close to a constant value of ~1.2
throughout the cluster volume (Capelo, Coppi & Natarajan 2012).
Observationally speaking, the measured values of the polytropic
index closely match the NFW expectation in cluster outskirts (R
> 0.2Rs), but significantly deviate from it in the cluster core,

where I' decreases down to ~0.8 under the influence of radiative
cooling (Ghirardini et al. 2019b). Using the data from the X-COP
programme, Ghirardini et al. (2019b) showed that the P(n,) relation
is nearly universal across the cluster population with a low scatter of
~ 15 per cent, independently of a system’s dynamical state. Here we
propose a new functional form to describe the self-similar polytropic
model (supported by e.g. Mostoghiu et al. 2019). We describe the
relation with a smoothly varying polytropic index I'(n,) as

dln P,
dlnn,

-2
=TI'(n.) =Ty {1 + [y arctan (ln M)] , 24)
T]rl

with 7, the reference number density around which the transition
between core (low I') and outskirts (NFW I') occurs, 'y the
polytropic index at 1,, and Iy the slope of the transition.

We used the publicly available X-COP data, which provide high-
quality observations of the ICM thermodynamic properties over
a wide radial range (=[0.01 — 2]Rs¢), to calibrate the model and
determine the parameters of equation (24). We fit the X-COP density
and pressure data using the Bayesian analysis package PYMC3
(Salvatier, Wiecki & Fonnesbeck 2016), including uncertainties on
both axes, and a free log-normal intrinsic scatter. The observational
data points on both axes are scaled by their respective self-similar
scaling values (Arnaud et al. 2010). The result of this procedure is
shown in Fig. 2. The model provides an excellent representation
of the data over three decades in electron density, with a low
intrinsic scatter of o1,p = 0.19 & 0.02. The right-hand panel of
Fig. 2 also shows that the results obtained with the model defined in
equation (24) are consistent with the values estimated by Ghirardini
et al. (2019b) when fitting a piece-wise power law over several
ranges in density. The fit parameters are included in Table 3.

Supposing the ICM to be an ideal gas, following Ghirardini et al.
(2019a), we write:

nl fb He
i 0.16 1.14°

nr = (3.87 x 10" ecm™?) (25)

with f, is the universal baryon fraction, taken to be f, =
0.158 + 0.002 (Ade et al. 2016). We find 7 ~ 1.034.

MNRAS 528, 1711-1736 (2024)
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Table 3. Parameters of the smoothly varying polytropic model defined in equations (17) and (24).

np M [em ™3]

o s O P,

6.05 £ 1.57 (2.26 £0.59) x 1073

0.97 £0.04

—0.15+0.03 0.19 £0.02

10
— 2 —0.000
— 20313
— 0383
— 2 —1.000
8<
6<
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2 4
107 105 10-3 10-1 10! 108

ne [em ™3

Figure 3. J.(n.) in a range of redshifts, including those of galaxy cluster
MACS J0242 and MACSJ0949 — which are almost identical. The 7
function is therefore extremely sensitive, i.e. a small error on the potential
is associated to a much larger error in the determination of n,.

As for the full T500(z), we use the results of Ghirardini et al.
(2019a), which we reproduce here

MswE(z) " /1,
T =885keV| —— —, 26
(@) © (h;ol 1015 Mo) (0.6) (26)

with h;90 = h/0.7 = 1. We therefore can normalize the temperature
universally.

5.1.3 Varying polytropic index

At a given redshift, z, using the self-similar polytropic temperature
described equations (17) and (24), we can define the integral 7,
i.e. a redshift dependent 7, defined equation (11),

rn)—1
( " ) n~'dn.
no(z2)

2y

ols In (—)

no(z)

1+ fin (5i5)]

In this case, J, can be easily computed at a given redshift, and
reverted. It is however not analytically solvable. An example of 7,
is displayed in Fig. 3.

We find empirically 7, to be a monotonically increasing function,
i.e. a bijection. Therefore we can take its inverse function, allowing
to define n, as a function of the radius, as displayed in equation (13).

xma=/w T(n)+
0
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5.2 Relating all density models to lensing

We assume the metallicity of clusters MACSJ0242 and
MACS J0949 to be constant, and the plasma to be fully ionized
F; = 1. The X-ray data suggest metallicities in the range 0.2—
0.7Z, for the two strong lensing clusters. The metallicity profiles
obtained are in agreement with the Z = 0.3Z_ in both clusters,
and we therefore make this assumption. Moreover, the influence of
metallicity on the cooling function is limited at these temperatures
(to justify this approximation, read e.g. McDonald et al. 2016).

For the analytical density profiles (such as 1idPIE or iNFW),
the parameter priors are directly given from the lensing analysis
Section 3. Conversely, we can not assume the parameters of the
B-profile a priori. However their optimization requires priors, for
which we take 8 = 0.63 (in agreement with e.g. Bohringer, Chon &
Kronberg 2016), n, ¢ is taken to be the normalization of the DMH
density, and r, to be ay, i.e. the core radius of the DMH obtained
with the lensing optimization.

6 METHOD: MEASURABLE ICM
PREDICTIONS AND OPTIMIZATIONS

In this section, we present the results of the method developed
in Sections 4 and 5 to convert the ICM predictions into ICM
observables (Sx, ®,), in order to compare them to observations.
Moreover, we contrast these predictions with a profile of the
same type (e.g. 1dPIE) optimized with a MCMC using the ICM
observations. We summarize the whole process undertaken in the
present article in Fig. 4.

6.1 Point spread function of XMM-Newton

In order to analyse the XMM-Newton observations, we reduce
them to smaller maps centred around the cluster, of around 1 Mpc
width (respectively 88 and 78 pixels for clusters MACS J0242 and
MACS J0949). We then need to take into account the point-spread
function (PSF). At first order, we define the PSF as

27—«
1+(’)} , (28)
ro

with r the distance to the centre, ry = 5.304 arcsec and o = 1.589.°
We note that the number of pixels of the PSF must be odd to account
for the centre. The measured surface brightness writes

PSF(r) =

S (x, y) = (ST¢ @ PSF)(x, y) 29)

where ST°%! is provided in equation (18).

As the edge effect is quite important, we decide not to use the
borders, and to cut eight pixels on each side of the map. The
final comparison maps are respectively 72 and 62 pixels wide
for MACS J0242 and MACS J0949. We note that we still have to
compute our model for the full width of the original maps, as they
are needed in the convolution.

Shttps://xmm-tools.cosmos.esa.int/external/xmm_calibration/calib/
documentation/epic_cal_meetings/200111/PSF-MOS _Ghizzardi.pdf
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Figure 4. Full workflow diagram. Models are denoted by green diamonds, data by red rectangles, while results are in blue ellipses. The light magenta rectangle
denotes work carried out within our previous companion article Allingham et al. (2023).

6.2 Converting surface brightness into count signal

We use the EPIC count maps of XMM-Newton, masking point-
like sources, including diffuse emission only. As we also have
access to the time of exposure, E, and total background, B (particle
background, soft protons, PN chip out-of-time events), maps from
surface brightness models, we can make predictions on the number
count of detection,

NX.(- = Cﬁﬁims;ouv x E + B + Csky (30)

where Cgy is the sky constant, measured in the empty regions of
the raw count map.

We also take dust absorption into account, with the absorption
ratio (see e.g. Wilms, Allen & McCray 2000),

I obs

— exp [_nij*‘c;(Ex)] , 31

Iem

where n%?l is the galactic hydrogen, and o, the extinction cross-

section of that same dust for a photon energy, Ey. We report
absorption factors of 0.9439 and 0.9398 for clusters MACS J0242
and MACS J0949, respectively.

6.3 Cooling curve

In order to access the X-ray spectral emissivity, A(AE, T,, Z),
mentioned in equation (18), we use AtomDB (see Foster et al.
2012). With the metallicities of set Asplund et al. (2009) adjusted
to our Z, = 0.3Z_, we can plot the cooling curve in the energy
band of XMM-Newton (adjusted for K-correction). The results at the
redshifts of clusters MACS J0242 and MACS J0949 are displayed in
Fig. 5.

6.4 SZ maps filtering

We simply filter both ACT DRS map (—);’!’} of MACS J0949 with
a Gaussian filter of radius 0.05 degrees G(0.05 deg), with NEMO.°
We then subtract it from the original map, thus high-pass Gaussian
filtering the original map. Although this does not allow to fully
remove either the CMB signal or the atmosphere variability, at the
scale of the cluster, it allows to smooth and attenuate the CMB
variability. In order to compare our SZ effect model to the filtered

Shttps:/memo-sz.readthedocs.io

107244

10—25<

10—26 4

Radiated power A [erg.cm?.s71]

10—27 4

10-! 10° 10!
Temperature [keV]

Figure 5. Radiated power (cooling curve) for a metallicity Z = 0.3Z,
using the metallicities described in Asplund et al. (2009), in the band [0.7;
1.2] keV, at the respective redshift of MACS J0242 (blue, z = 0.313) and
MACS J0949 (red, z = 0.383).

data maps, we convolve the modelled signal map @;‘f‘}d with the ACT
beam B at the map frequency f. This allows to take the telescope
PSF into account. We further apply the Gaussian filter, and compare
the resulting maps,

O = @ — O @ G(0.05 deg),

O = (@M @ By) ® G(0.05 deg). 32)
In a similar fashion to that of the X-ray PSF, we have to remove
the borders of the SZ filtered image because of border effects. We
therefore used model maps of ~4 Mpc initially (26 pixels), reduced

to ~2 Mpc (14 pixels), and compared these predictions to the ACT
DRS filtered data.

MNRAS 528, 1711-1736 (2024)
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6.5 Working hypotheses on the density distribution

We based our analysis on the mass models described in our previous
work (Allingham et al. 2023). We model the total mass profile of
MACS J0242 and MACS J0949 using strong lensing constraints
of radii ranging in R € [50, 200] kpc. While we acknowledge the
limitations of the constraining power, we extrapolate the 3D density
out to Rsg, ., and recover a mass Msp,. = 5.95707 x 10'* Mg and
11.4879% % 10 M, for clusters MACS J0242 and MACS J0949,
respectively. With equation (26), we find temperature normaliza-
tions Ty = nrTs00 = 7.30 keV and 11.63 keV, respectively.

Given the quality of the X-ray and SZ observations, and the
dominant importance of the DMH and BCG in strong lensing
models, we neglect the potentials associated to the individual
galaxies, owing to the dynamical state of the clusters, analysed
in Allingham et al. (2023). As they are not strongly perturbed, the
ICM distribution should be governed by the large-scale potential. In
Fig. 1, we can for instance see cluster MACS J0949 Southern halo
mass contours to be undetectable on the X-rays — see the large red
circle in the South of the image, crossed by the dashed green line.

Moreover, we postulate that the ICM density distribution is
ellipsoidally symmetric, and of the same ellipticity as the DMH
potential. This simply follows the hypothesis ‘ICM traces potential’.
Therefore, as a natural consequence of the hydrostatic equilibrium,
we expect the potential to be rounder than the total matter dis-
tribution (this is qualitatively verified on Fig. 1, and the potential
ellipticity formula is presented in Appendix A).

Finally, as the line-of-sight ellipticity of the potential is assumed
to be equal to the geometric average of the semimajor and semiminor
axes, ~/ab. As the goal of this article is to present new methods to
predict the density profile of the ICM using strong lensing analyses,
we fix all geometric parameters to their best lensing values. The
‘semidepth’ of the cluster is unknown from lensing, but it is also
degenerate with the density distribution. Therefore, we do not
optimize this parameter.

6.6 MCMC optimizations

For the two different types of models of the electron density —
canonical and analytical — represented by three different models —
B, 1dPIE and iNFW — we let a number of parameters free. For
the B profile, we set all three parameters of the density distribution
{po; re; B} free. For the 1dPIE profile, we initially let {p¢, 1; a1;
13 po.2; s2} free, but as discussed in Section 7, s, appears entirely
degenerate in the optimization, and we therefore fix it to its lensing
value. The two parameters characterizing a NFW distribution, {ps;
rs}, are set free for the 1NFW optimization. We optimize them with
the data for each galaxy cluster. For cluster MACS J0242, we only
use the X-ray data, while for MACS J0949, we have the choice to
use either X-rays, SZ, or both.

We define the log-likelihood for the X-ray data. As the photon
counts are limited, the X-ray maps are following a Poissonian
distribution. We take them to follow the Cash statistic (Cash 1979),

InLy(©) = NLX Z {c,- — M;(®) — C;In (MC(G)H . (33
where C; = Ny ., ; is the data count in the i-th pixel (see equation 30),
Ny, the number of pixels, and M;(®), the model prediction for the
parameter vector, ©.

As for the SZ statistic, with M; now being the temperature contrast
model, and C;, its SZ measurement, we simply take the likelihood

MNRAS 528, 1711-1736 (2024)

to be Gaussian,

1 Mi(®) - Ci\* s
_ P 1 ‘
2Nsz Z |:< O ) e

0] = M}(®)+ o, (34)

i

In ,csz(@)

)

where o; is the standard deviation in the i-th pixel, and Nsz, the
number of SZ pixels. We take the model standard deviation to be the
model itself, accordingly to a Gaussian model. O'é ; is the instrument
variance of ACT. This does not take into account the CMB variance
nor the atmosphere, but these are smoothed out on the scale of a
cluster by the top-hat filtering (we follow Hilton et al. 2018, 2021).
C; and M; represent here the data and model respectively, but for
the SZ data. In the case of cluster MACS J0949, we sum the log-
likelihood of the 90 and 150 GHz ACT DRS bands.

In the case of the joint optimization of X-rays and SZ, the data
are of the same type, i.e. detections in pixels. We therefore define
the joint likelihood as the weighted sum,
lnEJ:NX1n£X+NSZIH£SZ, (35)

Nx + Nsz
where Ngz must be understood as the sum of all SZ pixels, both
in band f090 and f150. This takes into account the different
pixelisations, and attributes equal weights to each pixel. The X-
ray observations thus dominate, given the much better resolution
(a XMM-Newton pixel represents 2.5 arcsec, and an ACT pixel
30 arcsec).

We used the package EMCEE, took 100 walkers, iterated over
5000 steps, with a step type emcee . StretchMove. We provide
the cornerplots, realized with package CORNER (Foreman-Mackey
2016), in Appendix E.

7 ICM-OPTIMIZED RESULTS

We present in this section the results of MCMC optimizations of
each of the four ICM density models, for each galaxy cluster.

7.1 Cluster MACS J0242

7.1.1 B model

In order to compare our profiles inferred from lensing with the more
popular profiles describing the ICM, we run a MCMC optimization
for the B profile. We present the optimized parameters in Table 4,
alongside all other optimizations for MACS J0242. The associated
cornerplot is presented Fig. E1.

We find the best likelihood to be In £ = —0.68, close enough
from the best possible likelihood, —0.5, so that we can expect other
canonical ICM profiles — such as double-B — not to significantly
improve the model.

7.1.2 i1idPIE

In the strong lensing optimization — presented Table 2 — parameters
{po,1; ar; po,2; 52} were optimized, and the DMH cut radius, s, to
which strong lensing is insensitive, was fixed to 1.5 Mpc. Here, we
optimize the 1dPIE density profiles with these density parameters
using the XMM-Newton observations. We display both the strong
lensing and ICM optimizations for the {po,1; a1; s1; po.2} and
{po.1; ar; po.2} parameter spaces in Figs 6 and E2, respectively.
The X-ray optimization of the BCG cut radius, s,, is degenerate
(see Fig. E3). We therefore fix s, to its lensing value, s, = 177.6 kpc
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Table 4. Best-fitting of all optimization models for cluster MACS J0242.

Strong lensing reconstruction of the ICM 1721

Observation Profile £0, 1, PS> O Pe aip, rs, or re 00,2 §2 B —InLyx

Unit [gem™] [kpc] [kpc] [gem™] [kpc]

Lensing dPIE 10734 x 10724 572160 1500 12193 % 10-20 177.6+322 , %
NFW 3.4%02 % 1072 209.9M74 , B , 00

ICM B 2.671L0 5 10723 17.97381 , B 0.5479:20 0.68

(X-rays only) idPIE 53153 x 1072 73.013%7 27201480 43732 x 107 177.6* , 0.67
iNFW 137539 x 1072 320.509%, B, n B, 0.70

The columns are as follows: (i) The observation type used to constrain the profile. (ii) The profile type. (iii) po, | denotes the DMH central density in the case
of idPIE profile, ps in the iNFW case, and the central gas density p. in the case of a S-profile. All density values are displayed in gcm™3. (iv) a; denotes
the DMH core radius in the idPIE model, rg the scale radius in the 1NFW case, and r. in the S-model. All of these distances are displayed in kpc. (v) s1
denote respectively the cut radius of the DMH and of the BCG, in the case 1dPIE. (Vi) po, 2 denotes the BCG central density in the 1dPIE case. (vii) s2 is
the cut radius of the BCG. (viii) f is the power index of the B profile. (ix) — In L is the negative log-likelihood evaluated on X-rays data. When a parameter
set is out of the invertible range of function 7, (i.e. ~[0, 10]), we denote the log-likelihood In £ as infinite. For cluster MACS J0242, the optimization is only
performed with XMM-Newton data. The core radius of the BCG a is fixed for both the lensing and ICM optimizations. Starred values were fixed. We find

the optimization of s to be degenerate; we therefore fix this parameter.

from now on. Although the prediction from lensing is diverging in
the cluster centre (r — 0) — due to the central matter density being
out of the 7, function bijective range — we find the ICM optimization
in the {po.1; a1} space to provide results in agreement with those
from the lensing optimization, despite the larger ICM error bars.
The density normalization of the BCG, py, », yields different results
than strong lensing. This may be explained by the high central
matter density, which yields values out of the 7, function inversion
range. As the validity of equations (17) and (24) paired together is
not verified beyond n, > 10~! cm~3, the ICM optimization avoids
regions of the parameter space yielding an ICM density above this
value. Moreover, since the X-ray signal in the centre carries a high
variability, we can not conclude about its significance.

We note that fixing the parameter s; to a value of 1.5 Mpc in the
ICM optimization results in a best log-likelihood In £ < —1.06. On
the contrary, when this parameter is optimized, the best value gets
closer to the ‘perfect fit” —0.5 value atIn £ < —0.67 (i.e. as good as
the 8 model). In this case, we can only notice the X-ray optimization
is bound to diverge from the fiducial 1.5 Mpc value, as the best
optimization yields s; = 2.72704 Mpc. The electronic densities,
n,, are represented in Fig. 7, and the XMM-Newton physical — i.e.
without PSF effects — X-ray surface brightness, Sx, in Fig. 8. If s is
not optimized, we notice a discrepancy between the ICM best-fitting
and X-ray data profile at large radii (R > 200 kpc). This emphasizes
the necessity to let this parameter free. We conclude our method can
properly fit the X-ray signal for this cluster, provided the potential
is optimized, and notably s;. We further discuss the the importance
of s, and the large discrepancy between the lensing-inferred model
and the observations in Section 7.3.

We can moreover outline the much larger error bars in the ICM
optimization, compared to the lens optimization, in Fig. 6. This is
due to the inherent difference in the data quality. The high sensitivity
of the J, function (represented in Fig. 3) could be described as
a double-edged sword: on the one edge, this sensitivity means
any imprecision in the determination of the parameters, or even
in the hypotheses (temperature model, temperature normalization,
determination of the total mass density, etc.) would result into a
magnified error, i.e. a prediction error on the ICM density much
larger than the total matter density associated error. On the other
edge, this allows to finely tune certain parameters. In order to reach
such a quality in the reconstruction, the strong lensing parameters

should be very finely determined, and fixed. The parameters not fit
with strong lensing (s; here) could then be optimized.

7.1.3 iNFW

The NFW distributions attributed to strong lensing are all reductions
of dPIE LENSTOOL optimizations to NFW best fit. In Fig. E4,
we compare these to the ICM-optimized iNFW parameters. The
latter yields a very satisfactory best likelihood value again at
In £ = —0.70, and although the { ps; s} values we find are different
from those of the strong lensing reduction, they are compatible with
the total density we found.

7.2 Cluster MACS J0949

Similarly to the study performed on the cluster MACS J0242,
we present the results of the ICM optimization of MACS J0949.
We primarily present the joint fit results (X-rays and SZ
effect).

7.2.1 B model

Fig. ES presents the optimization with the ICM data from XMM-
Newton and the SZ data taken with ACT. Using both the X-rays
and SZ data for this optimization, we find the best likelihood to
be In £; = —0.61, a value which supports the good quality of the
fit. In detail, the X-ray likelihood is In Ly = —0.58, and the SZ
likelihood is In Lg; = —0.88.

7.2.2 1dPIE

As for MACS J0242, the optimization of the BCG cut radius, s3, is
degenerate. We therefore choose to fix this parameter to its strong
lensing value, 98.0 kpc. We display in Fig. 9 the strong lensing and
ICM optimizations in the {pg, 1; a1; $1; o, 2} parameter space. The
best-fitting value to the ICM data is In £, = —0.60. The overlap
between the strong lensing and ICM optimized spaces is obvious
in this cornerplot. However, the quality of the reconstruction with
the ICM does not converge as efficiently as that of strong lensing —
a result to be expected given the difference in methods and quality
of data.
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Figure 6. MCMC optimization for 1dPIE model of the four relevant parameters for cluster MACS J0242: DMH central density po, 1 in gcm™>, core radius a;
and cut radius s in kpe, and BCG central density pg, 2 in g cm™3. Blue: Optimization performed using the available ICM data (X-ray here). Red: Strong lensing
optimization. Cyan: Best-fitting value of the ICM optimization. Gold: Median ICM optimization. Magenta: Best-fitting strong lensing model (described in

Table 2).

We present the comparison between the observations, the
theoretical prediction using the lens model and the ICM-optimized
model for observables, n,, Sx, and ®, on Figs 10, E7, and ES8,
respectively. Again, not optimizing s, leads to a worst ICM
optimization (best log-likelihood —1.06, see Fig. E6). In Fig. 10,
the right-hand panel shows the discrepancy between the X-rays
inferred electron density and the best optimization with a fixed
DMH cut radius, s; = 1.5 Mpc. This demonstrates the importance
of this parameter optimization to recover the X-ray measured
density profile. We further discuss this in Section 7.3.

MNRAS 528, 1711-1736 (2024)

7.2.3 INFW

In Fig. E9, we compare the best strong lensing optimization fit
to the ICM-optimized 1NFW parameter space. We find a best
log-likelihood of InL; = —0.61. The strong lensing fit NFW
parameters and the ICM-optimized values are compatible within
lo.
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parameters po, 1, d1, 51, and pg, 2, as illustrated in Fig. 6. Right: In the case of the optimization of parameters pq, 1, a1, and py, 2, as illustrated in Fig. E2.

7.3 Optimizing the DMH cut radius with ICM core data and

SL priors

As strong lensing is only efficiently probing the most central regions
of galaxy clusters (R < 200 kpc), it only allows to effectively con-

strain the ‘central’ parameters amongst those presented in 1idPIE

optimizations, i.e. po, 1, di, Po, 2, and s, —leaving s; aside. Even these
strong lensing constrained parameters are not perfectly determined
in the case of our study as we are limited in the number of multiple
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Figure 9. MCMC optimization for 1dPIE model of the four relevant parameters for cluster MACS J0949: DMH central density pog, |, core radius a; and cut
radius 51, and BCG central density pg, 2. The optimization was performed with the X-ray and SZ data. Blue: Optimization performed using the available ICM
data. Red: Strong lensing optimization. Cyan: Best ICM optimization. Gold: Median of the ICM optimization. Magenta: Best strong lensing model (described

in Table 2).

images and spectroscopic redshifts detected (Allingham et al.
2023).

In this context, for the idPIE ICM optimizations, we notice
the efficiency of the optimization of the dark matter halo cut

MNRAS 528, 1711-1736 (2024)

radius, s;. For MACSJ0949,7 we can use the 1dPIE model
introduced in Section 7.2.2 and Fig. 9, and fix the parameters

TFor MACS J0242, we did not perform this optimization, as the central
pixels present a total density out of the invertible range of function 7, and
optimizing s; only would not suffice to bring the central density into the
invertible range.
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Figure 10. Electron density n, for 1idPIE model, for cluster MACS J0949. Green: X-ray surface brightness deprojected profile (assuming spherical symmetry).
Blue: Best ICM-optimized profile, with an 1dPIE model. Red: Best lens model inferred profile. Left: In the case of the optimization of parameters pg, 1, a1,
s1 and po, 2, as illustrated in Fig. 9. Right: In the case of the optimization of parameters po, 1, a1, and po, 2, as illustrated in Fig. E6. Similarly to Fig. 7, we
observe that not optimizing s; prevents our 1dPIE model to fit the ICM density properly for r 2 200 kpc.

constrained through strong lensing, i.e. pg 1, ai, and pg . This
new model, only performing the s;-optimization, reaches the
best-fitting value, s; = 35007320 kpc, at InL; = —0.63. This is
much better than optimizing all the other parameters excluding s;
(In £; = —1.06). Thus optimizing s; could suffice to fit the ICM
density.

To verify this s;-optimization does not affect the lens opti-
mization, we used the s; value for the best ICM optimization of
the idPIE model presented in Tables 4 and 5 for respectively
clusters MACS J0242 and J0949. Fixing the DMH cut radius
to (respectively) 2720 and 3780 kpc, we perform a new lens
optimization for each cluster, following the procedure detailed in
Allingham et al. (2023). We find that, for both clusters, this does
not change significantly any of the optimized parameters. We find
a close match between the respective rms of 0.37 and 0.16 arcsec,
compared to 0.39 and 0.15 arcsec rms with s; fixed to 1.5 Mpc. We
conclude that using the ICM-optimized s, values does not strongly
influence the strong lensing reconstruction.

8 DISCUSSION

8.1 Importance of the DMH cut radius

We remind the reader that the full idPIE ICM optimization
for clusters MACS J0242 and MACS J0949 respectively yielded
51 = 27207430 kpc and 3780%3%, kpc — this latter value being
compatible with the s;-optimization only. Amongst all idPIE
profile parameters, s; is the only one not to be optimized with strong
gravitational lensing. Given the uncertainty in the determination of
the lensing parameters due to observational limitations, the stiffness
of function 7' magnifies small errors in the potential profile
into significant ones in the ICM density. Thus, these errors may
contaminate the ICM-optimized s; value. If we could fix all other
parameters (density parameters, geometry, and use a measured ICM

temperature profile), the ICM-optimized value for s; should yield
a physical result, with respect to the dPIE profile choice and the
hydrostatic equilibrium hypothesis. In spite of this constraint on
the data quality, we have presented the importance of the DMH
cut radius parameter, s, in the ICM density prediction, as its
optimization modifies the electron density, 7,, and thus the surface
brightness, Sx, at all radii. Indeed, this DMH cut radius parameter,
sy, is related to the total matter density density in the cluster
outskirts, but has a direct influence in the central X-ray surface
brightness. This noticeable change in the ICM central density due
to the s; DM halo cut radius is represented in Fig. E10. In the
hydrostatic hypothesis, we can understand this as the effect of
faster clustering of (baryonic) matter due to a larger dark matter
halo, thus increasing the central baryonic density. In other words, if
the gravitational potential at large radii is more important, a cluster
should have accreted gas faster, and thus the ICM should be denser
in the centre.

In order to securely compare the lens model to the ICM ob-
servables using the method presented in this article, future works
should focus on relaxed, strong lensing galaxy clusters with a well-
constrained lens model, including a large number of multiply-lensed
systems. Given the utmost importance to know the limits of strong
lens modelling (as demonstrated in e.g. Lin, Wagner & Griffiths
2023), one should not conclude on the dark matter halo properties
without solid evidence. Moreover, weak lensing or a number of
galaxy—galaxy strong lensing events far from the cluster centre
should be coupled to the strong lens model, in order to lift the
degeneracy on the potential constraints at large radii. In the settings
of a similar parametric lens model as presented here, this would
allow to constrain s; and to verify our optimization results.

We may compare the cut radius to the splashback radius. This
radius is defined as the largest distance from the cluster centre
connected to the cluster dynamics, i.e. the largest orbital apocentre at
which matter is accreted to the DMH. The cut radius values we find
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Table 5. Best-fitting of all optimization models for cluster MACS J0949.

Observation Profile 00, 15 PS> OF Pe aip, rs, or re K 00,2 52 B —InLy
Units [gem™] [kpc] [kpc] [gem™] [kpc]
Lensing dPIE 4.6736 x 107 116.3%24] 1500* 3.9%83 » 1018 98.0713%7 , 3.54
1.6 —2: —+0.0
NFW 1240 x 1072 405.5705 | - - - - 1.42
ICM B L7H16 x 10724 108413750 B, B, 0.5010%8 0.61
(X-rays and SZ) idPIE 3.6782 % 1072 96.17529 37801120, 19773 x 1072 98.0* B, 0.60
iNFW 6.4759 x 1072 546.211803 B, B, B, B, 0.61

The columns are as follows: (i) The observation type used to constrain the profile. (ii) The profile type. (iii) oo, 1 denotes the DMH central density in the case
of 1dPIE profile, pg in the iNFW case, and the central gas density p. in the case of a -profile. (iv) @; denotes the DMH core radius in the 1dPIE model, rg
the scale radius in the 1NFW case, and r. in the B-model. All of these distances are displayed in kpc. (v) s; denote respectively the cut radius of the DMH and
of the BCG, in the case 1dPIE. (vi) pg, 2 denotes the BCG central density in the 1dPIE case. (vii) s is the cut radius of the BCG. (viii) 8 is the power index
of the B profile. (ix)— In £ is the negative joint SZ-X-ray log-likelihood. The core radius of the BCG a; is model-dependent, and is thus it is not optimized

here. Starred values were fixed.

are larger than splashback radii measured by Chang et al. (2018).
Their typical values provided in a redshift range corresponding
to our lensing clusters are in the 1.5-2 Mpc range. These values
are averaged for clusters of typical mass Mg, =~ 2.5 x 10* Mg,
to compare to the (extrapolated) 5.6 and 10.4 x 10" Mg for
MACS J0242 and MACS J0949 respectively. As we expect more
massive clusters to be larger, we do not find any contradiction to
our s; values in this broad comparison. For a more quantitative
assessment, we compare the logarithmic derivatives of the dPIE
radial densities to the Diemer & Kravtsov (2014) density profiles
(hereafter DK14). We find the transition between a logarithmic
derivative of —2 to —4 to occur for the dPIE profile (with an
optimized s, cut radius) from 0.5R.;; to ~5R,;.. This is in clear
opposition to the DK 14 predictions, for which the heaviest clusters
present a steepening of the derivative (see Fig. 2), and reaches a —4
logarithmic derivative for ~Ry;;.

We can also compare the cut radii obtained to the predicted edge
radius, defined as the smallest radius at which no more orbiting
galaxies can be found. According to Tomooka et al. (2020) and Aung
et al. (2023), the edge radius can be approximated to r, ~ 2R200, m-
Using the ICM-optimized values for Ry, ,», We can compare the
optimized cut radius values to the edge radii for both clusters. We
obtain for MACS J0242, s, = 27207422 and 2Rag, ,, = 4632 kpc. In
the case of MACS J0949, we measure 5| = 3780ﬁ220 and 2Ryp, ;=
4751 kpc. Computing the ratios s,/r, = 0.59 and 0.80 for the two
clusters respectively, we obtain values of the same order. It should
be noted that the cut, splashback, and edge radii are not necessarily
assumed to describe the same physical limit. As MACS J0242
presents a more cored profile than MACS J0949, we expect a higher
DM concentration in the cluster centre. As a consequence, for
a comparable bounded mass (e.g. Mg, ), We expect a lower s;
value. This is compatible with the smaller s,/r, ratio found here.
This serves to illustrate that, although of comparable orders of
magnitude, s; and r, do not exactly represent the same physical
observables. The shock radius, describing the size of a shock of gas
falling into the ICM of a cluster, is predicted by Baxter et al. (2021)
to be equally of order ~2Ry0, m, using SZ profiles issued from the
Three Hundred Project hydrodynamic simulations. Although not
quite observable with the ACT resolution, future SZ surveys will be
able to assist detecting this critical ICM large scale cluster radius.
We conclude that the optimized cut radii is commensurable to these
various radii attempting to measure the ‘size’ of galaxy clusters, and
we find s; to fall between the splashback and the edge radii. Using
our analytical model, the thorough comparison of these different
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cluster-size radii should be greatly assisted by the combination of
strong lensing and ICM observations.

8.2 ICM and DMH geometries

In order to understand the effect of the density profile parameters
optimization, one must decorrelate these from the geometric differ-
ences between the DMH and the ICM. Our measurements suggest
that the ICM presents rounder shapes than the DMH (see e.g. Fig. 1).
Indeed, in the case of clusters MACS J0242 and MACS J0949, the
X-ray measured ellipticities are negligible, but the strong lensing
optimization of the DMH presents ellipticities in the range 0.2-0.3.
As studied in e.g. Debattista et al. (2008) and Lau et al. (2012), the
geometry of the ICM of (relaxed) galaxy clusters may differ from
that of their DMH. Beyond baryonic effects associated to the ICM,
the inability of CDM to dissipate kinetic energy tends to favour
more elliptical DMH. According to Lau et al. (2011), simulations
show both fluids’ ellipticity also varies importantly depending on
the radius in which it is measured. As the ICM ellipticity is measured
in a significantly larger radius, it is expected to be smaller. In this
article, we modelled the ICM ellipticity to be that of the DMH
measured through strong lensing. Any attempt to optimize the ICM
density with spherical profiles yielded equivalent density profile
parameters (0o, a, s) and best-fitting likelihoods as using an elliptical
profile (for both clusters, the Mahalanobis distance between the
best-optimizations is of 0.3 o, and the In £ difference <0.01).

At last, line-of-sight projection effects were entirely neglected
in this paper, and in the strong lensing reconstruction. The com-
bination of SZ effect and X-ray observations may allow to inform
asymmetries on the line-of-sight. However, given the SZ effect data
resolution and the adoption of a self-similar temperature profile in
this work, this is beyond the scope of this article. Such effects may
nonetheless affect the quality of the reconstruction. For instance,
Umetsu et al. (2015) display a case of apparent mismatch between
ICM and lensing observations due to the presence of a line-of-sight
asymmetry.

8.3 Relationship between DM and ICM densities

A number of additional observational effects limit the analytical
ICM density reconstruction method. In general, relaxed galaxy
clusters are expected to present a cool core, due to the radiated
power in X-rays at high ICM densities. However, the observed
central temperatures tend to be higher than the expected values
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considering only X-ray cooling (Peterson et al. 2001; Bohringer
et al. 2002). This is generally explained by feedback effects, and
most notably active galaxy nuclei (AGN; see e.g. Puchwein et al.
2010) and the cooling of the plasma. The change produced in the
temperature profile was here taken into account by using the varying
index, self-similar polytropic temperature model, which represents
the physically measured temperatures, without implementing AGN
feedback itself. However, this self-similar model is imperfect to
take into account the feedback specific to each cluster. This may
decorrelate the central ICM density from the DM in the outskirts.
For instance, Ghirardini et al. (2019a, fig. 7) present up to a
70 per cent intrinsic scatter in the central density. The inclusion
of a theoretical model for such baryonic effects would represent
an important improvement to our models. Modelling the ICM fluid
velocity evolution would also allow to understand the evolution of
clusters, thus challenging the hydrostatic hypothesis.

Nevertheless, with precise lensing constraints and temperature
model measurements in a cluster, we could directly compare
the ICM data to the parametric lensing reconstruction, given our
analytical models. The difference between the observations and the
model, with respect to systematic errors, could yield constraints on
the ICM velocity field and on dark matter models.

9 CONCLUSION

Using a comparison between a parametric strong lensing mass
reconstruction model and the ICM observations (X-rays and SZ)
on two non-perturbed galaxy clusters, we have shown it is possible
to use a unique model to describe both the total and ICM density
profiles. In fact, under the hydrostatic hypothesis and assuming self-
similar electron temperature profiles, the bijection 7, (equation 12)
we have established between the total matter density and the ICM
density allows to describe both the electron and dark matter density
with the same parameters. We applied this technique to the dPIE and
NFW potentials, and convincingly found the parameters optimized
through lensing to be either compatible with their ICM optimization,
or to be degenerate and thus difficult to optimize with the ICM.

Given the sensitivity of this 7, function, and as strong lensing
does not allow to probe regions out of the cluster inner core, we
paired our models to ICM observations. This allows to probe the
cut or scale radii of relaxed clusters. Indeed, the ICM central
density appears to be bounded to these matter density large-
scale parameters. The method exposed in this article differs from
traditional ways of accounting for ICM data in conjunction with
strong lensing models, where the inferred gas potential is added
to the lens model as a fixed (Paraficz et al. 2016; Bonamigo et al.
2017) or evolving (Beauchesne et al. 2024) component. Our new
technique should be verified using clusters’ outskirts surveys, such
as weak lensing, and could only be efficiently applied with stringent
constraints on the strong lensing parameters.

We can also reverse this perspective. If we had a perfect descrip-
tion of the full density mass model, e.g. including the cut radius
of the DM halo through weak lensing, we could then compare the
predicted ICM signal to that detected. If our model were satisfactory
enough, we could then probe possible discrepancies, associated to
other physical phenomena.

We here summarize the main results of this analysis:

(1) We have proposed a self-similar polytropic temperature
model with a varying index, using the X-COP sample of clusters.
This allows to predict the ICM temperature for any cluster of
measured mass Msgp, ..

Strong lensing reconstruction of the ICM 1727

(2) As a major result, we exhibited an analytic relationship
between the ICM density and that of DM, assuming hydrostatic
equilibrium. We have further shown this relationship to allow to
predict the ICM density using strong lensing, as a proof of concept.

(3) We have demonstrated that the strong lensing ICM predic-
tions are compatible with data through the ICM optimization. We
expect the strong lensing prediction to yield convincing results as
long as: (i) the lensing galaxy cluster is not strongly perturbed,
and (ii) we are able to properly predict the large-scale total density
profile.

(4) This requirement to probe the large scales demonstrates
the limitations of our current analysis. We however foresee weak
lensing constraints as a mitigating solution to adjust our models to
large scale variations, thus allowing us to make precise predictions.

(5) Reverting the perspective, this means the combination of X-
rays or SZ data with strong lensing could allow to probe the dark
matter profile of relaxed galaxy clusters far from their centres.

We have presented a proof of concept for the possibility to tie
strong lensing constraints to the ICM. With higher-quality data and
more observations on the large-scale profile, this should lead to
powerful constraints on galaxy clusters physics.
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APPENDIX A: ELLIPTICITIES

We define the mass ellipticity e as

a? — b?

a?+b*’

where a and b are the semimajor and semiminor axes, respectively.
Due to the Poisson equation, the ellipticity of the gravitational

potential, i.e. here that of the ICM, differs from that of the mass
ellipticity,
1—+/1—¢e* a-b»b

e = . A2
€ e a+b (A2)

e= (A1)

Upon defining an ellipsoidal radius, in order to take into account
the potential ellipticity, assuming the ellipticity to be e, we take it
to be

xcosf + ysin6 2 ycosf — xsiné 2 7\ 2
r= + +<f) )
a b c

(A3)

in the Cartesian coordinates, with 6 the rotation angle on the sky
plane. ¢ is the semi-axis along the line-of-sight, which we take to
be the geometric average of a and b here.

APPENDIX B: ALTERNATIVE DENSITY
DISTRIBUTIONS

Beyond the NFW and dPIE density distributions, presented in
Section 4.1, alternative models may be used to compute the ICM
thermodynamic parameters using relationship (13).

B1 Generalized NFW profile

In the case of a generalized NFW potential (proposed as early
as Hernquist 1990), we compute the different integrals given
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equation (6),

) =x77 (14207
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h(r) = 1} {xZ*V {ZFI(V’ §1+4v, —x%) B1)
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3—-vy al'(§) ’

where x = r/rg, oF, is the Gauss hypergeometric function, I" the
extended factorial function (i.e. the complete gamma function), and
W, v and & are simple reformulations of the three indices «, 8, y,
3=y 2=y . B-v
= Pv= L=
o o o

(B2)

This integration takes constants into account, but requires o > 0,
> 2, and y < 2. The generalized NFW density is normalized by pg,
similarly to NFW: ponpw(r) = psf(r).

B2 Einasto profile

The Einasto potential was proposed in Einasto (1965). Following
Cardone, Piedipalumbo & Tortora (2005) and Retana-Montenegro
et al. (2012), the different functions equation (6) write

f(r) =exp (—s”fl) ,
¢(r) = In [l"(3n) -r (3n, s"")] ,

I’ll2 —1 -1
hr) = =" [F(3n) -T (3n,s” ) 45T (2n,s” )} G %)
where n is the inverse index of the density slope at large radii, s =
(2n)"rlr_, the reduced scale radius, with r_, a transition radius,
| = r_»/(2n)" the scale length, and p the central density. I'(«) is
the complete gamma function, and I'(c, x) the incomplete upper
gamma function,

Mo, x) = / drt* e, (B4)

The Einasto density writes pg(r) = pof(r).

APPENDIX C: SELF-NORMALIZED ICM
DENSITY DISTRIBUTION

Following equation (11), assuming J to be a bijection, we can also
invert it and normalize the distribution at a given radius A (e.g. 100
kpc, where the strong lensing signal is strongly constraining the
total density profile, or Rs, .), if we happen to know n, ». We can
therefore write

) =T [ T0e0) | @

(r)= eA) |-
D(Ra.c)

We call this latter expression self-normalized.

We did not include any self-normalized models in the opti-
mizations, as these imply to use X-ray data both as input (as a
normalization) and to perform the optimization, which would make
one or several parameters degenerate.

Strong lensing reconstruction of the ICM 1729
APPENDIX D: GAS FRACTION STUDY

D1 Gas fraction definition

We define the gas fraction as the ratio of the gas mass to the total
mass. The gas mass includes all baryons except stars. We distinguish
the local gas fraction, f,(r) = p4(r)/p,u(r), considered in this article
to be a radial function, and the cumulative gas fraction, F,, given
within a radius r:

for dssz,og(s) _ My(<r)
fo dss2pu(s)  Mu(<r)’

_dF, for dss?p,(s)
fg(") = dT(V)W

The full knowledge of either of these gas fractions would provide a
bijective relationship between the gas and matter content of galaxy
clusters. We will therefore name gas density reconstruction our
electron density prediction using an empirical gas density model.

We here present an alternative attempt to model the hot gas
distribution using the gravitational potential. Using the local gas
fraction f, = p,/p, a general model for f, coupled with the lensing
constraints on p,, would yield a p, prediction in each lensing cluster.

In order to derive a quantitative model for the gas fraction, we use
the ‘X-COP + 2’ sample analysis, i.e. the X-COP (XMM Cluster
Outskirts Project) sample, complemented with similar analyses for
our two strong-lensing clusters, MACS J0242 and MACS J0949.
We compare the cumulative gas fraction reconstruction (as defined
in equation D1) in each of the 14 clusters in the sample, and propose
two new ad hoc models.

Fg(r)z

+ Fo(r). (D1

D2 Proposed models

With respect to the data analysed in Section D3, we propose the
following models. First, we attempt to describe the increasing
cumulative gas fraction, F,, as a power law,

0 r\*
Ry =10 (1+2) (D2)

where r, is a pivot, or core radius, fé? = F,(r = 0), the central gas
fraction, i.e. the baryonic fraction excepted the stellar fraction, and
¢, the power exponent to find.

However, for all clusters, the integrated gas fraction presents a
transition between the inner and the outer regions of the cluster, as
represented on Eckert et al. (2019, fig. 1). We propose to analytically
describe this transition with a transitive model,

r—rL,> 1:|
——| +b, (D3)
ry

2
F, = — arct
(r)=a [7_[ arctan <exp 5

where a and b are defined with the expected gas fraction at two given
radii, respectively at Rg, a radius where the potential is typically
constrained through strong gravitational lensing (e.g. the Einstein
radius), and at Rsq, ., where the gas fraction should tend towards
the Universal gas fraction. We respectively write these gas fractions
F gE and F KSOO,

om0 (7))
v(r) = — arctan |exp ,
T ry

500 E
a = Fe—F
U(Rs00) — v(RE)
b= FgSOO — av(Rseo), (D4)
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and r,, and 7y are the pivot radius and flattening distance, respectively,
i.e. the radii of the transition inflexion point, and the characterization
of the slope of the transition.

In the simplest model, i.e. assuming a cluster to be dynamically
relaxed, the local gas fraction pivot scale should be related to the
pivot parameter in the total matter density p,. For instance, in
a NFW description, this parameter would be the scale radius rg,
as fo(r) = pg(r; rs)pwm(r; rs), using the hydrostatic relationship
(13). Therefore, we can take a;, a typical BCG-to-DMH transition
radius, to be a reasonable prior on both the pivot radius r, and
the flattening distance ry. Important limitations nonetheless prevent
from identifying these values to be identical. Indeed, multiple
parametrizations of the typical pivot radius exist in the potential,
and are not identical to a unique pivot scale. More importantly, the
distribution of hot gas is dominated by non-gravitational phenomena
(AGN feedback, plasma turbulence, etc.), whose characteristic radii
have no a priori reason to match the potential’s. For F;*, we
assume F;% =~ f3% and we use the universal gas fraction Qy/Qp, =
0.1580 4 0.0021 (Ade et al. 2016), corrected for the stellar fraction
f., notaccounted for in the intra-cluster gas, and the baryon depletion
factor Y, (see Eckert et al. 2019),

Q2
in

) = Y(r) == = fu(r). (D5)
Eckert et al. (2019) provide ¥} 500 = 0.93870:928 which we use
here. Following the same study, we take the error on f, s to be
5 x 1073. The study of the lensing galaxy clusters gives stellar
fraction of f, 500 = (1.92 4 0.21) x 1072 and (1.87 & 0.36) x 1072
for MACS J0242 and J0949, respectively.

D3 X-COP + 2 study

With the power-law and the transitive models, equations (D2) and
(D3) respectively, we conduct a study for the 14 galaxy clusters of
the X-COP + 2 sample.

All these clusters were tested with both the power-law and
transitive models, optimized for all respective 3 and 4 parameters
(O r,¢Yand { FE, F;OO, rp, ¢ 1) with a MCMC, with package
EMCEE (see Foreman-Mackey et al. 2013). We arbitrarily took Rg =
50 kpc, as both lensing clusters present strong constraints in this
region, and the gas fraction at this radius is significantly different
from that at Rsy, . for all clusters. We define the log-likelihood
function as Gaussian, with an underestimated variance of fractional
amount, f:

1 sz:_l _ Fprl-ed(@)
nLy®)==32 <c

i

2
) +Io?|, (D6)

where F’ ;*}1 are the values of the cumulative gas fraction in radius
bins (the gas mass being measured through X-ray deprojection, and
the total mass obtained using the hydrostatic equilibrium), F’ ; r,-ed are
the predictions in the same bins, and

o; = (cr?")z + [F;ried(@)]z f2 (D7)

where of" are the ngfj-l measured standard deviation error. In
practice, the model scatter fis optimized.

Out of the 14 clusters, 5 were found to be better modelled with
the power-law, and 9 with the transitive relationship — including
MACS J0242 and MACS J0949. We performed the optimization
over all radii accessible in the X-ray data range, except for
MACS J0242, where non-statistically significant perturbations exist

MNRAS 528, 1711-1736 (2024)

Table D1. Average over all clusters of the optimized parameters for the gas
fraction power law model.

1) re [kpel ¢
1.26 £ 1.12 1.01 £ 0.62 0.41 +£0.14
re is in kpc.

Table D2. Average over all clusters of the optimized parameters for the gas
fraction transitive model.

FE@) F3%(%) rp [kpc] ry [kpe]

5.59 £2.21 13.6 £2.1 20.4 £+ 65.6 259.8 £ 135.8

rp and ry are in kpc.

Table D3. Updated parameters and model for the gas fraction transitive
model, for the X-COP clusters only.

FE(%) F2%(%) r¢ [kpe]
5.40 + 1.83 137+ 1.9 290.7 + 122.1
ryis in kpc.

in the gas fraction reconstruction. To avoid these, the optimization
was performed in r € [20; 350] kpc for this specific cluster.

Overall, we find the transitive model to be consistently better.
Indeed, even the clusters which were better modelled by a power-
law are well fit by a transitive model. The largest model scatter on
the power-law model reaches f = 17 per cent, to be compared with
the maximum of f = 9 per cent for the transitive model. Moreover,
by construction, the transitive model can use physical parameters
as priors for F;°, r, and ry, and converges at large radii, which is
expected from the Universal hot gas fraction. We give in Tables D1
and D2 the optimized parameters for respectively the power-law and
the transitive models. These are the averages of the best parameters
found by the MCMC for each individual cluster.

Trying to relate these parameters to physical values, we notice
that fé? is the gas fraction at the centre of the clusters. The X-
COP + 2 sample does not precisely provide the hot gas fraction
in the centre of clusters (r < 20 kpc), due to the stellar effects,
turbulence, feedback, and resolution of X-ray surveys. For these
reasons, we do not directly use a physically measurable value for

;), and simply use a fit of this parameter across all radii. Conversely,
F gE is well measured for all the clusters of the sample, but we can
not generalize this value overall.

The exponent ¢ of the power-law model is purely empirical.
As for the power-law pivot radius, r., its relative error bars are
quite important. However, discarding the two clusters coming from
lensing yields r, = 0.96 & 0.65 kpc, i.e. a result very close the X-
COP + 2 one. The same process on ¢ and fgo gives results similar
to those presented in Table D1, for respectively ¢ = 0.41 £+ 0.14
and f[? = (1.2 4+ 1.1) x 1072, We can therefore propose a model,

0.41
F(r)=13x107? {1 + } . (D8)

1.0kpc
However, given the important error bars found on all parameters of
this model, its inability to predict accurately the gas fraction for most
clusters, and the lack of theoretical motivation for its parameters,
we conclude to the ineffectiveness of this model.

As for the transitive model, all parameters may be physically
interpreted. The quantity F," not only can be found quite precisely,
but is also in agreement with equation (DS5). Indeed, for all X-COP
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Figure D1. Cumulative gas fraction Fg(r) in lensing galaxy clusters MACS J0242 (left) and MACS J0949 (right). Black: Reconstructed gas fraction from
XMM-Newton data analysis. Errors are 1o. Green: Universal gas fraction ,/<2,,. Orange: Gas fraction at Rs5q, . (see equation DS5). Red: Transitive gas fraction
model (see equation D3) optimized for the specific cluster. Blue: Transitive model with the cluster lensing parameter a; as rp, and F, g and Fg500 determined

using the general reduction over X-COP + 2 and the theoretical gas fraction fgSOO respectively. As presented in e.g. Eckert et al. (2022), the baryon fraction is
approximately constant out of the central regions of clusters. Baryons are distributed between stars and the ICM, with a higher concentration of the former in
the centre, and of the latter in the outskirts (r > 0.2Rs50p). This matches the trend presented here.

clusters, the stellar fraction is considered to be unknown. We could
use the X-COP average value f, so0 = 0.015 £ 0.005, but prefer to
use the results of simulations presented in Angelinelli et al. (2023).
Given a M5y, which we have for X-COP clusters, we can draw a
value for f, s0o. Completing the set with the stellar fractions found in
Allingham et al. (2023) for the lensing clusters, we can fix the F, ;00
value for each cluster. These values are in remarkable agreement
with Table D2. As for r, and ry, we can not study the X-COP clusters
and our lensing clusters jointly. Indeed, we are using a;, the core
radius of the DMH, as a prior on both these parameters. However,
this radius is unknown for the X-COP clusters due to the lack of
lensing data. Moreover, the best-fitting values of r, for the X-COP
clusters are all <2 kpc, while for MACS J0242, r, = 22.9*1%9 kpc
and for MACS J0949, r, = 256.17187 kpc.

Therefore, for the dynamically relaxed X-COP clusters, we can
set r, = 0. After performing an optimization on the X-COP clusters
only of this restricted model, we find the average best parameters
summarized in Table D3. The largest model scatter across all 12
clusters is still of f =9 percent. If we chose to constrain F;*
using equation (D5), the largest f would be of 36 per cent.

Given the results in the lensing clusters transitive model opti-
mization, we choose to fix r, to the a; prior for both MACS J0242
and MACS J0949. This is an effective model, which should be
further informed using observations on other lensing clusters. We
then find the model error to be respectively f = 1.7 per cent and
1.8 percent. On all 14 clusters, we may prolong the transitive
function into a central gas fraction FC, which is predicted to be
F g = 2.6 + 1.9 percent, averaging on all clusters, with the fixed
7, models. We may thus fix all parameters (using formula D5 for
F%), except ry. This final model is represented and compared to

the transitive model with all parameters let free on Fig. D1. We

find a maximum scatter of f = 40 per cent, but the average scatter
at 8.7 per cent. As expected, the local models appear to be better

fits, but we notice the reduced model (r; free only displayed in
blue is a good approximation (the X-ray reconstruction is never
distant of more than 20 from the ‘reduced’ models, in the fitting
radii range). For the lensing clusters, we can not conclude on the
scale to set for r,, but found the approximation r, ~ a; to be
empirically reasonable. We can not conclude absolutely on the
flattening distance 7y, with the final model yielding r; = 26.575%
kpc for MACS J0242 and r; = 267.3%127 kpc for MACS J0949. A
larger study would be necessary to conclude to the general validity
of a reduced transitive model without any free parameter. For the
X-COP clusters, ry ranges from 80 to 750 kpc, and we can thus
not conclude either. Studying the morphology and dynamical state
parameters may allow to determine 7y using observable data.

As we could not extract a general, Universal prediction for the
gas fraction simply using lensing-determined parameters, we can
not conclude to the success of this technique for the moment. The
transitive model is however encouraging, and a more general study
coupling X-ray and lensing data may manage to generalize the
resisting parameter ry.

APPENDIX E: CORNERPLOTS

We display here the cornerplots of the MCMC optimizations of the
potential of the ICM data, as described Section 8. In the following
graphs, densities p are displayed in gcm™3, while core, scale, and
cut radii in kpc.

MNRAS 528, 1711-1736 (2024)
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Figure E1. MCMC optimization for 8 model of the three relevant parame-
ters for cluster MACS J0242: central density po, 1, core radius 7. and density
index B. As per all other cornerplots, the density po, | is here displayed in
g cm™3 and the core radius r. in kpc. Blue: Optimization performed using the
available ICM data (X-ray here). Gold: Median of the ICM optimization.
Cyan: Best ICM optimization (described in Table 2). These best ICM-
optimization values are displayed over the histogramme distributions.
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Figure E2. MCMC optimization for idPIE model, for cluster MACS J0242: DMH central density po, | and core radius a;, and BCG central density po, 2. The
DMH cut radius is fixed to the fiducial value of 1.5 Mpc. Densities are displayed in g cm—3, distances in kpc. Blue: Optimization performed using the available
ICM data (X-ray here). Red: Strong lensing optimization. Cyan: Best ICM optimization. Gold: Median of the ICM optimization. Magenta: Best strong lensing
model (described in Table 2). Comparing this to Fig. 6, we notice the importance of the optimization of parameter sy, as the ICM best-fitting likelihood here is
—1.06, i.e. the optimization is of much worse quality than with this optimization.
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Figure E3. MCMC optimization for idPIE model, for cluster MACS J0242: DMH central density po, 1, core radius a, cut radius 51, and BCG central density
00,2 and cut radius s,. Densities are displayed in gcm™3, distances in kpc. Blue: Optimization performed using the available ICM data (X-ray here). Red:
Strong lensing optimization. Cyan: Best ICM optimization. Gold: Median of the ICM optimization. Magenta: Best strong lensing model (described in Table
2). Comparing this to Fig. 6, we can see that the s, optimization is degenerated, and therefore not necessary. This explains why we fixed the s, value to that of
lensing in Section 8.
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Figure E4. MCMC optimization for iNFW model of the two relevant
parameters for cluster MACS J0242: the density normalization pg and the
scale radius rg. Densities are displayed in gcm™3, distances in kpc. Blue:
Optimization performed using the available ICM data (X-ray here). Red:
Strong lensing optimization. Cyan: Best ICM optimization. Gold: Median
of the ICM optimization. Magenta: Best strong lensing model (described in
Table 2).
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Figure E5. MCMC joint optimization for the B model, for cluster
MACS J0949. Densities are displayed in gcm™, distances in kpc. Blue:
Optimization performed using the available ICM data (X-ray and SZ here).
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Figure E6. MCMC joint optimization for idPIE model, for cluster
MACS J0949: DMH central density po,; and core radius aj, and BCG
central density po, 2. The DMH cut radius is fixed to the fiducial value of 1.5
Mpc. Densities are displayed in g cm 3, distances in kpc. Blue: Optimization
performed using the available ICM data (X-ray and SZ here). Red: Strong
lensing optimization. Cyan: Best ICM optimization. Gold: Median of the
ICM optimization. Magenta: Best strong lensing model (described in Table
2). Similarly to Fig. E2 for MACS J0242, the comparison between this
optimization excluding s; and Fig. 9 displays the importance of the s;
optimization.
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Figure E7. X-ray surface brightness Sy for idPIE model, for cluster MACS J0949. Green: X-ray surface brightness deprojected profile (assuming spherical
symmetry). Blue: Best ICM-optimized profile, with an 1dPIE model. Red: Best lens model inferred profile. Left: In the case of the optimization of parameters
po, 1, a1, 81, and pg, 2, as illustrated in Fig. 9. Right: In the case of the optimization of parameters pg, 1, a1, and pg, 2, as illustrated in Fig. E6.
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Figure E8. Compton parameter y for idPIE model, for cluster MACS J0949. Green: SZ effect Compton y parameter observed profile with ACT. Blue: Best
ICM-optimized profile, with an 1dPIE model. Red: Best lens model inferred profile. Left: In the case of the optimization of parameters po, 1, a1, s1, and po, 2,
as illustrated in Fig. 9. Right: In the case of the optimization of parameters pg, 1, a1, and py, 2, as illustrated in Fig. E6.
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Figure E9. MCMC joint optimization for iNFW model. The individual
values for the best optimization here presented are: In Lx = —0.58 and
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Optimization performed using the available ICM data (X-ray and SZ here).
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Median of the ICM optimization. Magenta: Best strong lensing model

(described in Table 2).

© 2024 The Author(s).

Strong lensing reconstruction of the ICM 1737

1072,

7
g
O,
g
—— Inferred from XMM-Newton
—— ICM: Best
10-3] —— Lens: Best
10! 102

Radius [kpc]

Figure E10. Electron density n, of the ICM for the 1dPIE model, for
cluster MACS J0949. Green: X-ray surface brightness deprojected profile
(assuming spherical symmetry). Blue: Best ICM-optimized profile, with an
idPIE model. Red: Bestlens model inferred profile. The ICM optimization
was here only performed on parameter sy, setting the other profile parameters
to their strong lensing value. The comparison between the red and blue
outlines the importance of the DMH cut radius optimization. Indeed, the n,
density does not only change dramatically in the outskirts, but also in the
centre of the cluster. This is due to the sensitivity of the function \7;1 and
of the shape of the potential @, and is discussed in Section 8.1.
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